
20 IJCA, Vol. 25, No. 1, March 2018

ISCA Copyright© 2018

Advancing Quality Assurance Through Metadata Management: Design and

Development of a Mobile Application for the NRDC

Connor Scully-Allison*, Hannah Muñoz*, Vinh Le*, Scotty Strachan*,

Eric Fritzinger*, Frederick C. Harris, Jr.*, and Sergiu Dascalu*

University of Nevada, Reno, Reno, NV, 89509, USA

Abstract

In this paper we present the design, implementation, and

impacts of a cross-platform mobile application that facilitates

the collection of metadata for in-situ sensor networks and

provides tools assisting Quality Assurance processes on remote

deployment sites. Created in close conjunction with scientists

and data managers working on environmental sensor networks,

this paper details the software requirements, specifications, and

implementation details enabling the recreation of such an

application. In a discussion on how this software improves on

existing techniques of logging contextual metadata and quality

assurance information, we show that this application represents

a significant improvement over-existing-methods. Specifically,

the proposed application allows for the near-real time update

and centralized storage of contextual metadata. Compared to

prior methods of logging, often physical notebooks with pen and

paper or program comments on embedded field sensors, the

method proposed in this paper allows for contextual information

to be more tightly bound to existing data sets, ensuring use of

collected data past the lifetime of a specific research project.

Key Words: Data management, data science, mobile

application, sensor networks, software engineering, cross

platform mobile development.

1 Introduction

Individual researchers and one-off projects dominate the

model of data collection in traditional climate/environmental

research [9]. In traditional research, single use data proves

extremely effective at answering a singular project’s research

questions and fulfilling research requirements attached to

funding streams. However, despite the short-term success of

such a model, a clear problem arises when another research team

wishes to use this previously collected data, or when data need

to be integrated into larger syntheses [3]. This problem drives

the need for complete, accurate, and usable metadata.

Metadata is considered a major part of the data lifecycle.

Creation of metadata include information surrounding the data

set, such as format, file names, and measurement units, and

information about the experiment producing the dataset, such as

documenting data processing steps and contextual information

* Department of Computer Science. Email: cscully-allison,

hannahmunoz, vle@nevada.unr.edu, scotty@dayhike.net,

ericf@unr.edu, fred.harris@cse.unr.edu, dascalus@cse.unr.edu.

to the data [13]. Its purpose is to make the datasets quick and

easy to understand [20]. Unfortunately, that is not always the

case. Traditionally, scientific metadata is kept in notebooks and

papers, a holdover from days before computers. This creates

fractured data, where it’s hard to relate the electronic data sheets

to hand written documents [18].

Due to the narrow focus of typical projects, only the original

researchers intimately know how the data was generated.

Metadata is often non-standardized, incomplete, and stored in

temporary formats. Some communities and organizations have

developed their own metadata standards; however, several

different metadata standards can exist within any given

discipline [7]. Eventually, over time -- or given enough distance

-- the value of these data sets is diminished to other researchers

and the public. It becomes harder to recover and ascertain

contextual information that is essential to decoding it and

metadata standards rarely address long-term preservation [18].

Methods for uniform quality assurance and metadata collection

are being recognized as the next major challenge for data

intensive science as collection becomes increasingly automated

and results globally disseminated [21].

This paper proposes a mobile application that manages and

maintains quality assurance metadata about data collected from

remote sensor networks. The Quality Assurance (QA)

Application described in this paper represents a positive step

forward into modern data collection models by centralizing,

modernizing, and standardizing contextual metadata for

environmental sensor systems. The QA App gives technicians

and researchers a tool for dynamic modification and creation of

contextual information relating to hundreds of live data streams

in a statewide sensor network.

Continuing from here, this paper is structured as follows:

Section 2 presents a survey of scholarly works related to the app

developed; Section 3 details the software specifications and use

cases of the application; Section 4 discusses the architectural

and user interface design of this application; Section 5 discusses

how the application was implemented; Section 6 evaluates the

success of implementation and Section 7 explores ideas for

future developments.

2 Related Work

At the broadest level, Quality Assurance refers to the

preventive maintenance and management process employed to

reduce inaccuracies in data automatically logged by sensors [5].

Although many works touch on the idea of Quality Assurance,

IJCA, Vol. 25, No. 1, March 2018 21

the most seminal motivating work published on the subject

comes from a 2013 paper “Quantity is Nothing without Quality:

Automated QA/QC for Streaming Environmental Sensor Data”

[4]. In this paper, the authors put forth a comprehensive,

generalized set of practices to optimize QA on environmental

field sensors. They suggest that QA procedures be automated,

well documented, and complete metadata maintained alongside

data. This work presents Quality Assurance as a “process

oriented” approach to data management, this strongly implies

that no single software solution can provide effective QA but

can only rather aid the QA process performed by humans.

Accordingly, a significant number of background works on this

subject study the analysis and creation of software that best

facilitates good QA practices.

A further example of a motivating work indicating the need

for Quality Assurance practices in the paper “Workflows and

extensions to the Kepler scientific workflow system to support

environmental sensor data access and analysis” [1]. This paper

outlines the development of a software environment that

“addresses technical challenges related to accessing and using

heterogeneous sensor data from within the Kepler scientific

workflow system.” Within the bounds of their end-to-end

examination of this existing sensor network workflow, the

authors indicate on several occasions that a clear need exists for

quality assurance practices with in-situ sensor networks. They

also acknowledge that existing software solutions used to

facilitate these practices are not well developed. Our QA

application intends to fill this proposed gap.

Outside of motivating works driving research in QA, there

also exists several works that explore the practical or theoretical

implementation of Quality Assurance processes and software.

One, “Meta-information concepts for ecological data

management” represents an early survey of many data

management needs for ecological sensor data collection [12].

This paper suggests exactly at which stage in the data collection

pipeline to place QA processes and software. Another paper,

“Anomaly detection in streaming environmental sensor data: A

data-driven modeling approach” shows a more practical

approach to Quality Assurance by suggesting that expected

shifts in the quality of data can be anticipated by using data-

driven modeling techniques. Although the approach taken by

the authors of this paper is not representative of the approach we

undertook, it shows that there exists a strong interest in applying

modern software engineering techniques to the problem of

Quality Assurance.

Along similar lines, in the paper, “Automatic processing,

quality assurance and serving of real-time weather data” the

authors demonstrate that there exists a strong interest in

developing software to automate and streamline the process of

Quality Assurance on environmental sensor data [22]. The

authors of this paper propose a software to manage and utilize

statistical metadata that can indicate the quality of data through

uncertainty values. The concept of collecting metadata in a

standardized format for quality assurance strongly reflects the

goal of the Quality Assurance software developed and detailed

in this paper for the NRDC. However, our approach is unique

in that it is oriented towards metadata collection as an end goal

rather than as a supplement to Quality Control computations.

Taken together, the above papers generally indicate a strong

research interest external to the Nevada Research Data Center

(NRDC) in the development of Quality Assurance software,

however there also exists a well-documented interest in

developing software within this organization as well.

The NRDC is a data management organization dedicated to

the, “storage, retrieval, and analysis of research data that is

relevant to the needs and interests of the state of Nevada” [15].

Conceived apart of a NSF Track 1 project, the NRDC represents

the collaborative efforts of top research institutions, including

the University of Nevada Reno, the University of Nevada Las

Vegas and the Desert Research Institute [14, 16]. It presently

supports the data sets of five projects and works actively with

external research networks to disseminate and preserve data for

continued research.

References to the considerations of a Quality Assurance

system for the NRDC appear in early literature proposing

practices and architecture for its predecessor project NCCP [11].

These works present Quality Assurance and Quality Control

(QC) as crucial elements of any large scale environmental

research project. They also impress upon the reader a need for

a standardized and centralized set of tools which enable

universal comprehension of data being collected. From this

specific need to improve on existing QA practices, a quality

assurance application was conceived.

3 Software Specifications

The QA App was developed with many functional and

nonfunctional requirements in mind. These requirements were

decided on after extensive talks with several data management

experts and stakeholders. Detailed in Table 1, these

requirements guided design and development of core

functionalities for the QA application. Using an agile

development method, these requirements went through several

iterations before settling into the current list.

The nonfunctional requirements set many constraints on

development, but most importantly dictated that the system

should be multiplatform, upload and download data at only one

point and perform logins with an SSH certificate. This set of

requirements informed development by cementing the software

and architecture used to implement the app and indicate how it

should interface with the backend server.

Using these functional requirements, a series of use cases

were constructed and mapped in a use case diagram, found in

Figure 1. This process informed the principal design phase of

this applications construction and was frequently referenced or

tweaked alongside the software specifications through the im-

plementation phase. The description of each use case follows:

• LogIn

Field technicians must log into the app. Once logged in,

technicians are given a list of projects they are associated with.

This helps reduce the amount of unnecessary data downloaded.

Technicians can also add new entries and upload them to the

22 IJCA, Vol. 25, No. 1, March 2018

Table 1: Functional requirements

Functional Requirements Description

Input Data The user shall be able to enter new data into the QA app.

Upload Data The user shall be able to upload data to a secure database.

Read Data The user shall be able to download entries from the database to their mobile

device and view previous data entries.

Edit Data The user shall be able to edit previous entries and upload the change data to the

database.

Navigate Data The user shall be able to move between different screens of the app, and input

data.

User Authentication The user will be able to authenticate themselves to access secure functionalities.

Delete Server Data The user, with proper authorization levels, shall be able to delete data stored on

the database.

Upload Photos The user will be able to launch the device’s camera and upload a photo from their

photo gallery on their device.

Save Unsynced Data The user shall be able to save data locally on their device to upload it to the server

at a later point

server. Administrative technicians, once verified through

the log in, are given the ability to edit or delete entries

already synced to the server.

– SyncToServer

Connects to the server and uploads new data entries

found on the phone. Then, downloads new data found

on the server. The app can manually be synced by

pressing the synchronization icon on the header bar

on the front page.

Figure 1: Diagram showing use cases and their actor

interactions for the quality assurance application

• InputData

Allows the user to input new data. Opens a blank template

for whichever dataset they are choosing to input. Once

finished, it is saved to local memory until synced to the

server.

– TakePhoto

Opens the phone’s camera app to take a picture that

can be uploaded alongside the data set, like the

System in Figure 2. Not every data set can have a

photo.

– GetLocation

Uses the phone’s GPS to fill out latitude and

longitude coordinates. Only two types of data sets

need GPS location.

• ReadData

All users must be able to view the data, regardless of

whether or not they are logged in. This is so users who are

not a part of the project, but are interested in the data, can

view it. To read the data, users need only to navigate to

their desired object and click on the name.

• EditLocalData

Users are allowed to edit entries that have not yet been

synced to the server. Users can navigate to unsynced data

entries and select the edit button to change them.

• EditSyncedData

Administrative technicians are allowed to edit data already

synced to the server. If an admin is logged in, they can edit

entries by navigating to it and clicking the “Edit” button.

If the user is not an admin, this button will be greyed out.

The changes will be uploaded the next time the app is

synced to the server.

IJCA, Vol. 25, No. 1, March 2018 23

Figure 2: An example of inputting data with a picture from the

phone’s camera

• DeleteLocalData

Users can delete entries that have not yet been synced to

the server. Users can navigate to unsynced data entries and

select the delete button to remove them.

• DeleteSyncedData

Administrative technicians are allowed to delete data

entries already on the server. If an admin is logged in, they

can delete entries by navigating to it and clicking the

“Delete” button. If the user is not an admin, this button

will be greyed out. The changes will be uploaded the next

time the app is synced to the server.

4 Software Design

4.1 Architectural Design

When designing the Quality Assurance Application, there

were several key requirements that shaped the development

process. First, the QA application must be able to structure the

enormous amounts of service entries and access them in a timely

manner. To achieve this, the application utilizes a data access

hierarchy that narrows down the amount of data queried.

Second, the application must handle the situation that there is no

available internet or cell signal in the immediate area. The

application manages this problem by storing the changes locally

and allows users to commit these changes when they reach an

appropriate area. Finally, and most importantly, the application

cannot function as a singular client-side application without any

support. The QA application consists of a client and server with

the client utilizing a Model-View-Controller(MVC)

architectural pattern and the server utilizing a microservice

architecture.

The client-side application utilizes a MVC architectural

pattern as shown in Figure 3. This architectural pattern was

executed while utilizing the Google Angular 3 framework

alongside the C# and Javascript programming languages. The

model section of the client-side application is the central nexus

of interaction with the main NRDC System. This contains

routines that would handle the HTTP communication with the

server end, as well as the manipulation of locally stored data.

The view section is tasked with the primary task of satisfying

the first requirement and showcasing the data in a hierarchal

format. In this section, the functionality to navigate through the

hierarchy, view imagery, and handle conflicts syncing with the

database is handled. Finally, the controller section serves the

primary master and control portion of that application that

dictates the behavioral actions that result from the interactions

made by the user. This section is where the application would

issue the command to shift the page views, create the

transitional effects in-between views, and initiate the interaction

with the model section.

Figure 3: High-level block diagram detailing the architecture of

the QA app. Client and server are connected via http

calls from the mobile application to the Edge

Microservices

The server side of the application utilizes a microservice

architecture where each web service is independent of each

24 IJCA, Vol. 25, No. 1, March 2018

other and are combined to create greater functionality. These

services can each be classified into three main groups: Edge

Microservices, Administrative Microservices, and Specialized

Microservices. The Edge Microservices are infrastructure

services that perform the role of data provider from the data base

to the client application. The Administrative Microservices

perform the role of security and provides varying level of access

to the hierarchy, based on the individual’s status within the

project. The Specialized Microservices provide complex

functionality to the application that are outside that of the Edge

Microservices. These functionalities can include anywhere

from photo compression and searching to file conversions.

4.2 UI Design

Throughout development, the User Interface design of the

Quality Assurance application transformed drastically. Initial

designs for a prototype implementation of this application,

visible in Figure 4, were relatively simplistic, utilitarian and

focused on the highest level of sensor network metadata that

would be managed: a “project”. A project described a specific

cluster of in-situ sensors networked together that collected data

associated with answering the question of a single research

project. Given the broad scope of “a project,” the metadata

collected and stored was general in scope, requiring only one

page and a few form fields. As development on this application

expanded so too did the UI design to better accommodate the

technical and personal needs of user stakeholders.

The first major design shift was a visual one. The application

transitioned out of the simple Flat Design of the initial prototype

into a Material Design variant with the addition of more

primary color contrasts, subtler form fields and floating action

buttons. This design choice gave the application a more modern

and commercial feel that people have come to expect from a

high quality mobile application.

A second design shift, more critical to the proper functioning

of the application itself, was the inclusion of a hierarchical

navigation structure. While the details of this structure are

explored in Section 5, from a design standpoint it was crucial to

enable the fast traversal of this hierarchy by making each item

on every navigation level a large, clickable button that only

leads to a sub list of items contained by the item clicked. Figure

5 contains an example of one of these sub lists. By placing a

link to the information about the previously clicked item in the

top right corner, the design of this list navigation negates the

possibility of users unintentionally opening information pages

that will slow their navigation. This streamlined design enables

users to find the lowest level component they want in seconds,

and then open information pages for the editing and viewing of

related metadata.

Finally, at a late stage in development stakeholders expressed

a strong need for the display of saved pictures showing the

makeup of a sensor system or the structure of a specific

component. This need drove the development of a dedicated

image viewing component which retrieved images from a

remote or local source and displayed them on appropriate pages.

The addition of this component required significant planning as

each image had many management functions associated with it:

saving the image to the database, saving the image locally,

delete locally, delete on the database, open an enlarged view of

Figure 4: Screenshots of the initial UI design for the NRDC QA application. Left, the main screen shows the basic functionality

implemented in the prototype. From here users can browse projects or create a new project. Right, the “Start New

Project” interface was used to input relevant metadata about the sensor research project being documented

IJCA, Vol. 25, No. 1, March 2018 25

Figure 5: Screenshots indicating the final UI design of the Quality Assurance Application. On the left is an updated and ascetically

pleasing main menu screen. On the right, we see an example of a sub-list in the hierarchal navigation structure. Here we

see that “Site Monitoring” and “Meteorological” are systems associated with the “Rockland Summit Site”. Clicking on

either item will populate a new list of “Deployments” that are in the chosen system

the image, and more. This suite of functionality had to be added

without cluttering the limited real-estate of a mobile screen. We

overcame this problem with the inclusion of a floating action

button which expanded into an array of buttons that each

perform one of the above stated functions.

Finally, the interface provides users with a simple

straightforward medium to quickly access to the forms required

by technicians. Visually reminiscent of Google’s material

design, this application takes cues from public facing software

to provide a refined interface to encourage smoother adoption of

this app among unskilled mobile technology users. Large

buttons and clickable lists simplify use for technicians wearing

gloves when performing maintenance on sites in high elevations

or in colder months.

5 Implementation

Currently, the NRDC QA application is comprised of a front-

end system developed in the Ionic Framework, and a back end

comprised of essential and independent web services

communicating through a centralized hub [10]. The data

transferred between the two are stored inside a Microsoft Virtual

Environment with Microsoft SQL Server 2012 as the primary

database management. These two main components together

allow for a seamless interface between the main databases and

the client application.

For the front-end system, the QA application was built with

the Ionic Framework [8]. This framework utilizes HTML and

CSS as a wrapper to manipulate the interface, as well as

Javascript to apply functionality. Once completed, the HTML,

CSS, and Javascript are then compiled into the appropriate

codebase: either Apple or Android.

A wide collection of libraries and modules were used to

simplify development at various stages of implementation.

Primarily, Google’s AngularJS was used as a structural

framework for the Javascript codebase and allowed for a more

object-oriented approach to manipulation of the HTML and

interaction with microservice APIs [6]. Additionally, Node

Packet Manager (NPM) and Bower were used as the main

package managers for this application. They ensured libraries,

assets, and utilities were regularly updated and organized.

Organization of the QA app follows a pattern representative

of the hierarchical organization of existing sensor networks

managed by the NRDC and associated institutions. At the

topmost level, the application presents the user with a selection

of Site Networks: a representation of several data collection sites

connected by their similarity of purpose or project associations.

From there the user selects a site associated with that network,

a system associated with that site, and a deployment associated

with that system, ending with a hardware component associated

with that deployment. This workflow of “tunneling” down into

atomic components gives data scientists a logical means of

quickly locating the exact sensor network element they seek by

leveraging their knowledge of existing infrastructure.

At any point in the navigation of the sensor network hierarchy,

a user can add a new entry to the list of displayed entries or view

the details of existing ones. Whether choosing to display or

create, the user will be greeted with the same page. If displaying

26 IJCA, Vol. 25, No. 1, March 2018

data about an existing item, the page will be populated with data

about the selected element. If the user chooses to create a new

item, the form fields on this page are blank and ready for input.

On the element creation screen, visible in Figure 2, the user

inputs information into blank form fields that expand or contract

to fit the size of the input data. The user can also choose to

upload a related picture or get their location via their phone’s

GPS. This functionality enables field technicians to upload

accurate location data about sites they are working on with the

touch of a button. Once all necessary information is entered, the

new metadata entry can be saved locally. And, once the user is

done adding new entries, they can upload them en-masse to the

server for storage in the database.

On the view screen the user is presented with a few different

options compared to the creation screen. Principally she can no

longer save an entry, only edit or delete with proper permissions,

and there appears a floating orange icon in the bottom right

corner visible in Figure 6. From the submenu which this button

populates, users can add two different types of metadata about

an entry, a document and a service entry. Documents allow

users to add related files to a metadata entry. Service Entries are

entered when scientific equipment is repaired or replaced.

Figure 6: An example of retrieving latitude and longitude

coordinates from the phone’s GPS

6 Discussion

6.1 NRDC Impact

The successful implementation of the QA application changes

the face of quality assurance in the field significantly for existing

projects in the NRDC. The inclusion of a dedicated application

impacts the workflow of sensor technicians and researchers by

substantially augmenting current data management capabilities.

Data stewards performing QA on sensor networks benefit from

this application in several ways over traditional methods:

uniform data entry, centralized QA data storage with

synchronization and a usable interface facilitating the utility of

the above benefits.

The problem of uniform an accurate data entry naturally

occurs in any system reliant upon human interaction as the

primary interface between a means of measurement and the

means of logging. This problem is further exacerbated when

technicians are deployed to remote areas, often equipped with

only a notebook. It can be very hard to meaningfully restrict

metadata and service logging, as different people are going to

include different data that they find relevant to a QA expedition.

The use of form fields significantly normalizes data input by

restricting users to only give information deemed necessary and

sufficient to detail the quality assurance practices performed.

An example of these forms can be seen in Figure 7. In the case

of intrinsically non-structured data, the option to attach

documents is provided. This enables a diversity of data input

methods.

Figure 7: An example data entry page containing info about a

single data sensor. The floating action button in the

lower right-hand corner provides the option to add a

service entry when clicked.

Previously, QA-relevant metadata collected and maintained

by technicians was held in a decentralized heterogeneous

collection of notebooks, spreadsheets and program comments.

This proved problematic internally, as audits and reviews of

quality assurance processes could not be effectively performed

in a timely manner. Externally, this lack of centralized

provenance-tracking metadata damages the integrity of

collected data, as logs are not comprehensively tied to data

IJCA, Vol. 25, No. 1, March 2018 27

streams. This limits the re-usability of collected data. With a

central repository and dedicated backend infrastructure, the QA

app significantly improves the maintenance of QA and metadata

logs by providing a centralized, organized database to store this

information and bind it to existing data streams. With the

frontend mobile component automatically syncing with remote

servers, users need not worry about any logistics of storing and

formatting QA data for future use. They now only need to

perform their normal maintenance and installation practices and

fill out the form fields detailing their work.

6.2 Broader Impact

It has been well documented that an issue of paramount

importance to the greater scientific community is the need for

collected data to be accessible, findable, inter-operable and

reusable. [9, 20-21] As scientific research has become

increasingly collaborative with the growth of internet

technologies, the free and easy distribution of data across the

internet has not kept pace. [2, 17, 19] While there are many

factors that contribute to this data need/accessibility gap, one

prominent problem is a lack of identifying metadata

accompanying datasets. [17, 21] That is the goal of this

application and we believe that a need still exists in the wider

scientific community for the easy creation and upload of

identifying metadata, so a survey was created to demonstrate

this.

To provide more significant validation and show the broader

applicability of this software to the national scientific

community a survey was conceived and solicited to

Environmental Scientists. The survey was comprised of several

questions that sought to evaluate how findable, accessible,

interoperable, and reusable respondent’s datasets were. Most

questions were bound by a Likert scale of 1 to 5.

The pool of potential respondents came from two working

groups – called “Clusters” -- for the collaborative organization

Environmental Science Information Partners (ESIP).

Specifically, members of the Envirosensing Cluster and the

Documentation Cluster were emailed with the survey. After

hosting the survey for one week 12 responses were acquired.

Using the responses collected from these domain experts we

made some preliminary conclusions about how data scientists

are managing their metadata. Primarily, we observed that there

still exists a strong need for software like the Quality Assurance

app to automate and speedup metadata documentation

processes. Secondarily, we observed that although metadata

was being digitized, it was not being digitized effectively.

Concerning the first conclusion, a few questions

demonstrated the current gap in technology that limits effective

metadata collection. When asked how managers document their

metadata, the majority of respondents replied with either “Field

Notebook/ Pen and Paper” and “Comments on Data Logger

Scripts”. When we juxtapose these responses against a later

question that asks people to estimate the length of time it takes

to get metadata into a machine-readable format, a picture

emerges showing that scientists are collecting and digitizing this

data but not in the most effective way. Upwards of six

respondents indicated that it takes them “hours” and up to

“weeks” to digitize their metadata.

When scientists are extensively using program comments and

field journals to collect their data, they are not leveraging the

advantages of mobile technology has to offer in the internet age.

By comparison, the Quality Assurance app enables the fast and

easy input of formatted data which is digital from the start and

immediately uploaded to a central database. This application

could save many data scientists and technicians hundreds of

hours over the course of a year which are now wasted on basic

data input.

With this survey and the extensive background works that

clearly demonstrate a need to this sort of automated workflow,

we have demonstrated that a strong need still exists for software

like the QA app presented in this paper.

7 Future Work

Work on the Quality Assurance application will continue in

the interest of expanding the present functionality detailed. First

and foremost, further work will be done to help audits and

administration of QA practices. Presently actions performed on

the application are primarily user agnostic. They are performed

with no considerations or limitations based upon the present user

of the app. This can be problematic when it is necessary to track

down the specific user who performed a given preventative

maintenance on a given piece of equipment. A paper trail can

prove immensely useful to any project on the scale of those

which the NRDC helps maintain.

Outside of internal growth of the application itself, the data

collected and maintained by the Quality Assurance application

will be used to provide increased functionality to a companion

quality control web application. QA and QC are often referred

as nearly the same entity in discussions of data management.

Where QA is concerned with ensuring that data streams have

little opportunity to fail in their logging through constant

maintenance and monitoring, QC is concerned with handling

data that has been logged in error and attempting to correct those

mistakes. The data stored via this QA app can be used to give

context to any errors that might be discovered by an automated

quality control service.

Acknowledgement

This material is based in part upon work supported by The

National Science Foundation under grant number IIA-131726.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science

Foundation.

References

[1] Derik Barseghian, Ilkay Altintas, Matthew B. Jones,

Daniel Crawl, Nathan Potter, James Gallagher, Peter

Cornillon, Mark Schildhauer, Elizabeth T. Borer, Eric W.

Seabloom, and Parviez R. Hosseini, “Workflows and

28 IJCA, Vol. 25, No. 1, March 2018

Extensions to the Kepler Scientific Workflow System to

Support Environmental Sensor Data Access and

Analysis,” Ecological Informatics 5, DOI:

http://dx.doi.org/10.1016/ j.ecoinf.2009.08.008, 1:42-50,

2010.

[2] Sean Bechhofer, David De Roure, Matthew Gamble,

Carole Goble, and Iain Buchan, “Research Objects:

Towards Exchange and Reuse of Digital Knowledge,”

Nature Poceedings, DOI: http://dx.doi.org/10.1038/

npre.2010.4626, February 2010.

[3] W. Bishop and T. H. Grubesic, “Metadata,” Geographic

Information, Springer Geography, Springer, Cham,

2016.

[4] John L. Campbell, Lindsey E. Rustand, John H. Porter,

Jeffery R. Taylor, Ethan W. Dereszynski, James B.

Shanley, Corinna Gries, Donald L. Henshaw, Mary E.

Martin, and Wade M. Sheldon, “Quantity is Nothing

Without Quality,” BioScience, 63(7):574-585, 2013.

[5] ESIP, “Federation of Earth Science Information Partners,”

http://wiki.esipfed.org/index.php/Sensor_Data_Quality#

Quality_Control_ .28QC.29_on_data_streams (Accessed

on January 12, 2018).

[6] Google, “Angularjs,” https://angularjs.org/, Last accessed

June 13, 2017.

[7] Sean Gordon, and Ted Habermann, “The Influence of

Community Recommendations on Metadata

Completeness,” Ecological Informatics 43:38-51, 2018.

[8] Ionic, “Ionic,” https://ionicframework.com/, Last

accessed June 13, 2017.

[9] John Kratz and Carly Strasser, “Data Publication

Consensus and Controversies,” F1000 Research, DOI:

http://dx.doi.org/10.12688/f1000research,3979.2, pp.1-

21, October 2014.

[10] V. D. Le, M. M. Neff, R. V. Stewart, R. Kelley, E.

Fritzinger, S. M. Dascalu, and F. C. Harris, “Microservice-

Based Architecture for the NRDC,” 2015 IEEE 13th

International Conference on Industrial Informatics

(INDIN), pp. 1659-1664, July 2015.

[11] Michael J. McMahon, Frederick C. Harris, Sergiu M.

Dascalu, and Scotty Strachan, “S.E.N.S.O.R. Applying

Modern Software and Data Management Practices to

Climate Research,” 2011.

[12] William K. Michener, “Meta-Information Concepts for

Ecological Data Management,” Ecological Informatics 1,

DOI: http://dx.doi.org/10.1016/ j.ecoinf.2005.08.004, 1:3-

7, January 2006.

[13] William K. Michener, “Quality Assurance and Quality

Control (QA/QC),” Ecological Informatics, Springer,

Cham, pp. 55-70, 2018.

[14] NEXUS, “Solar Energy Water Nexus,” https://solar

nexus.epscorspo.nevada.edu/, Last accessed June 13,

2017.

[15] NRDC, “Nevada Research Data Center,” http://

sensor.nevada.edu/NRDC/, Last accessed June 13, 2017.

[16] NSHE, “Epscor Nevada,” https://epscorspo. nevada.edu,

Last accessed June 13, 2017.

[17] Dominique G. Roche, Loeske E.B. Kruuk, Robert Lanfear,

and Sandra A. Binning, “Public Data Archiving in

Ecology and Evolution: How Well Are We Doing?”

PLOS Biology 13, DOI: http://dx.doi.org/ 10.1371/jour

nal.pbio.1002295, 11:1-12, November 2015.

[18] Carly A. Strasser and Stephanie E. Hampton, “The

Fractured Lab Notebook: Undergraduates and Ecological

Data Management Training in the United States,”

Ecosphere 3, 12:1-18, 2012.

[19] Carol Tenopir, Suzie Allard, Kimberly Douglass, Arsev

Umur Aydinoglu, Lei Wu, Eleanor Read, Maribeth

Manoff, and Mike Frame, “Data Sharing by Scientists:

Practices and Perceptions,” PLoS ONE6, DOI:

http://dx.doi.org/10.1371/journal.pone.0021101, 6:1-21,

June 2011.

[20] Michael C. Whitlock, “Data Archiving in Ecology and

Evolution: Best Practices,” Trends in Ecology &

Evolution 26, DOI: http://dx.doi.org/10.1016/

j.tree.2010.11.006, 2:61–65, November 2011.

[21] Mark D. Wilkinson, Micheal Dumontier, IJsbrad Jan

Aalbersberg, Gabrielle Appleton, Myles Axton, and Arie

Baak, “The Fair Guiding Principles for Scientific Data

Management and Stewardship,” Scientific Data, 2016.

[22] Matthew Williams, Dan Cornford, Lucy Bastin, Richard

Jones, and Stephen Parker, “Automatic Processing,

Quality Assurance and Serving of Real-Time Weather

Data,” Computers & Geosciences 37, DOI:

http://dx.doi.org/10.1016/j.cageo.2010.05.010, 3:353-

362, March 2011.

Connor Scully-Allison received his

B.A. in Philosophy in 2012 from the

University of Nevada, Reno (UNR).

Accepted into the master’s program at

UNR for Computer Science and

Engineering in 2015, he is currently

working as a research assistant on the

Track 1 Nexus Project for the Cyber-

Infrastructure lab located in the College

of Engineering. His research interests

include Human Computer Interaction,

High Performance Computing, and Software Engineering. He

has published two conference papers since 2016. As of June

2018, Connor holds a position as a student fellow for the Earth

Science Information Partners (ESIP) Organization.

IJCA, Vol. 25, No. 1, March 2018 29

Hannah Muñoz graduated in 2016 with

a B.S. in Computer Science from the

University of Nevada, Reno. She started

on her journey to her M.S in Computer

Science with her advisers Dr. Sergiu

Dascalu and Dr. Frederick Harris, Jr. in

2017. She hopes to finish her degree in

2018. Currently, Hannah works in the

Cyber-infrastructure Lab where she

helps develop applications that enable

earth scientists to further their research.

Hannah has written and published two conference papers

during her time as a Master's student. Her interest lies in mobile

development and developing software to help in scientific

analyses.

Vinh Le graduated from the University,

Reno with a B.S in Computer Science

and Engineering in 2015. Vinh is a

Graduate Research Assistant affiliated

with the Cyber Infrastructure Lab at the

University of Nevada, Reno. He

currently aims to earn a Master of

Science in Computer Science and

Engineering by 2018 and his research

interests consist primarily of Software

Engineering, Internet Architecture, and

Human-Computer Interaction.

Scotty Strachan is the Director of

Cyberinfrastructure in the Office of

Information Technology at the

University of Nevada, Reno. Strachan

graduated from the University of

Nevada, Reno in 2001 with a bachelor's

degree in geography and minor in

economics. After spending some

additional years as a geotechnical

consultant and project manager, he

returned to the University and

completed a M.S. and Ph.D., both in geography, along with a

graduate minor in business administration. Strachan’s primary

research interests lie in mountain ecosystems and observational

networks, and he relies heavily on the integration of information

technologies with research to accomplish his goals of producing

useful, long-term science.

Eric R. Fritzinger received his B.S.

(2003) and M.S. (2006) from the

University of Nevada, Reno. After

spending several years in the field of

medical robotics, he returned to UNR to

participate in a state-wide project

studying the effects of climate change in

the Great Basin. He has worked on

model and data interoperability as well

as management and organization of

environmental sensor data. He is

currently the lead developer for the Nevada Research Data

Center (NRDC), based out of UNR’s Computer Science and

Engineering Department.

Frederick C. Harris Jr. received his BS

and MS degrees in Mathematics and

Educational Administration from Bob

Jones University, Greenville, SC, USA in

1986 and 1988 respectively. He then

went on and received his MS and Ph.D.

degrees in Computer Science from

Clemson University, Clemson, SC, USA

in 1991 and 1994, respectively.

He is currently a Professor in the Department of Computer

Science and Engineering and the Director of the High-

Performance Computation and Visualization Lab at the

University of Nevada, Reno, USA. He has published more than

200 peer-reviewed journal and conference papers along with

several book chapters. His research interests are in parallel

computation, computational neuroscience, computer graphics,

and virtual reality.

He is also a Senior Member of the ACM, and a Senior

Member of the International Society for Computers and their

Applications (ISCA).

Sergiu Dascalu is a Professor in the

Department of Computer Science and

Engineering at the University of Nevada,

Reno, USA, which he joined in 2002. In

1982 he received a Master’s degree in

Automatic Control and Computers from

the Polytechnic University of Bucharest,

Romania and in 2001 a Ph.D. in

Computer Science from Dalhousie

University, Halifax, NS, Canada. His main research interests

are in the areas of software engineering and human–computer

interaction. He has published over 180 peer-reviewed papers

and has been involved in numerous projects funded by industrial

companies as well as federal agencies such as NSF, NASA, and

ONR.

