
IJCA, Vol. 26, No. 1, March 2019 13

ISCA Copyright© 2019

Simplifying Data Visualization Pipelines with the
NRDC-CHORDS Interface

Pattaphol Jirasessakul*, Zachary Waller*, Paul Marquis*, Connor Scully-Allison*,
Vinh Le*, Scotty Strachan*, Frederick C. Harris, Jr.*, and Sergiu M. Dascalu*

University of Nevada, Reno, Nevada, 89557, USA

Abstract

In the physical sciences, the observation and analysis of

environmental readings, such as wind speed, sap flow,
atmospheric pressure, temperature, and precipitation, benefit
greatly from real-time visualization as they allow
environmental scientists to create faster actionable
intelligence. However, the scarcity of easily accessible and
customizable real-time visualization software often creates
logistical problems for researchers focused in environmental
sciences. The goal of this paper is to present an alternative
approach for the Nevada Research Data Center (NRDC) to
visualize environmental data in near-real time and confirm its
viability for usage with other research projects of similar size.
This approach involves creating multiple iterations of open-
source near-real time interface to act as middle-ware between
the NRDC’s data repository and CHORDS, a cloud-hosted
data visualization package. We evaluate the success of our
implementation by comparing metrics of use, determining
that both iterations of our software were much faster and
easier to use than CHORDS built-in configuration interfaces.

Key Words: Data visualization, environmental science,
middleware, web scraping, web service.

1 Introduction

Data visualization is a critical tool for scientists working
with large and constantly updating data streams. However,
these scientists are often presented with two options for
robust visualization: expensive proprietary solutions, or
programming language libraries that require developer-level
knowledge to use.

This is where Cloud Hosted Real-Time Data Services for
the geosciences, or CHORDS, comes in. CHORDS is a
project that was developed by EarthCube, an NSF-funded
project that supports the development of cyberinfrastructure
for the geosciences. CHORDS provide a visualization
platform tailored for environmental research to make real-
time data available to the research community in standard

* Department of Computer Science and Engineering. E-mails:
(pjirasessakul, cscully-allison)@nevada.unr.edu, (zacharydwaller,
paul.marquis1, vdacle)@gmail.com, scotty@dayhike.net,
(fred.harris, dascalus)@cse.unr.edu.

formats [1].
However, CHORDS by itself comes with some limitations

that makes the use of a middleware vital for operation in
larger projects, such as the ones hosted at the NRDC.
CHORDS provide an HTTP API that allows for the
population of real-time data entry, but the API is only
partially exposed and often forces configuration and setup
onto the user. This is especially tedious for larger
environmental research groups because the addition of new
sensor equipment is not an uncommon occurrence during a
multi-year operating period.

In this paper we describe the iterative software engineering
process we undertook to develop and refine this middleware
between the NRDC and CHORDS. Our first iteration
attempted to approach the problem of missing APIs by using
web scraping and automation tools to emulate the manual
setup of new CHORDS instances and visualizations. This
approach allowed us to automate tedious metadata inputs by
drawing necessary metadata data from NRDC databases and
inserting it into form fields. Out second iteration improved
on this by further mitigating the need for users to select
desired data streams from the NRDC, and instead provides
for an en-masse download and configuration. Preliminary
results of this software indicate that this middleware
improves on speed and usability compared to the CHORDS
built-in configuration UI.

The remainder of this paper is structured as follows:
Section 2 introduces a basic background of the project and
some related works, Section 3 goes into the specifications of
the software, Section 4 discusses the overall design of the
software, Section 5 contains details on the UI design of the
web client, Section 6 and 7 includes details of the prototype
development, Section 8 details validation metrics and, finally
Section 9 shows conclusions and future work.

2 Background & Related Work

This project was made in coordination with the NRDC and

EarthCube, both of which fall under the umbrella of the
Cyberinfrastructure research as defined by the National
Science Foundation (NSF). The following section will go
over the goals of both organizations as well as a more detailed
explanation on other visualization options inside and outside
of the Nexus Project.

14 IJCA, Vol. 26, No. 1, March 2019

2.1 NRDC

The NRDC was born out of a data portal that was developed

during a previous Track 1 NSF EPSCoR project on climate
change called the Nevada Climate Change Portal. The
current project that the NRDC is affiliated with, the Solar
Energy-Water-Environment Nexus, was created in order to
increase research awareness, and productivity of alternative
energy sources, and the conservation of natural resources in
the state of Nevada. The NRDC serves in a critical role of
cyberinfrastructure within the Nexus Project, which includes
the provision of technical skills and resources to members of
the research project. The tasks that the NRDC covers include
the acquisition, transport, storage, querying, and
dissemination of observational data gathered by automated
digital sensor systems. The NRDC participates in cutting-
edge software and systems development to enhance next-
generation science that leverages the Internet of Things (IoT).
Their goal is to transform the scale, quality, impact, and
bottom-line cost of research projects in Nevada that seek to
deploy automated sensor systems as part of their scientific
workflow [5].

2.2 EarthCube

EarthCube is a quickly growing community of scientists

across all geoscience domains, including geoinformatics
researchers and data scientists. They are a joint effort
between the NSF Directorate for Geosciences and the
Division of Advanced Cyberinfrastructure. EarthCube was
initiated by the NSF in 2011 to transform geoscience research
by developing cyberinfrastructure to improve access, sharing,
visualization, and analysis of all forms of geoscience data and
related resources. As a community-governed effort,
EarthCube’s goal is to enable geoscientists to tackle the
challenges of understanding and predicting a complex and
evolving solid earth, hydrosphere, atmosphere, and space
environment systems. The NSF’s Directorate for
Geosciences (GEO) and the Division of Advanced
Cyberinfrastructure (ACI) partnered to sponsor EarthCube,
which NSF anticipates supporting through 2022 [3].

2.3 CHORDS & Other Visualization Options

Currently, there are a handful of projects within the NRDC

that utilizes data visualization: VISTED and VFire. VISTED
(Visualization Tool of Environmental Data) is a web
application, which enables data selection, extraction,
download, conversion, and visualization of environmental
data sets that extends for over 30 years (1980 - 2009) [8].
VFire is an immersive visualization application that uses
remote sensing data in conjunction with a simulation model
to predict the behavior of wildfires [4]. RWWSS (Real-time
Web-based Wildfire Simulation System) is a web application
that provides users with wildfire simulations using data from
the Lehman Creek Watershed in Great Basin National Park
[13]. A workflow dedicated to visualizing big data on web

applications was created as an alternative to expensive third-
party software [14]. Finally, a system revolving around
MongoDB and some accompanying tools were developed to
visualize big data as a way to address the mass influx of data
in the recent years [12].

Aside from CHORDS, there are also alternatives out for
near real-time data visualization. There are multiple
programming languages out there with data visualization
library along with existing proprietary data visualization
software. Libraries such as D3.js and Plotly.js, are well
known libraries within the field of data visualization. D3.js
is a library made for visualizing data using web standards. It
combines powerful visualization and interaction techniques
with data driven approach to give users the freedom to design
the visual interface anyway they want. Plotly.js is an open-
source library that supports many chart types including
scientific ones such as heatmaps and contour plots to use for
plotting sensor data in real-time [2, 7]. Unfortunately, both
of these and other libraries suffer from the same problem as
they require some sort of programming knowledge on their
respective programming languages. This results in lower
accessibility of these libraries for smaller research teams as
they may not have someone with the programming
knowledge in the team or have the time and patience to learn
the language and library by themselves.

Alternatives to using programming libraries would be to
use real-time data visualization software. Examples of these
software are Tableau and Visualr, both offer many features
such as the ability to connect with multiple data sources such
as MySQL, Oracle and MS Excel, being able to fetch data
from API Data Providers and a plug and play feature where
all the users have to do get the software running is to install it
[10, 11]. However, as compensation for having many
features, they often come with a hefty price tag along with
some sort of training session in order to use them effectively.

3 Software Specification

The main requirements of this project were elicited from

multiple stakeholders using a formal interview process. The
answers we received from these interviews went on to inform
the project requirements. These requirements were split
between functional requirements, which describe the overall
technical functionality of the system, and nonfunctional
requirements, which outline constraints on the system.

3.1 Elicitation Interviews

In order to best ensure that the functional requirements

composed by developers met the expectations of project
stakeholders, several interviews were undertaken to
understand their needs and desires vis a vis this software. The
interviewees were selected for their knowledge of the
CHORDS software platform and for their technical
understanding of the NRDC. Specifically, we interviewed
Scotty Strachan (Environmental Scientist/ UNR Director of
Cyber-infrastructure), Vinh Le (Software Developer for the

IJCA, Vol. 26, No. 1, March 2019 15

NRDC), and Zachary Waller (Developer for this Project).
From questions asked of Zachary Waller, the general theme

of his needs and requests were oriented around technological
specifications and limitations on what software should or
should not be used. By contrast, Vinh Le’s answers to
questions were focused much more strongly about
architectural suggestions. His input was crucial in
understanding how data should be retrieved from the NRDC
and manipulated by the program. Finally, Scotty Strachan
provided the perspective of a highly technologically literate
user. Additionally, he was the only stakeholder already
familiar with the CHORDS platform. From him, we gleaned
significant detail about the use cases of the software we were
building in addition to understandings of how it should
interact with CHORDS.

3.2 Functional Requirements

From those interviews, detailed in Section 3.1, we elicited

seven base level functional requirements that define the
operations of our solution. The first and second requirements
are to create an interface that will not only be able to
successfully communicate with a running instance of
CHORDS and manage the data inside, but also, to talk to the
research team’s data source in the NRDC in order to query
data. The third requirement involves implementing the
functionality to visualize data displayed on CHORDS in near-
real time. The fourth requirement is streamlining the user
experience by creating a web client to simplify the originally
tedious visualization process for users. The NRDC sensor
networks currently exist in a structured hierarchy, so the fifth
requirement is to fetch that hierarchy and format it into
integrates intuitively with the user interface. Finally, the sixth
and seventh requirements are the functionality that allows
users to specify whether they wish to stream data in a near-
real time mode, or stream from a specific date range.

There are four higher level functionalities that this solution
provides outside of the scope of the main functionalities. The
first requirement let users compute and display summary
statistics, such as the minimum, maximum, mean and
standard deviation, of the data streams that they chose for
their visualized session. The second requirement enables
users to share their visualized session by adding in the
functionality to export a snapshot, which is an interactable
instance of the user’s visualization at the time it was created.
The third requirement enables users the option of having the
visualized instance alert them through email when the data
leaves an expected range. The fourth requirement builds
upon the web client by embedding a customized Google
Maps API onto it. The map will list all available sites in
NRDCs hierarchy network that represented a marker on the
map. Additionally, when the user clicks on a marker, the
latest photo streamed from that site will be displayed along
with specific information about that site, such as name,
latitude, longitude, and current measurements.

3.3 Non-Functional Requirements

This project operates under four non-functional

requirements acting as constraints on the design and
development of this system. The first requires that the
interface portion of the software be written in C# with the
.NET Web API library as its framework. The second
requirement is that the development team uses a modified
instance of the CHORDS visualization package for the
visualization aspect. The third requirement is that the
software should be compatible with all major web browsers.
The fourth requirement is that the software should be able to
consistently maintain near-real time execution when
streaming data from sensor instruments.

4 Software Design

This project consists of three major parts: NC-Client, NC-

Interface and the Chord’s visualization. The goal of this
section is to show, in detail, the design of this software and
everything that is required to produce a similar design.
Beginning with a high-level explanation of each component
and delving into how each of these components interact with
each other. The architecture of this project is component
based to ensure fast and robust development as well as strong
interoperability as each component is loosely coupled. A
high-level design of the project can be seen below in Figure
1.

Figure 1: A diagram showing the high-level design of the
project

4.1 Components

NC-Client - The NC-Client consists of two web pages and
a scripts file. The script contains code to drive the spawning
of views and navigation logic for each web page on the web
page. It also implements an auto-refreshing function call to
allow for near-real time streaming.
NC-Interface - The NC Interface is the main component of
our project. It contains four modules: ChordsBot,
DataCenter, GrafanaManager, and SessionManager. Three
of these four modules also have a Web API controller
associated with them. Each of these modules are further

16 IJCA, Vol. 26, No. 1, March 2019

explained in Section 6.
Chords Visualization - The Chords Visualization is the

main component of visually and actively interfacing with the
data from the NRDC repositories. After a user has made a
selection of a desired datastream using the NC-Client, the
NC-Interface will fetch that data, reformat it, create the users
CHORDS session (via SessionManager) and then push the
data to the newly created session with ChordsBot. Figure 2
shows an example of a visualized CHORDS session.

5 UI Design

There are two primary interface users that interact with

when using the Generalized Software Interface for CHORDS:
The interface web client and the CHORDSs interface.
Although functionality was implemented to integrate with
Graphana, we cannot include it here due to space limitations.

5.1 Interface Web Client

Our custom-built web client, visible in Figure 3, is a single-

page-web-application allowing users to view the sensor
network hierarchy, select a deployment, and begin streaming
data. This feature enables users to specify the type of data
they want to stream.

The NRDC sensor networks exist in a hierarchy. Each
sensor network (NevCAN, Solar Nexus, Walker Basin
Hydro) contains a list of sites, which refer to geographic
locations. Each site contains a list of systems, which are
logical groupings of deployments or sensors. In order to
make it easy for a user to access specific deployments to view
their data on the user interface, we implemented a way to
retrieve and display this entire hierarchy on said interface.
This requires our web interface to make calls to the NRDCs.

Infrastructure API and format the data returned in a user-
readable format. By implementing this feature, it makes
accessing specific data streams much easier for the user.

Upon visiting the client page, the user can select between
the three sensor networks. Then, the user can select which
site they want to see data for from a list of all sites in that
sensor network. Next, the users select which data streams
they would like visualized. The user can select one stream or
multiple. Finally, the user can save their session with a name
and specify the time period for which they would like the data
streamed. Leaving the end date of the stream blank will result
in a continuous live data stream.

5.2 CHORDS Interface

CHORDSs UI primarily functions on the back end of our

software by creating new CHORDS instruments for user
created data streams. At the top of the CHORDS page, the
name the user chose for the session in our web client is
displayed as the name of the CHORDS instrument, along
with the total number of measurements reported and include
above Figure 3 the dates of those measurements.
Additionally, a list of all visualized sessions created by a
research team is available to them as well as seen in Figure 4.

The main section of the visualization page displays the
actual graphed data from the data stream displayed alongside
of the names of the data streams and above the times that the
data was received by CHORDS like the one seen in Figure 2.
Below, each variable corresponding to a selected data stream
is displayed. For each variable, the user is shown the units of
the variable, the property measured, and the name of the
variable, which is a combination of data about the stream
including the location of the sensors, what the sensors are
measuring, and other information.

Figure 2: An example of a visualized session of 3 different data streams on a CHORDS instance

IJCA, Vol. 26, No. 1, March 2019 17

Figure 3: The main page for the NRDC-CHORDS interface

web client. A user can begin finding a datastream
to visualize by clicking on one of the three
available site networks associated with the NRDC.

Figure 4: A picture of a research team’s CHORDS’s portal.

Currently displayed is a list of the team’s
currently visualized session

6 Prototype Development

A prototype of this project was developed as a proof of

concept for the NRDC. It implemented the majority of the
functionality detailed in Section 3. On the server side, we
created a service called NC Interface. It acts as an interface
between the NRDC’s data center and CHORD’s Data API so
that data can be gathered from the former, formatted and sent
to the latter. On the client side, we created a single page web
application called NC Client that allow users to select the
specific data stream they want to visualize out of the NRDC’s
sensor network hierarchy.

The NC Interface was developed using the .NET Web API
framework. It is composed of four different modules:
ChordsBot, DataCenter, GrafanaManager and
SessionManager. When the user first opened up the web
client, the DataCenter module is called to fetch the NRDC’s
sensor hierarchy network for the user to select their data
streams. Once the user selects their stream(s), that
information is sent to “Session Manager” that will create the
user’s session on the research team’s CHORDS Portal. Once

the session is created on CHORDS, ChordsBot is called to
automate the data streaming to the session along with
performing other functionalities like filling forms in the
session with information regarding the selected data streams
(their name, location, units of measurements, etc.) and
generating the session’s Grafana dashboard. Automated tests
are performed in order to confirm that DataCenter was getting
the correct data and that ChordsBot was performing the
functionalities that it was automating for the user on
CHORDS properly.

CHORDS’s Data API was very inflexible in terms of what
our development team wanted from it. While certain things
like data put and fetch activities are well documented on the
API, functionalities like the automation of sites and
instrument creation on a particular CHORDS instance are not.
From our communication with the API’s developer, we have
learned that since the API was developed using Ruby on
Rails, a lot of its functionality are written for them which
doesn’t give their development team a lot of room to
formalize the API.

To explain our workaround in detail, we utilized the web
automation software packages of Selenium and PhantomJS to
simulate user interaction with the CHORDS UI [6, 9]. More
specifically, after a user successfully selected a data stream,
they wanted to visualize from the NRDC-CHORDS interface,
our ChordsBot would parse and interact with the various
CHORDS web pages required to set up a data visualization
on the fly with all necessary metadata about the location,
datatypes, variables, etc. required.

The use of this automation software helped us surpass what
seemed like an insurmountable requirement given the lack of
API support on the CHORDS side. However, it also changed
our initial designs somewhat substantially by turning a
generic interface into a UI driven web crawler. Additionally,
this approach introduced some unique problems which
limited the casual use of this software. Most notably, when a
data stream was selected from our interface it spawned an
entirely new CHORDS session each time. This, in itself, was
not an insurmountable problem as we added a module for
saving and returning to old sessions, however it seemed to go
further against the original design intention of this interface
as our own UI was becoming increasingly complicated to act
merely as a wrapper for the CHORDS UI. Accordingly, we
decided to reexamine our design and make a substantial
iteration on our existing work.

7 Prototype Iteration

In the spirit of upholding agile design principles and

practices, the initial prototype, detailed in Section 6 was
thoroughly examined to evaluate how well the software met
the needs and goals of project stakeholders. Accordingly, as
part of our evaluation we consulted with multiple project
stakeholders and asked them how well it fit their vision. This
evaluation produced significant meaningful feedback which
provided sufficient cause for us to reconfigure the NRDC-

18 IJCA, Vol. 26, No. 1, March 2019

CHORDS interface in many ways to better fit the express
needs and desires of stakeholders.

7.1 Stakeholder Feedback

In order to best determine what adjustments should be
made for an iteration on the NRDC-CHORDS interface
software, we informally interviewed stakeholders and asked
them to play with software. As they interacted with the
software package we asked them to speak their minds and
express what they like or did not like about the first iteration.
We performed this exercise with three individuals who are
key to NRDC and the development of this project: Connor
Scully-Allison (NRDC System Administrator), Vinh Le and
Scotty Strachan.

In these informal sessions we noted several similar points
of feedback from the above stakeholders. First, though all
stakeholders acknowledged the API limitations we were
working with, they unanimously indicated that our UI/web
crawling-based solution did not fully meet their earlier
expectations of what the software would be. More ideally,
they wanted a continuously running CHORDS instance,
preconfigured with NRDC data streams that passively
accepted new data as it was dropped into the NRDC database.

From there, these stakeholders generally indicated that they
did not see much of a need for the UI we have built if the
CHORDS service could just be preconfigured. Especially
since the UI seemed to complicate the adding of many data
streams, on different sensors, and at different sites. Although
it reduced the tedious typing required of the CHORDS UI, it
still seemed to them that there should be a better workaround.

7.2 NRDC-CHORDS Redesign

In exploring options to better meet the expectations of our
potential users and stakeholders we redoubled our efforts to
find a means to better automate CHORDS configuration.
After some searching, we found a previously overlooked
function on the CHORDS primary configuration page: a
“download configuration” link and an “upload configuration”
link. These links enabled us to download a standard-format
JSON configuration file to our local machine, modify it and
send it back up to the CHORDS instance, whereupon the
instance would reload and reflect all the configurations put
into the configuration file. To illustrate, an excerpt of this file
can be seen in Figure 5.

From this revelation we were able to alter the current
architecture and design of the NRDC-CHORDS interface
towards a more streamlined and automated package with
minimal human interaction required. However, to implement
this redesign we needed to first break down the existing code
from the prior prototype and evaluate what we could
reconfigure for use in this iteration.

We ended up with a short list of re-usable modules after
examining our code. We found that the two “managers” were
not especially important if we could maintain a static and
constant pre-configured instance of instance of CHORDS

Figure 5: An example of the CHORDS configuration file.

The sites, instruments, vars and other fields in this
JSON file can be manually edited (or edited by a
program) and re-uploaded to CHORDS, just so
long as they contain the same data fields which
CHORDS expects

running, so we scrapped those. From there we determined
that we no longer required the web crawling component of
ChordsBot, so we excluded that codebase as well. In the end
we ended up re-using large parts of ChordsBot’s backend
functionality. Specifically, we adapted those parts that
managed the near-real time data upload to CHORDS instance
in addition to those that managed the mapping between
NRDC’s schema and CHORDS. We were also able to
reconfigure part of the DataCenter module which handled
communication with the NRDC’s data and metadata APIs.

From this redesign the new high-level architecture shown
in Figure 6 was produced. In this figure you will note that the
high-level architecture has undergone significant change
from that detailed in Figure 1. Now it is no longer broken up
as a basic client server pattern but corresponds more roughly
to a pipeline that runs on a server chosen to host the
“Automated CHORDS Client”. Now this new architecture is
not without its own need for manual interaction from users,
however in choosing to utilize this configuration file as the
main means of configuration, the need for direct user
interaction is significantly lessened.

7.3 New NRDC-CHORDS Workflow

The new workflow of this application begins with the user
manually downloading the default configuration provided
with a new CHORDS instance. This configuration file
provides a template informing our configuration service how
certain metadata items should be formatted. For example, as
seen in Figure 5, a “site” will always have a name field, an id,
a lat, a lon, etc. The configuration document output by our
configuration program has to conform to these fields to be
properly accepted by CHORDS.

After our “template” configuration file has been
successfully downloaded, and placed in a specified folder, the
user can run the configuration program, signified by the three
green-colored submodules. The configuration program first

IJCA, Vol. 26, No. 1, March 2019 19

Figure 6: The refined and re-configured architecture of the
NRDC-CHORDS interface application. This
architecture improves on prior designs by
eliminating configuration UIs and utilizing
existing configuration files to lessen user
interaction in setting up visualization streams.

takes in the JSON configuration file and holds it in memory
as a dictionary. From there it calls the NRDC Metadata
Interface submodule and retrieves relevant metadata from a
particular database in the NRDC. For the purposes of this
prototype, the specified database was a database for one
project of limited size: NevCAN.

From the database it recovers the full sensor network
hierarchy which maps data streams to specific sites and
sensors, explained in Section 5.1 of this paper. After
recovering the full sensor network hierarchy we use
ChordsBot’s reconfigured schema mapping functionality to
map this hierarchy to the CHORDs expected schema
structure. In our case, the NRDC “sites” maps well to

CHORD’s “sites”, however our “deployments” are combined
with our “components” to map to CHORDS “instruments”.
Essentially the NRDC has most of the metadata required to
set up these sites and instruments, however the data must be
extracted from various different tables in the NRDC database
and meaningfully mapped to specific fields in the CHORDS
configuration file. This mapping is the primary responsibility
of the Data Synthesizer module.

For each “site” and “deployment” retrieved from the
NRDC database, a new, synthesized “site” and “instrument”
object is pushed into their respective arrays. These arrays are
then loaded into the CHORDS configuration object we read
earlier. This object is then passed along to the metadata
output service which is in charge of writing out a properly
formatted output file containing the modified configuration
information. This file must be manually uploaded back to the
CHORDS instance and will cause a full reset of all exiting
configuration and data contained in the instance.
Accordingly, this configuration and setup should only be
done when first starting a new CHORDS instance or when
major changes were made to the number of sensors or sites
have occurred since the last configuration.

The final module in this new architecture can be seen in the
lower left-hand corner colored red. This module is an active
service which queries a specific set of data streams, on a
timed loop, from the configured data base and pushes them
up to the pre-configured CHORDS visualizations as they
come in from various sites around Nevada. This service
works in exactly the same way as in the prior iteration of our
software, using the CHORDS-provided GET calls to pass up
data into the CHRODS instance.

8 Validation

The initial iteration of our software was successful in
significantly reducing the time and keystrokes required to set
up a short-term CHORDS instance. Although not formally
evaluated with a user study, we made rough estimations from
our own experiences with this software on the time saved to
set up a visualization with our UI based interface.

To set up a single data stream, instrument and site from
scratch takes on the order of minutes (approx. 2-5 depending
on one’s familiarity with the necessary metadata fields). With
our interface we significantly reduce that setup time by
allowing the user to just click through the NRDC hierarchy
and select their desired data streams. The same process of
setting up a single data stream, instrument and site with the
UI could be easily done in under 30 seconds if one is
acquainted with the interface. Additionally, no manual
typing is required when using this method.

With the second iteration of this software package, we
improve on these metrics of usability and speed even further
by reducing user interaction to the mere download of a file,
the running of a command line program and the upload of an
output file. In addition to this simplified workflow from a
user’s perspective this new architecture allows for
establishing a long running, readily accessible CHORDS

20 IJCA, Vol. 26, No. 1, March 2019

instance which has data continuously streaming to it over a
long period of time. The prototype developed for the second
iteration of the NRDC-CHORDS interface was successfully
running for the month of October 2018, ingested over
100,000+ data points, and readily visualized all uploaded data
in real time when the site hosting the instance was visited.

While many data visualization solutions on the market
support live streaming of data, most come at a high price that
limits their availability to those outside of industrial
applications. Our service is open source and could be adapted
to work with systems other than the NRDC database, which
could allow for greater availability of live-streaming data
visualization.

9 Conclusion and Future Work

In this paper we detailed the iterative software process

undertaken to build and refine a generalizable software
interface connecting a data repository like the NRDC to the
CHORDS visualization service. We additionally validated
our software interface by comparing it against the usability
and speed of CHORDS built-in configuration interface.

Although significant future work is planned for this
software solution, the most obvious addresses the need for
enhanced configurability with the data and metadata sources.
For the purposes of this prototype much of the NRDC schema
and connection information was hard-coded into our
prototype. In order to enhance the generalizability of this
software package, a clearly defined configuration file or
module should be developed to enable other users to define
their own schemas and data sources.

With some modification this software could be used as an
open-source data visualization solution for labs that cannot
afford more expensive software. This software can also help
those who are not knowledgeable enough at programming to
interface their database to CHORDS. Additionally, there are
plans for the software to be used by the Desert Research
Institute to monitor data incoming from lysimeters. This
software has great potential to help many people visualize
their data.

Acknowledgements

This material is based upon work supported by the National

Science Foundation under grant number IIA1301726. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

References

[1] M. D. Daniels, S. J. Graves, B. Kerkez, V.
Chandrasekar, F. Vernon, C. L. Martin, M. Maskey, K.
Keiser, and M. J. Dye, “Connecting Real-Time Data to
Algorithms and Databases: Earthcube’s Cloudhosted

Real-Time Data Services for the Geosciences
(Chords),” AGU Fall Meeting Abstracts, 2015.

[2] D3.js, https://d3js.org/\#introduction, [Online; accessed
February 22, 2019].

[3] Earthcube, https://earthcube.org/info/ about, [Online;
accessed February 22, 2019].

[4] Roger V. Hoang, Matthew R. Sgambati, Timothy J.
Brown, Daniel S. Coming, and Frederick C. Harris Jr.,
“Vfire: Immersive Wildfire Simulation and Visualiza-
tion,” Computers & Graphics, 34(6):655–664, 2010.

[5] Nevada Research Data Center, www.sensor,
nevada.edu, [Online; accessed February 22, 2019].

[6] PhantomJS, “PhantomJS - Scriptable Headless
Browser,” PhantomJS - Scriptable Headless Browser,
[Online], Available: http://phantomjs.org/, [Online;
accessed February 26, 2019].

[7] Plot.ly, https://plot.ly/javascript/, [Online; accessed
February 22, 2019].

[8] Likhitha Ravi, S. Dascalu, Frederick C. Harris, John
Mejia, and Noureddine Belkhatir, “Visted: A Visuali-
zation Toolset for Environmental Data,” Proceedings of
the 2015 International Conference on Computers and
their Application (CATA2015), pp. 335–342, 2015.

[9] Selenium, https://www.seleniumhq.org/ about/,
[Online; accessed February 26, 2019].

[10] Tableau, https://www.tableau.com/, 2018-1-features,
[Online; accessed February 22, 2019].

[11] Visualr, https://visualrsoftware.com/ features.html,
[Online; accessed February 22, 2019].

[12] Rui Wu, Environment for Large Data Processing and
Visualization Using MongoDB, University of Nevada,
Reno, 2015.

[13] Rui Wu, Chao Chen, Sajjad Ahmad, John M Volk,
Cristina Luca, Frederick C. Harris, and Sergiu M.
Dascalu, “A Real-Time Web-Based Wildfire
Simulation System,” IECON 2016-42nd Annual
Conference of the IEEE Industrial Electronics Society,
IEEE, pp. 4964–4969, 2016.

[14] Rui Wu, Jose T. Painumkal, Nimrat Randhawa, Lisa
Palathingal, Sage R. Hiibel, Sergiu M. Dascalu, and
Frederick C. Harris, “A New Workflow to Interact with
and Visualize Big Data for Web Applications,” 2016
LInternational Conference on Collaboration
Technologies and Systems (CTS), IEEE, pp. 302-309,
2016.

Pattaphol Jirasessakul graduated
from the University of Nevada Reno
in 2018. He is experienced with
Python, C++, and R with interests in
big data, statistics, data mining, and
web design. He has one conference
publication and is currently working
as a Freelance Software Engineer.

IJCA, Vol. 26, No. 1, March 2019 21

Zachary Waller, born and raised in
Reno, is experienced with C++ as well
as C# and the .NET framework. He
graduated from the University of
Nevada, Reno in 2018. He has a
strong interest in web services and
Human-Computer Interaction. He has
one conference publication and is

employed as a software developer at Conformance
Technologies in Reno, Nevada.

Paul Marquis is a Las Vegas native
with experience in C++, python and an
interest in big data and data streaming
technologies. He graduated the
University of Nevada Reno in
December of 2018 and currently has
one conference publication. He is
currently employed at Hamilton

Robotics as a software engineer.

Connor Scully-Allison received his
B.A. in Philosophy in 2012 from the
University of Nevada, Reno (UNR).
Accepted into the master’s program at
UNR for Computer Science and
Engineering in 2015, he is currently
working as a research assistant on the
Track 1 Nexus Project for the Cyber-
Infrastructure lab located in the
College of Engineering. His research
interests include Human Computer

Interaction, High Performance Computing, and Software
Engineering. He has published 7 Conference papers and 3
Journal Papers. As of February 2019, Connor holds a
position as a student fellow for the Earth Science Information
Partners (ESIP) Organization.

Vinh Le graduated from the
University, Reno with a B.S in
Computer Science and Engineering in
2015 and a MS in August of 2018.
Vinh is a Graduate Research Assistant
affiliated with the Cyber Infrastructure
Lab at the University of Nevada, Reno.
His research interests consist primarily
of Software Engineering, Internet
Architecture, and Human-Computer
Interaction. He is currently employed

with the Reno-based software startup Inlumon.

Scotty Strachan is the Director of
Cyberinfrastructure in the Office of
Information Technology at the
University of Nevada, Reno. Strachan
graduated from the University of
Nevada, Reno in 2001 with a
bachelor's degree in geography and
minor in economics. After spending
some additional years as a
geotechnical consultant and project

manager, he returned to the University and completed a M.S.
and Ph.D., both in geography, along with a graduate minor in
business administration. Strachan’s primary research
interests lie in mountain ecosystems and observational
networks, and he relies heavily on the integration of
information technologies with research to accomplish his
goals of producing useful, long-term science.

Frederick C. Harris Jr. received his
BS and MS degrees in Mathematics
and Educational Administration from
Bob Jones University, Greenville, SC,
USA in 1986 and 1988 respectively.
He then went on and received his MS
and Ph.D. degrees in Computer
Science from Clemson University,
Clemson, SC, USA in 1991 and 1994

respectively.
He is currently a Professor in the Department of Computer

Science and Engineering and the Director of the High-
Performance Computation and Visualization Lab at the
University of Nevada, Reno, USA. He has published more
than 200 peer-reviewed journal and conference papers along
with several book chapters. His research interests are in
parallel computation, computational neuroscience, computer
graphics, and virtual reality.

He is also a Senior Member of the ACM, and a Senior
Member of the International Society for Computers and their
Applications (ISCA).

Sergiu Dascalu is a Professor in the
Department of Computer Science and
Engineering at the University of
Nevada, Reno, USA, which he joined
in 2002. In 1982 he received a
Master’s degree in Automatic Control
and Computers from the Polytechnic
University of Bucharest, Romania and
in 2001 a Ph.D. in Computer Science

from Dalhousie University, Halifax, NS, Canada. His main
research interests are in the areas of software engineering and
human–computer interaction. He has published over 180
peer-reviewed papers and has been involved in numerous
projects funded by industrial companies as well as federal
agencies such as NSF, NASA, and ONR.

