
30 IJCA, Vol. 26, No. 1, March 2019

ISCA Copyright© 2019

A Framework for Virtualizing Joystick Controls in a
Flight Simulator Training Environment

Alex Redei*

Central Michigan University, Mt. Pleasant, MI 48859, USA

Sergiu Dascalu† and Frederick C. Harris, Jr.†

University of Nevada, Reno, NV 89557, USA

Abstract

In aviation there can be little room for error. This paper
explores software arbitration of two joysticks controlled by two
pilots, where each joystick is independent of the other and each
pilot’s actions are potentially equally valid. In such scenarios,
it can be difficult to know which commands are valid, and which
commands should be ignored. Inspired by historic conflict
resolution scenarios in commercial aviation history, we
developed a framework for virtualizing joystick commands
from two multi-axis joysticks. The framework has been utilized
in a two-person flight simulator, where different joystick
conflict resolution techniques were modeled and evaluated. In
this paper, we detail our framework for arbitrating conflicts in a
multi-axis joystick system, thereby increasing the
responsiveness of control input in a potentially conflicted state.
Both the framework’s hardware prototype and software system
are described and the results of implementing and evaluating
three joystick conflict resolution techniques are presented and
discussed.

Key Words: Human-computer interaction, joystick, input
mapping, flight simulator, pilot training.

1 Introduction

In a training environment, the learning curve can be greatly

reduced by offering immediate and focused feedback to the
person being trained. In the realm of pilot training, this
feedback is especially crucial, as good training is of the utmost
importance. The correct maneuvering and operation of an
aircraft can be a life or death situation.

Motion flight simulators are an innovative training tool that
can help with this problem. They help pilots learn the ropes of
flying an aircraft, and train for component failures, without the
risk of death.

The closer the simulation is to real life, the more meaningful
the experience will become. This means that any simulation
system must provide a constant feedback loop to its pilots. Such
feedback can come in many forms, from audible alerts, to visual
feedback, to the tactile responses of a control mechanism.

*Dept. of Computer Science. E-mail: redei1a@cmich.edu.
†Dept. of Computer Science and Engineering. E-mail:
{dascalus@cse.unr.edu, fred.harris@cse.unr.edu}.

In the real world, planes are not just piloted by one person –
there is always at least two pilots on any commercial airliner in
the United States (per FAA’s two-person cockpit rule [6]).
European airlines, while not all strictly two-pilot planes, seem
to be following this trend [13]. In order to keep the training
consistent with the real world, we have to support two people in
the cockpit as well: a pilot and a co-pilot.

But what happens when both are at the controls? Who should
the simulator respond to? Who should get the feedback?
Moreover, if everyone has a duplicate set of the same controls,
whose commands should be listened to?

Clearly, a system is needed to consolidate and prioritize the
various inputs being provided to the simulation software.

In this article, we discuss a methodology for handling the
intricacies of a multi-person, multi-axis motion simulator using
an approach developed in our lab. The rest of this paper is
organized as follows: Section 2 is devoted to the aviation
history of Air France Flight 447, from which much of this
framework’s inspiration has been drawn. Related works are
presented in Section 3, hardware is described in Section 4, and
software architecture and design presented in Section 5. The
methodology of our conflict resolution software is detailed in
Section 6. Section 7 addresses the experimental results we
acquired from our work with the newly developed framework,
and Section 8 wraps up our findings with several concluding
remarks and directions of future work.

2 Air France Flight 447

Air France flight 447 is the tragic story of how poor software

design and a miscommunication between the pilots can lead to
catastrophe [3, 19]. Air France flight 447 departed Rio de
Janeiro’s Galeão airport on May 31st 2009, and was expected to
arrive in Paris’ Charles De Gaulle airport the following day.
Flight 447 is interesting because geographically it crosses both
the Atlantic Ocean and the equator, as depicted in the route map
shown in Figure 1.

En-route to Paris flight 447 crossed the intertropical
convergence zone, also known as the ITCZ, a band of powerful
storms situated around the equator [14]. Storms in this region
can reach 50,000 ft in altitude, well above the altitude
commercial airplanes can fly at [10]. Violent thunderstorms
form as air masses from the two hemispheres interact in this
region. On the particular day of Air France flight 447’s tragedy,

IJCA, Vol. 26, No. 1, March 2019 31

Figure 1: Flight plan of Air France Flight 447 [4]

Figure 2: The Intertropical convergence zone [4, 8]

they had no choice but to fly through the storm. A picture of the
ITCZ from July 12th, 2000 can be seen in Figure 2.

The decision to fly through the storm led to tragedy. Upon
flying through the storm, devices called pitot tubes located at
the nose of the aircraft iced over. A pitot tube is a critical device
in aviation because it measures the airspeed as air moves over
the body of the aircraft. For a period of 47 seconds, two of the
three pitot tubes froze over and malfunctioned, reporting invalid
airspeed information [3]. The onboard flight computer, being
unable to reconcile the differing and invalid airspeed
measurements, errored out, turning off the autopilot and
returning control to the pilots.

Co-pilot Pierre Bonin took control of the aircraft upon
discovering that the autopilot had turned off. He was unfamiliar
with flying through the ITCZ, and his anxiety in this situation
was apparent in the voice recorder. Co-pilot Bonin, feeling that
the aircraft was losing altitude, made the fatal decision that day
to command the plane to climb under manual control using his
joystick, without communicating to his co-pilot David Robert.
On an Airbus A330, which is the aircraft involved, there are two
joysticks that control the pitch and roll of the aircraft,
symmetrically located on the right and left side of the cockpit,
that is called a “side-stick.” An image of the Airbus A330

Figure 3: The Airbus A330 side stick [3]

side stick is shown in Figure 3.

David Robert, suspecting that the aircraft may have been in a
stall condition, attempted to correct the situation by
commanding the aircraft to pitch down. However, unbeknownst
to co-pilot Robert, co-pilot Bonin was still commanding the
aircraft to climb using his joystick, so the on-board computer
was receiving conflicting information from the two side-sticks.
A diagram showing how the side-stick is used to manipulate the
control surfaces on the aircraft is shown in Figure 4. The
software was programed to override the joystick inputs in such
scomes, and in this case that meant the pilot’s conflicting
commands were cancelling each other out.

Figure 4: Details of the Airbus A330 side stick mechanism [9]

In the end, the tragedy of Air France flight 447 was
completely preventable. Poor software design and a
miscommunication between the co-pilots doomed the flight.
The decision to command the aircraft to climb at such a high
altitude, and the confusion over who was in control of the
aircraft, led to a stall from which Air France flight 447 never
recovered. Co-pilot David Robert’s final words were recorded

32 IJCA, Vol. 26, No. 1, March 2019

at 2:14 am where he exclaimed “Dang it, we’re going to crash.
This can’t be happening!” [19]. The impact into the Atlantic
Ocean killed all 228 onboard [3].

In this paper, we explore different software techniques for
joystick conflict resolution through virtualization, a technique
we hope will reduce the likelihood of another situation similar
to Air France flight 447 repeating itself.

3 Related Work

To control an aircraft in flight, a pilot has 6 main controls:

engine speed, ailerons, elevators, the rudder, flaps, and spoilers
[18]. A NASA-made diagram with the location of each of these
controls is shown in Figure 5.

Figure 5: Critical parts of airplane flight [4]

These 6 controls allow the pilot to control the pitch, roll, and

yaw of the aircraft (as well as its speed, and other aerodynamic
properties). The pilot needs to keep constant mind of these
controls, so that he or she can keep the plane flying and headed
in the right direction.

As technology has improved, computers have been integrated
into almost everything [12]. This is no different in the aviation
industry. Nowadays, computer software is an essential part of
keeping traffic organized in the air traffic controller (also
sometimes abbreviated as ATC) [5, 17]. An example of this
software’s interface is shown in Figure 6.

Technology has changed not just the ATC, but also how the
pilots fly planes. An auto-pilot can fly the plane for hundreds
of miles without needing human input. In addition, technology
has also changed how pilots are trained.

Airline pilots have used flight simulators as an essential
training and educational device for decades [1]. Flight
simulators have been in consistent use in commercial aviation
since the 1960s, and are a safer alternative to training their pilots
[2, 11].

Ironically, sometimes the simulator used for training can cost
more than the actual airplane.

This paper explores different software mechanisms for

Figure 6: An example of the software used in the air traffic

controller [5]

addressing the problem of joystick conflict resolution. In terms
of physical equipment, the problem of two-person pilot cockpits
is replicated in a hardware prototype.

4 Hardware Prototype

In order to model a software framework for the joystick

conflict resolution, first a hardware prototype was needed. We
used a flight simulator for this. There are two input devices in
our simulator, and each operator (pilot and co-pilot) has a
duplicate set of controls. The existing simulator does not handle
multi-axis joystick input well. For example, if there are two
pilots (a pilot and a co-pilot) and both press the deploy landing
gear button, then the simulator will be unable to distinguish who
pressed the button (and hence to whose responsibility it was to
be assigned to). This is similar to the problems encountered by
Air France flight 447, as outlined earlier in Section 2.

The first control is a joystick. The joystick in the simulator
has two axes (x, y) that allow the pilot to control the elevators
and ailerons. The ailerons control the roll, and the elevators
control the pitch of the aircraft. In the joystick, this input is
obtained via two analog potentiometers. The two
potentiometers capture the commands on the x and y axes.
When the joystick is swung to the right or to the left, the
resistivity of the potentiometer changes, and thus a different
voltage is read from the joystick in that axis. This style of input
conversion is called an analog joystick, and according to an
ACM SIGCHI bulletin, this joystick would be classified as a
multi-axis joystick [7].

In addition, there are 4 buttons that are mappable to various
controls, and a 4-way hat switch which allows the pilot to look
around the cockpit.

An image of the first joystick is shown in Figure 7 and a
potentiometer is shown in Figure 8.

The next control is the throttle body. The throttle controls the
thrust of the engines, by way of controlling the speed of the
engines.

The throttle is a single-axis joystick that uses an analog
potentiometer to measure the “throw” of the throttle. In

IJCA, Vol. 26, No. 1, March 2019 33

Figure 7: The 2-axis, analog, 4-button joystick [15]

Figure 8: The potentiometer inside the joystick x-axis. The
potentiometer senses the axis position and conveys
the information over 3 voltage regulated wires

addition, the joystick has two buttons that can be mapped to
various functions (such as deploying/retracting the landing
gear). The second joystick is shown in Figure 9.

There are exact duplicates of the controls described above
inside the cockpit: one for the pilot, one for the copilot. Thus,
we have a challenge, which set of controls should we use?

In a real airplane, the controls would typically be tied together
via a mechanical linkage. However, in the simulator we have
no such linkage. Thus, we need to create a system which can
respond to inputs from both pilots with some sort of definable
priority.

For the hardware portion of our solution, we used an Arduino
Leonardo. We chose this board because unlike the very popular

Figure 9: An example single-axis analog joystick similar to the
one we use, but not exactly the same model [16]

Arduino Uno, the Leonardo has an ATMega 32u4 chipset that
can emulate HCI devices, and operate in USB-slave mode.

We found that we wouldn’t be able to get an Arduino Uno
recognized by the computer as a joystick without having to write
our own Windows drivers. Instead, we found that using the
ATMega 32u4’s built in HCI device emulation allowed us to get
around this issue.

To connect everything together, a wiring harness was used to
convert the Molex connectors supplied by the manufacturer on
the ends of the joystick, into jumper cables that can be plugged
into the Arduino.

The six analog joystick inputs wire into six analog inputs, and
the 20 buttons wire into digital inputs (via a shift register due to
there being only 14 inputs available). A circuit diagram
showing how all these ties together is shown in Figure 10. A
picture of the hardware breadboard prototype is presented in
Figure 11, and the wirings to the joysticks are shown in Figure
12.

Figure 10: A depiction of the circuit diagram. Note that the
breadboard is not used, except to consolidate the 5V
power and ground lines

5 Software Design

First, the requirements of a software system that would
process the multi-axis input from multiple joystick controllers
are outlined in Table 1.

To better understand the interaction of the system, use case
diagrams were created, as shown in Figure 13.

For example, in one of the use cases, only one operator is

34 IJCA, Vol. 26, No. 1, March 2019

Figure 11: A photo of the actual hardware

Figure 12: Additional details of the actual hardware

pushing a control, say the deploy landing gear button. In this
simple case, the controller maps the control command to a
keyboard command and passes it along to the flight simulation
software.

A more complicated use case scenario might involve both
pilots providing input to the controller simultaneously, as shown
in the MultiInput use case. In this case, the input of each pilot’s
control is tested against a weight, and combined together to form
a “score” for that axis. Afterward, that axis is passed along to
the simulation software via the USB joystick interface.

The code itself was written as a C++ ’sketch’ in the Arduino
IDE (v 1.6.5).

The analog inputs are read (those would be the axes: rudder,
ailerons, elevators, etc.) and converted to a 10-bit digital value
(in the range 0-1023).

The button presses are read via digital inputs hooked into a
pull-down resistor. The software keeps track of the prior known
state of the button. When the circuit senses a change in the

Table 1: Software requirements
Requirement Priority Description

1 High
The software must be able to

convert an analog axis input
into a digital 0-1023 value.

2 High
The software must be able to

convert button presses into a
digital 0/1 value.

3 High
The software must be able to

handle at least 4 analog axes of
input.

4 High
The software must be able to

handle at least 6 different types
of button presses.

5 Medium

The software should be able
to handle simultaneous inputs
from multiple sources (analog
axes, buttons, etc.).

6 Medium

The software should be able
to map the analog axes to
various software controls (such
as rudder, throttle, elevators, or
ailerons).

7 Medium
The software should be able

to prioritize multiple inputs
from the pilot and co-pilot.

8 Low
The software should be able

to emulate keyboard presses.

Figure 13: The use case diagram of the developed software

voltage, the current state is compared against the prior known
state. If the state has changed, we report that change to the OS,
and override the prior known state with the current state. At the

IJCA, Vol. 26, No. 1, March 2019 35

moment, we can detect changes as fast as 1/20th of a second. It
may be possible to detect changes faster, but for our purposes
(civil aviation simulation) this seems sufficient.

6 Methods Evaluated

When co-pilots David Robert and Pierre Bonin provided

conflicting input through the Airbus’s side-sticks during the Air
France flight 447 flight, the computer handled the conflict by
averaging the inputs from the two joysticks. This led to disaster,
as discrepancies within the joystick system, known as dual-
inputs, was resolved in the Airbus software by averaging the
joystick axis values of the two joysticks. Since the joystick
inputs were the exact opposite, the flight computer cancelled out
the pilots’ commands and did nothing as the aircraft plummeted
into the ocean. The co-pilots struggled to understand why they
were not in control of the aircraft. Each had assumed their
joystick was in control.

There are several methods that could be employed in such
scenarios. Using the virtual joystick controller described above,
we replicated three different scenarios. The first is rather
simple: it involves replicating the value-averaging technique of
the Airbus A330. Simply put, the firmware takes a voltage
reading on each potentiometer, and averages the two values
across the joystick axes. This technique has the advantage that
agreeable dual-input can multiply the speed of a turn, but it does
not handle miscommunication well between the pilots.

The second technique implemented and evaluated was to
simply make the left-seat joystick the master joystick.
Whenever the left-joystick was active, commands from the
right-seat joystick would be ignored. While this technique
would have prevented the Air France flight 447 tragedy, what if
the roles were reversed and the pilot in the left seat was in a
confused state? Or what if the joystick in the left seat was
damaged, providing incorrect input and overriding the
commands of the valid right-seat pilot? One of the advantages
to having two pilots with two independent joysticks in the
cockpit is the ability to transfer control in the event some part of
the cockpit was damaged or sabotaged. Unfortunately, no
matter which joystick was set as the master, experimentation
with this technique left much to be desired in the way of
redundancy.

Finally, the third technique evaluated was the use of a joystick
toggle button. Upon pressing the toggle button, the
virtualization firmware would transfer control to the right-side
or left-side joystick. Commands from the other joystick would
be ignored when the active joystick was in use. Commands
from the non-active joystick may have been accepted when the
active joystick was not in use. To handle such scenarios, the
software uses a weight distribution table. Each joystick’s input
is converted into an integer value (such as 0-1023 for an analog
joystick axis). That value is then multiplied against a weight in
the table (based on the role of the person in control of that
joystick), and then assigned an action in software (such as
moving the elevators to achieve a change in pitch). In the end,
we believe that this was the right conflict resolution technique
for the joystick virtualization. It allowed for a redundant

cockpit, by utilizing the joystick toggle to switch joystick
control, while not permitting there to be confusion about who is
in control, as it is the case with the other two techniques.

7 Experimental Results

Utilizing the ATMega 32u4 micro controller, we emulated a
native USB joystick to the flight computer. Putting the device
into slave USB mode, it is recognized as a peripheral. This
peripheral is both powered by the USB cable and can
send/receive data through it. The firmware on the ATMega then
converts the input signals from the joystick axes, buttons, and
controls into a virtual game controller device in Windows.

This interface does not require a driver. One simply connects
it to the computer and it emulates a game controller, thus using
the built-in game controller of Microsoft Window®.

A virtual joystick with 4 buttons, two axes (x, y), a rudder
control, and a POV (point of view) hat switch is depicted in
Figure 14. The joystick axes are mapped to pitch and roll
control of the aircraft.

Figure 14: A joystick being recognized in windows by the
system and the 3rd analog axis being mapped to the
rudder

The initial experience was seamless. For those that are

familiar with flight simulators, all the controls were mapped in
the typical way.

The pilot controls the ailerons and elevator (pitch and roll) via
the first joystick, and the throttle (engine speed) via the second
joystick. The co-pilot controls the landing gear via a button on
their second joystick (and has other possibilities with his or her
controls that are not yet defined).

36 IJCA, Vol. 26, No. 1, March 2019

Things get interesting when multiple people, such as the pilot
and the co-pilot, start to provide input at the same time. Based
on each operator’s role, and a weight tied to their particular
joysticks, the software computes a resulting feedback value that
then gets passed along to the simulation. For example, the
system allows for a co-pilot to take over a flight if the pilot is
incapacitated (of course, all these happen in simulation).

Better yet, this solution allows us to try new things, such as
mapping the controls in a unique way. For example, we could
map the co-pilot’s joystick to control the rudders (pitch), while
the pilot’s joystick could control the ailerons and elevators
(pitch and roll).

Our flight simulator was initially lacking any sort of pitch
movement. This made the plane harder to control. Others have
got around this problem with hardware solution: a joystick that
can “twist.” The twisting motion is measured and transformed
into rudder movement that controls the pitch of the aircraft.
However, in our flight simulator this would not be easily done
because replacing the joysticks would require more space, and
may not be compatible with other components. Hence, this
solution allows us to achieve novel things such as repurposing a
co-pilot control to maneuver the rudders, something that was not
possible with our existing setup.

8 Conclusion

In this paper, we presented a method for handling input from

multiple axes in a flight simulator application. As our related
research showed, while joysticks and peripherals are
commonplace, the systems to handle multi-joystick input,
especially with different people at the helm of the controls, are
not as mature.

The initial experimental results showed that our method could
create a system capable of reading and responding multi-axis
controls, without the need to write a driver in Windows. In the
future we hope to extend this method to include the ability to
emulate key presses on a keyboard.

References

[1] BAA Training Inc., “Full Flight Simulators – In 20 Years’

the Number Will Double,” [Online], Available:
https://www.baatraining.com/full-flight-simulators-in-20-
years-the-number-will-double/, [Accessed January 15,
2019].

[2] R. Bradley and D. Abelson, “Desktop Flight Simulators:
Simulation Fidelity and Pilot Performance,” Behavior
Research Methods, Instruments, and Computers,
27(2):152-159, 1995.

[3] B. Gilissen, “The Last Four Minutes of Air France Flight
447,” [Online], Available: http://www.spiegel.de/interna
tional/world/death-in-the-atlantic-the-last-four-minutes-
of-air-france-flight-447-a-679980.html, [Accessed April
1, 2019].

[4] N. Hall, “Airplane Parts and Functions,” [Online],
Available: https://www.grc.nasa.gov/www/k-12/air
plane/airplane.html, [Accessed August 17, 2018].

[5] C. Howard, “Airservices Australia Selects Saab Integrated
Tower Automation Technology for Four Airports,”
[Online], Available: https://www.intelligent-aero
space.com/articles/2015/02/airservices-australia-selects-
saab-integrated-tower-automation-technology-for-four-
airports.html, [Accessed August 14, 2018].

[6] T. Inefuku, “FAA Requires Two People in Cockpit on
U.S. Flights at all Times,” [Online], Available:
https://www.khon2.com/news/local-news/faa-requires-
two-people-in-cockpit-on-u-s-flights-at-all-times_201803
09115902834/1025802042, [Accessed July 3, 2018].

[7] J. S. Lipscomb and M. E. Pique, “Analog Input Device
Physical Characteristics,” ACM SIGCHI, 25(3):40-45,
1993.

[8] National Aeronautical and Space Administration, “The
Intertropical Convergence Zone,” [Online], Available:
https://earthobservatory.nasa.gov/images/703/the-inter
tropical-convergence-zone, [Accessed April 3, 2019].

[9] F. Nobre, “A330 Flight Deck Systems and Briefing for
Pilots,” [Online], Available: https://www.slideshare.
net/FernandoNobre1/a330-flight-deck-and-systems-
briefing-for-pilots, [Accessed April 8, 2019].

[10] N. North and F. Zhang, Encyclopedia of Atmospheric
Sciences., Academic Press, 2015.

[11] ProFlight Inc., “Pilot at Zero Altitude: A Brief History of
Flight Simulators," [Online], Available: https://www.
proflight.com/en/full-flight-simulatoren/historie.php,
[Accessed April 17, 2018].

[12] A. Redei, E. Tumbusch, and J. Koberstein, “AVRATAR:
A Virtual Environment for Puppet Animation,”
Proceedings of the International Conference on Software
Engineering and Data Engineering, Las Vegas, NV, pp.
14-19, 2007.

[13] A. Sims, “Germanwings Crash,” [Online], Available:
https://www.independent.co.uk/news/world/europe/germ
anwings-crash-co-pilot-andreas-lubitzs-final-email-
reveals-depression-and-fear-of-going-blind-a6915736.
html, [Accessed July 7, 2018].

[14] B. Skoloff, “Equatorial Region Known for Massive
Storms,” [Online], Available: https://phys.org/news/2009-
06-equatorial-region-massive-storms.html, [Accessed
April 11, 2019].

 [15] Suzo-Happ Inc., “Analog Flight Joystick with 5k
Potentiometers & B5 Grip,” [Online], Available:
https://na.suzohapp.com/products/joysticks/95-0251-00.
[Accessed June 10, 2018].

[16] Suzo-Happ Inc., “Speed Shifter,” [Online], Available:
https://na.suzohapp.com/products/driving_controls/50-
8018-00, [Accessed June 10, 2018].

[17] Wikipedia, “Air Traffic Controller,” [Online], Available:
https://en.wikipedia.org/wiki/Air_traffic_controller,
Accessed [July 15, 2018].

 18] Wikipedia, "Flight Simulator," [Online]. Available:
https://en.wikipedia.org/wiki/Flight_simulator, [Accessed
April 8, 2019].

[19] J. Wise, “What Really Happened Aboard Air France 447,”
[Online] Available: https://www.popularmechanics.

IJCA, Vol. 26, No. 1, March 2019 37

com/flight/a3115/what-really-happened-aboard-air-
france-447-6611877/, [Accessed April 11, 2019].

Alex Redei is an Assistant Professor at
Central Michigan University working in
the Department of Computer Science. He
received his MS and PhD degrees in
Computer Science and Engineering from
the University of Nevada, Reno in 2013
and 2019, respectively. His interests
include flight simulation, software
engineering, and human-centered design.

His research focuses on using flight simulators to experiment
with new techniques for improving pilot training.

Sergiu Dascalu is a Professor in the
Department of Computer Science and
Engineering at the University of
Nevada, Reno, USA, which he joined in
2002. He received in 1982 a Master’s
degree in Automatic Control and
Computers from the Polytechnic
Institute of Bucharest, Romania and, in
2001, a PhD in Computer Science from
Dalhousie University, Halifax, NS,

Canada. His main research interests are in software
engineering, human computer interaction, and data science. He
has published over 180 peer reviewed papers and has been
involved in numerous projects funded by industrial companies
as well as federal agencies such as NSF, NASA, and ONR. He
has advised 10 PhD and over 40 Master students who graduated
so far.

Frederick C. Harris, Jr. received his
BS and MS degrees in Mathematics and
Educational Administration from Bob
Jones University, Greenville, SC, USA
in 1986 and 1988, respectively. He then
went on and received his MS and Ph.D.
degrees in Computer Science from
Clemson University, Clemson, SC,
USA in 1991 and 1994 respectively. He
is currently a Professor in the

Department of Computer Science and Engineering and the
Director of the High-Performance Computation and
Visualization Lab at the University of Nevada, Reno, USA. He
has published more than 200 peer-reviewed journal and
conference papers along with several book chapters. His
research interests are in parallel computation, computational
neuroscience, computer graphics, and virtual reality. He is a
Senior Member of the ACM, and a Senior Member of the
International Society for Computers and their Applications
(ISCA).

