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Abstract 
 

In aviation there can be little room for error.  This paper 
explores software arbitration of two joysticks controlled by two 
pilots, where each joystick is independent of the other and each 
pilot’s actions are potentially equally valid.  In such scenarios, 
it can be difficult to know which commands are valid, and which 
commands should be ignored.  Inspired by historic conflict 
resolution scenarios in commercial aviation history, we 
developed a framework for virtualizing joystick commands 
from two multi-axis joysticks.  The framework has been utilized 
in a two-person flight simulator, where different joystick 
conflict resolution techniques were modeled and evaluated.  In 
this paper, we detail our framework for arbitrating conflicts in a 
multi-axis joystick system, thereby increasing the 
responsiveness of control input in a potentially conflicted state.  
Both the framework’s hardware prototype and software system 
are described and the results of implementing and evaluating 
three joystick conflict resolution techniques are presented and 
discussed.    

Key Words:  Human-computer interaction, joystick, input 
mapping, flight simulator, pilot training. 

 
1 Introduction 

 
In a training environment, the learning curve can be greatly 

reduced by offering immediate and focused feedback to the 
person being trained.  In the realm of pilot training, this 
feedback is especially crucial, as good training is of the utmost 
importance.  The correct maneuvering and operation of an 
aircraft can be a life or death situation. 

Motion flight simulators are an innovative training tool that 
can help with this problem.  They help pilots learn the ropes of 
flying an aircraft, and train for component failures, without the 
risk of death. 

The closer the simulation is to real life, the more meaningful 
the experience will become.  This means that any simulation 
system must provide a constant feedback loop to its pilots.  Such 
feedback can come in many forms, from audible alerts, to visual 
feedback, to the tactile responses of a control mechanism. 
____________________ 
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In the real world, planes are not just piloted by one person – 
there is always at least two pilots on any commercial airliner in 
the United States (per FAA’s two-person cockpit rule [6]).  
European airlines, while not all strictly two-pilot planes, seem 
to be following this trend [13].  In order to keep the training 
consistent with the real world, we have to support two people in 
the cockpit as well:  a pilot and a co-pilot. 

But what happens when both are at the controls?  Who should 
the simulator respond to?  Who should get the feedback?  
Moreover, if everyone has a duplicate set of the same controls, 
whose commands should be listened to? 

Clearly, a system is needed to consolidate and prioritize the 
various inputs being provided to the simulation software. 

In this article, we discuss a methodology for handling the 
intricacies of a multi-person, multi-axis motion simulator using 
an approach developed in our lab.  The rest of this paper is 
organized as follows:  Section 2 is devoted to the aviation 
history of Air France Flight 447, from which much of this 
framework’s inspiration has been drawn.  Related works are 
presented in Section 3, hardware is described in Section 4, and 
software architecture and design presented in Section 5.  The 
methodology of our conflict resolution software is detailed in 
Section 6.  Section 7 addresses the experimental results we 
acquired from our work with the newly developed framework, 
and Section 8 wraps up our findings with several concluding 
remarks and directions of future work. 

 
2 Air France Flight 447 

 
Air France flight 447 is the tragic story of how poor software 

design and a miscommunication between the pilots can lead to 
catastrophe [3, 19].  Air France flight 447 departed Rio de 
Janeiro’s Galeão airport on May 31st 2009, and was expected to 
arrive in Paris’ Charles De Gaulle airport the following day.  
Flight 447 is interesting because geographically it crosses both 
the Atlantic Ocean and the equator, as depicted in the route map 
shown in Figure 1.  

En-route to Paris flight 447 crossed the intertropical 
convergence zone, also known as the ITCZ, a band of powerful 
storms situated around the equator [14].  Storms in this region 
can reach 50,000 ft in altitude, well above the altitude 
commercial airplanes can fly at [10].  Violent thunderstorms 
form as air masses from the two hemispheres interact in this 
region.  On the particular day of Air France flight 447’s tragedy, 
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Figure 1:  Flight plan of Air France Flight 447 [4] 

 

 
 

Figure 2:  The Intertropical convergence zone [4, 8] 
 

they had no choice but to fly through the storm.  A picture of the 
ITCZ from July 12th, 2000 can be seen in Figure 2. 

The decision to fly through the storm led to tragedy.  Upon 
flying through the storm, devices called pitot tubes located at 
the nose of the aircraft iced over.  A pitot tube is a critical device 
in aviation because it measures the airspeed as air moves over 
the body of the aircraft.  For a period of 47 seconds, two of the 
three pitot tubes froze over and malfunctioned, reporting invalid 
airspeed information [3].  The onboard flight computer, being 
unable to reconcile the differing and invalid airspeed 
measurements, errored out, turning off the autopilot and 
returning control to the pilots. 

Co-pilot Pierre Bonin took control of the aircraft upon 
discovering that the autopilot had turned off.  He was unfamiliar 
with flying through the ITCZ, and his anxiety in this situation 
was apparent in the voice recorder.  Co-pilot Bonin, feeling that 
the aircraft was losing altitude, made the fatal decision that day 
to command the plane to climb under manual control using his 
joystick, without communicating to his co-pilot David Robert.  
On an Airbus A330, which is the aircraft involved, there are two 
joysticks that control the pitch and roll of the aircraft, 
symmetrically located on the right and left side of the cockpit, 
that is called a “side-stick.”  An image of the Airbus A330 

 
Figure 3:  The Airbus A330 side stick [3] 

 
side stick is shown in Figure 3. 

David Robert, suspecting that the aircraft may have been in a 
stall condition, attempted to correct the situation by 
commanding the aircraft to pitch down.  However, unbeknownst 
to co-pilot Robert, co-pilot Bonin was still commanding the 
aircraft to climb using his joystick, so the on-board computer 
was receiving conflicting information from the two side-sticks.  
A diagram showing how the side-stick is used to manipulate the 
control surfaces on the aircraft is shown in Figure 4.  The 
software was programed to override the joystick inputs in such 
scomes, and in this case that meant the pilot’s conflicting 
commands were cancelling each other out. 

 
 

Figure 4: Details of the Airbus A330 side stick mechanism [9] 

In the end, the tragedy of Air France flight 447 was 
completely preventable.  Poor software design and a 
miscommunication between the co-pilots doomed the flight.  
The decision to command the aircraft to climb at such a high 
altitude, and the confusion over who was in control of the 
aircraft, led to a stall from which Air France flight 447 never 
recovered.  Co-pilot David Robert’s final words were recorded 
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at 2:14 am where he exclaimed “Dang it, we’re going to crash.  
This can’t be happening!” [19].  The impact into the Atlantic 
Ocean killed all 228 onboard [3].  

In this paper, we explore different software techniques for 
joystick conflict resolution through virtualization, a technique 
we hope will reduce the likelihood of another situation similar 
to Air France flight 447 repeating itself. 

 
3 Related Work 

 
To control an aircraft in flight, a pilot has 6 main controls: 

engine speed, ailerons, elevators, the rudder, flaps, and spoilers 
[18].  A NASA-made diagram with the location of each of these 
controls is shown in Figure 5. 

Figure 5:  Critical parts of airplane flight [4] 
 
These 6 controls allow the pilot to control the pitch, roll, and 

yaw of the aircraft (as well as its speed, and other aerodynamic 
properties).  The pilot needs to keep constant mind of these 
controls, so that he or she can keep the plane flying and headed 
in the right direction. 

As technology has improved, computers have been integrated 
into almost everything [12].  This is no different in the aviation 
industry.  Nowadays, computer software is an essential part of 
keeping traffic organized in the air traffic controller (also 
sometimes abbreviated as ATC) [5, 17].  An example of this 
software’s interface is shown in Figure 6. 

Technology has changed not just the ATC, but also how the 
pilots fly planes.  An auto-pilot can fly the plane for hundreds 
of miles without needing human input. In addition, technology 
has also changed how pilots are trained. 

Airline pilots have used flight simulators as an essential 
training and educational device for decades [1].  Flight 
simulators have been in consistent use in commercial aviation 
since the 1960s, and are a safer alternative to training their pilots 
[2, 11]. 

Ironically, sometimes the simulator used for training can cost 
more than the actual airplane. 

This paper explores different software mechanisms for  

 
Figure 6: An example of the software used in the air traffic 

controller [5] 

addressing the problem of joystick conflict resolution.  In terms 
of physical equipment, the problem of two-person pilot cockpits 
is replicated in a hardware prototype. 
 

4 Hardware Prototype 
 
In order to model a software framework for the joystick 

conflict resolution, first a hardware prototype was needed.  We 
used a flight simulator for this.  There are two input devices in 
our simulator, and each operator (pilot and co-pilot) has a 
duplicate set of controls.  The existing simulator does not handle 
multi-axis joystick input well.  For example, if there are two 
pilots (a pilot and a co-pilot) and both press the deploy landing 
gear button, then the simulator will be unable to distinguish who 
pressed the button (and hence to whose responsibility it was to 
be assigned to).  This is similar to the problems encountered by 
Air France flight 447, as outlined earlier in Section 2. 

The first control is a joystick.  The joystick in the simulator 
has two axes (x, y) that allow the pilot to control the elevators 
and ailerons.  The ailerons control the roll, and the elevators 
control the pitch of the aircraft.  In the joystick, this input is 
obtained via two analog potentiometers.  The two 
potentiometers capture the commands on the x and y axes.  
When the joystick is swung to the right or to the left, the 
resistivity of the potentiometer changes, and thus a different 
voltage is read from the joystick in that axis.  This style of input 
conversion is called an analog joystick, and according to an 
ACM SIGCHI bulletin, this joystick would be classified as a 
multi-axis joystick [7]. 

In addition, there are 4 buttons that are mappable to various 
controls, and a 4-way hat switch which allows the pilot to look 
around the cockpit. 

An image of the first joystick is shown in Figure 7 and a 
potentiometer is shown in Figure 8. 

The next control is the throttle body.  The throttle controls the 
thrust of the engines, by way of controlling the speed of the 
engines. 

The throttle is a single-axis joystick that uses an analog 
potentiometer to measure the “throw” of the throttle.  In  
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Figure 7: The 2-axis, analog, 4-button joystick [15]

Figure 8: The potentiometer inside the joystick x-axis. The 
potentiometer senses the axis position and conveys 
the information over 3 voltage regulated wires

addition, the joystick has two buttons that can be mapped to 
various functions (such as deploying/retracting the landing 
gear).  The second joystick is shown in Figure 9.

There are exact duplicates of the controls described above 
inside the cockpit: one for the pilot, one for the copilot.  Thus, 
we have a challenge, which set of controls should we use?

In a real airplane, the controls would typically be tied together 
via a mechanical linkage.  However, in the simulator we have 
no such linkage.  Thus, we need to create a system which can 
respond to inputs from both pilots with some sort of definable 
priority.

For the hardware portion of our solution, we used an Arduino 
Leonardo.  We chose this board because unlike the very popular 

Figure 9: An example single-axis analog joystick similar to the 
one we use, but not exactly the same model [16]

Arduino Uno, the Leonardo has an ATMega 32u4 chipset that 
can emulate HCI devices, and operate in USB-slave mode.

We found that we wouldn’t be able to get an Arduino Uno 
recognized by the computer as a joystick without having to write 
our own Windows drivers. Instead, we found that using the 
ATMega 32u4’s built in HCI device emulation allowed us to get 
around this issue.

To connect everything together, a wiring harness was used to 
convert the Molex connectors supplied by the manufacturer on 
the ends of the joystick, into jumper cables that can be plugged 
into the Arduino.

The six analog joystick inputs wire into six analog inputs, and 
the 20 buttons wire into digital inputs (via a shift register due to 
there being only 14 inputs available). A circuit diagram 
showing how all these ties together is shown in Figure 10.  A 
picture of the hardware breadboard prototype is presented in 
Figure 11, and the wirings to the joysticks are shown in Figure 
12.

Figure 10: A depiction of the circuit diagram. Note that the 
breadboard is not used, except to consolidate the 5V 
power and ground lines

5 Software Design

First, the requirements of a software system that would 
process the multi-axis input from multiple joystick controllers 
are outlined in Table 1.

To better understand the interaction of the system, use case 
diagrams were created, as shown in Figure 13.

For example, in one of the use cases, only one operator is
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Figure 11: A photo of the actual hardware 
 

 
 

Figure 12: Additional details of the actual hardware 
 

pushing a control, say the deploy landing gear button.  In this 
simple case, the controller maps the control command to a 
keyboard command and passes it along to the flight simulation 
software. 

A more complicated use case scenario might involve both 
pilots providing input to the controller simultaneously, as shown 
in the MultiInput use case.  In this case, the input of each pilot’s 
control is tested against a weight, and combined together to form 
a “score” for that axis.  Afterward, that axis is passed along to 
the simulation software via the USB joystick interface. 

The code itself was written as a C++ ’sketch’ in the Arduino 
IDE (v 1.6.5). 

The analog inputs are read (those would be the axes: rudder, 
ailerons, elevators, etc.) and converted to a 10-bit digital value 
(in the range 0-1023). 

The button presses are read via digital inputs hooked into a 
pull-down resistor.  The software keeps track of the prior known 
state of the button.  When the circuit senses a change in the  

Table 1:  Software requirements 
Requirement Priority Description

1 High
The software must be able to 

convert an analog axis input 
into a digital 0-1023 value.

2 High
The software must be able to 

convert button presses into a 
digital 0/1 value.

3 High
The software must be able to 

handle at least 4 analog axes of 
input. 

4 High
The software must be able to 

handle at least 6 different types 
of button presses.

5 Medium 

The software should be able 
to handle simultaneous inputs 
from multiple sources (analog 
axes, buttons, etc.).

6 Medium 

The software should be able 
to map the analog axes to 
various software controls (such 
as rudder, throttle, elevators, or 
ailerons). 

7 Medium 
The software should be able 

to prioritize multiple inputs 
from the pilot and co-pilot.

8 Low 
The software should be able 

to emulate keyboard presses. 

Figure 13:  The use case diagram of the developed software 
 
voltage, the current state is compared against the prior known 
state.  If the state has changed, we report that change to the OS, 
and override the prior known state with the current state.  At the 
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moment, we can detect changes as fast as 1/20th of a second.  It 
may be possible to detect changes faster, but for our purposes 
(civil aviation simulation) this seems sufficient. 

 
6 Methods Evaluated 

 
When co-pilots David Robert and Pierre Bonin provided 

conflicting input through the Airbus’s side-sticks during the Air 
France flight 447 flight, the computer handled the conflict by 
averaging the inputs from the two joysticks.  This led to disaster, 
as discrepancies within the joystick system, known as dual-
inputs, was resolved in the Airbus software by averaging the 
joystick axis values of the two joysticks.  Since the joystick 
inputs were the exact opposite, the flight computer cancelled out 
the pilots’ commands and did nothing as the aircraft plummeted 
into the ocean.  The co-pilots struggled to understand why they 
were not in control of the aircraft.  Each had assumed their 
joystick was in control. 

There are several methods that could be employed in such 
scenarios.  Using the virtual joystick controller described above, 
we replicated three different scenarios.  The first is rather 
simple:  it involves replicating the value-averaging technique of 
the Airbus A330. Simply put, the firmware takes a voltage 
reading on each potentiometer, and averages the two values 
across the joystick axes.  This technique has the advantage that 
agreeable dual-input can multiply the speed of a turn, but it does 
not handle miscommunication well between the pilots. 

The second technique implemented and evaluated was to 
simply make the left-seat joystick the master joystick.  
Whenever the left-joystick was active, commands from the 
right-seat joystick would be ignored.  While this technique 
would have prevented the Air France flight 447 tragedy, what if 
the roles were reversed and the pilot in the left seat was in a 
confused state?  Or what if the joystick in the left seat was 
damaged, providing incorrect input and overriding the 
commands of the valid right-seat pilot?  One of the advantages 
to having two pilots with two independent joysticks in the 
cockpit is the ability to transfer control in the event some part of 
the cockpit was damaged or sabotaged.  Unfortunately, no 
matter which joystick was set as the master, experimentation 
with this technique left much to be desired in the way of 
redundancy. 

Finally, the third technique evaluated was the use of a joystick 
toggle button.  Upon pressing the toggle button, the 
virtualization firmware would transfer control to the right-side 
or left-side joystick.  Commands from the other joystick would 
be ignored when the active joystick was in use.  Commands 
from the non-active joystick may have been accepted when the 
active joystick was not in use.  To handle such scenarios, the 
software uses a weight distribution table.  Each joystick’s input 
is converted into an integer value (such as 0-1023 for an analog 
joystick axis).  That value is then multiplied against a weight in 
the table (based on the role of the person in control of that 
joystick), and then assigned an action in software (such as 
moving the elevators to achieve a change in pitch).  In the end, 
we believe that this was the right conflict resolution technique 
for the joystick virtualization.  It allowed for a redundant 

cockpit, by utilizing the joystick toggle to switch joystick 
control, while not permitting there to be confusion about who is 
in control, as it is the case with the other two techniques. 

 
7 Experimental Results 

Utilizing the ATMega 32u4 micro controller, we emulated a 
native USB joystick to the flight computer.  Putting the device 
into slave USB mode, it is recognized as a peripheral.  This 
peripheral is both powered by the USB cable and can 
send/receive data through it.  The firmware on the ATMega then 
converts the input signals from the joystick axes, buttons, and 
controls into a virtual game controller device in Windows. 

This interface does not require a driver.  One simply connects 
it to the computer and it emulates a game controller, thus using 
the built-in game controller of Microsoft Window®. 

A virtual joystick with 4 buttons, two axes (x, y), a rudder 
control, and a POV (point of view) hat switch is depicted in 
Figure 14.  The joystick axes are mapped to pitch and roll 
control of the aircraft. 

 

 

Figure 14: A joystick being recognized in windows by the 
system and the 3rd analog axis being mapped to the 
rudder 

 
The initial experience was seamless.  For those that are 

familiar with flight simulators, all the controls were mapped in 
the typical way. 

The pilot controls the ailerons and elevator (pitch and roll) via 
the first joystick, and the throttle (engine speed) via the second 
joystick.  The co-pilot controls the landing gear via a button on 
their second joystick (and has other possibilities with his or her 
controls that are not yet defined). 
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Things get interesting when multiple people, such as the pilot 
and the co-pilot, start to provide input at the same time.  Based 
on each operator’s role, and a weight tied to their particular 
joysticks, the software computes a resulting feedback value that 
then gets passed along to the simulation.  For example, the 
system allows for a co-pilot to take over a flight if the pilot is 
incapacitated (of course, all these happen in simulation). 

Better yet, this solution allows us to try new things, such as 
mapping the controls in a unique way.  For example, we could 
map the co-pilot’s joystick to control the rudders (pitch), while 
the pilot’s joystick could control the ailerons and elevators 
(pitch and roll). 

Our flight simulator was initially lacking any sort of pitch 
movement.  This made the plane harder to control.  Others have 
got around this problem with hardware solution: a joystick that 
can “twist.”  The twisting motion is measured and transformed 
into rudder movement that controls the pitch of the aircraft.  
However, in our flight simulator this would not be easily done 
because replacing the joysticks would require more space, and 
may not be compatible with other components.  Hence, this 
solution allows us to achieve novel things such as repurposing a 
co-pilot control to maneuver the rudders, something that was not 
possible with our existing setup. 

 
8 Conclusion 

 
In this paper, we presented a method for handling input from 

multiple axes in a flight simulator application.  As our related 
research showed, while joysticks and peripherals are 
commonplace, the systems to handle multi-joystick input, 
especially with different people at the helm of the controls, are 
not as mature. 

The initial experimental results showed that our method could 
create a system capable of reading and responding multi-axis 
controls, without the need to write a driver in Windows.  In the 
future we hope to extend this method to include the ability to 
emulate key presses on a keyboard. 
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