
IJCA, Vol. 27, No. 3, September 2020 123

A Unity Framework for Multi-Player VR Applications

Alexander Novotny Rowan Gudmundsson Frederick C. Harris, Jr.
Computer Science and Engineering

University of Nevada, Reno
Reno, NV USA 89557

anovotny@nevada.unr.edu, rgudmundsson@nevada.unr.edu, fred.harris@cse.unr.edu

Abstract

We have developed a framework for multi-user Virtual
Reality experiences aimed at video games played over a
network. Features include tracked avatars, interactable physics
objects, peer-to-peer with a user matching system, and voice
chat, as well as options to customize these modules for a
wide range of support. We go into detail on how several
implementation details, such as networking, voice chat, and
interaction, work. In addition, networking performance details
of the framework are included. We also go into detail on how
to use the library in Unity for your own projects. We also talk
about avatar representation in VR, and how this tool can be used
to facilitate many different types of avatar representation.

Keywords: graphics, user-interface, virtual reality,
multiplayer, networking, performance

1 Introduction

This paper is an extended version of our work published in
the Proceedings of CATA 2020 [11].

Multi-Headset Virtual Reality experiences are few and
far between which brings about exciting new opportunities
when looking at solidifying standards for interacting in this
environment. Current multi-player frameworks aren’t built to
handle the intricacies of Virtual Reality support, and current
Virtual Reality frameworks aren’t built with the intention of
having multiple headsets in the same virtual environment at the
same time. As the popularity of virtual reality increases, the
need for more diverse experiences will increase as well, and
this will lead to a need for multi-player experiences, which have
been previously under-explored. In this paper, we introduce a
framework and several techniques for multi-user Virtual Reality
experiences. This framework builds a foundation for a multitude
of multi-headset experiences to be built on top of it. It provides
developers with a networking connection layer, voice chat
system, and networked physics system

The rest of this paper is structured as follows: In Section 2
we cover target platforms, other tools, avatars, and social
interaction. In Section 3, we discuss the design and
implementation of our framework, which includes how we set
up our networking stack and multi-user matchmaking as well
as performance in Section 3.1, multi-user interaction and object
ownership in Section 3.2, avatar representation in Section 3.3,

and multi-user voice chat in Section 3.4. We finish the paper
with Conclusions, successful uses of the framework, and Future
Work in Section 4.

2 Background Review

2.1 Target Platforms

Our framework is built for the Unity[14] game engine, but
the techniques discussed can easily be extended to any other
game engine. Unity was chosen due to its current popularity
in individual game development as well as the availability of
already established Virtual Reality and networking frameworks,
such as Mirror[17], which was chosen for our framework.
Mirror allows easy setup for the simple interactions that
commonly occur in multiplayer virtual environments while
allowing for the possibility of more complex networking
interactions. Mirror also allows for simple peer-to-peer
communication needed in simple 2-4 player games and
server-client communication needed in massively multiplayer
experiences. As well, our framework uses OpenVR [15] due
to its hardware-agnosticism, however it can easily be extended
to other Virtual Reality frameworks. OpenVR also requires
Steam[16] to be running, so we targeted Steam users and took
advantage of several features of the Steamworks SDK. However
none of the methods discussed in this paper require the use of
any of these pre-existing frameworks.

For this iteration of the framework we decided to use the HTC
Vive as shown in Fig. 1 as it has many nice features that we used
including a microphone and the option to add more trackers, see
Fig. 8. Again, this choice is not reflective of the framework but
rather an implementation of it. This framework can be extended
to any hardware.

2.2 Other Tools

Networking libraries for Unity, such as Mirror [17],
Photon [4], and SteamWorks, are common, but come with many
downsides to the developer, especially when concerning VR.
Photon, for instance, uses a client-server model, where players
are matched on Photon’s own servers, but Photon expectes
developers to pay for this service. Developers can also use
their own servers or set up server on clients for a peer-to-peer
experience, but advertising servers so that users can find each
other is also expected to be paid for. Steamworks, meanwhile,

ISCA Copyright© 2020



124 IJCA, Vol. 27, No. 3, September 2020

Figure 1: The HTC Vive HMD with controllers.

provides a peer-to-peer service and a way to match users
together for free, but doesn’t provide any networking layer for
syncing objects in Unity itself. Mirror provides a good peer-
to-peer system which syncs objects in Unity, but isn’t built to
accommodate VR headsets, and by default will not work with
them at all. As well, as a peer-to-peer tool, Mirror does not
provide a system of matching users, nor a voice chat system,
which are necessary in many modern multi-user experiences.

VR libraries are also common - Unity has a VR library built
in, for instance. OpenVR, one of the most popular cross-
platform libraries that supports many headsets, also has support
for Unity. However, none of these libraries are built to work with
multiple headsets, let alone multiple headsets over a network.

2.3 Avatar Representation

When a user is immersed in a virtual environment, there
are many choices when it comes to how to represent that
user’s self/body in the environment. There is good research
about the implications/advantages of using different levels of
representations of a user’s own body in the environment when
it comes to immersion, virtual awareness, and computation
cost. In singleplayer experiences, increased complexity of
player avatars doesn’t gain any significant advantage in terms of
immersion, while coming at the cost of framerate - something
very important in virtual immersion [5, 8, 9, 13]. But in
multiplayer experiences, there is an unexplored question of how
other users’ bodies should be represented and what needs to be
tracked/networked to make that level of detail possible.

2.4 Social Interactions

With multiple users in a virtual experience, it becomes
important for them to be able to interact in an expected way.
This includes having perfect replication of environment, similar
interaction schemes between users, and feedback to let players

know that they are interacting with another player [12, 18]. A
multiplayer Virtual Reality framework must seek to efficiently
implement these goals, and allow for other types of social
interactions easily.

3 Framework Design

Our framework seeks to fill in the “holes” left by other
libraries made for multi-user and VR experiences by providing a
peer-to-peer networking stack with user matching which is free
to the developer. Our framework is made for Unity, supports a
wide variety of user interactions and avatar representations, and
has voice chat built in.

3.1 Networking

3.1.1 Networking Setup

The networking API that our framework is built on top of
is Mirror. Mirror uses a type of client-server communication
where the server can also be a user of the software as well.
To make connecting to other users easy, Steamworks was used.
Opening of the software requires Steam to be open, and will
load a list of friends who are currently running the game, as
can be seen in Fig. 2. Selecting one of these friends will invite
them to join a lobby, thereby starting a server on the user’s
local machine and marking the two player as a Steam "lobby".
Further users will be able to see this lobby and instead of starting
another server when inviting those friends, will instead join the
already made server as an observer or other user. Steam allows
connecting between users with their Steamworks API, allowing
easy connections through firewalls without having to know the
other users’ IP address(es).

Figure 2: A menu displaying active Steam friends with which to
join into a lobby.

Starting a server opens a scene normally, but when other users
connect to the server, the scene is then cloned to the connecting
user. From then on, the server pushes updates to all connected
clients syncing the scenes on their computers to the one on the
server, so only changes made on the server will be represented
to other users. Users can attempt to modify objects in their
scene, but these changes will eventually be overwritten by the



IJCA, Vol. 27, No. 3, September 2020 125

connection. As well, they can modify objects which are not
synced over the network, however these changes will not be
represented to other clients.

To override this behaviour, a mechanic called "authority"
is used to determine which client has the authority to modify
certain objects at any time. Each networked object has a single
"authority figure" at any given time, and if this authority figure
is not the server, the syncing behaviour changes to one where
authority figure will push its changes on an object to the server,
and the server will re-distribute these changes to all other clients.
Using this "authority" method keeps networking costs down to
a minimum, and ensures smooth physics if needed.

3.1.2 Networking Performance

Of course, networking performance would be of concern to
any potential user of the framework, since poor performance
could make it prohibitive for any clients of the end product.
The most important performance is that of the host (who is
both operating the server and participating in the experience),
as they are the central "hub" for all traffic in the experience and
will therefore experience the most traffic. The host’s download
and upload traffic as a function of number of users connected
to the experience can be found in Fig. 3. As can be seen, the
host’s download traffic is linear in the number of users, but its
upload traffic is quadratic in the number of users. This is due
to the increase in number of users which must receive updates
and also an increase in the amount of data in each update (from
more tracked points). Since the traffic is still within 2-15 KB/s,
this should be acceptable for most people’s networks, but the
number of players within each experience probably shouldn’t
exceed 10, due to the quadratic nature of the host’s upload
traffic.

1 2 3 4

0

5

10

Number of users

N
et

w
or

k
Tr

af
fic

(K
B

/s
) Download

Upload

Figure 3: Host network traffic as a function of connected users.
Number of tracked points per user is 3. Points taken
as mean over 10 second samples from NetLimiter
4 [7] with shaded regions as minimum and maximum
observations.

Also of interest is the comparison between the host’s
download traffic and each client’s download traffic, which can

be found in Fig. 4. The client’s download speed actually get
more efficient as the number of users increase, as more data is
sent in each update, whereas the host receives multiple updates
from each of the clients.

1 2 3 4

0

2

4

6

Number of users

N
et

w
or

k
Tr

af
fic

(K
B

/s
) Host Download

Client Download

Figure 4: A comparison of the host’s download traffic and a
client’s download traffic as a function of number of
connected users. Points taken as mean over 10 second
samples from NetLimiter 4 [7] with shaded regions as
minimum and maximum observations.

Finally, the number of updates per second can be adjusted to
fit the capabilities of the network and the needs of the program.
The network traffic as a function of the updates per second can
be found in Fig. 5, and is mostly linear, however there is a
certain minimum amount of data that needs to be transmitted
each second just to maintain a connection and synchronization.

0 50 100 150 200
0

10

20

30

Updates per Second

N
et

w
or

k
Tr

af
fic

(K
B

/s
) Download

Upload

Figure 5: The host’s mean network traffic as a function of
update speed. Points taken as mean over 10 second
samples from NetLimiter 4 [7].

3.2 Multi-User Interaction

3.2.1 Tracking Users

The first step to creating a multi-user environment is tracking
those users throughout the environment. This is done natively



126 IJCA, Vol. 27, No. 3, September 2020

by many Virtual Reality frameworks, but typically not in a
multi-user fashion. Our first attempt to track users in the
environment was to simply network the objects tied to the
tracked pieces of the user. However, this didn’t work as using
multiple player objects in a single scene caused each connected
player to influence the motions of each player in the scene.
OpenVR picks up all player objects in the scene as a controllable
entity and so would change the position of the tracked points in
each model simultaneously. In order to rectify this, we disabled
all the components in the scene tracked by OpenVR which were
not controlled by the local player (the player the current client is
supposed to control) (Fig. 6). This method seemed like the most
reasonable solution to the problem without delving too far into
Steam’s OpenVR implementation.

Figure 6: This figure shows the components which are being
disabled for non-local players in the scene.

Additionally, in order to create a more immersive
environment, we decreased the sync rate between the server and
the clients to allow for more smooth movement in the players
and interactable objects in the scene. We changed the sync
rate from it’s default of 100 milliseconds to 10 milliseconds.
This gave the players almost seamless movement and made
interacting with objects with multiple players very fluid and life-
like.

3.2.2 Tracking objects

The next step in creating a multi-user environment is to allow
players to interact with objects in the scene together. Doing
this on a single machine in Virtual Reality is trivial since we
only need to worry about keeping the physics updated on the
local machine. In a multi-user setting however, we need to
worry about how the physics of a given object is tracked across

User
interacts

with object

client
requests
authority
over the
object

client
updates the
physics of
the object

server
passes

authority to
the client

server
updates the
information

of the
object to
all clients

while
interacting

Figure 7: The flow of operation for interacting with an object on
a client

all clients. Some challenges we faced were figuring out which
client should have "authority" over an object at a given time and
how physics should be tracked over the network. We settled
on only keeping track of physics on the machine which has
authority over the tracked object and then just updating the
position over all clients (Fig. 7). This method seemed to allow
for the best performance since no information about the physics
is transferred over the network only information about position,
rotation, etc.

3.3 Avatar Representation

In single-player virtual experiences, it has been shown that
there is no notable increase in immersion or self-presence with
the addition of more-realistic player avatars. However, in a
multi-player environment, this can change. Not only does the
user have to keep track of their own avatar, but they now also
must be able to keep track of other avatars as well. There is
also now potentially a need for a user to be able to see the same
avatar that everyone else is seeing.

To keep networking costs low, only three positions are sent
over the network: head position, and hand positions. However,
this can be expanded using the trackers shown in Fig. 8 to track
additional joints in the avatar. After these positions are sent
over the network, each client then separately updates the avatars
of each player with respect to these positions. This allows
for a large amount of freedom with player avatars, including
more complex player avatars through the use of techniques
such as inverse kinematics. Players can choose which avatars
they would like to represent themselves and others as without



IJCA, Vol. 27, No. 3, September 2020 127

impacting the other players. Some examples of dynamic avatar
representations can be seen in Figs. 9 to 11.

Figure 8: Trackers which can sync with the Vive to add
additional tracking points to the avatar [1].

Figure 9: A simple player model which allows for good social
interactions.

3.4 Multi-User Voice Chat

Another form of interaction one might wish to have in a multi-
user virtual environment is speech. Indeed, every modern Head-
Mounted Display made for Virtual Reality (including, in our
case, the HTC Vive) has a microphone array built-in with this
purpose in mind, meaning voice chat is accessible to everyone.

Figure 10: A much smaller player avatar - player avatars can be
as flexible as you want!

Figure 11: A complex player avatar rigged over the network [3].

Steamworks makes using these microphones easy - the library
will automatically pick up on and compress any audio from the
microphone on the headset. This is stored in a buffer until
the appropriate retrieval function is called, upon which time
it gives access to 16-bit compressed Pulse-Code Modulation
(PCM) audio. This is ideal for sending over the network, and
we implemented a custom network package to deliver the audio
containing a buffer for the audio, a player ID to keep track of
the origin of the audio, and a channel ID for special purposes.
This is sent to the server, which then re-sends it to every other
client. When a client receive this package, it finds the audio
source associated to the player ID, decodes the audio, and stores
it in a buffer waiting to play. This is a bit tricky, as the C#
version of Steamworks returns a buffer of 8-bit integer values to
represent 16-bit audio and Unity requires 32-bit floating point
values between -1 and 1. As well, C# is little-endian (i.e. high
order bytes are stored after low order bytes), so there is a bit of
finesse required to turn this audio into something useable. Once
this is done, however, the audio source is set to stream from the
buffer of incoming voice audio, making the audio sound like it
is coming from that player.

As well, one can use the aforementioned channel ID to
change how this works. Channels can be used to filter out certain
players from hearing other players, joining certain voice chat



128 IJCA, Vol. 27, No. 3, September 2020

channels, and changing which audio source to play the incoming
audio from. For instance, a mining evacuation simulator used
voice channels to make player audio come out of walkie-talkies
instead being played directly from the other player, as players
were often on other sides of the mine [2].

By Using SteamVR actions, this allows players and
developers flexibility in how they want to be able to talk to other
players. By default, the framework is set up to use a push-to-
talk schema where as user will push a button to start talking and
then push it again to stop while an indicator lets them know that
they are broadcasting Fig. 12. This can be easily configured
by both developers and users to become a hold-to-talk scheme
or an always-on scheme where users are always chatting. The
framework doesn’t send voice packages over the network unless
noticeable audio is detected, so silent users of an always-on
scheme won’t cause network stress. As well, action sets can
be configured to make a more dynamic voice chat experience.
For instance, the aforementioned mining simulator uses walkie-
talkies whose push-to-talk button doesn’t become available until
the player picks up the walkie-talkie into their hand thereby
switching action sets [2].

Figure 12: An indicator lets a user know that they are
broadcasting to other players.

4 Conclusions and Future Work

We believe this library will provide to be a useful framework
for other multi-user virtual reality experiences, which are
becoming more and more common. With integration with
Steam, the world’s largest game distribution and VR platform,
and Unity, one of the largest game engines in use today, together
with being free to the developer, we believe this framework
will be a great boon to developers looking to get into this new
market.

We are planning to include IBM Watson support with the
voice-chat feature, which would allow for written transcripts of
audio sessions during the experience. Planned use cases include
’replays’ of scenarios in the experience, as well as voice-to-text
chat in the experience. We also plan to use the feature in our

own virtual reality game to trigger certain features of the game
off of certain key phrases.

Various projects and papers have already successfully made
use of the framework for multi-player games and multi-
user experiences. METS VR [2], a mining evacuation
training simulator, requires multiple users to be able to train
simultaneously and an "operator" who operates the simulation
from within the digital space. VFireVI [6] simulates wildfires in
a virtual space and allows multiple users to experience and cause
the virtual wildfires together using a centralised fire simulation
server. Several video games have also been developed which
make use of the framework, such as a cooperative puzzle game
[3] and a competitive "clan-like" tower defense game [10]. Our
own virtual reality game is also in the works, which makes use
of asymmetric player avatars to have players solve puzzles using
specific roles.

Acknowledgment

This material is based in part upon work supported by
the National Science Foundation under grant numbers IIA-
1301726. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

References

[1] Amazon. Htc vive tracker (2018) - european
version, 2018. https://www.amazon.com/
HTC-Vive-Tracker-European-Version/dp/
B07BYVB3RW/ref=olp_product_details?
_encoding=UTF8&me=&qid=1570916982&sr=8-6
Last Accessed (07/18/2020).

[2] Kurt Andersen, Simone José Gaab, Javad Sattarvand, and
Frederick C. Harris. Mets vr: Mining evacuation training
simulator in virtual reality for underground mines. In
Shahram Latifi, editor, 17th International Conference on
Information Technology–New Generations (ITNG 2020),
pages 325–332, Cham, 2020. Springer International
Publishing.

[3] Lucas Calabrese, Andrew Flangas, and Frederick C.
Harris. Multi-user vr cooperative puzzle game. In
Shahram Latifi, editor, 17th International Conference on
Information Technology–New Generations (ITNG 2020),
pages 293–299, Cham, 2020. Springer International
Publishing.

[4] Exit Games. Photon. https://www.photonengine.
com/en/pun, Last Accessed: 11/27/2019.

[5] L. Kruse, E. Langbehn, and F. Stelnlcke. I can see on my
feet while walking: Sensitivity to translation gains with
visible feet. In 2018 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR), pages 305–312, 3 2018.



IJCA, Vol. 27, No. 3, September 2020 129

[6] Christopher Lewis, Ronn Siedrik Quijada, and
Frederick C. Harris. vfirevi: 3d virtual interface for
vfire. In Shahram Latifi, editor, 17th International
Conference on Information Technology–New Generations
(ITNG 2020), pages 309–315, Cham, 2020. Springer
International Publishing.

[7] Locktime Software. Netlimiter 4. https://www.
netlimiter.com/, Last Accessed: 7/24/2020.

[8] J. Lugrin, M. Ertl, P. Krop, R. Klüpfel, S. Stierstorfer,
B. Weisz, M. Rück, J. Schmitt, N. Schmidt, and M. E.
Latoschik. Any “body” there? avatar visibility effects in a
virtual reality game. In 2018 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pages 17–24, 3 2018.

[9] J. Lugrin, M. Wiedemann, D. Bieberstein, and M. E.
Latoschik. Influence of avatar realism on stressful
situation in vr. In 2015 IEEE Virtual Reality (VR), pages
227–228, 3 2015.

[10] Andrew E. Munoz, Zach Young, Sergiu Dascalu, and
Frederick C. Harris. Tdvr: Tower defense in virtual reality:
A multiplayer strategy simulation. In Shahram Latifi,
editor, 17th International Conference on Information
Technology–New Generations (ITNG 2020), pages 301–
307, Cham, 2020. Springer International Publishing.

[11] Alexander Novotny, Rowan Gudmundsson, and
Frederick C. Harris, Jr. A unity framework for multi-
user VR experiences. In Gordon Lee and Ying Jin,
editors, Proceedings of 35th International Conference on
Computers and Their Applications, volume 69 of EPiC
Series in Computing, pages 13–21. EasyChair, 2020.

[12] D. Roth, C. Klelnbeck, T. Feigl, C. Mutschler, and
M. E. Latoschik. Beyond replication: Augmenting social
behaviors in multi-user virtual realities. In 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces
(VR), pages 215–222, 3 2018.

[13] D. Roth, J. Lugrin, D. Galakhov, A. Hofmann, G. Bente,
M. E. Latoschik, and A. Fuhrmann. Avatar realism and
social interaction quality in virtual reality. In 2016 IEEE
Virtual Reality (VR), pages 277–278, 3 2016.

[14] Unity Technologies ApS. Unity. https://unity.com/
Last Accessed: 11/27/2019.

[15] Valve Corporation. OpenVR. https://github.com/
ValveSoftware/openvr, Last Accessed: 11/27/2019.

[16] Valve Corporation. Steam. https://steampowered.
com, Last Accessed: 11/27/2019.

[17] vis2k. Mirror. https://github.com/vis2k/Mirror,
Last Accessed: 11/27/2019.

[18] C. Wienrich, K. Schindler, N. Döllinqer, S. Kock, and
O. Traupe. Social presence and cooperation in large-
scale multi-user virtual reality - the relevance of social
interdependence for location-based environments. In
2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 207–214, 3 2018.

Alexander Novotny is currently a
student at the University of Nevada,
Reno. He is pursuing a BS with
majors in Pure Mathematics and
Computer Science and Engineering.
He is currently working as a Software
Engineer at Scientific Games,
developing slot machine games and
in-house development tools. He is

currently taking graduate-level courses in preparation for an
accelerated MS program in Computer Science and Engineering
at the University of Nevada, Reno.

Rowan Gudmundsson completed
his BS in Computer Science and
Engineering at the University of
Nevada, Reno in 2020. He is currently
working as a Software Engineer on
the design and implementation of
computer games in Unity. His
research interests include tool design,
and tool construction, and alternative

applications for virtual reality. His current goals are to gain
experience in the field and then pursue research opportunities
while receiving his MS in Computer Science.

Frederick C. Harris Jr. received his
BS and MS degrees in Mathematics
and Educational Administration from
Bob Jones University, Greenville, SC,
USA in 1986 and 1988 respectively.
He then went on and received his
MS and Ph.D. degrees in Computer
Science from Clemson University,
Clemson, SC, USA in 1991 and 1994
respectively.

He is currently a Professor in the Department of Computer
Science and Engineering and the Director of the High
Performance Computation and Visualization Lab at the
University of Nevada, Reno, USA. He is also the Nevada
State EPSCoR Director and the Project Director for Nevada
NSF EPSCoR. He has published more than 250 peer-reviewed
journal and conference papers along with several book chapters.
He has had 14 PhD students and 78 MS Thesis students
finish under his supervision. His research interests are in
parallel computation, simulation, computer graphics, and virtual
reality. He is also a Senior Member of the ACM, and a Senior
Member of the International Society for Computers and their
Applications (ISCA).


