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Abstract

Cancer subtyping remains a challenging task in microarray
data analysis. The major goals of a successful cancer subtyping
system are accuracy and reliability. Cluster analysis techniques
have proven to be effective in this area. To facilitate further
development in cancer subtyping based on microarray data, we
provide a comprehensive review of the major cluster analysis
algorithms from the clinical and computational domains that
have been applied on microarray mRNA expression data and
miRNA expression data for cancer subtyping, as well as
other clustering algorithms with potential application in cancer
subtyping.
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1 Introduction

Clustering is an interdisciplinary research topic and is
also known by researchers in different fields as unsupervised
learning, exploratory data analysis, grouping, clumping,
taxonomy, typology, and Q-analysis [138]. Cluster analysis is
defined as ‘a statistical classification technique for discovering
whether the individuals of a population fall into different groups
by making quantitative comparisons of multiple characteristics’
and its first known use was in 1948 (Merriam-Webster Online
Dictionary, 2013). The clustering algorithm was first developed
by biologists in numerical taxonomy study in 1963 before
being utilized by statisticians [134].  Clustering is used
for class discovery, i.e. exploration or discovery of the
underlying patterns of a dataset by separating the dataset
into groups, with little or no prior knowledge [86, 136, 254,
255]. Clustering is also used for natural classification, i.e.
identifying the degree of similarity among organisms, and
compression, i.e. organizing and summarizing data using cluster
prototypes [138]. Clustering has become increasingly popular
as society increasingly generates an overwhelming amount of
data, and it is often used as the first step in data analysis or as a
preparation step for experimental work [163, 256].

There is no universally agreed upon definition of
clusters [86]. A cluster is a set of objects that are compact
(or similar to each other) and isolated (or dissimilar) from
other clusters. In reality, cluster definition is subjective, and
its significance and interpretation requires related domain
knowledge [138]. Similarity measure is used by clustering
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methods to calculate the similarity between two objects.
Different similarity measures will have different clustering
results, as some objects may be similar to one another using
one measure but dissimilar using another. Similarity between
two objects can be measured in different ways, and the three
dominant methods are distance measures, correlation measures,
and association measures [134]. Common similarity measures
include Euclidean distance, Manhattan distance, Maximum
norm, Mahalanobis distance, Pearson coefficient, Spearman’s
rank correlation coefficient, angle between two vectors, and the
Hamming distance.

Since the process of clustering is subjective, judging the
relative efficacy of clustering methods is difficult [20, 139].
Cluster validity is used to assess clustering results and can be
classified into three categories: a) Internal validities formulate
quality as a function of the given data set [130]. Examples
include Dunn’s Validity Index, Silhouette Value, Hubert Gamma
Statistic, Entropy, Xie-Beni, Normalized Mutual Information.
b) External validities assess quality by additional external
information such as category labels [130]. Examples include
Jaccard Index, Rand Index, Adjusted Rand Index, Variation
of Information, Kappa Statistic, CA. c) Relative validities
evaluate a clustering result by comparing it to results from other
clustering methods.

The procedure of cluster analysis includes four steps [254]:
Step one is feature selection or extraction. Feature selection
selects a subset of all features, and feature extraction
generates novel features from the original ones by using some
transformations [31, 135, 139, 254]. Step two is clustering
algorithm design or selection. Since clustering algorithms
group objects based on some proximity measure, this step
usually includes choosing an appropriate proximity measure
and construction of a clustering criterion function, creating an
optimization problem that has been well studied in the literature.
Step three is cluster validation. This step calculates a confidence
level for the clustering results. Step four is results interpretation.
This step provides meaningful insights from the data.

There is no single clustering algorithm that performs best
across all problems or data sets [152, 254]. Therefore, it is
important to study the characteristics of the problem and use
an appropriate clustering strategy [254].

Properties to be considered in choosing a clustering algorithm
include [28]: a) feature type (numeric and non-numeric), b)
scalability (large datasets), c) handling high dimensional data,
d) finding clusters of irregular shape, e) handling outliers, f)
time complexity of the algorithm, g) data order dependency,
h) assignment type (hard or strict vs. soft or fuzzy), i) prior
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knowledge and user defined parameters dependency, and j)
interpretability and visulization of results.

Despite many examples of successful applications of cluster
analysis, there still remain many challenges due to the existence
of many inherent uncertain factors [254]. The following
fundamental challenges in clustering [136, 138] are relevant
even today [138]: a) definition of a cluster, b) selection of
features, c¢) normalization of the data, d) outlier detection,
e) definition of pair-wise similarity, f) number of clusters,
g) selection of clustering method, h) existence of clustering
tendency, and i) validity of the clusters.

Some recent trends in clustering include [138]: semi-
supervised clustering utilizing external or side information;
interactive clustering, where a user can specify or change
program parameters based on domain knowledge or results
from previous clustering iterations; clustering ensembles, where
the partitions resulting from different algorithms (or the same
algorithm with different parameters) are combined; multi-
objective clustering, where the clustering algorithm optimizes
multiple specific objectives; large-scale clustering, which
handles very large databases; multi-way clustering, which
extends the bi-clustering framework and simultaneously clusters
heterogeneous components of the data objects [26]; and
heterogeneous data clustering for data comprising multiple
types, such as rank data, dynamic data, graph data, and
relational data [134].

Clustering techniques can be organized into categories.
Different criteria may result in different categories of
clustering algorithms [254]. Furthermore, categorization of
clustering algorithms is not straightforward or canonical,
and categories can overlap [28]. For convenience, in this
review we use the following taxonomy, which is also widely
used in the literature: hierarchical clustering (Section 2),
partitioning clustering (Section 3), graph-based clustering
(Section 4), distribution-based clustering (Section 5), density-
based clustering (Section 6), grid-based clustering (Section 7),
clustering big data (Section 8), clustering high dimensional data
(Section 9), and other clustering techniques (Section 10).

2 Hierarchical Clustering

Hierarchical clustering algorithms organize a data set into a
hierarchical structure according to a similarity measure [254]. It
is based on the belief that nearby objects are more related than
objects that are farther away [183]. These algorithms connect
objects based on their similarity to form clusters, which is
usually represented using a dendrogram. Hierarchical clustering
algorithms differ in the choice of similarity measures, the
linkage criterion (distance between clusters), and whether the
process is agglomerative (bottom-up) or divisive (top-down).
Agglomerative hierarchical clustering starts with singleton
clusters and then recursively merges appropriate clusters, and
divisive hierarchical clustering starts with one cluster containing
all objects and recursively splits appropriate clusters [28].

Divisive clustering is very expensive in computation [86]
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and is not commonly used in practice [254]. We focus on the
agglomerative clustering first and then mention two divisive
clustering algorithms named MONA and DIANA [146, 254].

There are many agglomerative hierarchical clustering
algorithms based on different linkage criterion. The single
linkage method or nearest neighbor method [110, 136, 215,
220, 221, 254] uses the distance between two closest objects
in different clusters, and the shortest distance determines
the merge of two clusters. The complete linkage method
or farthest neighbor method [67, 149, 223, 254] uses the
distance between two farthest objects in different clusters,
and the shortest distance determines the merge of two
clusters. These two methods are the simplest and most
popular [254]. Average linkage methods include UPGMA
(Unweighted Pair-Group Method using Arithmetic averages),
WPGMA (Weighted Pair-Group Method using Arithmetic
averages), UPGMC (Unweighted Pair Group Method using
Centroids), and WPGMC (Weighted Pair Group Method using
Centroids). UPGMA and UPGMC use a simple average,
while WPGMA and WPGMC use a weighted average where
the weight is the inverse of cluster size. UPGMA [63, 87,
136, 220, 222] uses average distance between two objects in
different clusters, and the shortest average distance determines
the merge of two clusters. WPGMA or weighted average
linkage method [182] uses weighted average distance between
two objects in different clusters, and the shortest average
distance determines the merge of two clusters. UPGMC or
centroid linkage method [220] uses Euclidean distance between
unweighted centroids (calculated by arithmetic mean) of
different clusters, and the shortest distance determines the merge
of two clusters. WPGMC or median linkage method [220]
uses Euclidean distance between weighted centroids of different
clusters, and the shortest distance determines the merge of two
clusters. Minimum-variance method or Ward’s method [245]
considers the relationship of all objects in a cluster. Its objective
is to form clusters such that the increase of variance within each
group is minimized [247]. Further readings about these methods
include [86, 254, 259].

What follows are examples of divisive hierarchical clustering
algorithms. DIANA [146] (Dlvisive ANAlysis Clustering)
selects in each dividing step the cluster with the largest diameter
and divides it into two new clusters. MONA [146] (MONothetic
Analysis Clustering of Binary Variables) divides clusters based
on a single well-chosen variable (or feature), whereas most other
hierarchical methods use all variables (or features).

Advantages of hierarchical clustering are a) Good
visualization with dendrogram representation [136, 231,
254, 256], b) Very informative descriptions with dendrogram
representation [136, 231, 254, 256], and c) Flexibility regarding
the number of clusters, since the clustering results can be
obtained by cutting the dendrogram at different levels.

Disadvantages of hierarchical clustering are [254, 256]: a)
Lacking of robustness and sensitivity to noise and outliers. b)
High computational complexity, which limit their application
on large scale data. c) Tendency to form clusters with
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spherical shapes instead of natural shapes. d) Prone to reversal
phenomenon [189].

BIRCH [269] (Balanced Iterative Reducing and Clustering
using Hierarchies) clusters incoming data objects incrementally
and dynamically. It first builds a CF (Clustering Feature)
tree dynamically as new data objects are inserted and then
applies an agglomerative hierarchical clustering algorithm to
the nodes represented by their CF vectors. After obtaining a
centroid for each cluster, it assigns each data object to its nearest
centroid. CURE [112] (Clustering Using REpresentatives) uses
a number of representative data points in a cluster to evaluate
the distance between clusters. Closest cluster pair are merged
at each step of its hierarchical clustering process. ROCK [113]
(RObust Clustering using 1inKs) uses links and not distances
when merging clusters for boolean and categorical data.
DISMEA [224] uses the k-means algorithm to divide a cluster
into two clusters. The Edwards and Cavalli-Sforza Method [79]
divides all available clusters at each step. Minimum Spanning
Tree-based clustering algorithms [80, 190, 266] construct an
MST (Minimum Spanning Tree) [156, 185, 200] from a data
set and produce a group of clusters by removing selected edges.
Figure 1 shows an example of hierarchical clustering.
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Figure 1: Hierarchical clustering [124]

3 Partitioning Clustering

Partitioning clustering algorithms divide objects into clusters
without hierarchical structure. Clusters are represented by
a central vector. Given the number of clusters, partitioning
clustering assigns the objects to the closest cluster center.
Partitioning algorithms can be grouped into k-means methods
and k-medoids methods. k-means methods use the centroid of
objects within a cluster as center. k-medoids methods use the
most appropriate object within a cluster as center.
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K-means clustering [28, 93, 120, 121, 167, 226, 254, 256] is
very simple, but one of the best known and popular clustering
algorithms. There are many variations of the basic k-means
clustering. Classic k-means reassigns data objects based on
optimization of the objective function. If a reassigning has
a positive effect, the data object is reassigned and the cluster
centers are updated. ISODATA [19] (Iterative Self-Organizing
Data Analysis Technique) splits and merges intermediate
clusters based on a user-defined threshold and iterates until the
threshold is reached. FORGY [93] reassigns objects to nearest
centroids and recomputes centroids. It iterates until a stopping
criterion is achieved. Fuzzy c-means [29, 77] assigns fuzzy
cluster membership to each data object, and updates cluster
centers and membership after each iteration. Methods to speed
up k-means and fuzzy C-means such as brFCM (bit reduction
by Fuzzy C-Means) [83] replace similar data objects with their
centroid before clustering.

Variations of k-medoid [146] methods are as follows.
PAM (Partitioning Around Medoids) assigns each data object
to the closest medoid and iteratively reassigns objects and
updates medoids to optimize the objective function. CLARA
(Clustering LARge Applications) [146] applies PAM on
multiple subsets or samples of the data set, and selects the
best clustering as output. CLARANS (Clustering Large
Applications based upon RANdomized Search) [187] searches
a graph where each node is a set of medoids. It selects a node
randomly in search for a local minimum among its neighbor
nodes through iterations and outputs the best node to form
clustering results.

Advantages of partitioning clustering are a) simple,
straightforward and easy implementation, b) fast execution
with computation complexity of O(n) ¢) very suitable for
compact and hyperspherical clusters, d) computational rigor
(firm foundation of analysis of variances).

Disadvantages of partitioning clustering are a) they are still
subjective processes that are sensitive to assumptions, b) they
require the number of clusters to be specified in advance, c)
they prefer clusters of approximately similar size, as they will
always assign an object to the nearest center, often leading to
incorrectly cut borders in between clusters, d) they are subject
to easy trapping in local minima and sensitivity to the initial
partition (hill-climbing optimization method).

Other developments are as follows. Bisecting k-means [225]
recursively partitions a cluster into two. KD-trees k-
means [195] uses the KD-Tree data structure to speed up the
assignment of data objects to their closest cluster by reducing
the number of nearest-neighbor queries in the traditional
algorithm. Scaling k-means [37] retains important data objects
and summarizes or discards other objects. Centroids of the
resulting data set are then used on the whole data set. X-
means [196] finds the number of clusters K automatically
by optimizing a criterion function such as AIC (Akaike
Information Criterion) or BIC (Bayesian Information Criterion).
Kernel k-means [209] enhances k-means by using a kernel
function that nonlinearly maps the original feature space to
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a higher dimensional one, where clusters are more separable.
Weighted kernel k-means [71] further extends kernel k-means
by assigning a weight for each cluster. The weight is defined
as the reciprocal of the number of data objects in the cluster.
GA k-means [16] applies a genetic algorithm to improve cluster
centers initialization for k-means. Simulated annealing [7,
132, 151, 211] uses simulated annealing optimization to avoid
local optima and find the global minimum solution. Soft
assignment [267] assigns data objects to different clusters
with appropriate weights to improve the optimization process.
It uses Harmonic Averages of the distances from the data
object to all the centers. Mahalanobis distance [170] is used
to detect clusters with hyperellipsoidal shapes. Maximum
of intra-cluster variances [109] can be used as the objective
function instead of the sum to obtain good -clustering
results. K-prototypes [131] incorporates categorical data as
a generalization approach. Accelerated k-means by triangle
inequality [81] avoids unnecessary distance calculations by
using the triangle inequality and keeping track of lower and
upper bounds for distances between data objects and cluster
centers. K-means++ [12] improves the speed and the accuracy
of k-means by using a simple randomized seeding technique.
Figure 2 shows an example of partitioning clustering.

Figure 2: Partitioning clustering [57]

4 Graph-based Clustering

Graph-based  clustering algorithms construct  a
graph/hypergraph from the data and then partition the
graph/hypergraph into subgraphs/subhypergraphs or clusters.
Each vertex represents a data object, and the edge weight
represents the similarity of two vertices [S0]. The edges in the
same subgraph/subhypergraph should have high weights, and
the edges between different subgraphs/subhypergraph should
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have low weights [50]. It is also called spectral clustering [138].

Representative algorithms are as follows. Chameleon [143]
uses a connectivity graph and graph partitioning to build small
clusters, followed by the agglomerative hierarchical clustering
process. Its key feature is that it considers both interconnectivity
and closeness when merging clusters. CACTUS (Clustering
Categorical Data Using Summaries) [100] detects candidate
clusters based on the summary of the data set and determines the
actual clusters through a validation process against the candidate
clusters. It uses a similarity graph to represent the inter-attribute
and intra-attribute summaries [98]. A Dynamic System-
based Approach or STIRR (Sieving Through Iterated Relational
Reinforcement) [106] represents each attribute value as a
weighted vertex in a graph. It iteratively assigns and propagates
weights until a fixed point is reached. Different weight groups
correspond to different clusters on the attribute. ROCK (Robust
Clustering algorithm for Categorical Data) [113] repeatedly
merges two clusters until the specified number of clusters is
reached, and it uses data sampling to improve complexity. It
uses a connectivity graph to calculate the similarities between
data objects [98].

The advantages of graph-based clustering are [50]: a) A
graph is an elegant data structure that can model many real
applications. b) It is based on solid mathematical foundations,
including spectral theory and Markov stochastic process. c)
It produces optimal clustering (optimizing a quality measure
instead of acting greedily toward the final clustering).

The major disadvantage of graph-based clustering is that it
may be slow when working on large scale graphs [50].

Other developments are as follows. = The Ratio Cut
algorithm [117] adopts a cluster size constraint, which is the
number of data points in a cluster. The Normalized Cut
(NCut) algorithm [214] is an approximate graph-cut based
clustering algorithm with a cluster size constraint, which is
the volume of the cluster or sum of edge weights within
a cluster. It also has a multiclass version [264]. The
MNCut (Modified Normalized Cut) algorithm [174] gives a
new interpretation to the NCut algorithm in the framework
of a Markov Random Walk. Ng’s method [186] derives
a new data representation from normalized eigenvectors of
a kernel matrix simultaneously and in a particular manner.
Laplacian Eigenmap [27] uses the eigenvectors of the graph
Laplacian to represent data. Pairwise Data Clustering
by Deterministic Annealing [126] uses proximity measures
between the data objects to represent data.  Dominant
Sets Pairwise Clustering [191] relates clusters to maximal
dominant sets [180] in pair-wise clustering. Fast approximate
spectral clustering [260] applies a distortion-minimizing local
transformation to the data to speed up conventional spectral
clustering. Active spectral clustering [243] follows the concept
of constrained clustering and uses pairwise relations. Its
constraints are specified in a incremental manner. Locally-
scaled spectral clustering using empty region graphs [60]
employs -skeleton (a subset of empty region graphs) and non-
linear diffusion to define a locally adapted affinity matrix which
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Figure 3: Graph-based clustering [85]

defines the similarity of two data objects. Figure 3 shows an
example of graph-based clustering.

5 Distribution-based Clustering

Distribution-based clustering views or assumes that the data
are generated by a mixture of probability distributions, each
of which represents a different cluster [99, 172]. This way, a
cluster can be seen as objects generated by the same distribution.
Thus, a particular clustering method can be expected to produce
good results when the data conform to the method’s distribution
model [99]. It is also called model-based clustering. There are
usually two approaches to form the model: the classification
likelihood approach and the mixture likelihood approach [99].

Distribution-based clustering has a long history. Early works
include [30, 65, 210, 249]. A survey of cluster analysis in a
probabilistic and inferential framework is presented in [33].

Representative algorithms are as follows. The EM
(Expectation-Maximization) clustering algorithm [69] is the
most popular method in distribution-based clustering. It tries
to fit the data set into the assumed number of Gaussian
distributions by moving the means of Gaussian distributions
toward the cluster centers. COOLCAT (reducing the entropy,
or COOLing of the CATegorical data clusters)[22] uses
entropy to cluster categorical data. It consists of data
sampling and incremental assignment. STUCCO (Search and
Testing for Understandable Consistent Contrasts) [25] uses
tree searching and significant contrast-sets to find clusters.
GMDD (Gaussian Mixture Density Decomposition) [271] uses
a recursive approach and identifies each Gaussian component in
the mixture successively. Autoclass [49] is based on the classic
distribution-based approach and uses a Bayesian method to
determine the optimal clusters. P-AutoClass [198] is a parallel
version of Autoclass and can be used on large data sets.

The advantages of distribution-based clustering are as
follows [28]: a) It can be modified to handle complex data,
b) It has a solid theoretical foundation, c) Its results are easily
interpretable, d) It not only provides clusters, but also produce
complex models that capture relationships among attributes, e)
Results are independent of the timing of consecutive batches
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of data, f) It is good for online learning since the intermediate
mixture model can be used to cluster objects, g) the Mixture
model can be naturally generalized to cluster heterogeneous
data.

The disadvantage of distribution-based clustering is the
difficulty in choosing the appropriate model complexity (since a
more complex model will usually be able to explain the data
better but may cause an overfitting problem from excessive
parameter set).

Other developments are as follows.  Latent Dirichlet
Allocation (LDA) [32] uses a hierarchical Bayesian model that
has three levels. Each data object is modeled as a finite mixture
over an underlying set of groups (or clusters) of objects. Each
group (or cluster) is modeled as an infinite mixture over a
set of group (or cluster) probabilities. Pachinko Allocation
Model (PAM) [161] uses a Directed Acyclic Graph (DAG) to
model cluster correlations. The leaves of the DAG represent
data objects, and the interior nodes represent correlations.
Undirected graphical model for data clustering [246] is based on
exponential family distributions and the semantics of undirected
graphical models. It uses the technique of minimizing
contrastive divergence to speed up the process. Robust cluster
analysis via mixture models method [173] uses the mixtures
of multivariate t distributions approach to the clustering. It
also uses the t distribution to cluster high-dimensional data
via mixtures of factor analyzers. Online learning for LDA
method [125] is an online Variational Bayes (VB) algorithm
for LDA. It uses natural gradient step in online stochastic
optimization, which converges to a local optimum of the VB
objective function. Figure 4 shows an example of distribution-
based clustering.
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Figure 4: Distribution-based clustering [56]
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6 Density-based Clustering

Density-based clustering defines clusters as dense regions
of data objects separated by low-density regions. A cluster
is a connected dense component and grows in any direction
that density leads [99]. Objects in low-density areas which
separate clusters are usually considered to be noise and border
points. There are two major approaches for density-based
clustering [28]: the connectivity approach pins density to a
training data point; the density function approach pins density
to a point in the attribute space.

Representative algorithms for the connectivity approach are
as follows. DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [84] starts by selecting a data object
and tries to find all data objects density-reachable from it to form
a cluster. If none are found, the algorithm selects a new data
point and repeats. GDBSCAN (Generalized DBSCAN) [205]
generalizes the concept of neighborhood by permitting the use
of any distance function besides Euclidian distance and allows
other measures besides simply counting the objects to define
the cardinality of that neighborhood. OPTICS (Ordering Points
To Identify the Clustering Structure) [11] is like an extended
DBSCAN algorithm. It does not assign cluster memberships
but stores the order in which the data objects are processed as
well as the core-distance and a reachability-distance for each
data object. An extended DBSCAN is used to assign cluster
memberships. DBCLASD (Distribution Based Clustering of
LArge Spatial Databases) [257] uses the notion of clusters
based on the distance distribution and incrementally augments
an initial cluster by its neighboring points as long as the
nearest neighbor distance set of the resulting cluster still fits the
expected distance distribution.

Representative  algorithms for the density function
approach are as follows. DENCLUE (DENsity-based
CLUstEring) [122] calculates the impact of each data object
within its neighborhood (i.e. influence function) and determines
clusters mathematically by identifying local maxima of the
overall density function (i.e. density-attractors).

The advantages of density-based clustering are as follows [28,
99]: a) They can find clusters of arbitrary shapes, in contrast
to many other methods. b) Time complexity is low (linear or
O(n)). ¢) It is deterministic for core and noise points (but not
for border points), therefore there is no need to run it multiple
times. d) It can handle noise well. ¢) The number of clusters is
not required, since it finds clusters and the number of clusters
automatically. f) Results are independent of data ordering. g)
There are no limitations on the dimension or attribute types.

The disadvantages of density-based clustering are as follows:
a) It is often difficult to detect cluster boarders when the cluster
density decreases continuously (i.e. arbitrary borders). b) For
a mixtures of Gaussians data set, distribution-based clustering
(e.g. EM) usually outperforms density-based clustering. c)
Limitations in processing high-dimensional data, since it is
difficult to distinguish high-density regions from low-density
regions when the data is high-dimensional [138]. d) Most
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density-based clustering algorithms were developed for spatial
data [99].

Other developments are as follows. BRIDGE [64] integrates
the k-means algorithm and the DBSCAN algorithm. K-
means is first performed, and then DBSCAN is used on each
partition. Finally, results are improved by removing the noise
found by DBSCAN. Jarvis-Patrick algorithm [94] partitions
the data set into clusters based on the number of shared
nearest neighbors. It first identifies the k nearest neighbors
of each data object and then merges two data objects at a
time. C-DBSCAN (Constrained-DBSCAN) [204] enhances
the DBSCAN algorithm with pairwise constraints. SCAN
(Structural Clustering Algorithm for Networks) [258] can detect
hubs and outliers, in addition to clusters in networks (or

graphs). It uses a structural similarity measure to cluster
vertices. Figure 5 shows an example of density-based clustering.
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Figure 5: Density-based clustering [55]

7 Grid-based Clustering

Grid-based clustering operates on space partitioning instead
of data partitioning to produce clusters [28]. It first creates the
grid structure by partitioning the data space into cells (or cubes)
and then clusters the cells based on their densities.

Representative algorithms are as follows. BANG-
clustering [28, 207] uses a multi-dimensional grid data structure
to organize or partition the data. It uses the cell information
in the grid and clusters the cells. STING (A STatistical
INformation Grid approach) [241] uses a hierarchical structure
of grid cells with a top-down approach. It labels a cell to
be relevant or not at a specified confidence level. Then, it
finds all the regions formed by relevant cells. STING+ [28,
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242] uses a similar hierarchical cell structure as STING and
introduces an active spatial data mining approach. OptiGrid
(Optimal Grid) [123] constructs an optimal grid partitioning of
the data by finding the best partitioning hyperplanes for each
dimension with projections of the data. GRIDCLUS (GRID-
CLUStering) [206] organizes the space surrounding the clusters
with a grid data structure. It uses a topological neighbor
search to cluster the grid cells. GDILC (Grid-based Density-
IsoLine Clustering) [261] is based on the idea that the density-
isoline figure reflects the distribution of data. It uses a grid-
based approach to calculate the density and finds dense regions.
WaveCluster (Wavelet-based clustering) [212] transforms the
original feature space by applying wavelet transform and then
finds the dense regions in the new space. It yields sets of clusters
at different resolutions and scales, which can be chosen based
on the user’s needs. FC (Fractal Clustering) [21] adds one data
object at a time to one cluster in such a way that the fractal
dimension changes the least after adding the data object.

The advantages of grid-based clustering are as follows [28,
99]: a) It is fast and works well with large data sets (since speed
is independent of the number of objects in the data), b) It handles
noise well, ¢) It is independent of data ordering, d) It can handle
attributes of different types, e) It can be used as an intermediate
step in many other algorithms such as CLIQUE and MAFIA.

The disadvantages of grid-based clustering are as follows: a)
Most algorithms need the user to specify grid size or density
thresholds, which can be difficult (fine grid sizes result in high
computational time, while coarse grid sizes result in low quality
of clusters) [99]. b) Some grid-based clustering algorithms
(e.g. STING, WaveCluster) are not good at high dimensional
data [99].

Other developments are as follows. = AMR (Adaptive
Mesh Refinement clustering) [162] creates grids at multiple
resolutions where higher resolution grids are applied to the
localized denser regions. O-Cluster (Orthogonal partitioning
CLUSTERIng) [175] is a variant of OptiGrid. It creates
a hierarchical grid-based structure by making axis-parallel
(orthogonal) partitions on the input data. It operates recursively,
and the final irregular grid frames the data into clusters. CBF
(Cell-Based Filtering) [47] splits each dimension into a set of
partitions using a filtering-based index. It then creates cells
based on the overlapping regions of the partitions. PGMCLU
(Parallel Grid-based CLUstering algorithm for Multi-density
datasets) [251] consists of parallel data partitioning, local
clustering, and merging local clusters. It introduces a new
measure called grid compactness for the degree of tightness
between data objects within the grid, and the notion of grid
feature for summarizing the information about a grid. Figure 6
shows an example of grid-based clustering.

8 Clustering Big Data

Big data clustering refers to clustering on millions of data
objects [138]. These algorithms need to have good scalability
and process big data within reasonable computing time and

IICA, Vol. 28, No. 2, June 2021

Figure 6: Grid-based clustering [263]

memory space [28]. A high computational complexity would
dramatically limit an algorithm’s application to big data. The
strategies used for big data clustering can be categorized
into sampling, data summarization, distributed computing, and
incremental learning.

8.1 Sampling

Sampling methods select a sample of the original large data
set and perform clustering over the sample data. Old-fashioned
sampling methods may or may not use rigorous statistical
reasoning. Newer sampling methods use special uniform checks
to control their adequacy [28]. Advantages are that it is simple
to implement and can screen out most outliers. However, small
clusters may be missed.

Examples are as follows. CURE (Clustering using
REpresentatives) [112] and ROCK (RObust Clustering using
linKs) [113] were covered in Section 2. CLARA (Clustering
LARge Applications) [145] draws several samples from the
data set, runs PAM on each of them, and selects the best
result. CLARANS (Clustering Large Applications based on
RANdomized Search) [187] starts with a new randomly-
selected node (a set of k potential medoids) in the graph in
search of the local optimum. It repeats if a local optimum is
found.

8.2 Data Summarization

Data summarization methods calculate data summary
statistics and perform clustering on the summaries instead of
the original data. The advantage is that the requirement for the
storage of and frequent operations on the large amount of data
are greatly reduced, saving both computational time and storage
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space. The disadvantage is reduced cluster quality.

Examples are as follows. BIRCH (Balanced Iterative
Reducing and Clustering using Hierarchies) was covered in
Section 2. BUBBLE [101] instantiates generalized BIRCH
for data in a distance space. @~ BUBBLE-FM (BUBBLE-
FastMap) [101] improves upon BUBBLE by reducing the
computation time using FastMap [88]. EMADS (EM Algorithm
for Data Summaries) [141] directly generates a Gaussian
mixture model from simplified data summaries. bEMADS
(BIRCH’s EMADS) [141] uses data summarization procedures
in the BIRCH algorithm.

8.3 Distributed Computing

Distributed computing methods divide a large data set into
smaller data sets and perform clustering on each smaller data
set. The advantage is that clusterings on each smaller data
set can be done in parallel to reduce the overall computation
time [138]. The disadvantage is the overhead and complexities
due to the dividing and combining steps.

Examples are as follows. Parallel k-means [70] is a
parallel implementation of the k-means clustering algorithm.
DBDC (Density Based Distributed Clustering) [140] clusters
distributed data locally and extracts suitable representatives
from these local clusters to send to a global site where the
complete clusters are restored based on the local representatives.
It uses a density-based clustering algorithm for both local and
global clustering. Parallel spectral clustering in distributed
systems [51] makes the dense similarity matrix sparse by
retaining nearest neighbors using a parallel approach.

8.4 Incremental Learning

Incremental learning methods process one data object at a
time and may discard it. They require only one single pass
over all data objects, in contrast to most clustering methods
that require multiple passes over data objects before identifying
the cluster centers [138]. Advantages are: improved clustering
efficiency in terms of data storage and processing time (they can
admit new data objects without learning from scratch [256]);
handling outliers well [28]; resumable processing which makes
it very suitable for dynamic big data sets [28]. Disadvantages
are that results depend on data order and may not be stable [43,
178, 256], and can result in lower quality clusters [28].

Examples are as follows. DIGNET [232, 244] moves cluster
centers toward a new data point with each new addition.
Hartigan’s leader algorithm [120] uses a distance/similarity
threshold to decide if a data point should be added to the
cluster or used for a new cluster center. ART (Adaptive
Resonance Theory) family [42, 256] simulates neural circuits
that are believed to trigger fast learning. It includes a
large family of neural network variants such as ART1 [43],
ART?2 [42], Gaussian ART [248], Bayesian ART [236],
Ellipsoid ART [9], ART tree [45, 250], ARTMAP [44], Q-
learning ART [38], Fuzzy ART [41]. Charikar’s incremental
clustering [48] maintains a clustering of the data objects so

99

that the maximum cluster diameter is minimized as new data
objects are added. GenlIC (Generalized Incremental algorithm
for Clustering) [114] divides the data stream into chunks or
windows, updating each cluster center with each new data
object addition and merging clusters at the end of a window of
data. Cobweb [91] is an incremental system for hierarchical
clustering, which enables bi-directional hill-climbing search
through the space of hierarchical schemes.

9 Clustering High Dimensional Data

High Dimensional Data clustering refers to clustering on
data objects that represent from a few dozen to thousands or
more features. Such high dimensional data are often seen in
areas such as medicine (e.g. microarray experiments), and
text documents (e.g. word-frequency vector methods [46]).
Clustering high dimensional data is tremendously difficult.
One problem is that increased irrelevant features eliminate the
likelihood of clustering tendency [28]. Another problem is the
‘curse of dimensionality’, or lack of data separation, in high
dimensional space (the problem becomes severe for dimensions
greater than 15) [28]. Performing feature selection before
applying clustering can improve the first problem. Principal
Component Analysis (PCA) [193] is commonly used. However,
the dimension may still be high after feature selection. In
this review, we discuss techniques that have been developed
to address such situations: projected clustering, subspace
clustering, bi-clustering (or co-clustering), tri-clustering, hybrid
approaches, and correlation clustering.

9.1 Projected Clustering

Projection techniques map data objects from a high
dimensional space to a low dimensional space, while
maintaining some of the original data’s characteristics [13].

Examples are as follows. PreDeCon [34] finds subsets
of feature vectors that have low variance along subsets
of attributes. PROCLUS [3] finds the candidate clusters
and dimensions by using medoids. For each medoid, the
subspace is determined based on attributes with low variance.
Random projections for k-means clustering [36] implements
a dimensionality reduction technique for k-means clustering
based on random projections.

9.2 Subspace Clustering

Subspace clustering algorithms identify clusters in
appropriate subspaces of the original data space.

Examples are as follows. CLIQUE (CLustering In QUEst) [5]
partitions the data space into units and then finds the
maximum sets of connected dense units. SUBCLU (density-
connected Subspace Clustering) [155] adopts the notion
of density-connectivity introduced in DBSCAN (Section 6)
and uses the monotonicity of density-connectivity to prune
subspaces. CACTUS (Clustering Categorical Data Using
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Summaries) is covered in Section 4. ENCLUS (ENtropy-
based CLUStering) [53] finds clusters in subspaces based on
entropy values of subspaces. Subspaces with lower entropy
values typically have clusters. It then applies CLIQUE or other
clustering algorithms to such subspaces. MAFIA (Merging of
Adaptive Finite Intervals) [108] uses adaptive grids in each
dimension and then merges them to find clusters in higher
dimensions. OptiGrid (Optimal Grid) is covered in Section 7.
MrCC (Multi-resolution Correlation Cluster detection) [58]
constructs a novel data structure based on multi-resolution and
detects correlation clusters by identifying initial clusters as
axis-parallel hyper-rectangles with high data densities, followed
by merging overlapping initial clusters. Figure 7 shows an
example of subspace clustering.
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Figure 7: Subspace clustering [216]

9.3 Hybrid Approaches

Hybrid approaches find overlapping clusters. Some of
them find only potentially interesting subspaces and use full-
dimensional clustering algorithms to obtain the final clusters.

Examples are as follows. DOC (Density-based Optimal
projective Clustering) [201] uses a global density threshold
to compute an approximation of an optimal projective cluster.
FIRES (FIlter REfinement Subspace clustering) [154] first
computes one-dimensional clusters and then merges them by
applying ‘clustering of clusters’ based on the number of
intersecting points between clusters. P3C (Projected Clustering
via Cluster Cores) [176, 177] first computes intervals matching
or approximating higher-dimensional subspace clusters on
every dimension and then aggregates those intervals into cluster
cores. The cluster cores are refined and used to assign data
objects.
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9.4 Bi-clustering

Bi-clustering is also called bi-dimensional clustering [54],
co-clustering, coupled clustering, or bimodal clustering. Bi-
clustering is popular in bioinformatics research, especially in
gene or sample clustering. For gene expression data, there
are experimental conditions in which the activity of genes
is uncorrelated. This causes limitations for results obtained
by standard clustering methods. So bi-clustering algorithms
that can perform simultaneous clustering on the genes and
conditions are developed to find subgroups of genes and
subgroups of conditions in which the genes exhibit highly
correlated activities for every condition [168].

Examples are as follows. CTWC (Coupled Two-Way
Clustering) [104] generates submatrices by an iterative process
and considers only those submatrices whose rows and columns
belong to genes and samples/conditions that were in a stable
cluster in a previous iteration. ITWC (Interrelated Two-
Way Clustering) [230] clusters the rows and then clusters the
columns, based on each row cluster. It keeps the cluster pairs
that are most dissimilar. Block Clustering [120] sorts the data
by row mean or column mean and splits the rows or columns
such that the variance within each ‘block’ is reduced. It then
repeats and splits rows or columns differently. d-biclusters [54]
or CC algorithm (Cheng and Church’s) finds biclusters whose
rows and conditions show coherent values, using mean-squared
residue. SAMBA (Statistical-Algorithmic Method for Bicluster
Analysis) [229] uses probabilistic modeling and graph theoretic
techniques to find subsets of rows whose values are very
different in a subset of columns. Plaid Models [159] allows
biclusters to overlap, i.e. a gene or a sample/condition can
belong to more than one cluster. Information-theoretic co-
clustering [72] intertwines the row and column clusterings to
increase mutual information.

9.5 Correlation Clustering

Correlation clustering uses the correlations among attributes
to guide the clustering process. These correlations may be
different and exist in different clusters and cannot be reduced to
uncorrelated ones by traditional global decorrelation techniques.
Such correlations create clusters with different spatial shapes,
and local correlation patterns are used to define the similarity
between data objects. Correlation clustering is closely related
to biclustering.

Examples are as follows. ORCLUS (ORiented projected
CLUSter generation) [4] is similar to k-means but uses a
distance function based on an eigensystem, i.e. the distance
in the projected subspace. The eigensystem is adapted during
iterations and close pairs of clusters are merged. 4C (Computing
Correlation Connected Clusters) [34] takes a density-based
approach and uses a density criterion to grow clusters. The
density criterion is the minimal number of data objects within
the neighborhood of a data object. The neighborhood is based
on distance between two data objects in the eigensystems.
HiCO (Hierarchical COrrelation clustering) [2] defines the



IJCA, Vol. 28, No. 2, June 2021

similarity between two data objects based on their local
correlation dimensionality and subspace orientation. It takes
a hierarchical density-based approach to obtain correlation
clusters. CASH (Clustering in Arbitrary Subspaces based on the
Hough transform) [1] is based on the Hough transform [129],
which maps the data space into parameter space. It then uses
a grid-based approach to find dense regions in the parameter
space and corresponding data subsets in the original data space.
It recursively applies itself on such corresponding data subsets.

10 Other Clustering Techniques

10.1 Neural Network-Based Clustering

The neural network approach has been studied intensively
by mathematicians, statisticians, physicists, engineers,
and computer scientists [157]. A neural network is an
interconnected group of artificial neurons and an adaptive
system for information processing. Neural-network-
based clustering is competitive-learning-based clustering,
not statistical model-identification based clustering.  For
competitive-learning-based clustering, the first phase is
learning where the algorithmic parameters are adjusted, and the
second phase is generalization [74]. Competitive learning can
be implemented using a two-layer neural network: the input
layer and the output layer [74].

Examples are as follows. A SOM (Self-Organizing
Map) [153] consists of nodes or neurons, each of which is
associated with a weight vector and a position in the map
space. It creates a mapping from a higher dimensional input
space to a lower dimensional output space. SOM clustering
computes the distance of the input pattern to each neuron and
finds the winning neuron. LVQ (Learning Vector Quantization)
or VQ (Vector Quantization) [39, 102] is a classical quantization
technique for signal processing. It models the probability
density functions by using the distribution of prototype vectors.
It divides a set of vectors into groups that have approximately
the same number of vectors closest to them. Basic VQ is k-
means clustering, and LVQ is a precursor to self-organizing
maps (SOM) [102]. Neural gas [171] is inspired by SOM. It is
a simple algorithm and finds optimal data representations based
on feature vectors. During the adaptation process, the feature
vectors distribute themselves dynamically like a gas within the
data space. ART model is covered in Section 8.4.

10.2 Evolutionary Clustering

Evolutionary computation has many applications in computer
science, bioinformatics, pharmacometrics, engineering,
physics, and economics. Evolutionary computation is inspired
by the biological mechanisms of evolution, and uses iterative
processes such as growth or development followed by selection
in a population of candidate solutions. Clustering methods that
use local search techniques including hill-climbing approach-
based k-means suffer from local minima problems. The recent
advancements in evolutionary computational technologies [92]

101

provide an alternate and effective way to find the global or
approximately global optimum [256]. PSO (Particle Swarm
Optimization) simulates social behavior in nature, such as
bird flocking or fish schooling [148]. ACO (Ant Colony
Optimization) algorithms model the behaviors of ants in
nature [73]. GAs (Genetic Algorithms) [127] mimic natural
selection and use evolutional mechanisms such as crossover,
mutation and selection to generate solutions.

Examples are as follows. PPO (Particle-Pair Optimizer) [75]
is a modification of the Particle Swarm Optimizer. It uses two
particle pairs to search for the global optima in parallel and uses
k-means for efficient clustering. Niching genetic k-means [213]
modifies Deterministic Crowding [169], one of the niching
genetic algorithms, and incorporates one step of k-means into its
regeneration steps [213]. EvoCluster algorithm [166] encodes
cluster structure in a chromosome, in which one gene represents
one cluster or the objects belonging to one cluster. Reproduction
operators are used between chromosomes. GenClust [103] is
a simple algorithm and proceeds in stages. It uses genetic
operators and a fitness function to compute partitions in a new
stage based on partitions in the previous stage.

10.3 Kernel Clustering

Kernel-based learning such as Support Vector Machines
(SVMs) [61, 208, 199] has had successful applications in
pattern recognition and machine learning and is becoming
increasingly important [199]. Kernel methods [62] perform
a nonliner mapping of the low dimensional input data into a
high dimensional space, which becomes linearly separable. To
improve efficiency, they avoid explicitly defining the nonlinear
mapping by using kernel functions, such as polynomial kernels,
sigmoid kernels, and Gaussian radial basis function (RBF)
kernels. This is the known as the kernel trick.

Examples are as follows. SVC (Support Vector
Clustering) [239, 265] uses SVM training to find the cluster
boundaries and an adjacency matrix to assign a cluster
label to each data object [256]. Variations of SVC include
Iterative One-Class SVC [40], and rough Set SVC [192].
Kernel k-means [107] uses a kernel method to calculate the
distance between items in a data set, instead of using the
Euclidean distance as in regular k-means. Variations include
Incremental Kernel-k-means [209]. Kernel deterministic
annealing clustering [262] uses an adaptively selected Gaussian
parameter and a Gaussian kernel to determine the nonlinear
mapping. Kernel fuzzy clustering [164, 268, 270] applies
kernel techniques to fuzzy clustering algorithms by replacing
the original Euclidean distance with a kernel-induced distance.
Kernel Self-Organizing Maps [10, 35, 158] perform self-
organizing between an input data object and the corresponding
prototype in the mapped high dimensional feature space or in
the mapped space completely.
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10.4 Sequential Data Clustering

Sequential data are sequences of numerical data or non-
numerical symbols and can be generated from speech
processing, video analysis, text mining, gene sequencing, and
medical diagnosis. Time series data or temporal data are
a type of sequential data, which, unlike static data, contain
feature values that change over time. Since sequential data
usually have variable length, dynamic behaviors, and time
constraints [116, 228], they cannot be represented as points in
the multi-dimensional feature space and thus cannot be analyzed
using any of the clustering techniques we have mentioned
thus far [256]. Clustering techniques targeting sequential data
have been developed, and they commonly use three strategies:
proximity-based approaches, feature-based approaches, and
model-based approaches.

Proximity-based approaches use proximity information such
as the distance or similarity between pairs of sequences. They
then use hierarchical or partitional clustering algorithms to
group the sequences into clusters [256]. Examples are as
follows. The Needleman-Wunsch algorithm [78, 184] uses
basic dynamic programming and is a global optimal alignment
algorithm. The Smith-Waterman algorithm [78, 217] is based
on Needleman-Wunsch algorithm, and also uses dynamic
programming. It compares multi-lengthed sequence segments
using character-to-character pair-wise comparisons. FASTA
(FAST-All) [194] first finds segments of the two sequences
that have some degree of similarity and marks these potential
matches. It then performs a more time-consuming optimized
search approach such as the Smith-Waterman algorithm.
BLAST (Basic Local Alignment Search Tool) [8] searches
for short alignment matches between two sequences using a
heuristic approach, which approximates the Smith-Waterman
algorithm. GeneRage [82] automatically clusters sequence
datasets by using Smith-Waterman dynamic programming
alignment and single-linkage clustering. SEQOPTICS
(SEQuence clustering with OPTICS) [52] implements Smith-
Waterman algorithms as the distance measurement and uses
OPTICS [11] to perform sequence clustering.

Feature-based approaches map sequences onto multi-
dimensional data points using feature extraction methods
and then use vector-based clustering algorithms on the data
points [256]. Examples are as follows. Scalable sequential
data clustering [115] uses a k-means based clustering algorithm
which has near-linear time complexity to improve the scalability
problem. Pattern-oriented hierarchical clustering [179] uses a
hierarchical algorithm, which can generate the clusters as well
as the clustering models based on sequential patterns found
in the database. The wavelet-based anytime algorithm [237]
combines a novel k-means based clustering algorithm and the
multi-resolution property of wavelets. It repeatedly uses coarse
clustering to obtain a clustering at a slightly finer level of
approximation.

Model-based approaches assume sequences that belong to
one cluster are generated from one probabilistic model [256].
Examples are as follows. Autoregressive moving average
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(ARMA) models [18, 253] derive an EM algorithm to learn
the mixing coefficients and the parameters of the component
ARMA models. They use the Bayesian information criterion
(BIC) to determine the number of clusters. The Markov chain
approach [202, 219] models dynamics as Markov chains and
then applies an agglomerative clustering procedure to discover
a set of clusters that best capture different dynamics. The
Polynomial models approach [17, 97] assumes the underlying
model is a mixture of polynomial functions. It uses an EM
algorithm to estimate the cluster membership probabilities,
using weighted least squares to fit the models. The Hidden
Markov Model (HMM) [188, 218] is a probabilistic model-
based approach. It uses HMMs, which have shown capabilities
in modeling the structure of the generative processes underlying
real-world time series data.

10.5 Ensemble Clustering

Clustering ensembles have emerged to improve robustness,
stability and accuracy of clustering results [105]. A cluster
ensemble combines the results of multiple clustering algorithms
to obtain a consensus result [197]. It can produce better
average performance and avoid worst case results. Other
usages of clustering ensembles include improving scalability
by performing clustering on subsets of data in parallel and
then combining the results, and data integration when data is
distributed across multiple sources [137].

There are two main steps in a clustering ensemble: generation
and consensus. In the generation step, several approaches
are used [235]: different clustering algorithms, a single
algorithm with different parameter initializations, different
object representations, different object projections, and different
subsets of objects.

In the consensus step, several approaches are used:
relabeling and voting, Mutual Information (MI), co-association
based functions, finite mixture models, a graph/hypergraph
partitioning approach, and others.

The relabeling and voting approach is also called the direct
approach. It finds the correspondence of the cluster labels
among different clustering results and then uses a voting method
to determine the final cluster label for a data object. Examples
are as follows. BagClustl [76] applies a clustering procedure
to each bootstrap sample and obtains the final partition by
plurality voting so that the majority cluster label for each data
object determines the final cluster membership. BagClust2 [76]
introduces a new dissimilarity matrix which contains the
proportion of time each pair of data objects were clustered
together in the bootstrap clusters. It then performs clustering
on the dissimilarity matrix to obtain the final partition.

The MI approach uses MI to measure and quantify the
statistical information shared between a pair of clusterings. It
can automatically select the best clustering method from several
algorithms. Examples are as follows. A Genetic Algorithm
(GA) clustering ensemble [15] uses a GA to obtain the best
partition and the co-association function as the consensus
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function. It determines fitness function parameters based on
co-association function values. The information theory based
GA clustering ensemble [165] uses a GA to find a combined
clustering by minimizing an information-theoretical criterion
function. The generalized MI clustering ensemble [233]
introduces a new consensus function using a generalized mutual
information definition. The consensus function is related to the
classical intraclass variance criterion.

The co-association based functions approach is also called
the pair-wise approach. It uses a co-association matrix in the
consensus step. Examples are as follows. Clusterfusion [147]
first generates an agreement matrix with each cell containing
the number of agreements amongst clustering methods and
then uses the matrix to cluster data objects.  Voting-k-
Means [95] transforms data partitions into a co-association
matrix with coherent association mappings. It then extracts
underlying clusters from this matrix. Evidence accumulation-
based clustering [96] maps data partitions created by each
individual clustering into a new similarity matrix, based on
voting. It then uses the single link algorithm to extract clusters
from this matrix.

Finite mixture model approach assumes that the probability
of assigning a label to a data object is based on a finite mixture
model or that the labels are ‘modeled as random variables
drawn from a probability distribution described as a mixture
of multivariate component densities’ [235]. It obtains the
consensus clustering result by solving a maximum likelihood
estimation problem. Mixture model clustering ensemble [234]
uses a probabilistic model of consensus based on a finite mixture
of multinomial distributions in a space of clusterings. It finds
a combined partition by solving the corresponding maximum
likelihood problem with the EM algorithm.

The graph/hypergraph partitioning approach considers the
combination problem as a graph or hypergraph partitioning
problem. Methods taking this approach differ in how they build
a (hyper)graph from the clusterings, as well as how they define
the cuts on the graph to obtain the consensus partition [235].
Examples are as follows. METIS [144] is a multi-level graph
partitioning system. It collapses vertices and edges of the graph,
partitions the resulting coarsened graph, and then refines the
partitions. SPEC (spectral graph partitioning algorithm) [186]
tries to optimize the normalized cut criterion. It treats the
rows of the largest eigenvalues matrix as multiple dimensional
embeddings of the vertices of the graph and then uses k-means
to cluster the embedded points. CSPA (Cluster based Similarity
Partitioning Algorithm) [227] first creates a graph based on a
co-association matrix, and then performs METIS clustering on
the graph. HGPA (Hypergraph Partitioning Algorithm) [227]
uses a hyperedge in a graph to represent each cluster. It
then uses minimal cut algorithms such as HMETIS [142] to
find good hypergraph partitions. MCLA (Meta Clustering
Algorithm) [227] determines soft cluster membership values
for each data object by using hyperedge collapsing operations.
HBGF (Hybrid Bipartite Graph Formulation) [90] constructs a
bipartite graph where data objects and clusters are both modeled
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as vertices. It later partitions the bipartite graph with an
appropriate graph partitioning method.

Other approaches are as follows. The cumulative voting
consensus method [14] solves the cluster label alignment
problem by using cumulative voting, where a probabilistic
mapping between labels is computed. Bipartite Merger and
Metis merger [128] are approaches for merging an ensemble
of clustering solutions using sets of cluster centers. They
are highly scalable and provide competitive results. Weighted
consensus clustering [160] weights each input clustering. It
determines weights in a way so that the clusters are better
separated. Bayesian Cluster Ensembles [240] takes a Bayesian
approach to combine clusterings. It uses a variational
approximation based algorithm for learning. This way, it is able
to avoid the cluster label correspondence problems. Figure 8
shows an example of ensemble clustering.
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Figure 8: Ensemble clustering [133]

10.6 Multi-objective Clustering

Conventional clustering algorithms use a single clustering
objective function only, which may not be appropriate for
the diversities of the underlying data structures.  Multi-
objective clustering uses multiple clustering objective functions
simultaneously. Such methods consider clustering as a multi-
objective optimization problem [89].

Examples are as follows. FCPSO (Fuzzy Clustering-based
Particle Swarm Optimization) [6] uses an external repository
to save nondominated particles during the search process and a
fuzzy clustering technique to manage the size of the repository.
It also uses a fuzzy-based iterative feedback mechanism
to determine the compromised solution among conflicting
objectives.  Evolutionary Multiobjective Clustering [118]
and MOCK (MultiObjective Clustering with automatic k-
determination) [119] use an evolutionary approach to solve
the multi-objective problem in clustering. They are based
on a multi-objective evolutionary algorithm named PESA-II
(Pareto Envelope-based Selection Algorithm version 2) [59]
to optimize two complementary clustering objectives. Multi-
objective real coded genetic fuzzy clustering [181] aims to
optimize multiple validity measures simultaneously. It encodes
the cluster centers in its chromosomes while optimizing the
fuzzy compactness within a cluster and fuzzy separation among



104

clusters. EMO-CC (Evolutionary MultiObjective Conceptual
Clustering) [203] combines evolutionary algorithms with multi-
objective optimization techniques and relies on the NSGA-II
multi-objective genetic algorithm [66]. It can discover less
obvious but informative data associations.

10.7 Semi-supervised Clustering

Semi-supervised clustering provides limited supervision to
unsupervised clustering. There are many cases when some
knowledge about the data is available such as the constraints
between data objects or cluster labels for some data objects.
Such knowledge can be used to guide the clustering process.
There are several approaches for semi-supervised clustering:
similarity-adapting methods, search-based methods, and other
methods.

Similarity-adapting methods use a similarity measure which
is adapted to make the available constraints more easily
satisfied [111]. Examples are as follows. Distance metric
learning based clustering [252] learns a distance metric based
on examples of similar pairs of data objects in the input
space using convex optimization. Space-level constraints based
clustering [150] exploits space-level implications based on
instance-level constraints. It uses an all-pairs-shortest-paths
algorithm to adjust the distance metric.

Search-based methods modify the clustering algorithm itself
to use the available constraints or labels to guide the search
for an appropriate clustering [111]. Examples are as follows.
Seeded-K Means and Constrained-K Means [23] generate
initial seed clusters based on labeled data. The latter also
generates constraints from labeled data and guides the clustering
process using those constraints. Semi-Supervised Clustering
Using Genetic Algorithms [68] modifies k-means clustering
to minimize within-cluster variance and a measure of cluster
impurity. Clustering with Instance-level Constraints [238]
incorporates hard constraints using a modified version of
Cobweb (covered in Section 8.4) which partitions the data.

Other methods include the probabilistic semi-supervised
clustering with constraints method [24], which derives an
objective function from the joint probability defined over the
Hidden Markov Random Field model and performs semi-
supervised clustering by minimizing this object function.

11 Conclusions

We have presented a survey of the literature on clustering
techniques. For convenience, in this review we used the
following taxonomy, which is also widely used in the
literature:  hierarchical clustering (Section 2), partitioning
clustering (Section 3), graph-based clustering (Section 4),
distribution-based clustering (Section 5), density-based
clustering (Section 6), grid-based clustering (Section 7),
clustering big data (Section 8), clustering high dimensional data
(Section 9), and other clustering techniques (Section 10).
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