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On the crossing number of a torus network

Antoine BOSSARD†, Nonmember, Keiichi KANEKO††, Member, and Frederick C. HARRIS, JR.†††, Nonmember

SUMMARY Reducing the number of link crossings in a network drawn
on the plane such as a wiring board is a well-known problem, and especially
the calculation of the minimum number of such crossings: this is the
crossing number problem. It has been shown that finding a general solution
to the crossing number problem is NP-hard. So, this problem is addressed for
particular classes of graphs and this is also our approach in this paper. More
precisely, we focus hereinafter on the torus topology. First, we discuss an
upper bound on 𝑐𝑟 (𝑇 (2, 𝑘 ) ) the number of crossings in a 2-dimensional
𝑘-ary torus 𝑇 (2, 𝑘 ) where 𝑘 ≥ 2: the result 𝑐𝑟 (𝑇 (2, 𝑘 ) ) ≤ 𝑘 (𝑘 −
2) and the given constructive proof lay foundations for the rest of the
paper. Second, we extend this discussion to derive an upper bound on the
crossing number of a 3-dimensional 𝑘-ary torus: 𝑐𝑟 (𝑇 (3, 𝑘 ) ) ≤ 2𝑘4 −
𝑘3 − 4𝑘2 − 2⌈𝑘/2⌉ ⌊𝑘/2⌋ (𝑘 − (𝑘 mod 2) ) is obtained. Third, an upper
bound on the crossing number of an 𝑛-dimensional 𝑘-ary torus is derived
from the previously established results, with the order of this upper bound
additionally established for more clarity: 𝑐𝑟 (𝑇 (𝑛, 𝑘 ) ) is 𝑂 (𝑛2𝑘2𝑛−2 )
when 𝑛 ≥ 𝑘 and𝑂 (𝑛𝑘2𝑛−1 ) otherwise.
key words: interconnect, network, intersection, graph, planar

1. Introduction

The minimum number of link crossings when drawing a
graph on the plane is called the crossing number of that graph
(a formal definition of the crossing number of a graph will
be given in the next section). There are several important
applications for this well-studied graph drawing problem,
and in multiple fields. For example, it is critical for circuit
design (as that for VLSI) to minimise, and possibly reduce
to zero, the number of link crossings so that the circuit can
be easily realised (printed) on a board [1]–[3]. Graph vi-
sualisation is another application example for the crossing
number problem [4]. Solving this problem is notoriously
difficult: it has been proved that the crossing number prob-
lem is NP-hard [5]. This problem has been discussed in the
general case (i.e., for any graph) in [6], [7], and relatively
more recently in [8], to only cite a few.

Because of the prohibitive complexity when consider-
ing the general case, this problem has been instead addressed
for special classes of graphs. For example, [9] discussed
the crossing number of hypercubes, with new findings de-
scribed by [10]. Precisely, it has been shown in [10] that
4𝑛 · 5/32 − ⌊(𝑛2 + 1)/2⌋2𝑛−2 is an upper bound on the
crossing number of an 𝑛-dimensional hypercube. Complete
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graphs [11] and stars [12] are additional examples of specific
graph classes for which this problem has been discussed.

Another class of graphs is considered in this paper:
torus networks. An extended abstract of this paper has been
published by the authors [13].

The rest of this paper is organised as follows. Several
definitions, notations and previously established results with
respect to the addressed problem are recalled in Section 2.
Then, the case of a 3-dimensional 𝑘-ary torus is discussed
in depth in Section 3, with an upper bound on the crossing
number induced. Finally, an upper bound on the crossing
number of an 𝑛-dimensional 𝑘-ary torus is derived in Sec-
tion 4 from the obtained results, and the corresponding order
is calculated. This paper is concluded in Section 5.

2. Preliminaries

In this section, several definitions and notations are recalled.
First, regarding graph theory notations, it is recalled that a
graph 𝐺 is made of vertices (a.k.a. nodes) and edges. The
number of vertices of 𝐺 is denoted by |𝐺 |, and the number
of edges of 𝐺 by | |𝐺 | |.

Definition 1. [14] An 𝑛-dimensional mesh is an undirected
graph that has 𝑘𝑖 nodes on the 𝑖-th dimension (𝑘𝑖 ≥ 2,
1 ≤ 𝑖 ≤ 𝑛), inducing

∏𝑛
𝑖=1 𝑘𝑖 nodes in total. The address of

a node 𝑢 has 𝑛 coordinates (𝑢1, 𝑢2, . . . , 𝑢𝑛) with 0 ≤ 𝑢𝑖 ≤
𝑘𝑖 − 1 (1 ≤ 𝑖 ≤ 𝑛). Two nodes 𝑢, 𝑣 are adjacent if and only
if ∃ 𝑗 (1 ≤ 𝑗 ≤ 𝑛) such that ∀𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑗) 𝑢𝑖 = 𝑣𝑖 and
either 𝑢 𝑗 = 𝑣 𝑗 + 1 or 𝑢 𝑗 = 𝑣 𝑗 − 1.

Definition 2. [14] An 𝑛-dimensional 𝑘-ary torus 𝑇 (𝑛, 𝑘),
𝑛 ≥ 1, 𝑘 ≥ 1, is an undirected graph whose 𝑘𝑛 nodes are the
𝑛-vectors induced by the set {0, 1, . . . , 𝑘 − 1}𝑛. Two vertices
𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) of a 𝑇 (𝑛, 𝑘)
are adjacent if and only if ∃ 𝑗 (1 ≤ 𝑗 ≤ 𝑛) such that ∀𝑖
(1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑗) 𝑢𝑖 = 𝑣𝑖 and 𝑢 𝑗 = 𝑣 𝑗 ± 1 (mod 𝑘).

Two sample tori, precisely a 𝑇 (2, 4) and a 𝑇 (3, 3), are
shown in Figure 1. For the sake of figure clarity, the node
addresses are mentioned only for 𝑇 (2, 4).

Then, we recall several definitions, notations and results
with respect to the crossing number problem [15]. A point
is a geometrical coordinate, and is not to be confused with
a node (a.k.a. vertex) of a graph. Yet, one node of a graph
induces one point. For a graph 𝐺, a drawing of 𝐺 is the
representation of 𝐺 (i.e., its nodes and edges) on a surface,
typically a plane, such as a sheet of paper. Such a drawing
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(a) (b)
Fig. 1 (a) A 2-dimensional 4-ary torus 𝑇 (2, 4) . (b) A 3-dimensional
3-ary torus 𝑇 (3, 3) .

links the points corresponding to the nodes of 𝐺 with arcs,
each arc corresponding to one edge of 𝐺. In other words,
any two points linked by such an arc are induced by two
adjacent nodes of 𝐺. For a graph 𝐺, an embedding of 𝐺 on
a surface 𝑆 corresponds to a drawing of 𝐺 onto 𝑆 where any
two arcs of the drawing are allowed to intersect only at the
point they both connect. In the case where the considered
surface 𝑆 is a plane, the graph that corresponds to such an
embedding is said to be planar. More precisely, a graph that
can be embedded on a plane is said to be planar and a planar
graph embedded in the plane is called a plane graph.

A region of a plane graph 𝐺 is a maximal portion of the
plane inside which any two points can be joined by a curve
in such a way that each point of this curve is not a vertex of
𝐺 and is not included in the curve induced by an edge of 𝐺.
The regions of a graph drawing are thus the complement of
the union of the arcs of the drawing, that is, the complement
of the set of all the points that make the arcs. For a region
𝑅, 𝑅 is a 2-cell if any closed curve contained by 𝑅 can be
progressively contracted to one point. For example, a region
that contains a “hole” (the surface that includes such a region
thus has a “hole”, that is, the surface genus is at least one)
is not a 2-cell, and, similarly, two concentric circles induce
three regions, one of which is not a 2-cell. For an embedding
𝐸 , if all the regions of 𝐸 are 2-cells, 𝐸 is said to be a 2-cell
embedding.

Now that a 2-cell embedding has been defined, the Euler
formula can be recalled in the following theorem.

Theorem 1. Euler’s formula. For 𝐺 a connected graph of 𝑛
vertices, 𝑚 edges and with a 2-cell embedding of 𝑟 regions,
we have 𝑛 − 𝑚 + 𝑟 = 2.

Finally, for a graph drawing on a plane, a crossing
corresponds to a point that is included by exactly two distinct
arcs while not being any one of the four endpoints of the two
arcs. As such, a crossing is induced by one pair of distinct
arcs. Furthermore, it should be noted that for any two distinct
arc pairs that each induce a crossing, a total of two crossings
are induced, independently of the respective points of the
two crossings, that is, even if these two crossings correspond
to the same point on the plane.

Definition 3. For a graph 𝐺, the crossing number of 𝐺, de-
noted by 𝑐𝑟 (𝐺), is the minimum number of crossings among

(a) (b) (c)

Fig. 2 Proposed construction process for a 𝑇 (2, 𝑘 ) in three steps: (a) to
(c). Here, 𝑘 = 4.

the drawings of 𝐺 on a plane.

From this definition, we directly have that a graph 𝐺

satisfies 𝑐𝑟 (𝐺) = 0 if and only if 𝐺 is planar.
Before going further, the crossing number problem for

particular subclasses of the torus class of graphs is discussed
here so that these subclasses can be safely ignored in the
rest of this paper (except a lemma, theorems and a corollary
which remain self-contained). Consider a torus 𝑇 (𝑛, 𝑘).
Case 𝑛 = 1

The corresponding torus𝑇 (1, 𝑘) is isomorphic to a ring
of 𝑘 nodes and thus planar.

Case 𝑘 = 1
The corresponding torus 𝑇 (𝑛, 1) consists of one single
node and is thus planar.

Case 𝑘 = 2
The corresponding torus 𝑇 (𝑛, 2) is isomorphic to an
𝑛-dimensional hypercube. As recalled in introduction,
it has been shown that 4𝑛 · 5/32 − ⌊(𝑛2 + 1)/2⌋2𝑛−2

is an upper bound on the crossing number of an 𝑛-
dimensional hypercube [10].

Hence, we can assume hereinafter that 𝑛 ≥ 2 and 𝑘 ≥ 3.
Next, we discuss the case of a 𝑇 (2, 𝑘). This two-

dimensional case (i.e., 𝑛 = 2), often referred to as the
Cartesian product of cycles 𝐶𝑘 × 𝐶𝑘 , has been largely dis-
cussed in the literature; for instance, several upper bounds
on 𝑐𝑟 (𝑇 (2, 𝑘)) are given in [16] and an approximation algo-
rithm in [17]. We give with Lemma 1 a constructive proof
from which an upper bound on 𝑐𝑟 (𝑇 (2, 𝑘)) can be derived.
An illustration of the torus drawing process described in
this lemma is given in Figure 2. Lemma 1 recalls a well-
established result (see for instance [18], [19]) but gives a
constructive proof that is essential for the understanding of
the rest of the paper.

Lemma 1. The crossing number of a 𝑇 (2, 𝑘) with 𝑘 ≥ 3
satisfies 𝑐𝑟 (𝑇 (2, 𝑘)) ≤ 𝑘 (𝑘 − 2).

Proof. First, a 2-dimensional 𝑘-ary mesh is considered. It
is recalled that a mesh is a planar graph that has (𝑘 − 1)2 + 1
regions, including the outer, unbounded one. See Figure 2a.

Second, considering one of the two torus dimensions,
the corresponding 𝑘 wrap-around edges are drawn in a way
that no crossing emerges. See Figure 2b. In total, 𝑘 new
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Fig. 3 Edge classification in a subtorus 𝑇 (2, 𝑘 ) (here, 𝑘 = 4).

regions are induced by these new edges. So, the total number
of regions is now equal to (𝑘 − 1)2 + 𝑘 + 1. It can be
confirmed with Theorem 1 that the resulting graph remains
planar: 𝑘2 − [2𝑘 (𝑘 − 1) + 𝑘] + [(𝑘 − 1)2 + 𝑘 + 1] = 2.

Third, the 𝑘 wrap-around edges that correspond to the
other torus dimension are drawn. Unlike previously, each
such new edge induces crossings, precisely at least 𝑘 − 2
crossings per such new edge. See Figure 2c. Hence, the
minimum number of crossings when drawing a 𝑇 (2, 𝑘) ac-
cording to this method is 𝑘 (𝑘 − 2). □

It can be noticed that the optimal drawing of 𝑇 (2, 𝑘) is
not known but the entire results of this paper are based on
the drawing shown in the proof of Lemma 1.

3. An upper bound on the crossing number of a 𝑻(3, 𝒌)

We give in this section a constructive proof regarding an
upper bound on 𝑐𝑟 (𝑇 (3, 𝑘)) the crossing number of a 3-
dimensional torus. This proof is given in three successive
parts.

For the sake of clarity, the edges of a subtorus 𝑇 (2, 𝑘)
are categorised into four classes which are given the follow-
ing names: wrap-around horizontal (i.e., edges that connect
any 𝑢 = (0, 𝑖) and 𝑣 = (𝑘 − 1, 𝑖) with 0 ≤ 𝑖 ≤ 𝑘 − 1),
wrap-around vertical (i.e., edges that connect any 𝑢 = (𝑖, 0)
and 𝑣 = (𝑖, 𝑘 − 1) with 0 ≤ 𝑖 ≤ 𝑘 − 1), internal horizontal
(i.e., edges that connect any 𝑢 = (𝑖, 𝑗) and 𝑣 = (𝑖 + 1, 𝑗)
with 0 ≤ 𝑖 ≤ 𝑘 − 2, 0 ≤ 𝑗 ≤ 𝑘 − 1) and internal vertical
(i.e., edges that connect any 𝑢 = (𝑖, 𝑗) and 𝑣 = (𝑖, 𝑗 + 1) with
0 ≤ 𝑖 ≤ 𝑘 − 1, 0 ≤ 𝑗 ≤ 𝑘 − 2). This edge classification is
further detailed in Figure 3.

3.1 Connecting subtori

Here is described the first step of the torus construction.
The approach followed is to rely on the recursive property
of tori: a torus 𝑇 (3, 𝑘) is made of 𝑘 subtori 𝑇 (2, 𝑘). More
concretely, we connect 2-dimensional subtori 𝑇 (2, 𝑘) each
other according to the topology of a 3-dimensional torus
𝑇 (3, 𝑘), with each of the 𝑘 subtori 𝑇 (2, 𝑘) being drawn as
detailed in Section 2. In general, in a 𝑇 (𝑛, 𝑘), an edge that
connects two nodes of distinct 𝑇 (𝑛 − 1, 𝑘) subtori is called
an external edge.

Consequently, the number of crossings induced by such
a drawing method is equal to:

... ...
class 0
class 1
class 2
class 3

Fig. 4 The classes of the nodes of subtori.

𝑐𝑟 (𝑇 (3, 𝑘)) ≤ 𝑘 · 𝑐𝑟 (𝑇 (2, 𝑘)) + 𝛼 (1)

with 𝛼 denoting the number of crossings that are induced
by the external edges (i.e., crossings that involve at least one
external edge).

Here, one should note that even if the𝑇 (2, 𝑘) subtori are
drawn seemingly optimally regarding the crossing number as
described in Section 2, it does not ensure that a 𝑇 (3, 𝑘) with
the least number of crossings can be obtained by connection
of such optimal drawings of𝑇 (2, 𝑘) subtori. Formally, while
(1) holds as explained above, the equality 𝑐𝑟 (𝑇 (3, 𝑘)) =

𝑘 · 𝑐𝑟 (𝑇 (2, 𝑘)) + 𝛼 remains to be shown – or refuted.
We start drawing 𝑇 (3, 𝑘) by 𝑘 copies of the drawing of

𝑇 (2, 𝑘) lined up in a horizontal row, where the drawing of
𝑇 (2, 𝑘) is given in the proof of Lemma 1 (see Figure 4). It
can thus be assumed that a subtorus is on the left (resp. right)
of another, at the exception of the leftmost subtorus which is
on the right of none, and of the rightmost subtorus which is
on the left of none.

Definition 4. For any two consecutive subtori 𝑇1, 𝑇2 with,
say, 𝑇1 on the left of 𝑇2, the external edges that connect
nodes of 𝑇1 and 𝑇2 are called in external edges for 𝑇2 and
out external edges for 𝑇1.

Note that for 𝑇𝑙 , 𝑇𝑟 the leftmost and rightmost subtori,
respectively, the external edges that connect nodes of 𝑇𝑙 and
𝑇𝑟 are similarly called in external edges for 𝑇𝑙 and out ex-
ternal edges for 𝑇𝑟 .

Furthermore, each vertex 𝑢 of such a 𝑇 (2, 𝑘) subtorus
drawing is classified according to its vertical position, named
class and denoted by class(𝑢), as follows. Given a vertex
𝑢 = (𝑢1, 𝑢2) ∈ 𝑇 (2, 𝑘), we have class(𝑢) = 𝑢2, with thus 0 ≤
class(𝑢) ≤ 𝑘 − 1 and the class 0 designating by convention
the topmost vertices of a subtorus (i.e., the vertices of the
topmost “row”). The class is then incremented for each
vertex row, top to bottom. See Figure 4.

Next, the external edges are drawn depending on the
class of subtorus nodes, with three cases – class sets – dis-
tinguished as follows. Let 𝑢 be a node of 𝑇 (2, 𝑘).
Case class(𝑢) = 0

The in external edges end at such nodes 𝑢 from above
in a way that these edges do not cross each other and
avoid wrap-around vertical edges as much as possible.
The out external edges end at such nodes 𝑢 from below
in a way that these edges do not cross each other on
their way to the nodes of the next subtorus.
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Fig. 5 Subtorus ground-laying connection. Subtori are connected each other with external edges (in
green).

Case 1 ≤ class(𝑢) ≤ 𝑘 − 2
The in external edges end at such nodes 𝑢 from above
in a way that these edges do not cross each other. The
out external edges end at such nodes 𝑢 from below in
a way that these edges do not cross each other on their
way to the nodes of the next subtorus.

Case class(𝑢) = 𝑘 − 1
The in external edges end at such nodes 𝑢 from below
in a way that these edges do not cross each other and
avoid wrap-around vertical edges as much as possible.
The out external edges end at such nodes 𝑢 from above
in a way that these edges do not cross each other on
their way to the nodes of the next subtorus.

The described drawing method of a𝑇 (3, 𝑘) is illustrated
in Figure 5, where the external edges are coloured in green.
In addition, in this figure the edges from A to P are cut solely
for layout reasons; no additional crossing is induced by those
given that the A–P labels are assigned in the same order
on both side of the drawing and can thus be connected by
uncrossed continuous lines for instance above the drawing.

Therefore, given this subtorus interconnection method,
it is guaranteed that there does not exist a crossing between
any two external edges. That is, crossings involve either two
subtorus edges or one subtorus edge and one external edge.

Next, we count the number of crossings that are in-
duced by this 𝑇 (3, 𝑘) drawing method. Since the number
of crossings induced by the drawing of one subtorus 𝑇 (2, 𝑘)
as detailed in Section 2 has already been established, the
remaining task is to calculate 𝛼, the number of crossings
that are induced by external edges (refer to (1)). The value
of 𝛼 will be established by calculating first 𝛽, the number
of such crossings at one subtorus 𝑇 (2, 𝑘) (i.e., the number
of crossings between an external edge and an edge of the
subtorus), second multiplying 𝛽 by 𝑘 , the number of subtori.
Hence, we have 𝛼 = 𝑘𝛽.

The number 𝛽 is established by distinguishing the same
three class sets as previously. For the sake of clarity, we
define #𝐶 as the total number of crossings induced at one
subtorus by the external edges that end at the subtorus nodes
𝑢 with class(𝑢) ∈ 𝐶 (the set 𝐶 is thus a class set). Hence,
we have:

𝛽 = #{0} + #{1, 2, . . . , 𝑘 − 2} + #{𝑘 − 1}

The details of the calculation of #𝐶 for the three class
sets 𝐶 ∈ {{0}, {1, 2, . . . , 𝑘 − 2}, {𝑘 − 1}} is next given. The
number of crossings is counted separately for in and out
external edges for each class set. The summations from 1
to 𝑘 represent the iteration of the horizontal positions of
subtorus nodes, the vertical positions being already treated
by class set distinction.

Calculation of #{0}
The number of crossings induced by the in external
edges is as follows:

(𝑘 − 2)︸  ︷︷  ︸
wrap-around

horizontal

+
𝑘∑︁
𝑖=1

(𝑘 − 𝑖)︸      ︷︷      ︸
wrap-around vertical

=
𝑘2 + 𝑘

2
− 2

The number of crossings induced by the out external
edges is as follows:

𝑘∑︁
𝑖=1

(𝑘 − 𝑖)︸      ︷︷      ︸
internal vertical

=
𝑘2 − 𝑘

2

Therefore, we have:

#{0} = 𝑘2 + 𝑘

2
− 2 + 𝑘2 − 𝑘

2
= 𝑘2 − 2

Calculation of #{1, 2, . . . , 𝑘 − 2}
First, for one such class.
The number of crossings induced by the in external
edges is as follows:

𝑘2︸︷︷︸
wrap-around

vertical

+ (𝑘 − 2)︸  ︷︷  ︸
wrap-around

horizontal

+
𝑘∑︁
𝑖=1

(𝑘 − 𝑖)︸      ︷︷      ︸
internal vertical

=
3𝑘2 + 𝑘

2
− 2

The number of crossings induced by the out external
edges is as follows:
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𝑘∑︁
𝑖=1

(𝑘 − 𝑖)︸      ︷︷      ︸
internal vertical

=
𝑘2 − 𝑘

2

Therefore, the number of crossings for each class is:

3𝑘2 + 𝑘

2
− 2 + 𝑘2 − 𝑘

2
= 2𝑘2 − 2

and, considering all these classes, we have:

#{1, 2, . . . , 𝑘 − 2} = (𝑘 − 2)︸  ︷︷  ︸
for each class

in {1,2,...,𝑘−2}

(2𝑘2 − 2)

= 2𝑘3 − 4𝑘2 − 2𝑘 + 4
Calculation of #{𝑘 − 1}

By symmetry of #{0}, we directly have: #{𝑘 − 1} =

𝑘2 − 2

We can thus derive the value of 𝛽:

𝛽 = 2𝑘3 − 2𝑘2 − 2𝑘

and subsequently that of 𝛼:

𝛼 = 2𝑘4 − 2𝑘3 − 2𝑘2 (2)

This initial discussion regarding an upper bound on
𝑐𝑟 (𝑇 (3, 𝑘)) the crossing number of a 3-dimensional torus is
summarised by Lemma 2.

Lemma 2. The crossing number of a 𝑇 (3, 𝑘) satisfies the
following relation:

𝑐𝑟 (𝑇 (3, 𝑘)) ≤ max{0, 2𝑘4 − 𝑘3 − 4𝑘2}

Proof. As explained, the case 𝑘 = 1 induces a planar graph,
and the case 𝑘 = 2 induces the relation 𝑐𝑟 (𝑇 (3, 2)) = 0 due
to [10], and thus a planar graph as well. Regarding the case
𝑘 ≥ 3, this can be easily derived from (1) and (2). □

3.2 Flipping subtori

In this section, we describe a modification to the drawing
method of Section 3.1. While this modification does not
change the number of crossings as detailed below, and thus
the upper bound on 𝑐𝑟 (𝑇 (3, 𝑘)), it is nonetheless important
in that it is at the core of the improvement presented in
Section 3.3.

First, we show that horizontally flipping (i.e., a 180◦
rotation around the vertical axis) a subtorus 𝑇 (2, 𝑘) does
not affect the number of crossings of 𝑇 (3, 𝑘). The refined
drawing method is detailed below. The same three class sets
are distinguished, but in addition, subtori are categorised
either as “flipped” or “non-flipped”. A flipped subtorus
𝑇 (2, 4) is shown in Figure 6b and a non-flipped subtorus
𝑇 (2, 4) in Figure 6a.

First, in the case of a non-flipped subtorus, the drawing

(a) (b)
Fig. 6 (a) The drawing of a non-flipped subtorus 𝑇 (2, 4) . (b) The draw-
ing of a flipped subtorus 𝑇 (2, 4) .

of external edges at this subtorus is the same as that of
Section 3.1. In the case of a flipped subtorus, the drawing of
external edges is as follows. Let 𝑢 be a node of 𝑇 (2, 𝑘).

Case class(𝑢) = 0
The in external edges end at such nodes 𝑢 from below
in a way that these edges do not cross each other. The
out external edges end at such nodes 𝑢 from above in a
way that these edges do not cross each other and avoid
wrap-around vertical edges as much as possible.

Case 1 ≤ class(𝑢) ≤ 𝑘 − 2
The in external edges end at such nodes 𝑢 from below
in a way that these edges do not cross each other. The
out external edges end at such nodes 𝑢 from above in
a way that these edges do not cross each other on their
way to the nodes of the next subtorus.

Case class(𝑢) = 𝑘 − 1
The in external edges end at such nodes 𝑢 from above
in a way that these edges do not cross each other. The
out external edges end at such nodes 𝑢 from below in a
way that these edges do not cross each other and avoid
wrap-around vertical edges as much as possible.

This refined drawing method of a 𝑇 (3, 𝑘) is illustrated
in Figure 7. The remarks made in Section 3.1 regarding the
edges A–P and the fact that there is no crossing between any
two external edges still hold.

Next, the number of crossings induced by this refined
drawing method is calculated. We proceed as previously, but
this time distinguishing flipped and non-flipped subtori. So,
first, while (1) still holds, 𝛼 is this time defined as follows:

𝛼 = 𝑘 𝑓 𝛽 𝑓 + 𝑘𝑛𝛽𝑛

with 𝑘 𝑓 + 𝑘𝑛 = 𝑘 and where 𝑘 𝑓 , 𝑘𝑛 are the number of
flipped and non-flipped subtori, respectively, and 𝛽 𝑓 , 𝛽𝑛 are
the number of crossings that are induced by external edges
inside a flipped and non-flipped subtorus, respectively.

The value of 𝛽𝑛 is obviously that of 𝛽 calculated
previously. We establish 𝛽 𝑓 below, that is, we calcu-
late the total number of crossings induced at one flipped
subtorus 𝑡 by the external edges that end at the nodes 𝑢 ∈ 𝑡

with class(𝑢) ∈ 𝐶 for the three distinguished class sets
𝐶 ∈ {{0}, {1, 2, . . . , 𝑘 − 2}, {𝑘 − 1}}. Because the flipped
subtorus is the mirror image of a non-flipped subtorus, cal-
culation details are abbreviated since matching those of Sec-
tion 3.1.
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Fig. 7 Flipping subtori as described does not impact the number of crossings. Here, one subtorus is
flipped.

As a result, we have that 𝛽 = 𝛽 𝑓 = 𝛽𝑛. Subsequently,
even if 𝛼 was refined in this drawing method to 𝛼 = 𝑘 𝑓 𝛽 𝑓 +
𝑘𝑛𝛽𝑛, the relation 𝛼 = 𝑘𝛽 still holds. Therefore, the same
upper bound 𝑐𝑟 (𝑇 (3, 𝑘)) ≤ 2𝑘4 − 𝑘3 −4𝑘2 is induced by this
refined drawing method of a 𝑇 (3, 𝑘).

In the remaining of this section, we describe the
subtorus flipping scheme that will be used in Section 3.3.

Definition 5. A subtorus pair consists of the drawing of two
adjacent subtori𝑇 (2, 𝑘) such that one is flipped and the other
is not.

We show in Section 3.3 that a few external edges per
subtorus pair can be drawn differently to induce a smaller
number of crossings. Therefore, we show here how to max-
imise the number of subtorus pairs. The flipping scheme
detailed in Figure 8 is used; the cases 𝑘 even and 𝑘 odd
are distinguished. Precisely, subtori are alternately flipped
left to right, starting from a non-flipped subtorus. When 𝑘

is even, each of all subtori is member of a subtorus pair,
and pairs are formed as shown in Figure 8. When 𝑘 is odd,
one unique subtorus remains unpaired: it does not matter
whether it is flipped; pairs are formed as shown in Figure 8.
This flipping scheme is optimal in that it maximises the num-
ber of paired subtori. In Figure 8, the unpaired subtorus is
displayed without loss of generality as the leftmost subtorus,
and non-flipped.

3.3 Improvement

In this section, we show that by maximising the number of
subtorus pairs as described previously, a few external edges
per subtorus pair can be drawn differently, inducing a smaller
number of crossings.

Definition 6. For a subtorus pair 𝑇 𝑓 , 𝑇𝑛 with 𝑇 𝑓 (resp. 𝑇𝑛)
flipped (resp. non-flipped), an external edge between 𝑢 =

(𝑢1, 𝑢2, 𝑢3) ∈ 𝑇 𝑓 and 𝑣 ∈ 𝑇𝑛 with 0 ≤ 𝑢1 < ⌊𝑘/2⌋ and
class(𝑢) ∈ {1, 𝑘−2} as drawn in Figure 9 is called a modified
external edge.

First, we consider the modified external edges for each
subtorus pair 𝑇 𝑓 , 𝑇𝑛 with 𝑇 𝑓 (resp. 𝑇𝑛) flipped (resp. non-
flipped). Modified external edges thus replace external edges

𝑘 odd

𝑘 = 3: P1 P1 2 subtori paired

𝑘 = 5: P1 P2P1 P2 4 subtori paired

𝑘 = 7: P1 P2 P3P1 P2 P3 6 subtori paired
. . .

𝑘 even

𝑘 = 4: P2 P1 P1 P2 2 subtori paired

𝑘 = 6: P3 P1 P2P1 P2 P3 4 subtori paired
. . .

Legend

non-flipped unpaired subtorus

P𝑖 non-flipped paired subtorus P𝑖 flipped paired subtorus

Fig. 8 Subtorus flipping scheme. Subtorus pairs are induced.

which originally went through the two paired subtori but
now go around them from above and below. Due to the
modification, the modified external edges do not cross the
external edges ending at nodes of classes 0 and 𝑘 − 1, and
avoiding subtorus edges as much as possible.

In Figure 9, the modified external edges for each
subtorus pair are drawn thicker. Note that since 𝑘 = 4, in this
figure there is no node 𝑢 of class 3 ≤ class(𝑢) ≤ 𝑘 −2; exter-
nal edge connection of such nodes when 𝑘 ≥ 5 is identical
to that described in Section 3.2 (see Figure 7). Therefore,
by maximising the number of subtorus pairs as described
previously, the impact of this refinement of the number of
crossings is optimised.

Next, we establish the new upper bound on 𝑐𝑟 (𝑇 (3, 𝑘))
that is induced by this refined drawing method of a 𝑇 (3, 𝑘).
Once again, we start by expressing 𝛼 the total number of
crossings that are induced by external edges. Yet, to the
difference of the previous drawing methods, there are now
crossings that involve two external edges (see Figure 9). All
these crossings involving two external edges are induced by
the modified external edges at each subtorus pair. For the
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Fig. 9 Improved subtorus connection by relying on subtorus flipping. Here 𝑘 = 4, so two subtorus
pairs are induced.

sake of clarity when counting crossings, we say that for each
subtorus pair, the crossings between the modified external
edges and other external edges occur at𝑇 𝑓 when the modified
external edges cross the in external edges for 𝑇 𝑓 . Similarly,
the crossings between the modified external edges and other
external edges occur at 𝑇𝑛 when the modified external edges
cross the out external edges for 𝑇𝑛. This way, we will
count the crossings between external edges separately for
each subtorus of a subtorus pair.

Define 𝑃 and �̄� the set of paired and unpaired subtori,
respectively. Furthermore, let 𝜖 (resp. 𝜖) be the total number
of crossings induced at one paired (resp. unpaired) subtorus
𝑡 by the external edges that end at a node of 𝑡. Hence, we
have:

𝛼 = 𝜖 · |𝑃 | + 𝜖 · |�̄� |
The number of paired subtori is |𝑃 | = 𝑘 − (𝑘 mod 2) and
that of unpaired subtori is |�̄� | = 𝑘 − |𝑃 | = 𝑘 mod 2.

First, we directly have:

𝜖 = 𝛽 = 2𝑘3 − 2𝑘2 − 2𝑘

since the number of crossings induced by external edges
remains unchanged in the case of an unpaired subtorus. Ef-
fectively, there is no modified external edge in the case of an
unpaired subtorus.

Next, we establish 𝜖 . Let #𝑝𝐶 denote the total number
of crossings induced at one paired subtorus 𝑡 by the external
edges that end at the nodes 𝑢 ∈ 𝑡 with class(𝑢) ∈ 𝐶. We
have:

𝜖 = #𝑝{0}+#𝑝{1}+#𝑝{2, 3, . . . , 𝑘−3}+#𝑝{𝑘−2}+#𝑝{𝑘−1}

where this time five node classes are distinguished: {0}, {1},
{2, 3, . . . , 𝑘 −3}, {𝑘 −2} and {𝑘 −1}. It should be noted that
since, when two external edges cross each other, a modified
external edge is necessarily involved, these external edge-
only crossings are counted when considering the modified
external edges, that is, included in #𝑝{1} and #𝑝{𝑘 − 2}.
Furthermore, when considering the subtori of one subtorus
pair, the respective subtorus drawings are exact replica, yet
mirrored. Hence, to calculate 𝜖 , we can assume without

loss of generality that the subtorus is non-flipped, which will
simplify crossing counting.

Therefore, hereinafter, crossing counting is done con-
sidering a paired non-flipped subtorus.

Calculation of #𝑝{0}
The number of crossings induced by the in external
edges is (𝑘 − 2) +∑𝑘

𝑖=1 (𝑘 − 𝑖) and that induced by the
out external edges is

∑𝑘
𝑖=1 (𝑘 − 𝑖). Therefore, we have

#𝑝{0} = 𝑘2 − 2.
Calculation of #𝑝{1}

The in external edges that end at the leftmost ⌈𝑘/2⌉
nodes of this class induce the following number of
crossings:

𝑘 ⌈𝑘/2⌉︸  ︷︷  ︸
wrap-around

vertical

+ ⌈𝑘/2⌉ − 1︸     ︷︷     ︸
wrap-around

horizontal

+
⌈𝑘/2⌉−1∑︁
𝑖=1

𝑖︸   ︷︷   ︸
internal vertical

= ⌈𝑘/2⌉
(
𝑘 + ⌈𝑘/2⌉ + 1

2

)
− 1

The in external edges that end at the rightmost ⌊𝑘/2⌋
nodes of this class induce the following number of
crossings:

⌊𝑘/2⌋ − 1︸     ︷︷     ︸
wrap-around

horizontal

+ 𝑘 ⌊𝑘/2⌋︸  ︷︷  ︸
crossings by the

modified external edges

+
⌊𝑘/2⌋−1∑︁
𝑖=1

𝑖︸   ︷︷   ︸
internal vertical

= ⌊𝑘/2⌋
(
𝑘 + ⌊𝑘/2⌋ + 1

2

)
− 1

The number of crossings induced by the out external
edges is as follows:

𝑘∑︁
𝑖=1

(𝑘 − 𝑖)︸      ︷︷      ︸
internal vertical

=
𝑘2 − 𝑘

2
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Therefore, we have:

#𝑝{1} = ⌈𝑘/2⌉
(
𝑘 + ⌈𝑘/2⌉ + 1

2

)
− 1

+ ⌊𝑘/2⌋
(
𝑘 + ⌊𝑘/2⌋ + 1

2

)
− 1 + 𝑘2 − 𝑘

2
= 2𝑘2 − ⌈𝑘/2⌉ ⌊𝑘/2⌋ − 2

Calculation of #𝑝{2, 3, . . . , 𝑘 − 3}
First, for one such class: the number of crossings in-
duced by the in external edges is 𝑘2+(𝑘−2)+∑𝑘

𝑖=1 (𝑘−𝑖)
and that induced by the out external edges is

∑𝑘
𝑖=1 (𝑘 −

𝑖). Therefore, considering all these classes, we have
#𝑝{2, 3, . . . , 𝑘 − 3} = (𝑘 − 4) (𝑘2 + (𝑘 − 2) +∑𝑘

𝑖=1 (𝑘 −
𝑖) +∑𝑘

𝑖=1 (𝑘 − 𝑖)) = 2𝑘3 − 8𝑘2 − 2𝑘 + 8.
Calculation of #𝑝{𝑘 − 2}

By symmetry of #𝑝{1}, we directly have: #𝑝{𝑘 − 2} =

2𝑘2 − ⌈𝑘/2⌉ ⌊𝑘/2⌋ − 2
Calculation of #𝑝{𝑘 − 1}

By symmetry of #𝑝{0}, we directly have: #𝑝{𝑘 − 1} =

𝑘2 − 2.

As a result, we have:

𝜖 = 2𝑘3 − 2𝑘2 − 2𝑘 − 2⌈𝑘/2⌉ ⌊𝑘/2⌋

Thus,

𝛼 = (2𝑘3 − 2𝑘2 − 2𝑘 + 2⌈𝑘/2⌉ ⌊𝑘/2⌋)(𝑘 − (𝑘 mod 2))

+
(
2𝑘3 − 2𝑘2 − 2𝑘

)
(𝑘 mod 2)

= 2𝑘4 − 2𝑘3 − 2𝑘2 − 2⌈𝑘/2⌉ ⌊𝑘/2⌋ (𝑘 − (𝑘 mod 2))
(3)

This final discussion regarding an upper bound on
𝑐𝑟 (𝑇 (3, 𝑘)) is summarised by Theorem 2.

Theorem 2. The crossing number of a 𝑇 (3, 𝑘) satisfies the
following relation:

𝑐𝑟 (𝑇 (3, 𝑘)) ≤ 2𝑘4−𝑘3−4𝑘2−2⌈𝑘/2⌉ ⌊𝑘/2⌋ (𝑘−(𝑘 mod 2))

Proof. As explained, the case 𝑘 = 1 induces a planar graph,
and the case 𝑘 = 2 induces the relation 𝑐𝑟 (𝑇 (3, 2)) = 0 due
to [10], and thus a planar graph as well. Regarding the case
𝑘 ≥ 3, this can be easily derived from (1) and (3). □

The difference between the upper bound as derived in
Section 3.1 (and similarly Section 3.2) and that of this section
is thus as follows:

2𝑘 ⌈𝑘/2⌉ ⌊𝑘/2⌋ − 2(𝑘 mod 2)

Not only does the difference obviously tend towards +∞ as
𝑘 increases, but it is also of cubic order, thus showing the
significance of this improvement.

4. Deriving an upper bound on the crossing number of
a 𝑻(𝒏, 𝒌)

Establishing a tight upper bound on the crossing number of

a torus 𝑇 (𝑛, 𝑘) is difficult. Relying on a method similar to
that of Section 3 is clearly impractical. In this section, we
derive an upper bound on 𝑐𝑟 (𝑇 (𝑛, 𝑘)) from the previously
obtained upper bounds on 𝑐𝑟 (𝑇 (2, 𝑘)) and 𝑐𝑟 (𝑇 (3, 𝑘)).

We proceed recursively as follows. Consider a drawing
of 𝑇 (𝑛, 𝑘) that consists in non-overlapping 𝑘 subtori 𝑇 (𝑛 −
1, 𝑘). For each external edge (i.e., edge linking two nodes
of distinct subtori 𝑇 (𝑛 − 1, 𝑘)), we consider an upper bound
of the number of crossings involving this external edge at
one subtorus 𝑇 (𝑛 − 1, 𝑘). Then, this number of crossings
is multiplied by the number of external edges that end at
a node of one subtorus. Finally, the obtained number of
crossings involving such an external edge is multiplied by 𝑘

the number of 𝑇 (𝑛 − 1, 𝑘) subtori. This drawing method is
recursively applied until 𝑛 = 4, with thus 𝑇 (3, 𝑘) subtori. It
is assumed in this drawing method that there is no crossing
that involves two external edges. Obviously, while we derive
a 𝑇 (𝑛, 𝑘) drawing method and the corresponding number of
crossings that is based on the drawing of 𝑘 non-overlapping
subtori 𝑇 (𝑛 − 1, 𝑘), there is no guarantee that this drawing
method is optimal, that is, can induce the crossing number
𝑐𝑟 (𝑇 (𝑛, 𝑘)).

An upper bound 𝛿 of the crossing number that is induced
by one external edge at one subtorus𝑇 (𝑛−1, 𝑘) can be safely
set as the number of subtorus edges as follows:

𝛿 = | |𝑇 (𝑛 − 1, 𝑘) | | = (𝑛 − 1)𝑘𝑛−1

Hence, since we assumed that external edges do not
cross each other when 𝑛 ≥ 4, considering that there are 𝑘

subtori𝑇 (𝑛−1, 𝑘) and that there are 2𝑘𝑛−1 external edges per
subtorus𝑇 (𝑛−1, 𝑘), the upper bound of the crossing number
C induced by external edges in a 𝑇 (𝑛, 𝑘) is as follows:

C ≤ 𝑘 · 2𝑘𝑛−1 · 𝛿

This discussion is summarised in Theorem 3 below.

Theorem 3. The crossing number of a torus𝑇 (𝑛, 𝑘) satisfies
the following recursive relation:

𝑐𝑟 (𝑇 (𝑛, 1)) = 0
𝑐𝑟 (𝑇 (2, 𝑘)) ≤ 𝑘 (𝑘 − 2) (𝑘 ≥ 2)
𝑐𝑟 (𝑇 (3, 2)) = 0
𝑐𝑟 (𝑇 (3, 𝑘)) ≤ 2𝑘4 − 𝑘3 − 4𝑘2

− 2⌈𝑘/2⌉ ⌊𝑘/2⌋ (𝑘 − (𝑘 mod 2)) (𝑘 ≥ 3)
𝑐𝑟 (𝑇 (𝑛, 2)) ≤ 4𝑛 · 5/32 − ⌊(𝑛2 + 1)/2⌋2𝑛−2

𝑐𝑟 (𝑇 (𝑛, 𝑘)) ≤ 𝑘 · 𝑐𝑟 (𝑇 (𝑛 − 1, 𝑘))
+ 2(𝑛 − 1)𝑘2𝑛−1 (𝑘 ≥ 3)

Proof. As explained, the case 𝑘 = 1 induces a planar graph,
and the case 𝑘 = 2 induces the relation 𝑐𝑟 (𝑇 (3, 2)) = 0 and
𝑐𝑟 (𝑇 (𝑛, 2)) ≤ 4𝑛 · 5/32 − ⌊(𝑛2 + 1)/2⌋2𝑛−2 due to [10].
Regarding the case 𝑘 ≥ 3, this can be easily derived from:

C ≤ 𝑘 · 2𝑘𝑛−1 · 𝛿 = 2(𝑛 − 1)𝑘2𝑛−1

and
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Fig. 10 Subtorus connection in the case of a 𝑇 (4, 4) . For the sake of clarity, the external edges of
each 𝑇 (3, 4) subtorus are omitted and only sample external edges of 𝑇 (4, 4) are drawn, in red. Besides,
only three (out of four) subtori 𝑇 (3, 4) are represented.

𝑐𝑟 (𝑇 (𝑛, 𝑘)) ≤ 𝑘 · 𝑐𝑟 (𝑇 (𝑛 − 1, 𝑘)) + C
In addition, it has been assumed that when 𝑛 ≥ 4,

there is no crossing that involves two external edges (i.e.,
two edges each linking two nodes of distinct subtori 𝑇 (𝑛 −
1, 𝑘)). Indeed, external edges can be drawn as described in
Section 3.1, no matter the value of the dimension 𝑛. Without
loss of generality, such a drawing in the case of a 𝑇 (4, 4) is
given in Figure 10 as an example. In this figure, for the sake
of clarity, the external edges of each 𝑇 (3, 4) subtorus (i.e.,
the green edges of Figure 9) are omitted and only sample
external edges of 𝑇 (4, 4) are drawn, in red. Besides, only
three (out of four) subtori 𝑇 (3, 4) are represented. We can
see with this drawing scheme – we repeat that it is based on
that of Section 3.1 – that no two external edges of 𝑇 (4, 4)
(i.e., in red) cross and that one external edge of 𝑇 (4, 4) (i.e.,
in red) crosses at most once any non-red edge (i.e., any
subtorus edge). The same drawing method can be applied
for higher torus dimensions. Since the case 𝑛 = 3 is one
base case of the recursion, the fact that the drawing of a
𝑇 (3, 𝑘) includes external edge crossings does not contradict
this statement. □

The following corollary is thus induced.

Corollary 1. The crossing number of a 𝑇 (𝑛, 𝑘) satisfies the
following relation:

𝑐𝑟 (𝑇 (𝑛, 𝑘)) =
{
𝑂 (𝑛2𝑘2𝑛−2) if 𝑛 ≥ 𝑘

𝑂 (𝑛𝑘2𝑛−1) otherwise

Proof. From Theorem 3, we have:

𝑐𝑟 (𝑇 (𝑛, 1)) = 0 = 𝑂 (1)
𝑐𝑟 (𝑇 (2, 𝑘)) ≤ 𝑘 (𝑘 − 2) = 𝑂 (𝑘2) (𝑘 ≥ 2)
𝑐𝑟 (𝑇 (3, 2)) = 0 = 𝑂 (1)
𝑐𝑟 (𝑇 (3, 𝑘)) ≤ 2𝑘4 − 𝑘3 − 4𝑘2

− 2 ⌈𝑘/2⌉ ⌊𝑘/2⌋ (𝑘 − (𝑘 mod 2))
= 𝑂 (𝑘4) (𝑘 ≥ 3)

𝑐𝑟 (𝑇 (𝑛, 2)) ≤ 4𝑛 · 5/32 − ⌊(𝑛2 + 1)/2⌋2𝑛−2 = 𝑂 (4𝑛)
𝑐𝑟 (𝑇 (𝑛, 𝑘)) ≤ 𝑘 · 𝑐𝑟 (𝑇 (𝑛 − 1, 𝑘))

+ 2(𝑛 − 1)𝑘2𝑛−1 (𝑘 ≥ 3)
≤ 𝑘2 · 𝑐𝑟 (𝑇 (𝑛 − 2, 𝑘)) + 2(𝑛 − 2)𝑘2𝑛−2

+ 2(𝑛 − 1)𝑘2𝑛−1

≤ 𝑘3 · 𝑐𝑟 (𝑇 (𝑛 − 3, 𝑘)) + 2(𝑛 − 3)𝑘2𝑛−4

+ 2(𝑛 − 2)𝑘2𝑛−2 + 2(𝑛 − 1)𝑘2𝑛−1

...

≤ 𝑘𝑛−3 · 𝑐𝑟 (𝑇 (3, 𝑘)) +
[
2𝑘2

𝑛−2∑︁
𝑖=3

𝑖𝑘2𝑖

]
+ 2(𝑛 − 1)𝑘2𝑛−1

= 𝑘𝑛−3𝑂 (𝑘4) +𝑂 (𝑛2𝑘2𝑛−2) +𝑂 (𝑛𝑘2𝑛−1)
= 𝑂 (𝑘𝑛+1) +𝑂 (𝑛2𝑘2𝑛−2) +𝑂 (𝑛𝑘2𝑛−1)

□

5. Conclusions

The crossing number problem is a difficult problem – NP-
hard when solved for any graph. We have discussed in this
paper the crossing number of a torus network. First, in
addition to several trivial cases, we have discussed the cross-
ing number of a 2-dimensional 𝑘-ary torus where 𝑘 ≥ 2,
recalling that 𝑐𝑟 (𝑇 (2, 𝑘)) ≤ 𝑘 (𝑘 − 2), discussion which
laid foundations for the rest of the paper. Second, we have
considered the crossing number of a 3-dimensional 𝑘-ary
torus and shown that it has an upper bound as follows:
𝑐𝑟 (𝑇 (3, 𝑘)) ≤ 2𝑘4−𝑘3−4𝑘2−2⌈𝑘/2⌉ ⌊𝑘/2⌋ (𝑘−(𝑘 mod 2)),
which is a cubic order improvement compared to our pre-
vious work. Third, we have derived from these results an
upper bound on the crossing number of an 𝑛-dimensional
𝑘-ary torus where 𝑛 ≥ 4 and 𝑘 ≥ 3:

𝑐𝑟 (𝑇 (𝑛, 𝑘)) ≤ 𝑘 · 𝑐𝑟 (𝑇 (𝑛 − 1, 𝑘)) + 2(𝑛 − 1)𝑘2𝑛−1

And, it has been shown that 𝑐𝑟 (𝑇 (𝑛, 𝑘)) is𝑂 (𝑛2𝑘2𝑛−2) when
𝑛 ≥ 𝑘 and 𝑂 (𝑛𝑘2𝑛−1) otherwise.

Regarding future works, it would be interesting to es-
tablish a lower bound on 𝑐𝑟 (𝑇 (3, 𝑘)). In addition, trying to
further refine the established upper bound on 𝑐𝑟 (𝑇 (𝑛, 𝑘)) is
meaningful especially as it was pessimistically estimated in
this paper. Finally, while the obtained upper bound applies
to any surface, including the plane, it could be interesting
to investigate the existence of a better upper bound with a
topology other than the plane.
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