IJCA, Vol. 30, No. 1, March 2023

39

uMuVR: A Multiuser Virtual Reality
and Body Presence Framework for Unity

Joshua Dahl*, Erik Marsh*, Christopher Lewis*, and Frederick C. Harris Jr.*
University of Nevada, Reno, Nevada, USA

Abstract

Due to the rapidly evolving nature of the Virtual Reality
field, many frameworks for multiuser interaction have become
outdated, with few, if any, designed to support mixed virtual
and non-virtual interactions. We have developed a framework
that lays an extensible and forward-looking foundation for
the development of mixed interactions based upon a novel
method of ensuring that inputs, visuals, and networking
can all communicate without needing to understand the
others’ internals. This framework also provides utilities
for representing user avatars in a physicalized manner while
supporting a range of different input methods. We tested this
framework in the development of several applications and show
that it can easily be adapted to support application requirements
it was not originally designed for.

Key Words: Graphics, virtual reality, body presence,
multiplayer, networking, neural networks, physics simulation,
boneworks

1 Introduction

Currently, there are very few multiuser Virtual Reality (VR)
frameworks available in the literature. Likewise, much of the
formalized work on interactions between multiple VR and non-
VR users remains in its infancy, while very few people are
investigating ways of portraying a user’s entire body in VR
without the need for additional trackers. Novotny et al. [35] is
a notable exception to the first issue, providing a framework for
multiuser VR development. However, the VR field is rapidly
evolving and many previous works have become obsolete as
newer standards and methodologies emerge. uMuVR [12]
(pronounced You-Mover) serves as a total overhaul of the
framework designed by Novotny et al. with major emphasis put
on supporting the OpenXR [44] standard as well as the newly
emerging UltimateXR [50] framework and reworking the core

“Department of Computer Science and Engineering. Emails:
joshuadahl@nevada.unr.edu, erik.i.marsh@gmail.com,

christopher_lel@nevada.unr.edu, fred.harris@cse.unr.edu

concepts behind Novotny et al. to be easily extendable, with an
eye toward future support for non-VR users as well. Towards
this aim, we have developed a novel method of ensuring that
inputs, visuals, and networking can all communicate without
needing to understand each other thus allowing each of the
before-mentioned systems to be replaced without disrupting the
others. We have also developed some innovative techniques for
representing users entire bodies (including their feet) in virtual
reality in a physically interactable fashion. The literature lacks
not only in facilities for supporting multiuser VR interactions,
but also in predicting the position of their feet and legs without
explicit sensor data.

The rest of this paper is structured as follows: Section 2
reviews some of the existing literature and details several of
the frameworks we are using. Section 3 then dives into library
choices that we made, with particular emphasis placed upon
comparisons to existing networking and compression libraries.
Section 4 details the design and implementation decisions of
the networking aspects of uMuVR. Section 5 explores our novel
foot prediction algorithm and physicalized interaction system
as well as several of the more traditional techniques we used
to portray the users’ upper bodies. Section 6 details two
applications we implemented with uMuVR, showing how easily
the framework can be extended; and finally Section 7 wraps up
the paper with conclusions and plans for future work.

2 Background

There are very few multiuser VR frameworks available
in the literature. This fact exists in stark contrast to the
fact that many simulations [3], educational experiences [24],
and entertainment experiences [40] are now being developed
for VR. Thus facilities to ease this development would be
beneficial.

Alternatively, much work has been done in the field of Virtual
Body Presence. Currently, this work is based heavily upon
Skeleton based Forward Kinematics and Inverse Kinematics
(IK) techniques; Lewis et al. [30] and Aristidou et al. [5]
respectively provide overviews of these two foundational topics.

ISCA Copyright© 2023

40

Currently, the literature suggests that being in a virtual
environment where we can perceive the full bodies of others
to lead us becoming more accepting of a complete body
of our own [29]. Although there is a bit of contention to
this theory [20], the literature generally seems to agree on a
statement similar to the one above. However, it has also been
theorized that in action-packed experiences (or types likely to
invoke a “flow state”) we are prone to focus more on the enemy
or obstacle presented and less on ourselves [31].

Counter-arguments aside, little work has been done on
analyzing the effects self interactions have on body presence,
despite the fact that work has been put into non-contact-based
interactions; work which seems to indicate that the presence
of a full emotive body enhances facial expressiveness [28].
However, for all of these, either the legs were ignored [20,
31, 28] or tracked using additional sensors [29] using methods
similar to the ones described by Caserman et al. [6]. The
literature generally seems to indicate that more tracking leads to
better acceptance, and yet the entire lower body is either ignored
or handled with sensor arrays the average consumer may not
have.

As far as the present authors are aware, there has been
minimal, if any, work done by academia on predicting points
on the body such as the feet and legs without the need for
additional trackers the average consumer may not have. That
being said, preliminary work is being done in this area outside
of academia [9, 43], but the field as a whole is still in its infancy.

While leg and foot prediction may be in its infancy,
physicalized interaction has largely been driven by the video
game studio STRESS LEVEL ZERO [43] and their games
BONEWORKS and BONELABS. While in academia work has
been done on physicalized hand interaction by a chain of authors
starting with Nasime and Kim [33] and (currently) ending with
Delrieu et al. [13]. Additionally, libraries providing support for
a system similar to the one proposed by Nasime and Kim are
available for Unity [18], which additionally provide proprietary
extensions to the whole body. However, there is not currently a
unified framework tying all of these technologies together.

2.1 Unity

Unity [47] is a commercial game engine with extendable
scripting in the C# language. It utilizes the Object-Oriented
Composition paradigm [19] that was common in game engine
architecture from the last decade, where component classes
implement various types of encapsulated behavior that can then
be attached to container objects. This extensible model is
interfaced with using a visual environment editor with the ability
to visually change properties and create references to other
objects in the environment; thus using code to walk the engine’s
object hierarchy to find references is uncommon. Since uMuVR
is tightly coupled to the Unity ecosystem, migrating it to another
game engine would prove to be nontrivial.

Most proprietary libraries for Unity are distributed as
precompiled shared objects. Unity supports a wide variety

IICA, Vol. 30, No. 1, March 2023

of platforms, many of which are not supported by the shared
objects provided by this classification of libraries. This is of
extra significance due to the recent trend towards standalone VR
headsets, many of which run the Android [36] operating system
which provides a very different set of facilities when compared
to a standard desktop environment. Thus we have striven to
avoid such resources as much as possible, instead utilizing free
and open source alternatives that we can compile to any platform
ourselves.

2.2 VR Frameworks

The main criteria used for choosing between the many
available VR frameworks was the number of platforms they
support. Additionally, we only considered frameworks that
were open source or included with Unity. Historically, the two
leading VR frameworks used with Unity were SteamVR and
the Oculus SDK. The standard SteamVR implements, named
OpenVR, has been deprecated in favor of OpenXR [44], and the
Oculus SDK only supports hardware created by Meta. While
both platforms provide a range of useful utilities such as an
extensive interactables library (providing buttons, levers, etc...)
and positioning appropriate controllers to indicate the location
of your hands, neither SteamVR nor the OculusSDK are ideal
considering the current rapid proliferation of VR devices.

OpenXR is an open standard from the Khronos group (the
same group that maintains the OpenGL and Vulkan standards)
that acts as an abstraction layer between applications and a
large selection of popular eXtended Reality (XR) devices (an
umbrella term used to describe both Virtual and Augmented
Reality devices). However, accessing functionality inherent to a
single device or manufacturer using OpenXR is difficult.

Unity provides the XR Interaction Toolkit [48] (XRIT),
a toolkit that provides a platform-agnostic framework for
implementing interactions in VR, however, the framework does
not provide as large of a selection of precreated interactables as
its competitors. When combined OpenXR and XRIT provide
a widely supported device-agnostic method of interacting with
VR environments.

Late into the development of our original paper VRMADA
released an experimental competitor to the OpenXR and
XRIT stack they call UltimateXR [50]. UltimateXR itself
acts as a middleware between most of the major VR device
manufacturers and provides a fallback mechanism to use
OpenXR if none of the platforms it has support for are available.
This method was chosen since the OpenXR standard does not
provide support for several common VR features, the most
notable being haptic hand feedback. Additionally, UltimateXR
provides not only hand presence utilities (and one of the most
feature rich hand presence facilities available no less) but an IK
based solution for estimating the position of a user’s entire upper
body. Finally, as a cherry on top, the framework also provides
a utility which will blank the user’s screen if their head happens
to go inside of a solid object.

The combination of OpenXR and XRIT was chosen as

IJCA, Vol. 30, No. 1, March 2023

Table 1: VR framework comparison summary

Framework Supported Interactables Hand Deprecated Experimental
Platforms Library Presence
UltimateXR | HTC, Valve, Oculus Yes Yes+ No Yes
Microsoft, and Varjo
OpenXR + HTC, Valve, Oculus Basic” Basic’ No No
XRIT Microsoft, and Varjo
Steam VR HTC and Valve Yes Yes Yes No
Oculus SDK Oculus Yes Yes No No

+

Includes support for not only hand presence, but pose estimation for the entire upper body.

41

* Includes support for basic grabbable objects that follow the user’s hand.
T Includes support for representing the location of the user’s hand, however it may not properly represent the type of controller the user

is using.

the foundation for uMuVR originally. However, UltimateXR
provides an enticing set of features but it is experimental
and could be abandoned at any point by its developer.
Thus we decided to provide support for both frameworks.
Table 1 summarizes the differences between the discussed VR
frameworks.

3 Benchmarks

While the choice of VR framework was fairly straightforward
given our goals and SteamVR’s recent deprecation, choosing
a networking solution proved more difficult, many of the
frameworks aim to be approximately equivalent with the
primary distinguishing factor being their performance. There
also exists a multitude of high throughput compression libraries
that all serve the same role (namely making data smaller) with
different throughput-to-compression ratios.

3.1 Networking Frameworks

We began by examining several different Unity networking
frameworks. Several of these frameworks require that the
code for clients and servers be written in different projects;
all of these frameworks were rejected since providing a
unified framework with a fragmented codebase produces extra
complexity that we decided it would be best to avoid.

The first framework we considered was Photon’s Fusion [14]
framework. This was the framework that sparked the platform
support requirement, since difficulties were encountered
when using their provided DLLs. Additionally, Fusion’s
documentation is lacking, making development with the
framework a frustrating experience. Alternatively, Fusion is one
of the two considered frameworks (along with Novotny et al.)
to provide a matchmaking system for players to discover each
other without requiring an IP address. All of these factors paired
with the existence of a price tag on these services led us to search
for other options.

Fish-Networking [16], Mirror [49], and Unity’s Netcode for
GameObjects [45] (NCGO) were all considered next. All of
these frameworks are open source and have similar designs, with

minor differences in usability between the three, but nothing
major enough to strongly influence a decision. Mirror supports
a purely peer-to-peer-based architecture while Fish-Networking
and NCGO support a client-server architecture where the server
can either be dedicated or hosted on one of the clients. In a
peer-to-peer architecture like Mirror, data is sent from every
connected user to every other connected user, without the aid of
a central authority. Alternatively, in a client-server architecture,
users send their data to a central server which is then responsible
for either rejecting it or forwarding it to the other users.

After identifying the several candidate frameworks, a
performance benchmark was performed; the results of which
along with several other comparison details are explained
in Table 2. The performance benchmarks were conducted
utilizing the methodology outlined in Fish-Networking’s
documentation [15] except: the tick rate for every framework
was set to 60 ticks per second, the server was run from
within Unity’s editor, and thirty separate client executables
were launched, all on a single machine!. All of the code
utilized for these benchmarks can be found in uMuVR’s Git
repository [11] spread across several branches whose names all
start with “benchmark/”. Thirty clients were chosen since more
would result in GPU throttling. Bandwidth information was
captured using Wireshark’s [8] Protocol Hierarchy statistics,
filtered to only scan relevant ports that captured the number of
bytes transferred which were then divided by the timestamp of
the last packet scanned to find the average bandwidth. Since
data was captured on a single machine, the bandwidth statistics
represent both sent and received data. All data was captured and
averaged over a period of five minutes.

Once the benchmarks had been performed, Fish-Networking
proved to perform better than its competition, with similar
frame rates and significantly reduced bandwidth overhead;
and thus reduced bandwidth utilization indicating that more
information can be exchanged before network infrastructure
becomes overloaded. This leads to a direct increase in the

IThe machine used to run the benchmarks is custom built with an Intel
i7-12700k, EVGA GeForce RTX 3090 with 24GB of dedicated RAM, 32GB
2133MHz Corsair RAM, and a Samsung 980 Pro NVME SSD, running Unity
2021.3.5f1 set to build executables with the IL2CPP backend.

42

IICA, Vol. 30, No. 1, March 2023

Table 2: Networking framework comparison over several performance metrics

Framework Estimated Max Average Average Cost Supported Matchmaking Voice
Concurrent Users FPS Bandwidth Architectures
Fish-Networking 500+ 60.19 0.94 MB/s Open Source Hosted/ No No
Dedicated

Mirror 200+" 60.23 2.15MB/s* Open Source P2P No No
Netcode for Game- Not 59.97 3.42 MB/s¥ Open Source Hosted/ No Yes®

Objects Published Dedicated

Hosted/

Photon Fusion 2000 25.08 1.82 MB/s Per User Dedicated/ Yes Yes]
(Shared Topology) P2P

T Old stress test demos have shown Mirror supporting 480 concurrent users, however this has not been tested in practice.
+ Due to how Mirror and Netcode for GameObjects calculate their tick rate, these numbers are not based on exactly 60 ticks per second (we found it was between 55 and 60)

whereas the other frameworks are.
§ Provided by separate subscription priced Vivox package.
q Provided by separate subscription priced Photon Voice package.

number of users that can be connected at once or the amount
of network synchronized objects that can be in a scene while
still utilizing the same amount of bandwidth. The benchmark
utilized appears to be designed to fairly showcase Fish-
Networking’s performance superiority with a minimal amount
of bias; that being said, we acknowledge that there is an unlikely
potential of biasing in the results that we missed. With all
factors considered, including several of Fish-Networking’s nicer
usability features, Fish-Networking became the clear choice to
base uMuVR upon.

3.2 Compression Libraries

Data compression is a relatively hot field with many
competing algorithms. It is worth noting that each considered
library is a C# port of the original (usually C) algorithm. We
began by considering the LZ4 [27] compression algorithm.
This implementation along with the LZF [37] implementation
provides an interface that allows the same buffer to be
reused, reducing the burden on the C# Garbage Collector.
LZF also has the advantage of being implemented as a
single file and providing a tweakable compression ratio,
we tested both the default high compression ratio, a faster
compression ratio more suited to our needs, and a version of
the implementation [22] tuned for Unity which we quickly
discarded after we discovered its poor performance relative to
the more general implementation.

Additionally Snappy [1], Zstandard [41], and Bontli [51]
where all considered. Neither the Snappy nor Bontli
implementations support buffer reuse and the Zstandard
implementation requires build processors that prevent it from
being used within Unity. Additionally, Bontli is a slower
algorithm, thus we primarily included it as a reference for high-
end compression ratios.

Since we are going to be compressing vocal audio from users’
microphones, we performed this benchmark on a similar sample
of audio. All of the code utilized for these benchmarks can be
found in FishyVoice’s Git repository [10] spread across several

branches whose names all start with “benchmark/”. Our voice
networking library delivers segments of audio with a size of
approximately 1600 bytes, thus we take similarly sized chunks
of audio (55 chunks per second from our clip resulting in
samples 1603 bytes in size). Since the sample clip is about
5 seconds long we collect 1375 looping samples representing
five passes over the clip. For each sample, we determine how
long it takes to serialize and then deserialize the packet (extra
data is randomized using a fixed seed so that all algorithms
are given the same data) then once these values are averaged
we subtract the average time taken when no compression is
used to find the extra time taken. We also record the size of
both the compressed and uncompressed packet which we use
to calculate the compression ratio. We discard the first sample
taken from this analysis since there is a noticeable increase in
time needed to initialize the serialization system, the time this
extra initialization takes averaged over five startups along with
the rest of the data mentioned above is presented in Table 3.
All results were collected on the same machine used in the
networking benchmarks, but Unity 2021.3.15f was utilized and
the results were written to a CSV file by the benchmark itself.

LZF with an HLOG of 11 has the best trade off of
performance to compression ratio. Slightly higher compression
ratios can be achieved by the LZF algorithm at the cost of
significantly more performance degradation. Thus the LZF
implementation with this set of parameters was chosen as our
audio compression library.

4 Networking Design and Implementation

4.1 Ownership

In most applications, when networking provides a latency
spike, it is an annoying irritant that is usually ignored, however,
in VR even a minor latency spike is substantially more
noticeable. The increased immersion makes many people more
sensitive to issues with the simulation, and a momentary lack
of movement due to a latency spike increases Transport Delay

IJCA, Vol. 30, No. 1, March 2023

43

Table 3: Compression library comparison over several performance metrics

Library Extra Compression Extra Decompression Average Compression Average Initialization
Time Time Ratio Time
Uncompressed Ops Ops 1 13480.4us
LZ4 29.0859us 10.1048 s 3.2446 12488.2us
Snappy 73.9032us 30.5655us 3.7622 5402.0us
LZF (hlog10) 24.75us 14.33us 3.7877 3355.0us
LZF (hlogl1) 21.42us 12.18us 3.8535 3463.8us
LZF (hlog13) 24.89us 12.72us 3.8536 2794.0us
LZF (hlog16) 54.10us 14.01us 3.8571 2954.6us
Bontli 469.51us 102.81us 7.7192 23269.0us

as described by Stoner et al. [42], which could easily invoke
a bout of simulator sickness. To account for this discrepancy,
all physics simulations and other interactions in uMuVR are
performed client authoritatively (Meaning they are performed
on the local client’s machine, with the results relayed to other
clients through the server. This model exists in contrast to
a server authoritative model where all of the simulations are
performed on the server and then propagated to the clients). This
client authoritative structure poses an important question: For
any given object, who should simulate it?

Fish-Networking, and every other considered networking
framework, support the concept of object ownership. One
particular user owns the object, and thus is responsible for
simulating its behavior. However, these implementations
typically only allow for ownership to be transferred between
users upon object creation or some other manually invoked
event. uMuVR elaborates upon this feature by allowing
ownership to be assigned to certain volumes of space and
automatically transferred upon interaction.

4.1.1 Ownership Management. Ownership management in
uMuVR is orchestrated by a Unity component appropriately
named OwnershipManager. Since ownership management
is facilitated by a component, it is an opt-in feature, thus
certain objects (notably the UserAvatars discussed in the
next section) can simply belong to a single user without any
possibility of transfer. The OwnershipManager has two main
responsibilities: first, it is assumed that if someone is actively
interacting with an object, they own it and are responsible for
its simulation. Second, we facilitate a simplified version of
Kawano and Yonekura’s Allocated Topographical Zone [25]
(AtoZ) algorithm that we call OwnershipVolumes.

4.1.2 Ownership Volumes. OwnershipVolumes, unlike
AtoZ’s regions which dynamically morph based on users’
positions, are predefined fixed regions of space. This allows
for more fine-grained control over exactly where ownership
transfers will occur. OwnershipVolumes have several methods
of deciding who owns them. The two primary methods,
oldest user and newest user, rely on collisions to detect when
users enter or exit the volume. Additional methods are
provided where ownership is assigned to the objects creator
and ownership is not managed by the component but instead

managed manually, similar to how ownership is managed by
default in Fish-Networking.

Early implementations of OwnershipVolumes were afflicted
with an interesting bug where the small amount of jitter present
when a physics simulation changes owners would cause an
object to re-enter the volume it just departed, which often
resulted in a jittery loop of repeated ownership transfers that
could last for up to several seconds. We solved this issue by
adding a short window of time lasting ten ticks, approximately
78 milliseconds, after an ownership transfer occurs during
which another ownership transfer can not occur.

4.2 Clear Separation of Inputs, Visuals, and Networking

One of uMuVR’s major priorities is laying a foundation for
integrating mixed VR and non-VR users into the same shared
environment. For this to be possible there needs to be a
separation between the visuals displayed to users, which are
then synchronized over the network, and the inputs driving
those visuals. To facilitate this, we have developed a novel
slot-based system where pose data (three-dimensional positions
and rotations) can be stored in named slots. Originally, this
Pose-Slot System featured 12 slots, head and pelvis, along with
left and right shoulders, elbows, wrists, knees, and ankles that
should be capable of representing the majority of human poses
(without regard to finger positions). We then discovered that
for some applications some of these points are unnecessary and
several additional points would be useful, thus we generalized
to a system where a variable number of named slots can be
associated with pose data.

These pose-slots act as a unified layer of glue code as defined
by Hummel and Atkinson [23]. Various input methods can
store pose data and then a single visual representation can use
either straightforward pose copying techniques or more complex
techniques which are elaborated on in Section 5 to position the
visuals (although there is nothing preventing a developer from
creating their own additional techniques). In uMuVR’s current
design the visuals are responsible for synchronizing their state
across the network, thus the Network Layer need not have any
awareness of the Input Layer.

4.2.1 UserAvatar. The UserAvatar serves two major
purposes. First, it tracks the object’s current owner and if

44

the local user is also the current owner it creates appropriate
input controls for them. Whenever the ownership of an object
changes, we reperform this check, always ensuring that only
the current owner has input control. This system is designed to
support multiple types of input depending on the medium of the
user.

Second, it acts as the storage location for pose-slots. The
Pose-Slot System is implemented using a dictionary mapping
strings to referable pose data. Behind the scenes, links to this
dictionary are converted to direct references to the associated
pose data so that no runtime performance is lost using this
system.

Arbitrary property storage can easily be added through
inheritance with convenient access to an event function that
is called after input is spawned, which is useful if there
is any additional non-generalizable glue code that needs
to be executed. Combined with the utilities provided by
SyncPoses, the UserAvatar provides a powerful, generalized,
and extendable input storage utility.

4.2.2 SyncPose. SyncPose is also a Unity component that
is used to load or store data from or to the UserAvatar,
possibly with an offset. SyncPoses attached to objects in the
Input Layer read the location of objects with local input control
and then store them in one of the UserAvatar’s pose-slots.
Similarly, SyncPoses attached to objects in the Visual Layer
load the location of objects from the UserAvatar and apply
that location to objects in the visual representation. To facilitate
this, SyncPoses take a reference to a prefab (Unity’s word for
a prepackaged and reusable set of entities and with components
preattached) version of the UserAvatar they are synchronizing
with and provide a custom graphical interface as shown in
Figure 1 to make selecting pose-slots simple.

Additionally, SyncPoses support locking each axis of the
position and each Euler axis of the rotation so that they are not
copied. This provides the capability of synchronizing from the
position of one object and then copying one of the rotational

v Sync Pose (Script)

Target Avatar B PlayerAvatar (User Avatar)
Slot Head
Mode Sync From
Sync Positions v
Position Axes Everything
Sync Rotations v
Rotation Axes Everything
Offset

Position

Rotation

Pose Debug

IJCA, Vol. 30, No. 1, March 2023

axis of another object into the same pose-slot.

4.2.3 Network Synchronization. After input data has been
transferred to the Visual Layer, positional information must be
propagated to other clients on the network. Fish-Networking
provides a NetworkTransform component that synchronizes
position, rotation, and scale across the network; however,
for objects not based upon the UserAvatar model, Fish-
Networking does not provide any client authoritative method
of synchronizing physics properties. Thus, we implemented a
NetworkRigidbody component that synchronizes the physics
properties (velocity, angular velocity, gravity, and drag) utilized
by Unity’s physics simulation system. Due to the Client
Authoritative nature of uMuVR, these properties are only
necessary when an ownership transfer occurs; however, we
discovered that the delay encountered when synchronizing
these properties during such an event, paired with the
nondeterministic nature of Unity’s physics system would
produce unpredictable changes in the object’s trajectory after
an ownership transfer.

Likewise, we discovered that utilizing an unreliable method
of delivery produced similar unpredictable changes. Fish-
Networking is built upon LiteNetLib [38], an unreliable UDP-
based [34] C# transport that provides its own optional reliability
layer with a design very similar to TCP [34] but without
dedicated congestion control. Thus, we use LiteNetLib’s
reliability mode to synchronize velocity and angular velocity
to all clients every tick while other less frequently changed
properties are reliably synchronized whenever a change is
detected.

4.2.4 Post Processing. We discovered through some of our
testings with Neural Network driven inputs, that it might be
useful to provide developers a method of processing poses
stored in a UserAvatar after the fact. For some of our early
tests, we made use of a PostProcessingUserAvatar which
runs a First Order Exponential Averaging Low Pass Filter, the
notation for which is detailed in Equation 1, over the Neural

v Sync Pose (Script)

B PlayerAvatar (User Avat

Head

Left Shoulder
Right Shoulder
Left Elbow
Right Elbow
Left Wrist
Right Wrist
Pelvis

Left Knee
Right Knee
Left Ankle
Right Ankle

Figure 1: The interface provided for SyncPoses (left) and customized dropdown that makes selecting pose-slots simple (right)

IJCA, Vol. 30, No. 1, March 2023

Network generated poses to smooth some jittery behavior.

y(n) =axx(n)+ (1 —a)xy(n—1) (D

To facilitate this we provide a separate
PostProcessingUserAvatar type that provides a separate
set of pose slots which represent the unprocessed pose data;
the names of which we synchronize with the developer-defined
names. SyncPoses are aware of this separation and will
properly store and load information to and from the proper
slots. Every frame we iterate over every slot, and for each slot
we call a developer definable processing function that performs
whatever arbitrary calculation they would like on the old pose
data given the new pose data. For cases where there is no
interdependence on the states of other poses, we provide an
option to run these iterations using Unity’s C# Job System [46].
This allows the processing to occur on background threads.

The UserAvatar-based design at uMuVR’s core has many
moving parts, however, most of them are not unique. Figure 2,
provides a visual summary of how these components interact.
The figure’s color-coded lines clearly illustrate how each layer
morphs its input data into a form the next layer can understand
without needing to have any awareness of the original form. It is
worth noting that the Pose-Slot System is a lossy approximation,
thus certain rare and extreme poses are not representable using

Input
Layer

Arbitrary _ -

Interaction

SN |
- Fish-
L Network .. -w| Networking

45

this system.

4.3 Voice

The final aspect of uMuVR’s networking design worth
mentioning is its voice communication implementation. We
wanted a voice implementation that was simple and did
not rely on any costly third-party subscription services.
UniVoice [2] met all of these requirements, however, its non-
Unity idiomaticity and entirely separate networking stack were
less than desirable.

Before we can discuss the adjustments we made to
UniVoice, a basic understanding of its architecture is
required. UniVoice is based on four main classes: an
IChatroomNetwork that is responsible for transporting voice
data, an IAudioSource that is responsible for acquiring
voice data, an TAudioOutputFactory that is responsible for
creating an audio output for every relevant peer, and finally
a ChatroomAgent that manages the previous three. The
ChatroomAgent supports separating users into rooms, limiting
the pool of other relevant users to only the users within the same
room.

The first change we made was implementing a
Fish-Networking-based =~ IChatroomNetwork we call
VoiceNetwork. It utilizes Fish-Networking’s remote

Networking
Visual Layer
Layer

Network
Transform

Network
Transform

Transform

Network
Rigidbody

Network
Transform

Figure 2: A visual overview of the components used to link inputs, visuals, and networking. Inputs (depicted in solid black) are
applied to various objects in the environment. SyncPoses then transfer modified position information (depicted in dashed
blue) from the Input Layer to the Visual Layer via the UserAvatar. Finally, global position data (depicted in dotted red)
is sent through the network and used to set the position of this user as seen by other users. Simultaneously, interactions
adjust properties of the physics simulation which are propagated to the rest of the network via a NetworkRigidbody and

NetworkTransform

46

procedure calls to transfer data between users, invoking
subscribable events at either end so that other interested objects
can listen to the data. Furthermore, a dictionary is kept in sync
between all of the connected users that maps room names to
lists of connections currently within those rooms. Behind the
scenes, UniVoice ensures that audio is only sent to users within
the same room as the sender.

In terms of improving Unity idiomaticity, we implemented
a component that allows easy selection of audio input sources
from within the Unity editor. Additionally, the VoiceNetwork
is implemented as a component that can be easily referenced
using Unity’s graphical editor and provides several extra
convenience functions that set up an agent which utilizes the
VoiceNetwork; all referenceable using Unity’s editor.

Additionally, we added two new features on top of
the UniVoice stack: automatic positional audio and
disableable voice compression. The audio packets

which we transfer through Fish-Networking include
an additional variable that encodes the position of
the speaker. A PlayerAudioPositionReference

component is used to determine where the user should be
positioned from the perspective of other users. Finally,
a PositionalAudioOutput factory is provided which
creates a specialized audio source for each user. The default
VoiceNetwork can detect the presence or absence of positional
audio components and will automatically adapt as needed.

We compress audio using the LZF [37] compression library.
A discussion of why this library was chosen can be found in
Section 3.2. Our audio packets have a custom Fish-Networking
serializer and deserializer pair which convert the packet into a
byte array which is then passed through LZF. A C# define is
provided so that from the Unity script control page you can
easily disable or enable compression.

5 Body Presence Design and Implementation

uMuVR’s current body presence facilities can be separated
into two categories: the half which lives in the Input Layer and
the half which lives in the Visual Layer. Everything, including
the physics simulation, has been designed in such a fashion that
it can simply be disabled on remote clients who will rely on
data coming from the network to position remote avatars in their
scenes.

5.1 Input Layer

The input layer half has a very simple goal, namely, calculate
the position and rotation of all 12 original pose-slots of the user
avatar. Actually, at present the Body Presence system is using
42 pose-slots (the 12 original and a slot for every finger joint on
both hands). We hope to simplify this in the future but that is a
story for another paper.

5.1.1 UltimateXR. Everything from the hips up is simple
from uMuVR’s perspective. UltimateXR [50] provides Cyclic
Coordinate Descent IK [26] based utilities for estimating elbow,

IICA, Vol. 30, No. 1, March 2023

spine, hip, and neck positions based on the position of the user’s
controllers and head. Unfortunately, we do not currently have
a solution for accurately predicting shoulder positions, thus if
shrugs are desired they will need to be externally tracked.

Additionally, UltimateXR provides a system for defining grab
points and associated poses on interactable objects. This system
is used to define the position of every finger joint. We can thus
simply extract the relevant points from their implementation and
pass the hip position off to a Phase-Functioned Neural Network
controller.

5.1.2 PFNN. Phase-Functioned Neural Networks [21]
(PFNN) provide a system for cheaply and procedurally
generating the next pose of a walking cycle based on a
constantly progressing phase variable. This system is capable
of creating animations for convincingly traversing complex
environments; give or take the fact that sometimes the feet do
not find themselves correctly planted on the ground, a flaw
which can be corrected with a secondary foot placement pass
which we shall discuss in Section 5.1.3.

The PFNN network takes as input a target direction, the
relative speed it should approach its target, and the pose last
frame. It then generates a new pose. Unfortunately, this process
is very sensitive to deviations from the information it was
trained on. For instance, the publicly available weights utilized
by Holden et al. [21] assume that poses will be requested at a
constant rate of 60 times per second. Thus we have a controller
sitting over the model which only requests a new pose if a 60th
of a second has elapsed since the last pose request.

Additionally, to keep the legs under the body, our controller
will define directions and velocities in such a way that the legs
will be positioned under the hips when everything is said and
done. However, care needs to be taken with the network’s target
position, once it has “reached” its target position it will stop
rotating to match the user, but if it never “reaches” its target the
simulation will destabilize. Thus our controller goes through a
rather complicated set of procedures to dynamically adjust the
threshold at which the network is considered to “reach” its target
based on the hip’s velocity and the difference in angle between
the hips and feet.

This whole process also fails if the experience being
developed uses a teleportation-based locomotion system. The
legs will be left behind as the upper body teleports and then
wander over to reattach themselves. While we are sure certain
experiences could use this as a hilarious gimmick, for the
average case this behavior is undesirable. Thus the controller
also detects when the upper and lower body’s positions have
diverged too much and will reset the leg simulation to match the
upper body in this case.

Much like the shoulders, this simulation can only predict
“normal” movements such as standing, walking, and crouching.
It will encounter issues with more exotic motions such as laying
down or performing a back flip. External trackers will still be
needed if these sorts of motions will be commonly necessary for
the experience.

IJCA, Vol. 30, No. 1, March 2023

5.1.3 Slope Aware Foot Placement. Once PFNN has
generated a leg and foot placement for us, we then need to
ensure that the feet rest squarely on the ground. We begin
by projecting the toes straight down onto the ground. Foot
placement is then based on the height of the ankle above the
toes which we consider a configurable constant, named A. We
then fall into two cases based on the height of the ankle above
the ground minus A, which we call H. If H is greater than A
the ground is steep and we don’t modify the foot placement, if
H is less than or equal to A we move the ankle straight down
to a point A above the ground. These two cases are represented
graphically in Figure 3. This procedure mimics human behavior
where we stand on our toes on steep inclines and our heels on
more gradual inclines.

Toe Ankle
J

N
JII>A ——ill<a

Figure 3: A representation of the Ankle and Toe points, and how
they would relate to the ground in the Steep (left) and
Not Steep (right) cases

Behind the scenes, all of the points from UltimateXR and
PFNN are combined into a hidden UserAvatar. The foot
placement algorithm depends on this abstraction in uMuVR’s
design to simplify the foot placement problem to just sliding
points. We calculate how much we had to move the ankle
down, and gradually spread decreases in height through the
rest of the points to compensate. When combined with the IK
system we run in the visual layer, this results in very convincing
movements.

Additionally, the phase variable from PFNN is used as a
weight factor to describe how strongly the foot placement
should be applied. In parts of the phase that correspond to a
raised foot in the walk cycle, we completely ignore the foot
placement, while in phases where the foot should be planted,
we apply it with a weight of 100% and blend between the two
as necessary.

5.2 Visual Layer

The half of the system which lives in the Visual Layer is
inspired from two primary sources: PhysIK [7] and HPTK [18].
PhysIK is a system for expressing IK like animations using a
physics simulation. This allows for the “animations” to interact
with themselves, for instance an arm can not be pushed through
its body. While HPTK is a Unity library providing physics based
hand interaction, instead of needing to press a button on your
controller to pick up a box, it allows the user to simply use their
hands to pick up the box.

47

HPTK’s influence is simpler than that of PhysIK. They
provide a proxy hand which represents the input data received
from the user’s controllers. Similarly we present a proxy hand
to the user in the Input Layer, thus it only exists for them.

While a physics based system seems to work wonderfully for
the upper body, we encountered numerous issues integrating
such a system into the avatar’s feet and legs. Thus the lower
body is animated using the more traditional FABRIK [4] IK
algorithm which is used to determine the rotations necessary for
the feet, knees, and hips to all be properly positioned.

We originally were using FABRIK based IK for the arms
and spine, as well as the legs. But perusing alternative
implementations during development showed some of the
interesting benefits of using a physics simulation; for instance,
a hand properly interacting with the opposite out-stretched arm.
A behavior which a properly tuned physics simulation simply
provides that would be a tremendous amount of effort to emulate
using traditional IK techniques. Thus we began implementing a
version of PhysIK that would work in Unity. Due to the nature
of Unity’s physics system, this means that almost everything
from PhysIK, except the ideas, was abandoned.

More specifically two main physics “constraints” have been
adapted. A constraint which pulls a joint towards a location
and a constraint which rotates a joint to match a rotation which,
when both visualized, leave the model looking a lot like a puppet
on strings as depicted in Figure 4.

Figure 4: A visualization of the forces (red) and torques (blue)
acting on an example avatar

A puppet on a string is an excellent explanation of how the
location constraint works. It simply applies a force towards
the targeted point which grows stronger the further away from
the target the joint is; almost as if it is pulled by an invisible
string. Figure 5 lists the code, executed every physics tick, to
implement this functionality.

Unfortunately, there is not a nice analogy for how the
rotation-matching constraint functions. It simply calculates the
quaternion needed to convert the current world space rotation
into the target world space rotation and then converts that
quaternion to the angular velocity form that Unity expects when
applying torques. There is a slight wrinkle; when applied to the
center of mass, this rotation looks odd, so instead, the center of

48

IICA, Vol. 30, No. 1, March 2023

// Every physics tick...
protected void FixedUpdate () {
// We are applying a force from our
// current position towards the
// target
var force = (target.position
— transform. position)
* springConstant;
// Cap the force
force = force.normalized
* Mathf . Min(
force . magnitude ,
maxForce
)
// Apply the force
rigidbody . AddForce (force);

Figure 5: The code for the constraint which pulls a joint towards
a target

mass has to be moved to the origin of the joint’s local coordinate
space since Unity always applies torques relative to the center
of mass. The code for this constraint is listed in Figure 6.

6 Applications

Once we developed our basic implementation, we needed to
test it in an actual application. We began by implementing a
Ping-Pong-like game with only a subset of the full game’s rules.
We then integrated our framework into an existing project [32],
performed as a joint partnership with the University of Nevada,
Reno’s Mining & Metallurgical Engineering Department, that
needed multiuser functionality.

6.1 Ping-Pong

The main goal of the Ping-Pong application was to stress
test the physics and ownership transfer aspects of uMuVR.
The framework allowed this application to be implemented
almost entirely without additional code; only two simple scripts:
one to manage scoring and balls and another to position the
scoreboard; combined only accounting for approximately 100
lines of code, where required.

Ping-Pong provides the quintessential application of
OwnershipVolumes: a volume is positioned on either side
of the net and each player owns half of the table. Figure 7
depicts this configuration. Additionally, the fast-paced nature
of Ping-Pong illuminated many of the issues inherent in the
behavior of the physics simulation surrounding an ownership
transfer, providing us a test-bed for experimenting to reduce the
jitter.

// Every physics tick...
protected void FixedUpdate () {
// Reset the center of mass so that

// torque is properly applied
rb.centerOfMass = Vector3. zero;
rb.inertiaTensor = Vector3.one;

// Calculate how much we need to
// rotate to match the object
var diff = offset
* target.protation.Diff(
transform.rotation
)
diff.ToAngleAxis(
out var angle,
out var axis
)
// Apply a torque
// occur
rigidbody . maxAngularVelocity
= springConstant;
rigidbody . AddTorque (
axis * (angle = Mathf.Deg2Rad)
#+ springConstant ,
ForceMode . VelocityChange

to make this change

);

Figure 6: The code for the constraint which rotates a joint to
match another joint’s rotation. The center of mass
needs to be reset so that torque is applied to the
object’s origin and not its center of mass

6.2 Mining Application

The addition of multiuser functionality allowed us
to collaborate with Mining researchers on a training
simulation [32]. This simulation is designed to teach mining
truck drivers how to utilize a new proximity warning system
to avoid collisions with equipment and personnel they can not
see. This integration greatly challenged our original pose-slot
implementation.

Instead of only needing to translate input for a human body,
we also had to synchronize several properties associated with a
mining dump truck whose Visual and Input Layers are depicted
in Figure 8. This caused us to realize the inadequacies of our
original fixed pose-slot mapping and led to its replacement with
the current dynamic system.

In addition to extra poses that now needed to be tracked, we
also had a car controller that needed direct access to wheel
meshes for both physics and animation purposes. Similarly,
several audio and haptic feedback utilities needed to be
synchronized in both the Input and Visual Layers. Instead

1JCA, Vol. 30, No. 1, March 2023

49

Figure 7: The Ping-Pong table with its two OwnershipVolumes outlined in green

of rewriting all of this functionality ourselves, we used the
UserAvatar’s flexible extension ability to link these properties
for us. Figure 9 lists all of the code necessary to facilitate this
additional linkage.

7 Future Work and Conclusion

Looking to the future several aspects of uMuVR could be
improved. The most notable one being how the physics
simulation handles ownership transfers. While we have been
able to greatly reduce the jitter this entails, we have not been
able to eliminate it. Perhaps a Predictive Behavioral Model [17]
could be used to ease this issue.

Furthermore, while a foundation has been laid for work on
mixed VR and non-VR interactions, we have not even scratched
the surface of the work that must be done in this field. Factors
such as compelling interactions in both VR and non-VR still
need to be developed.

Currently, the physics simulations in the body presence
system takes a lot of manual tweaking to achieve acceptable
results. Ways to automate or at least partially automate this
process would be of great utility. Additionally, interactions
between the simulated hands and other objects in the scene
are inconsistent. Research has been done on this problem [13]
and thus implementing at least part of these solutions would be
beneficial. On the topic of hands, a lot of slots within the current
UserAvatars are being devoted to storing the poses of every
finger joint. It seems likely that it should be possible to simplify
this representation to simply the knuckle’s rotation and a single
value representing how open or closed the rest of the finger is.

The publicized weights for PFNN lead to an avatar that
tends to shuffle its feet, which can be undesirable when the
user is standing still. Training weights optimized for the
movements users tend to make in VR or maybe upgrading to
newer work done on the same problem could prove beneficial.
In a similar vein, the ad hoc tensor implementation that we are

Figure 8: The mining dump truck’s visual layer (left) and input layer (right)

50

using UnityEngine;
using UnityStandardAssets. Vehicles.Car;

public class TruckControlLinker
InputControlLinker {
public CarController car;

// Haptic feedback
public Telemetry telemetry;

}

public class TruckAvatar UserAvatar {
public GameObject[] wheelMeshes;
public Alarm alarm;
public NetworkCarAudio carAudio;

protected override void
OnlnputSpawned (GameObject input) {
var linker =
GetComponentInChildren
<TruckControlLinker >();
linker.car.m_WheelMeshes =
wheelMeshes ;
linker.car. Start ();

carAudio.carController =
linker .car;

alarm . telemetry =
linker . telemetry ;

Figure 9: The code used to link additional properties of the
Mining Dump Truck. Every public attribute of
these classes is set using Unity’s visual editor.
Note that this example is based upon a slightly
older version of uMuVR which required a separate
InputControlLinker component. This requirement
has since been removed

currently using for PFNN is not hardware accelerated. If we
wish to use additional neural networks for tasks such as voice
transcription [39], unifying our tensor library in a manner that
supports hardware acceleration would be desirable.

Finally, none of this implementation matters if either users or
developers do not find the framework appealing. Thus several
user studies examining various aspects of the framework’s
implementations and development usability will need to be
conducted.

In conclusion, Novotny et al. created a useful framework
for multiuser VR experiences. We have followed their example
and expanded upon the foundation they laid. uMuVR has been
designed to be simple and extendable. These claims have been

IICA, Vol. 30, No. 1, March 2023

tested and proved by using the framework for the development
of several applications, one having requirements the framework
was not originally designed to support. It additionally provides
a unified framework for providing rich body presence facilities
for users to experience. We hope this framework will prove to
be a great boon to other developers and the VR field as a whole.

Acknowledgments

This material is based in part upon work supported by
the National Science Foundation under grant numbers OIA-
2019609, and OIA-2148788 Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation.

References

[1] aloneguid (Ivan G). “GitHub - aloneguid/IronSnappy:
NET Managed Port of Google Snappy”. https://
github.com/aloneguid/IronSnappy, Last Accessed

(1/11/2023).

[2] Vatsal Ambastha. “UniVoice: Voice chat/VoIP
Solution for Unity. P2P Implementation Included”.
https://github.com/adrenak/univoice, Last
Accessed (1/11/23).

[3] Kurt Andersen, Simone José Gaab, Javad Sattarvand, and
Frederick C Harris. “METS VR: Mining Evacuation
Training Simulator in Virtual Reality for Underground
Mines”. In Shahram Latifi, editor, “17th International
Conference on Information Technology—New Generations
(ITNG 2020)”, Springer International Publishing. pp. 325-
332, 2020. doi:10.1007/978-3-030-43020-7_43.

[4] Andreas Aristidou and Joan Lasenby. “FABRIK:
A Fast, Iterative Solver for the Inverse Kinematics
Problem”. Graphical Models. 73(5):243-260, 2011.
doi:10.1016/j.gmod.2011.05.003.

[5] Andreas Aristidou, Joan Lasenby, Yiorgos Chrysanthou,
and Ariel Shamir. “Inverse Kinematics Techniques
in Computer Graphics: A Survey”. Computer
graphics forum. 37(6):35-58, September 2018.
doi:10.1111/cgf.13310.

[6] Polona Caserman, Philipp Achenbach, and Stefan Gobel.
“Analysis of Inverse Kinematics Solutions for Full-
Body Reconstruction in Virtual Reality”. In “2019
IEEE 7th International Conference on Serious Games
and Applications for Health (SeGAH)”, pp. 1-8, 2019.
doi:10.1109/SeGAH.2019.8882429.

[7] Frederick Choi.
Kinematics
[online].

“PhysIK: Physics Based Inverse
for Character Posing and Animation”.
https://www.cs.rpi.edu/~cutler/

IJCA, Vol. 30, No. 1, March 2023

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

classes/advancedgraphics/S19/final_projects/
fred.pdf, Last Accessed (1/11/2023), 2019.

Gerald Combs. “Wireshark - Go Deep.” https://wuw.
wireshark.org/, Last Accessed (1/11/2023).

John Coumerilh.
https://www.standablevr.com/projects-8,
Accessed (1/11/2023).

“Standable: Full Body Estimation”.
Last

Joshua Dahl. “Compression Benchmarks at
Benchmark/Base”. [online]. https://github.
com/hpcvis/FishyVoice/tree/benchmark, Last
Accessed (1/11/2023).

Joshua Dahl. “Networking Benchmarks at
Benchmark/Base”. [online]. https://github.com/
hpcvis/MuVR/tree/benchmark/base, Last Accessed
(1/11/2023).

Joshua Dahl, Erik Marsh, Christopher Lewis, and
Frederick C. Harris. “GitHub: uMuVR-A Multiuser
Virtual Reality and Body Presence Framework for Unity”.
[online]. https://github.com/hpcvis/MuVR/tree/

uMuVR-AMultiuserVirtualRealityFrameworkforUnity

Last Accessed (1/11/2023).

Thibauld Delrieu, Vincent Weistroffer, and J. P. Gazeau.
“Precise and realistic grasping and manipulation
in Virtual Reality without force feedback”. In
“2020 IEEE Conference on Virtual Reality and
3D User Interfaces (VR)”, pp. 266-274, 2020.
doi:10.1109/VR46266.2020.00046.

Exit Games Inc. “Setting the Benchmark for
Multiplayer Games. — Photon Engine”. [online].
https://www.photonengine.com/en-US/Fusion,
Last Accessed (1/11/2023).

FirstGearGames. “Benchmark Setup”. https:
//fish-networking.gitbook.io/docs/manual/
general/performance/benchmark-setup,
Accessed (1/11/23).

Last

FirstGearGames. “Introduction - Fish-Net: Networking
Evolved”. https://fish-networking.gitbook.io/
docs/, Last Accessed (1/11/23).

Chen Gao, Haifeng Shen, and M. Ali Babar. “Concealing
Jitter in Multi-Player Online Games Through Predictive
Behaviour Modeling”. In “2016 IEEE 20th International
Conference on Computer Supported Cooperative
Work in Design (CSCWD)”, pp. 62-67, 2016.
doi:10.1109/CSCWD.2016.7565964.

Jorge Juan Gonzédlez. “FinallK - HPTK”.
https://jorge-jgnz94.gitbook.io/hptk/
integrations/finalik-1, Last Accessed (1/11/2023).

[online].

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

51

Toni Hirkonen. “Advantages and Implementation
of Entity-Component-Systems”. [online]. Bachelor
of Science Thesis https://urn.fi/URN:NBN:
fi:tty-201905231735, https://trepo.tuni.
fi//handle/123456789/27593, Last Accessed
(1/11/2023). April 2019.

Fernanda Herrera, Soo Youn Oh, and Jeremy N.
Bailenson. “Effect of Behavioral Realism on
Social Interactions Inside Collaborative Virtual
Environments”. Presence. 27(2):163-182, 2020.
doi:10.1162/pres_a_00324.

Daniel Holden, Taku Komura, and Jun Saito. “Phase-
Functioned Neural Networks for Character Control”.
ACM Trans. Graph. 36(4) article 42, July 2017,
doi:10.1145/3072959.3073663. 2017.

HouraiTeahouse. “Houraiteahouse/LZF: Simple C#
LZF Compression Library Which Attempts to Minimize
Memory Allocations”. [online]. https://github.com/
HouraiTeahouse/LZF, Last Accessed (1/11/2023).

Oliver Hummel and Colin Atkinson. “The Managed
Adapter Pattern: Facilitating Glue Code Generation for
Component Reuse”. In Stephen H. Edwards and Gregory
Kulezycki, editors, “Formal Foundations of Reuse and
Domain Engineering”, Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 211-224, 2009.

Dorota Kamirniska, Tomasz Sapifiski, Stawomir
Wiak, Toomas Tikk, Rain Eric Haamer, Egils Avots,
Ahmed Helmi, Cagri Ozcinar, and Gholamreza
Anbarjafari. ~ “Virtual reality and its Applications in
Education: Survey”. Information. 10(10):318, 2019.
doi:10.3390/info10100318.

Yoshihiro Kawano and Tatsuhiro Yonekura. “On
a Serverless Networked Virtual Ball Game for
Multi-Player”. In “2005 International Conference
on Cyberworlds (CW’05)”, pp. 270-278, 2005.
doi:10.1109/CW.2005.68.

Ben Kenwright. “Inverse Kinematics — Cyclic Coordinate
Descent (CCD)”. Journal of Graphics Tools. 16(4):177-
217, 2012. doi:10.1080/2165347X.2013.823362.

Milosz Krajewski. “GitHub - MiloszKrajewski/
K4o0s.Compression.LZ4: LZ4/LH4HC Compression for
NET Standard 1.6/2.0 (Formerly Known as LZANET)”.
[online]. https://github.com/MiloszKrajewski/
K4os.Compression.LZ4, Last Accessed (1/11/2023).

Catherine Oh Kruzic, David Kruzic, Fernanda Herrera,
and Bailenson Jeremy. “Facial Expressions Contribute
More than Body Movements to Conversational Outcomes
in Avatar-Mediated Virtual Environments”. Scientific
Reports (Nature Publisher Group). 10(1):1-23, 2020.
doi:10.1038/s41598-020-76672-4.

52

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Marc Erich Latoschik, Daniel Roth, Dominik Gall, Jascha
Achenbach, Thomas Waltemate, and Mario Botsch. “The
Effect of Avatar Realism in Immersive Social Virtual
Realities”. In “Proceedings of the 23rd ACM Symposium
on Virtual Reality Software and Technology”, Association
for Computing Machinery, New York, NY, USA, VRST
’17. doi:10.1145/3139131.3139156. 2017.

John P Lewis, Matt Cordner, and Nickson Fong. “Pose
Space Deformation: A Unified Approach to Shape
Interpolation and Skeleton-Driven Deformation”. In
“Proceedings of the 27th annual conference on Computer
graphics and interactive techniques”, pp. 165-172, 2000.
doi:10.1145/344779.344862.

Jean-Luc Lugrin, Maximilian Ertl, Philipp Krop, Richard
Kliipfel, Sebastian Stierstorfer, Bianka Weisz, Maximilian
Riick, Johann Schmitt, Nina Schmidt, and Marc Erich
Latoschik. “Any “Body” There? Avatar Visibility Effects
in a Virtual Reality Game”. In “2018 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR)”, pp. 17-24,
2018. doi:10.1109/VR.2018.8446229.

Erik Marsh, Joshua Dahl, Alireza Kamran Pishhesari,
Javad Sattarvand, and Frederick C. Harris. “A
Virtual Reality Mining Training Simulator for Proximity
Detection”. In “20th International Conference on
Information Technology: New Generations (ITNG
2023)”, Springer International Publishing, Advances in
Intelligent Systems and Computing. To Appear. 2023.

Kiran Nasim and Young J. Kim. “Physics-Based
Interactive Virtual Grasping”. In “Proceedings of HCI
Korea”, Hanbit Media, Inc., Seoul, KOR, HCIK ’16. pp.
114-120, 2016. doi:10.17210/hcik.2016.01.114.

Network Working Group, Internet Engineering Task
Force. “RFC1122: Requirements for Internet Hosts-
Communication Layers”. [online]. https://
www.rfc-editor.org/rfc/rfc1122, Last Accessed
(1/11/2023). 1989.

Alexander Novotny, Rowan Gudmundsson, and
Frederick C. Harris. “A Unity Framework for Multi-
Player VR Applications”. International Journal of
Computers and Their Applications. 27(3)115-121,
September 2020.

Open Handset Alliance. “Android Secure & Reliable
Mobile Operating System”. https://www.android.
com/, Last Accessed (1/11/23).

Chase Pettit. “GitHub - Chaser324/LZF: Simple C#
LZF Compression Library which Attempts to Minimize
Memory Allocations”. [online]. https://github.com/
Chaser324/LZF, Last Accessed (1/11/2023).

Ruslan Pyrch. “GitHub - RevenantX/LiteNetLib: Lite
Reliable UDP library for Mono and .NET”. [online].

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

IICA, Vol. 30, No. 1, March 2023

https://github.com/RevenantX/LiteNetLib, Last
Accessed (1/11/2023).

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. “Robust Speech
Recognition via Large-Scale Weak Supervision”. doi:10.
48550/ARXIV.2212.04356. 2022.

Anastasia Rychkova, Alexey Korotkikh, Andrey Mironov,
Artem Smolin, Nadezhda Maksimenko, and Mikhail
Kurushkin. “Orbital Battleship: A Multiplayer
Guessing Game in Immersive Virtual Reality”. Journal
of Chemical Education. 97(11):4184-4188, 2020.
doi:10.1021/acs.jchemed.0c00866.

Oleg Stepanischev. “GitHub - oleg-st/ZstdSharp: Port of
ZSTD Compression Library to C#°. [online]. https:
//github.com/oleg-st/ZstdSharp, Last Accessed
(1/11/2023).

Heather A Stoner, Donald L Fisher, and Michael
Mollenhauer. “Simulator and Scenario Factors Influencing
Simulator Sickness”. In Donald L. Fisher, Matthew
Rizzo, Jeffrey Caird, and John D. Lee, editors, “Handbook
of Driving Simulation for Engineering, Medicine, and
Psychology”, CRC Press/Taylor & Francis, Boca Raton
FL, pp. 220-243. 2011.

Stress Level Zero. “Stress Level Zero”. [online].
https://www.stresslevelzero.com/, Last Accessed
(1/11/2023).

The Khronos Group Inc. “OpenXR Overview - The
Khronos Group Inc”. [online]. https://www.khronos.
org/openxr/, Last Accessed (1/11/2023).

Unity Technologies. “About Netcode for GameObjects”.
https://docs-multiplayer.unity3d.com/
netcode/current/about, Last Accessed (1/11/2023).

Unity Technologies. “C# Job System”. https:
//docs.unity3d.com/Manual/JobSystem.html, Last
Accessed (1/11/2023).

Unity Technologies. “Unity Real-Time Development
Platform — 3D, 2D VR &; AR Engine”. [online]. https:
//unity.com/, Last Accessed (1/11/2023).

Unity Technologies. “XR Interaction Toolkit: 2.0.4”.
[online]. https://docs.unity3d.com/Packages/
com.unity.xr.interaction.toolkit@2.0/manual/
index.html, Last Accessed (1/11/2023).

vis2k. “Mirror Networking, Documentation”. [online].
https://mirror-networking.gitbook.io/docs/,
Last Accessed (1/11/2023).

VRMADA. “UltimateXR: The XR Framework and
Toolkit”. [online]. https://www.ultimatexr.io/,
Last Accessed (1/11/2023).

1JCA, Vol. 30, No. 1, March 2023

[51] XielJ99, James Hopper, and AzureGem. “GitHub -
XielJ99/brotli.net: The .Net Implementation for the Brotli
Algorithm”. [online]. https://github.com/XieJJ99/
brotli.net, Last Accessed (1/11/2023).

Joshua Dahl is currently a student
at the University of Nevada, Reno.
He is pursuing a BS with a major
in Computer Science and Engineering
and a minor in Mathematics. When
he graduates he is planning on
pursuing a Ph.D. in Computer Science
; . %1 where he hopes to continue to make
contributions to both the fields of computer graphics and
programming languages.

Erik Marsh is currently pursuing
a MS in Computer Science at the
University of Nevada, Reno. He
received a BS in Computer Science
and Engineering with a minor in
Mathematics from the University of
Nevada, Reno in 2022. His research

. N interests include input devices, real-
time simulations, and data visualization.

53

Christopher Lewis received his BS
and MS degrees in Computer Science
and Engineering from the University
of Nevada, Reno in 2020 and 2022
respectively. During this time he
specialized in Virtual Reality as a
researcher in the High Performance
; Computation and Visualization Lab.
Since graduating, he has went on to work as an engineer for
Moth + Flame, a company making high quality VR training
experiences in both hard and soft skills. He has plans to return
to academia for a PhD in a few years.

Frederick C. Harris, Jr. received his
BS and MS degrees in Mathematics
and Educational Administration from
Bob Jones University, Greenville, SC,
USA in 1986 and 1988 respectively.
He then went on and received his
MS and Ph.D. degrees in Computer
Science from Clemson University,
Clemson, SC, USA in 1991 and 1994
respectively.

He is currently the Associate Dean
for Research in the College of
Engineering, a Foundation Professor in the Department of
Computer Science and Engineering, and the Director of the
High Performance Computation and Visualization Lab at the
University of Nevada, Reno. Since joining UNR, he has worked
on research projects funded by federal agencies (NSF, NASA,
DARPA, ONR, DoD) as well as industry. He is also the Nevada
State EPSCoR Director and the Project Director for Nevada
NSF EPSCoR. He has published more than 300 peer-reviewed
journal and conference papers along with several book chapters
and has edited or co-edited 14 books. He has had 14 PhD
students and 81 MS Thesis students finish under his supervision.
His research interests are in parallel computation, simulation,
computer graphics, and virtual reality. He is also a Senior
Member of the ACM, and a Senior Member of the International
Society for Computers and their Applications (ISCA).

