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ABSTRACT

Multivariate time series forecasting is a critical problem in many real-world scenarios. Recent advances in deep learning
have significantly enhanced the ability to tackle such problems. However, a primary challenge in time series forecasting
comes from the imbalanced time series data that include extreme events. Despite being a small fraction of the data instances,
extreme events can have a negative impact on forecasting as they deviate from the majority. However, many recent time series
forecasting methods neglect this issue, leading to suboptimal performance. To address these challenges, we introduce a
novel model, the Extreme Event Adaptive Gated Recurrent Unit (eGRU), tailored explicitly for forecasting tasks. The eGRU is
designed to effectively learn both normal and extreme event patterns within time series data. Furthermore, we introduce a time
series data segmentation technique that divides the input sequence into segments, each comprising multiple time steps. This
segmentation empowers the eGRU to capture data patterns at different time step resolutions while simultaneously reducing the
overall input length. We conducted comprehensive experiments on four real-world benchmark datasets to evaluate the eGRU’s
performance. Our results showcase its superiority over vanilla RNNs, LSTMs, GRUs, and other state-of-the-art RNN variants
in multivariate time series forecasting. Additionally, we conducted ablation studies to demonstrate the consistently superior
performance of eGRU in generating accurate forecasts while incorporating a diverse range of labeling results.

Introduction
The forecasting of time-series data holds immense significance in contemporary society, with research findings in this domain
offering versatile solutions to practical challenges. For instance, the development of real-time wildfire spread forecasting
systems is indispensable for proactive risk management1, while nitrate prediction models play a pivotal role in efficient water
resource management2. Accurate time series forecasting models assume a vital role in safeguarding lives and property. In
recent years, deep learning has showcased its superior capabilities compared to conventional methods in the domain of time
series forecasting3. Specifically, Recurrent Neural Networks (RNNs), designed for processing sequential data, have emerged as
a competitive approach for tackling time series forecasting problems. Rumelhart et al.4 introduced the vanilla RNN, which
shares the same weights at all time steps and then updates the weights using the back-propagation algorithm. Long short-term
memory (LSTM) is a commonly used type of RNN. For example, Zhao et al.5 applied LSTM to short-term traffic forecasting
to learn temporal-spatial correlation in traffic systems. Cho et al.6 proposed a Gated Recurrent Unit (GRU), which builds on
LSTM, has a simpler architecture, and is more efficient. Our proposed eGRU is based on GRU and the main goal is to assist
RNNs to differentiate between normal and extreme events.

Extreme events, such as hurricanes, system failures, and stock market crashes, are infrequent yet profoundly impactful
events that have considerable influence on data patterns. Machine learning techniques have been proposed to leverage historical
data patterns for various applications7, 8. Nonetheless, it is imperative to recognize that data patterns can significantly diverge
between normal and extreme events. Consequently, an effective time series forecasting method should possess the capability to
differentiate and predict extreme events within the data stream. Despite numerous studies dedicated to detecting normal and
extreme events, a comprehensive literature review9 highlights the limited research addressing the customization of machine
learning models to efficiently capture the distinctions between extreme and normal events for forecasting tasks. For time
series forecasting problems, researchers often overlook the fact that extreme events can mislead a machine learning model
because their distribution is different from the vast majority of data instances. Consequently, most methods proposed in recent
years analyze extreme and normal events indiscriminately. An alternative strategy often employed involves the exclusion
of all extreme events from the dataset. However, this practice comes with a drawback—it prevents the model trained with
extreme events10. Ding et al.11 described the heavy-tailed distributions, and concluded that the previous deep learning methods
neglected the extreme events and failed to model the tail. They also pointed out that insufficient data for extreme events is
the reason that the performance of deep learning time series forecasting methods is degraded. Zhang et al.12 introduced a



framework that utilizes two distinct machine learning models for the prediction of normal and extreme events in time series
data. Given the scarcity of extreme events, the machine learning model trained on limited extreme events data suffers from
underfitting.

In this paper, we propose a novel extreme event adaptive gated recurrent unit called eGRU for multivariate time series data
forecasting. The eGRU architecture is derived from the vanilla GRU but is customized to maintain two distinct hidden states for
modeling normal and extreme events. This enables the eGRU to effectively capture the distinct data patterns of normal and
extreme events while preserving temporal information within the input sequence.

The main contributions of this paper are as follows:

• We propose a novel GRU architecture, denoted as eGRU, specifically designed for time series forecasting tasks. The
proposed eGRU models normal and extreme events separately while preserving the inherent temporal information of the
time series data. This is achieved by utilizing a shared set of weights and biases and maintaining two separate hidden
states to capture the dynamics of normal and extreme events independently.

• We introduce a time series data segmentation technique that partitions an input sequence into segments. the eGRU aims
to learn the pattern of segments, which consist of multiple time steps, rather than focusing on individual time steps.

• We performed extensive experiments to evaluate the effectiveness and robustness of our proposed eGRU architecture in
multivariate time series forecasting. The experimental results demonstrate that eGRU can leverage temporal information
within normal and extreme events, leading to superior performance compared to RNN, LSTM, GRU, and state-of-the-art
RNN variants. Furthermore, the ablation study results demonstrate that the accuracy of extreme event labeling has
minimal impact on the time series forecasting accuracy of the eGRU, thereby indicating its robustness in this regard.

Methods
This section provides a detailed introduction to the proposed eGRU method for time series forecasting. We begin by introducing
the one-layer eGRU framework and discuss the time series segmentation operation. Next, we then explain the architecture
of the eGRU cell. Finally, we detail the forward and backward propagation processes of the eGRU layer and discuss how it
benefits time series forecasting tasks.

eGRU framework
The multivariate time series (MTS) forecasting task aims to generate predictions Xpred ∈ RO×D for future O time steps by
modeling historical records X ∈ RI×D.

In Figure 1(b), we present a framework comprising a one-layer eGRU, with each eGRU step representing an eGRU cell,
and its detailed architecture is illustrated in Figure 1(a). The input to the framework, denoted as X ∈ RI×D, represents an MTS
sequence of length I and comprises D variables. The binary label input for the eGRU, denoted as L ∈ RI , with values of either
0 or 1, representing normal and extreme time steps, respectively. The detailed label generation algorithm for time series data
utilizing percentile thresholds is introduced in the Supplementary (Section 1). The eGRU framework initiates with the time
series segmentation step, wherein the input sequence is partitioned into segments containing values at multiple time steps.

Time Series Segmentation
For RNN-based time series forecasting tasks, the conventional approach involves using a single time step iteration of the
RNN. However, it’s important to note that time series data inherently carry less semantic information compared to other data
types, such as images or words. Analyzing time series data typically involves examining patterns over a period, such as how
variables change within a specific time window and the characteristics they exhibit during that time. This inherent nature of
time series data makes it challenging to effectively capture data patterns when modeling the hidden state at an individual time
step resolution. Another drawback of analyzing time series data at a single time step resolution is that the length of the input
sequence may be very long, for example, the data sampled 6 times per hour has a total of 1,008 time steps in one week. The
RNN model is naturally susceptible to gradient vanishing and gradient explosion as the length of the input sequence increases.
This leads to increased complexity in the training process and makes convergence more challenging.

To address these issues, we introduce time series data segmentation for RNN which can also be used for our proposed
eGRU framework shown in Figure 1(b). Given an input time series sequence X and label L of length I, and a segment size of p,
the segment operation partitions the entire input sequence into segments as follows:

Xseg = Segment(X,X0, p)

Lseg = Mode(Segment(L,L0, p))
(1)
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Figure 1. (a): The architecture of the eGRU cell. (b): Illustration of the proposed eGRU framework.

Here, Xseg ∈ RT×p×D represents MTS segments, with T = ⌈I/p⌉ being the number of segments. X0 denotes zero-padding,
applied in case the sequence length I is not divisible by the segment size p. The label L undergoes an additional Mode procedure
to generate segments’ label Lseg ∈ RT . For example, the input sequence length in Figure 1(b) has 9 time steps, it is divided into
3 segments, each with a length of 3. The label for segments is determined as the mode value among the labels of individual
segments.

Extreme Adaptive Sub-series Temporal Dependencies
As a consequence of the Segment procedure, our proposed eGRU operates in a channel-independent manner, in contrast to
existing RNN-based methods. While traditional approaches consider values of multiple variables at a single time step as input
for each iteration, the eGRU takes values of a single variable across multiple time steps as input for each iteration. Consequently,
the input length is dramatically reduced to just 1/p of the original sequence. This reduction significantly alleviates the issue of
gradient explosion commonly associated with the eGRU. This distinctive feature allows the eGRU to operate independently
for each variable, with a specific focus on modeling the temporal data patterns for individual variables. The eGRU iteratively
processes time series segments of individual variables, producing output hidden states as follows:

hd = eGRUd

(
Xd

seg,Lseg

)
(2)

Where Xd
seg is the d-th series in the MTS data, eGRUd is the d-th eGRU model designed to capture temporal dependencies in

the univariate series, and hd is the output hidden state. Note that eGRU has two hidden states for normal and extreme events,
respectively. The output hidden state is selected according to the label of the input. The hidden state from the last iteration
is chosen to generate predictions for the target time step. The eGRU framework does not require a label for the prediction
target. For example, the single-layer eGRU illustrated in Figure 1(b) receives three labeled segments as input. Each eGRU step
processes a segment and its associated label, subsequently updating and outputting the corresponding hidden state (as shown in
Figure 1(a)). The eGRU layer outputs normal hidden states in the last step of Figure 1(b), which are subsequently employed to
generate time series forecasts.

Forecast Inference
Finally, a linear layer is employed to establish the mapping between the hidden state and the output forecasts as follows:

Xd
pred = Linear(hd)

Xpred = Concat
(

X1, · · · ,Xd , · · · ,XD
) (3)

Here, Xd
pred ∈ RO×1 denotes the predictions for the d-th variable over a forecast horizon of O time steps. The overall prediction

Xpred ∈ RO×D is obtained by concatenating predictions for all D variables.
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eGRU cell architecture
The eGRU architecture maintains two distinct hidden states, referred to as normal and extreme states, with the specific purpose
of modeling normal and extreme events within the input time series data. In an RNN, the hidden state functions as a latent
representation that undergoes updates at each iteration based on the input. The vanilla GRU architecture models all the time
steps with a single hidden state h, making it ineffective in capturing the distinct data patterns associated with normal and
extreme events. In contrast to the vanilla GRU architecture, our proposed eGRU employs distinct hidden states for extreme
events (hE ) and normal events (hN). This design empowers the eGRU to model the normal and extreme events independently,
thereby enhancing its capacity to accurately capture the characteristics of both types of data instances. It is worth mentioning
that eGRU preserves the temporal information within the input sequence, resulting in an accurate representation of the data
through its hidden states. The accurate representation of the data through the proposed eGRU’s hidden states advances the
accuracy of time series forecasting.

In Figure 1(a), the architecture of the eGRU cell is illustrated. It requires two inputs: (1) a length p time series segment,
denoted xt , and (2) the corresponding label of the segment, lt . The first procedure of eGRU is to determine the label of the
current iteration. It has a label lt indicating whether the input is a normal or an extreme event. We denote the hidden state from
the previous iteration t −1 as hN

t−1 and hE
t−1. Then, the corresponding hidden state for the eGRU cell is chosen as follows:

ht−1 =

{
hE

t−1, if lt = 1
hN

t−1, if lt = 0
(4)

where h(t−1) is the hidden state to be updated. This procedure is performed by a 2∗2 crossbar switch. It takes two signals and a
label value as inputs. The crossbar switch will exchange the path of two signals if the label value is 0. This operation enables
the eGRU cell to update the hidden state based on the label at iteration t. Once the hidden state is determined, the computation
within the eGRU cell remains consistent with that of the vanilla GRU cell, as outlined below:

rt = σ(Wirxt +Bir +Whrht−1 +bhr)

zt = σ(Wizxt +Biz +Whzht−1 +bhz)

nt = tanh(Winxt +bin + rt ∗ (Whnht−1 +bhn))

ht = (1− zt)∗nt + zt ∗ht−1

(5)

where rt , zt , and nt are intermediate variables that represent reset, update, and new gates, respectively. ht is the hidden state at
iteration t obtained from input xt , and hidden state ht−1 is at iteration t −1. σ and tanh are logistic sigmoid and hyperbolic
tangent activation functions, respectively. Lastly, ∗ is the element-wise product. The eGRU cell contains two sets of weights
and biases, Wir,Bir,Wiz,Biz,Win,bin are the parameters for the input sequence, and Whr,bhr,Whz,bhz,Whn,bhn are for the hidden
state. After the hidden state ht is obtained, the eGRU then updates the normal and extreme hidden states as follows

hE
t ,h

N
t =

{
ht ,hN

t−1 if lt = 1
hE

t−1,ht if lt = 0
(6)

where hN
t and hE

t are normal and extreme hidden states, respectively.

eGRU layer architecture
The eGRU layer requires two inputs: (1) the multivariate time series data xt−T :t where T is the input sequence length, and
(2) the label lt−T :t . For each iteration of the eGRU from t −T to t, the calculation follows equations 4, 5, and 6. At one
iteration, either the normal or extreme is updated based on the corresponding label. By updating normal or extreme hidden
states step-by-step, we obtained both normal and hidden states for the whole input sequence.

Figure 2 is an example to show the workflow of a single layer eGRU with the input sequence t−T, t−T +1, · · · , t−2, t−1, t.
The input sequence starts at step t −T , and the eGRU loads the initial normal and extreme hidden states hN

0 and hE
0 . Since

the label lt−T is 0, the normal hidden state hN
t−T is updated. On the other hand, the extreme hidden state hE

t−T remains the
same with hE

0 . The normal hidden state hN
t−T is the output ht−T at iteration t −T . Next, iteration t −T +1 is an extreme event.

Therefore, the eGRU loads hE
t−T from previous iteration and updates hE

t−T+1. The output ht−T+1 is the extreme hidden state.
The subsequent iterations follow the same procedure until it reaches the last iteration t. After working through the whole input
sequence, an eGRU layer obtains the layer output and the hidden states of the final iteration. In the example shown in Figure 2,
layer outputs are {hN

t−T ,h
E
t−T+1, · · · ,hN

t−2,h
N
t−1,h

E
t } containing the hidden states of the whole input sequence.

From an eGRU layer, we obtained normal and extreme hidden states that are aimed at modeling the normal and extreme
events, respectively. Note that we used the same set of parameters to update normal and extreme events. From the perspective
of the input sequence, the eGRU updates its weights and biases at each time step. Therefore, eGRU can also learn the temporal
pattern in the input sequence like a vanilla GRU.

4/11



t-T+1t-T
1

t-2 t-1
0

ht-T

N

E

E N
ht-T+1 ht-2 ht-1

eGRU eGRU
N

E
eGRU

0

N

eGRUN

E

N

E

N

E

0

N

eGRU
N

E

1
t

E
ht

N

E

Figure 2. Illustration of eGRU layer.

The Backpropagation Mechanism of eGRU

t-T+1t-T
1 00

t-2 t-1 t
10

N

E

N

E
eGRU eGRU eGRU eGRU eGRU

Figure 3. The eGRU back-propagation mechanics illustration.

For RNN, the back-propagation of multivariate time series can be denoted as follows.

∂h(t)

∂ht−T =W T−1 (7)

It is susceptible to gradient exploding or vanishing when the largest eigenvalue of W is greater or smaller than 1, respectively.
Although vanilla GRU mitigates this issue to some extent, it still necessitates gradient back-propagation through every iteration
in the input sequence, making it vulnerable to this problem when the input sequence length becomes substantial. In contrast,
eGRU updates either the normal or extreme hidden states within a single iteration. In other words, the hidden state can be
viewed as skipping several iterations. Therefore, when the gradient back-propagates from output to input, the iterations are less
than the total input length T . The occurrence of extreme events is significantly less than normal events, e.g. 10%. The gradients
for extreme events similarly only need to go through 10% of all the steps.

For example, the step at t −2 in Figure 3, its gradient hN
t−2 is calculated as follows.

∂hN
t

∂hN
t−2

=
∂hN

t

∂hN
t−1

∂hN
t−1

∂hN
t−2

(8)

where hN
t , hN

t−1, and hN
t−2 are the normal hidden state for step t, t −1, and t −2, respectively. The label of step t in Figure 3 is

extreme. Therefore, hN
t and hN

t−1 are identical, the t −1 step in Equation 8 can be omitted, the gradient backpropagation directly
calculated from hidden states at step t to t −2.

As shown in Figure 3, eGRU outputs only a normal or extreme hidden state at one iteration in forward propagation.
Therefore, in backward propagation, the gradient is only backward propagated from the blue (i.e., normal) or red line (i.e.,
extreme). That is, for which output is the extreme hidden state, all normal steps are skipped in the back-propagation. Similarly,
for which output is the normal hidden state, all the extreme steps are skipped. By the skip connection, the total orders of
Equation 7 are reduced for normal and extreme events. The total number of steps that both the extreme and normal gradients
traverse is equal to the length of the input.

Results
In this section, we present experimental results on four real-world multivariate time-series datasets to demonstrate the
effectiveness of our proposed eGRU for multivariate time-series forecasting. Our experiments indicate that eGRU outperformed
state-of-the-art RNN variants in terms of forecasting accuracy. Furthermore, we conducted an extensive ablation study to
evaluate the effectiveness of the main components of eGRU and important hyperparameters.
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Datasets and Metrics
We utilized the following four publicly available benchmark datasets13 with different characteristics to evaluate the performance
of the proposed eGRU.

Solar-Energy: This dataset collects the production data points for 137 solar power plants in the state of Alabama, with a
sample rate of 10 minutes, for the year 2006. A total of 52,560 samples. An intriguing feature of this dataset is the occurrence
of zero values in the evening.

Traffic: This dataset contains road occupancy rate measurements (between 0 and 1) of 862 freeway sites in the San Francisco
Bay area. Hence, the 862 variables in the datasets exhibit spatial correlation. The California Department of Transportation
provides over ten years of publicly available data. Lai13 collected hourly data for 48 months (2015-2016), yielding 17,544
samples in total.

Electricity: UCI Machine Learning Repository provides this dataset which contains the electricity consumption of 321
clients measured in kWh every 1 hour from 2012 to 2014. The electricity consumption exhibits a distinct daily pattern. A total
of 26,304 samples.

Exchange-Rate: This dataset reflects for 27 years (1990-2016) of daily exchange rates of 8 major world economies:
Australia, Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore. This dataset contains 7,588 samples in
total. This dataset is unique in its absence of discernible seasonal patterns. Conversely, it demonstrates a pronounced degree of
locality.

The datasets were partitioned into distinct subsets, namely the training set, validation set, and test set, with a ratio of 0.6,
0.2, and 0.2, respectively. The training set was employed for model training, and the optimal model was selected based on the
minimum loss function value observed on the validation set. Subsequently, the saved optimal model was loaded for testing on
the test set, generating a comprehensive set of evaluation metrics that elucidate the model’s performance on the test data.

We utilized three widely adopted metrics14 to evaluate time series forecasting tasks: relative squared error (RSE), relative
absolute error (RAE), and empirical correlation coefficient (CORR). These metrics were employed to evaluate the performance
of both the proposed eGRU model and other baseline models. Lower values of RAE and RSE indicate superior performance,
while higher values of CORR suggest better model performance.

Implementation Details
The experiments were conducted on a Linux server equipped with a single NVIDIA GeForce RTX 3090 24 GB GPU. The
hyperparameter settings used in this study were chosen manually during the experimental procedure. The initial learning rate
for all four datasets was set to 1e− 3. The number of hidden units in the RNN was set to 100. The loss function used for
the Exchange-Rate dataset was L1 loss, while for the other datasets, L2 loss was utilized. The batch size for all datasets was
set to 32, and the input sequence length was set to 24∗7. The segment size for time series segmentation was set to 24. To
enable forecasting using the eGRU model, we employ a threshold k of 90%. The window size w and slide steps s were set to
1,000 and 100, respectively, for the Exchange-Rate dataset, whereas for all other datasets, we set these parameters to 10,000
and 1,000, respectively. In ablation studies assessing the effectiveness of the components and hyperparameters, all settings
remained consistent with those previously introduced, except for the specific component or hyperparameter under evaluation.

Baseline Methods
To evaluate the performance of the proposed eGRU, we conducted experiments comparing it with the vanilla RNN, LSTM,
GRU, 6 variants of RNNs, and 2 RNN-based frameworks:

• RNN4: The vanilla RNN architecture iteratively processes input sequences, updates its weights and biases, and generates
a hidden state to model the underlying data patterns.

• LSTM5: The vanilla LSTM architecture introduces the input, forget, cell, and output gates into the vanilla RNN. LSTM
employs these four elements to model both long-term and short-term data patterns within the input sequence, saving
information as the hidden state and cell state.

• GRU6: The vanilla GRU architecture employs two gated mechanisms, namely Reset and Update, to sustain a single
hidden state that captures the temporal dynamics of the input time series data. By reducing one gated mechanism
compared to the LSTM architecture, the GRU architecture exhibits greater efficiency, as it has fewer learnable parameters.

• SkipGRU15: A novel RNN modified from existing RNN architecture to selectively skip the hidden state updates in the
sequential computations. Hence, it shortens the length of the computational sequence.

• ZoneoutLSTM16: The zoneout technique was applied to the LSTM to stochastic determine whether the hidden state and
cell state at a time step should be updated or retained from the previous time step.
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• PhasedLSTM17: The PhasedLSTM is an extension of the vanilla LSTM architecture that introduces a new time gate
controlled by a parameterized oscillation. This gate enables updates of the memory cell to occur only during a small
portion of the oscillation cycle.

• IndRNN18: The cells within the same layer are independent and they are connected with cells of other layers.

• mLSTM19: The mLSTM model integrates a memory filter component that dynamically assigns weights to the time steps
of an input sequence.

• HSNLSTM20: This framework incorporates an LSTM with an adaptive and hybrid spiking module that utilizes spiking
neural networks. The embedded LSTM collaborates with two attention mechanisms to enhance its capabilities.

• LSTNet13: LSTNet is a deep learning framework that leverages CNNs to capture local dependencies among variables
and RNNs to learn long-term temporal dependencies. The framework also incorporates a skip RNN architecture, which
is designed to capture dependencies between long time intervals. To generate final predictions, LSTNet employs
elementwise sum and linear bypass operations.

• TPA-LSTM14: TPA-LSTM utilizes a single-layer RNN to learn a set of hidden states and subsequently employs a set
of CNN filters to extract short-term patterns. The CNN and RNN outputs are integrated using an attention mechanism,
allowing the model to learn the weighting and combination of these hidden states, to generate forecasts.

Main Results
Table 1 presents the main experimental results of all methods for four datasets in terms of three metrics. In time series
forecasting tasks, predicting time steps that are further into the future is generally more challenging. For this study, we selected
forecast horizons of 3, 6, 12, and 24 time steps to assess the performance of methods under varying levels of task difficulty. The
best results of each case (dataset, horizon, and metric) are highlighted in bold within the table.

For the Solar-Energy dataset, eGRU was better than GRU for horizon 24, while it was worse for horizons 3, 6, and 12.
However, mLSTM performed the best for this dataset. We conjecture that this is because the production of solar power plants
has a much clearer pattern compared to other datasets, i.e., 0 during nights and peaks during daytime. These clear patterns can
be easily learned by other forecasting models, and their performance is similar to or even slightly better than GRU.

For the remaining three datasets, eGRU performed the best for all horizons in terms of all metrics. Taking horizon 24 as an
example, Supplementary Figure S1 displays the bar plots of RSE, RAE, and CORR for the ten methods. For the Solar-Energy
dataset, eGRU outperformed GRU but was outperformed by SkipGRU, mLSTM, and HSNLSTM. For all three datasets, eGRU
substantially outperformed GRU and other RNN variants. For instance, when evaluating performance on horizon 24 using
Traffic, Electricity, and Exchange-Rate datasets, eGRU outperformed GRU by 17.5%, 35.6%, and 60.6% in terms of the RSE
metric. As for CORR, eGRU improved from GRU by 6.15%, 6.1%, and 4.2%, on these 3 data sets. All variants of RNN
performed at the same level as vanilla GRU, while eGRU significantly improved accuracy.

In addition to RNN variants baselines, we compare the performance of one-layer eGRU with more complex RNN-based
models that utilize CNN and attention mechanisms. The performance comparison between eGRU, LSTNet, and TPA-LSTM
on horizon 24 is presented in Figure 4. eGRU outperformed both LSTNet and TPA-LSTM on the Solar-Energy and Traffic
dataset in terms of all metrics. For the Electricity dataset, eGRU also achieved better RSE and RAE than both frameworks, only
lost to LSTNet in terms of the CORR metric For the Exchange-Rate dataset, eGRU achieved the highest CORR score and
outperformed TPA-LSTM in terms of RSE and RAE. Overall, the eGRU model outperformed LSTNet and TPA-LSTM in 9 out
of the total 12 cases, indicating its superior performance.

Ablation Study
To demonstrate the effectiveness of the eGRU architecture, we conducted a comprehensive ablation study where we carefully
analyzed the main components and essential hyperparameters. This study allows us to gain a deeper understanding of the
factors that contribute to the superior performance of eGRU in comparison to other state-of-the-art RNN variants.

Time series segmentation. An important aspect of the eGRU framework is its time series segmentation design. Sup-
plementary Figure S2 shows the performance results of eGRU without the segmentation operation on a horizon of 24. The
model, referred to as eGRU-w/oSeq, had the segmentation operation removed. The results indicated that the eGRU without the
segmentation operation achieved lower RSE and RAE values for all four datasets and a higher CORR value for the Traffic and
Electricity datasets. However, the improvement in performance from the vanilla GRU was overall marginal. On the other hand,
the eGRU method presented in Supplementary Figure S2, which uses the segment operation, showed significant performance
improvement over the vanilla GRU. This demonstrates the effectiveness of the time series segmentation design in the eGRU
framework for accurate time series forecasting.
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RAE 0.1298 0.1894 0.2734 0.3551 0.4269 0.4597 0.4497 0.4627 0.0888 0.097 0.0959 0.0984 0.0753 0.0980 0.1143 0.1375

CORR 0.9813 0.9656 0.9349 0.8758 0.8391 0.824 0.8249 0.8219 0.8302 0.8313 0.8124 0.8328 0.9721 0.9558 0.9316 0.8963

Sk
ip

G
R

U RSE 0.2187 0.2659 0.3813 0.4822 0.5409 0.55 0.5632 0.5665 0.1463 0.172 0.274 0.1552 0.0848 0.1117 0.138 0.1391

RAE 0.1389 0.1836 0.2745 0.3403 0.417 0.4235 0.4448 0.4574 0.0975 0.109 0.1486 0.0974 0.0806 0.102 0.124 0.1515

CORR 0.9775 0.9665 0.926 0.8822 0.8427 0.8382 0.8298 0.825 0.8256 0.8151 0.676 0.8349 0.9614 0.9555 0.9301 0.8927

Z
L

ST
M RSE 0.2525 0.3201 0.4877 0.7661 0.5556 0.6036 0.5821 0.5839 0.1472 0.1764 0.1427 0.1688 0.1437 0.1591 0.1597 0.1751

RAE 0.1557 0.2334 0.3762 0.7344 0.4154 0.4618 0.4493 0.4508 0.09874 0.1096 0.1015 0.1002 0.1361 0.1516 0.1493 0.1625

CORR 0.9702 0.9494 0.874 0.6377 0.8381 0.7977 0.8209 0.8129 0.7747 0.7706 0.7844 0.8013 0.8722 0.8166 0.805 0.7216

PL
ST

M RSE 0.2048 0.2799 0.3534 0.4944 0.5301 0.5481 0.5544 0.576 0.1476 0.1372 0.1465 0.1531 0.1463 0.1817 0.1949 0.2065

RAE 0.1236 0.18 0.2381 0.3459 0.3962 0.4107 0.4317 0.4556 0.0905 0.0909 0.0968 0.0922 0.1373 0.1641 0.1764 0.1913

CORR 0.9803 0.9637 0.9382 0.8681 0.8488 0.8426 0.8342 0.8191 0.823 0.8248 0.8049 0.8263 0.9235 0.814 0.7566 0.5652

In
dR

N
N RSE 0.2074 0.2829 0.4619 0.6589 0.6445 0.7004 0.6493 0.6388 0.1361 0.1843 0.1715 0.1525 0.0939 0.0986 0.1223 0.1588

RAE 0.127 0.2018 0.4111 0.6252 0.553 0.6544 0.5502 0.5408 0.09591 0.1177 0.1124 0.0938 0.0876 0.0884 0.1107 0.1438

CORR 0.9797 0.9624 0.8958 0.7557 0.7883 0.7728 0.7839 0.7817 0.8179 0.8098 0.801 0.8437 0.8651 0.9006 0.8606 0.7551

m
L

ST
M RSE 0.1997 0.25 0.3295 0.4429 0.5251 0.5726 0.5542 0.5527 0.1214 0.13 0.1327 0.1571 0.1329 0.1657 0.1924 0.2215

RAE 0.1174 0.1543 0.216 0.3103 0.389 0.4359 0.4259 0.418 0.0842 0.0869 0.0926 0.0956 0.1278 0.1556 0.1766 0.2071

CORR 0.9812 0.9697 0.9454 0.897 0.8535 0.8353 0.836 0.8344 0.8278 0.8413 0.8152 0.8121 0.9162 0.8453 0.6581 0.5488

hs
nL

ST
M RSE 0.2065 0.2514 0.3401 0.4610 0.5526 0.5881 0.5777 0.5841 0.1493 0.141 0.1554 0.1238 0.2543 0.2724 0.2716 0.2608

RAE 0.1276 0.1657 0.2526 0.3889 0.4539 0.5024 0.4927 0.49 0.0970 0.0964 0.1044 0.0905 0.2313 0.2513 0.2497 0.237

CORR 0.9797 0.9698 0.943 0.8869 0.8425 0.8206 0.8292 0.8211 0.816 0.819 0.7821 0.7984 0.6624 0.5265 0.4638 0.5553

eG
R

U

RSE 0.2072 0.2912 0.3922 0.4717 0.4342 0.4583 0.4668 0.4722 0.0795 0.0872 0.0959 0.1004 0.0272 0.0309 0.0408 0.0598

RAE 0.1215 0.1907 0.2575 0.3292 0.2702 0.2934 0.2990 0.2984 0.0520 0.0544 0.0572 0.0583 0.0208 0.0255 0.0339 0.0507

CORR 0.9796 0.9570 0.9199 0.8774 0.8929 0.8802 0.8752 0.8725 0.9166 0.9008 0.8848 0.8836 0.9792 0.9707 0.9560 0.9338

Table 1. Comparison results (RSE, RAE, and CORR) of eGRU and baseline methods on four multivariate time series data: (1)
Each row represents the results of a method in terms of a specific metric. (2) Each column represents the results of a specific
horizon for each dataset. (3) The best results in the table are shown in bold.

Extreme events labeling. The labeling of normal and extreme events in time series data presents a challenging task. In the
context of time series forecasting, it is not the goal of this paper to compare the quality of extreme event detection results. We
assess the forecasting accuracy of eGRU to analyze the impact of extreme event labeling. Experiments were conducted under
two scenarios: the first scenario involves applying Algorithm S1 directly to the time series data. In contrast, the second scenario
involves applying Algorithm S1 to the anomaly score matrix obtained using the GDN method. The experimental results are
presented in Supplementary Figure S2.

For eGRU-GDN-w/oSeq and eGRU-GDN, the GDN method was utilized to label normal and extreme events using
Algorithm S1. The performance of eGRU-GDN-w/oSeq and eGRU-w/oSeq was similar for the Traffic and Exchange-Rate
datasets. While eGRU-w/oSeq performed better than eGRU-GDN-w/oSeq on the Solar-Energy dataset, the opposite was
observed for the Electricity dataset. As for the performance of eGRU and eGRU-GDN, it was found that they performed
similarly, except for the Exchange-Rate dataset where eGRU outperformed eGRU-GDN significantly.

Even though GDN is a state-of-the-art deep learning-based method that should generate more accurate normal and extreme
event labels, our experimental results in the two scenarios are similar. Thus, we conclude that the proposed eGRU architecture
is robust to the accuracy of normal and extreme event labeling and consistently produces accurate forecasting results.

Extreme events threshold. One of the critical parameters for Algorithm S1 is the hyperparameter k-th percentile, which
determines the threshold for identifying extreme events. A higher threshold results in Algorithm S1 labeling a higher proportion
of data instances as normal events and a lower proportion as extreme events. As previously mentioned, detecting extreme
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Figure 4. Accuracy assessment of the eGRU, LSTNet, and TPA-LSTM using RSE, RAE, and CORR on horizon 24. The
mean value of eGRU is indicated by a dashed red horizontal line.

events in time series data is a challenging task. Thus, we conducted experiments to evaluate how the threshold affects time
series forecasting. Supplementary Figure S3 presents the results of various thresholds for three metrics at horizon 24. Overall,
we observe that a higher threshold leads to better forecasting accuracy across all three metrics. This observation is consistent
with the assumption that extreme events are a small subset of all data instances that occur infrequently and have a different data
distribution from the majority.

The thresholds ranging from the 75th to the 90th percentile generally provide the best performance for the proposed eGRU
model. Furthermore, the performance of eGRU is highly robust to the choice of thresholds. eGRU incorporates all thresholds
that achieved the best performance compared to the baseline methods on the Traffic, Electricity, and Exchange-Rate datasets.
For example, on the Electricity dataset, eGRU achieved the highest (worst) RSE and RAE of 0.1036 and 0.0612, respectively,
with thresholds of 70 and 55. The best baseline method, HSNLSTM, achieved RSE and RAE of 0.1238 and 0.0905, respectively,
which is significantly higher. On the Electricity dataset, the range of RSE, RAE, and CORR is 0.0035, 0.00344, and 0.0076,
respectively. Similarly, for the other three datasets, the performance of eGRU varies only slightly with different thresholds
ranging from 50 to 90. Thus, we conclude that the eGRU method is highly robust to the choice of thresholds.

Considering the experimental results of Extreme events labeling and Extreme events threshold, we conclude that the
proposed eGRU method exhibits good robustness to the outcomes of extreme event detection. Despite the inherent difficulty of
this task, eGRU consistently outperforms baseline methods in most cases.

Input sequence length. Supplementary Figure S4 demonstrates the effect of input sequence length on the accuracy of
forecasting. It is important to note that HSNLSTM had some missing results for larger horizons due to its excessive memory
utilization. Additionally, we were unable to include mLSTM in this analysis as its code performed significantly slower for
longer input sequence lengths.

Generally, eGRU demonstrates more accurate predictions for longer input sequences. However, Supplementary Figure
S4 reveals distinct trends for the four datasets. The Solar-Energy and Traffic datasets exhibit a sharp decline in accuracy for
eGRU when the input sequence length is less than 168 (28 hours for solar and 7 days for traffic). The optimal input sequence
length for these datasets is 1176 (8.16 days) and 840 (35 days), respectively. In contrast, the performance of eGRU for the
electricity dataset only slightly drops when the input sequence length is shorter than 168. The Exchange-Rate dataset exhibits an
intriguing characteristic whereby the accuracy of the eGRU remains relatively constant across varying input sequence lengths.
Surprisingly, unlike other datasets, the optimal input sequence length for this dataset is precisely 24. We conjecture that this
unique behavior may be attributed to two factors. First, there are no discernible periodic patterns in the Exchange-Rate dataset.
Second, the input sequence length of 24 already captures stock price changes for 24 days, given the daily sample rate.

Size of segmentation. The segmentation of multivariate time series data is a crucial aspect of designing the eGRU.
Supplementary Figure S5 illustrates the results of an ablation study conducted to evaluate the effects of various sizes of
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segmentation operations. The effect of segmentation size also exhibits distinct characteristics across different datasets.
Specifically, the performance of eGRU on the Solar-Energy dataset demonstrates a steady improvement with increasing
segmentation size. The Traffic and Electricity datasets show a similar trend of improved performance with increasing
segmentation size until reaching an optimal peak at approximately 42 and 56, respectively, after which performance begins
to decline. Notably, on the Exchange-Rate dataset, the performance of eGRU exhibits an opposite trend, decreasing as the
segmentation size increases. Notably, we observed that eGRU attained the highest accuracy across all segmentation sizes when
applied to the Traffic, Electricity, and Exchange-Rate datasets. This finding highlights the robustness and effectiveness of eGRU
in forecasting multivariate time series data.

The segmentation size plays a critical role not only in the accuracy of eGRU but also in its computation time. The iteration
of eGRU can be significantly reduced by dividing the input sequence into segments of suitable sizes. For instance, consider an
input sequence length of 168 and two different segmentation sizes, 3 and 84. The number of iterations required for segmentation
sizes of 3 and 84 would be 56 and 2, respectively. This observation underscores the importance of selecting an appropriate
segmentation size to minimize the computational overhead of eGRU while maintaining high accuracy.

We conclude that the performance of eGRU is optimized with longer input sequence lengths and larger segmentation sizes
when applied to datasets with periodic patterns. Conversely, for datasets lacking periodic patterns, eGRU’s performance is
enhanced with shorter input sequence lengths and smaller segmentation sizes. It is essential to select appropriate input sequence
lengths and segmentation sizes based on the characteristics of the dataset to achieve optimal results with eGRU. However, it is
worth noting that even though the input sequence length of 168 and segmentation size of 24 are not the optimal selection for
any of the datasets as Supplementary Figure S5 shows, eGRU still outperformed state-of-the-art RNN variants by a significant
margin.

Robustness against randomness. To assess the robustness of our experimental results against the randomness of eGRU’s
weights and biases initialization, we repeated our experiments five times, and the mean and standard deviation values of
experimental results in terms of RSE, RAE, and CORR are presented in Supplementary Table S1. Consistent with the main
results presented in Table 1, the eGRU model achieved the best average value for all metrics on the Traffic, Electricity, and
Exchange-Rate datasets. Moreover, the eGRU model outperformed the other models regarding standard deviation for the
Electricity and Exchange-Rate datasets. These results further support the robustness and reliability of the eGRU model for
accurate time series forecasting.

Conclusion
This paper presents a novel RNN architecture, eGRU, for time series forecasting. eGRU outperforms vanilla GRU and other
state-of-the-art RNN variants. The proposed architecture leverages two hidden states, normal and extreme, with a shared set of
parameters to learn both normal and extreme event data patterns while retaining temporal information. This design enables
eGRU to model normal and extreme events independently. Extensive experiments on four real-world datasets, in which eGRU
is compared to six state-of-the-art RNN variants and two RNN-based frameworks, demonstrate the superior capacity of eGRU
for time series forecasting in terms of accuracy and robustness.
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