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ABSTRACT2

Spike-timing dependent plasticity (STDP) is considered to be an important synaptic mechanism3
to encode information within and between cerebral cortical networks. It remains unclear, however,4
how temporal and spatial correlations of signals and ongoing background spiking activity interact5
with STDP mechanisms to give rise to long-term memory. Because cortical networks mostly6
contain local recurrent connections, it is critical to explore STDP-based encoding and decoding7
of synaptic patterns in such architectures. In order to investigate their dynamics, we applied8
a phenomenological STDP model within recurrent networks, and between recurrent and feed-9
forward networks. We find that emergence of transient spatiotemporal correlations of ongoing10
activity lead to the storage of self-organized, simple synaptic patterns in the recurrent networks.11
These networks can be probed at a later time to reconstruct the encoded patterns by projecting12
them onto another network in a feed-forward, readout fashion with highly correlated spatiotemporal13
structure. We hypothesize that transient spatiotemporal correlations among networks can serve14
as a biologically plausible mechanism of memory storage and retrieval based on STDP.15

Keywords: spike-timing dependent plasticity, spatiotemporal correlation, recurrent network, synaptic pattern, memory encoding and16
retrieval17

1 INTRODUCTION

The theoretical dependence of excitatory synaptic efficacy upon the relative timing of pre-synaptic and18
post-synaptic action potentials, also referred to as spike-timing dependent plasticity (STDP), has been19
experimentally confirmed (Markram et al. (1997); Bi and Poo (1998); Bell et al. (1997); Magee and20
Johnston (1997)). Potentiation is typically observed when the excitatory post-synaptic potential (EPSP)21
precedes the post-synaptic spike, whereas the reversed temporal order induces depression of the synaptic22
transmission. A great number of computational models have been proposed to account for the dynamics of23
STDP (see review in Morrison et al. (2007)). They can be categorized into two basic types: “hard-bound”24
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models, in which synaptic weights are maintained between minimal and maximal values (Song et al.25
(2000)), and “soft-bound” models, in which synaptic weights progressively saturate to equilibrium (Kistler26
and van Hemmen (2000); van Rossum et al. (2000); Badoual et al. (2006); Morrison et al. (2007); Zou27
and Destexhe (2007)). These models have been used, for example, to explain cortical remapping during28
development (Song and Abbott (2001)) and cross-model coordinate transformation (Davison and Frégnac29
(2006)).30

Recurrent networks, comprised of “internal” links, connecting neurons to one another in an undirected31
manner, may generate their own internal dynamic representations when subjected to external stimuli. To32
perform computation in recurrent networks, STDP can be used as the mechanism modifying connection33
strengths across all synapses. Kitano et al. (2002), demonstrated that STDP, when applied to a self-organized34
recurrent network, can result in asynchronous activity at 20∼30 Hz, during delay periods of working35
memory task. It also has been claimed that STDP can initiate resonant or rhythmic activity dominated36
by high spatiotemporal correlations in recurrent networks (Daucé et al. (2002); Yoshioka et al. (2007)).37
Although this correlated activity has been experimentally observed in many brain regions during memory-38
related tasks, including hippocampal CA3 (O’Keefe and Recce (1993); Traub et al. (1989)), it remains39
unknown how correlations regulate and organize the memory within recurrent networks at synaptic level.40

In this paper, we first investigate the mechanism whereby STDP can lead to reliable storage and41
retrieval of simple synaptic patterns within a generic self-organized recurrent network. We then show how42
spatiotemporal correlated activity influences simple pattern formation and completion. We demonstrate43
that the storage process does not require, but is accelerated by spatially correlated firing among both44
layers of cells. However, we find that at the “recall” stage, transferring the stored recurrent pattern into the45
feedforward synapses of a reconstruction layer does require the presence of spatially correlated background46
activity. We then explore the relationship of learning curves and the time constants of correlated activity.47
Finally, we analyze the memory capacity of a recurrent network under assumptions of differing network48
size and connection probability. Our model is consistent with the reported literature on both “hard-bound”49
and “soft-bound” of STDP dynamics. These results suggest a possible generic mechanism of cortical50
memory organization and retrieval by STDP in self-organized recurrent networks.51

2 MATERIAL & METHODS

2.1 Neuron models52

To investigate the synaptic dynamics, we simulated leaky integrate-and-fire neurons(LIF) as in Brette et al.53
(2007), where each neuron was described by a single-compartment model with a time constant, τ = 20 ms,54
a leaky conductance of 5 nS, and leak reversal potential, EL = −60 mV . These parameters corresponded55
to a 100 pF capacitance. The subthreshold membrane potential obeyed the following equation:56

τ
dV

dt
= −(V − EL)− ω̃exc (V − Eexc)− ω̃inh (V − Einh) . (1)

Both excitatory and inhibitory synapses were simulated as conductance changes with instantaneous jump57
at maximal value and exponential decay according to the following equation:58

ω̃exc,inh(t) = ωexc,inh × e−t/τexc,inh , (2)
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where τexc = 5 ms and Eexc = 0 mV for excitatory synapses, τinh = 10 ms, and Einh = −80 mV for59
inhibitory synapses. All synapses had the same synaptic delay as 1 ms. In most situations, the quantal60
conductance was 5 nS for both feedforward and background excitatory connections, 1 nS for recurrent61
excitatory connections, and 50 nS for inhibitory connections, unless specified. The time step of the62
integration is 0.1 ms in all simulations. We also performed the simulation with shorter time step, and there63
is no qualitative changes in the results.64

2.2 Network model65

The network was composed of three layers of neurons: a training layer (T ), a recurrent layer (R) and66
a reconstruction layer (C), where each layer contained 100 neurons. Both T and C layers maintained67
all-to-all feedforward excitatory connections to the R layer with ωtrain = ωrecon = 5 nS, while R contained68
local excitatory connections at ωrecurr = 1 nS with connection probability of ρ = 100%, unless specified. In69
general, we denote the ω as the upper bound of synaptic weights subject to STDP, and ω as the modulated70
maximal conductance in Equ. 2. In addition, each neuron of R also received a single excitatory background71
input E (corresponding to 100 one-to-one connections) and 25 inhibitory independent inputs (pool of 250072
neurons), where both types maintain fixed maximal conductances according to Equ. 2. We chose a 4:173
ratio of feedforward excitatory to inhibitory connection to mimic a balanced state of network activity (van74
Vreeswijk and Sompolinsky (1996)). In sum, each neuron in R received synaptic current from four sources75
at the same time, as following:76

Irecurri = Ibgi +

NR=ρN∑
j=0,j 6=i

Irecurri +

NT/C=N∑
j=0

I
train/recon
j +

NI∑
j=0

Iinhj , (3)

where N = 100 and NI = 25. In the experimental scenario, either T or C was presented as an input (not77
both at the same time). The local recurrent excitatory connections in R, on one hand, and feedforward78
connections between C and R, on the other hand, were subject to STDP rule during learning and recall79
stage, respectively. The connection probability ρ and size of R were varied to estimate their impact on the80
pattern storage and reconstruction.81

The feedforward layers, T and C, were simulated to reproduce an ongoing activity at 50 Hz, which was82
spatiotemporally correlated with the background activity in R. The single input of excitatory background83
activity Ibgi (denoted as E) fired at a peak rate of 1000 Hz to represent the large number of afferents on84
R. (see Sec. 2.3 for an explanation). The 25 inhibitory inputs Iinhj were simulated as Poisson process at a85
fixed 10 Hz, whose role was to prevent R from over-firing.86

During the training phase, feedforward connection strengths ωff
ji between T and R were set to the87

following template pattern:88

ωffji =

{
ωtrain , if | j − i | mod (100− d) ≤ d

0nS , if | j − i | mod (100− d) > d
. (4)

Viewed as a square matrix of N × N binary connections (when ρ = 1%), this template assumed the89
shape of a main diagonal of width 2d, with periodic boundary conditions (creating two additional triangular90
corners of width d; see Fig. 3). Typically, we set d = 20 for N = 100. The upper bound value of synaptic91
weight was set to ωtrain = 5 nS. Network development proceeded in two phases (Fig. 1):92
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• During the training phase, the synaptic pattern of T
feed−−−−−→

forward
R connections was clamped to ωff

ji93

according to Equ. 4, while the recurrent R→ R synapses were allowed to develop according to the94
STDP rule. This represented a learning process in which sensory stimulus was applied to R to form a95
memory.96

• During the reconstruction phase, another layer of C
feed−−−−−→

forward
R connections was put in place and97

subjected to the STDP learning rule, while R’s synaptic weights were maintained at their mature value98

created during the training phase. The results were the recovery of the same T
feed−−−−−→

forward
R pattern99

used during training, i.e., the C
feed−−−−−→

forward
R connections converged to ωff

ji .100

2.3 Spatiotemporally correlated ongoing activity101

Ongoing activity is simply generated by correlating the background input E of recurrent layer R with102
either the training layer T or the reconstruction layer C. The neurons of T and C generated spikes following103
an inhomogeneous Poisson random process, in which the spatio-periodic firing rate of neuron i depends on104
the stimulus location s (Song and Abbott (2001)):105

ri = rmax × (e−(s−i)/2σ2 + e−(s−i+100)/2σ2 + e−(s−i−100)/2σ2) , (5)

where rmax = 50 Hz and σ = 10. According to Equ. 5, neurons exhibited maximal firing rate at location s106
(the last two terms are added to implement periodic boundaries in 1D space). To generate time-varying107
firing rates, we update ri for each time interval, which was drawn from exponential distribution with mean108
τcorr = 20 ms, unless specified. Here, we define the decay time constant of stimuli τcorr as the temporal109
correlation constant. The background input of R (denoted E above) generated spikes through the same110
mechanism (σ = 10, τcorr = 20 ms), except with rmax = 1000 Hz to mimic massive afferent activity.111

Experiments show that neurons with higher instantaneous firing rate, are more likely to correlate with the112
spontaneous ongoing activity (Tsodyks et al. (1999)). In order to train and reconstruct the synaptic pattern113
at R layer, the spatial correlation was introduced between the background input of R layer and T/C layers114
according to the following equation:115

src/ff = s + (N +
√
c× (1 − N)) × g , (6)

where c (0 ≤ c ≤ 1) is the spatial correlation coefficient, g ∼ U [0, 1] is standard uniform random number116
(Rudolph and Destexhe (2001); Zou and Destexhe (2007)). For every interval, a random location s was first117
generated from a uniform distributions between 0 and N−1 (N = 100). At the start of each interval, the118
stimulus location in feedforward T/C layer, sff and in recurrent R layers, src were correlated at c through119
Equ. 6, then the firing rates of neurons in each layer were generated according Equ. 5 and held constantly120
until next interval. In this way, the neurons which had the maximal instantaneous firing rates in both R121
layer and T/C layer, shared the spatiotemporally correlated ongoing activity (Tsodyks et al. (1999)).122

2.4 STDP models123

The STDP mechanism we used in our simulation is similar to Song et al. (2000).124

dω

dt
=
[
FLTP (t) − FLTD(t)

]ωLTP

ωLTD

, (7)
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where synaptic weight is bounded between ωLTP and ωLTD. Therefore, the modulation of ω has “hard125
bounds”. In contrast, we also consider a model with “soft bounds”, where the changes of ω depend on the126
value of the weight (Zou and Destexhe (2007)):127

dω

dt
= FLTP (t)(ωLTP − ω) − FLTD(t)(ω − ωLTD) . (8)

By default, ωLTP and ωLTD are set to ω and 0, respectively in both models.128

We use functions FLTP(t) and FLTD(t) to describe the coincidence between the pre- and post-synaptic129
spikes for both hard and soft bounds models:130

FLTP =
∑

tj<ti≤t
P (t− tj) δ(t− ti)

FLTD =
∑

t≥tj>ti

Q(t− ti) δ(t− tj) , (9)

where tj and ti are the timing of pre- and post-synaptic spikes, respectively, δ(t) is Dirac delta function131
representing a spike at time t, and all possible pairs of pre- and post-synaptic spikes are integrated by the132
summation. P (t) = Ap exp(−t/τp) and Q(t) = Aq exp[−|t|/τq] define the time window of interaction133
between spikes (τp = τq = 20 ms). For recurrent synapses, learning take Ap = 0.005, and Aq = 0.00525,134
which gives Aqτq/Apτp = 1.05 in the range of model from Song et al. (2000). Between feedforward and135
recurrent synapses, Ap = 0.005, and Aq = 0.0058, which makes Aqτq/Apτp = 1.16. In addition, longer136
time window in either LTP or LTD are tested together with longer correlation time constant for the model137
of Song et al. (2000).138

2.5 Similarity of synaptic patterns139

The output synaptic patterns of C layer were quantified by determining how similar the patterns were140
close to the initial synaptic patterns of T , which are constrained by Equ. 4. Although synaptic pattern of R141
developed in a self-organized way, interaction between decay time constant τcorr and STDP function swaps142
the off-diagonal and diagonal connection in recurrent network R (see Sec. 3.4). This dichotomy suggests143
that we could simply define the predicted recurrent pattern as the off-diagonal connection pattern for intial144
diagonal connection pattern in T :145

ωrcji =

{
0nS , if | j − i | mod (100− d) ≤ d

ωrecurr , if | j − i | mod (100− d) > d
. (10)

To measure the magnitude of varying quantity, we take the Root Mean Square (r.m.s) between the146
observed synaptic weight and the estimated ones as following:147

r.m.serror =

√
1

M

∑
ji

(ωobserveji /ωji − ωpredictji /ωji)2 , (11)

where ωobserve
ji represents the observed synaptic weight, ωpredict

ji represents the initial synaptic weight being148
trained, and M represents the total number of synapses. ωji is the maximal synaptic weight, which is either149
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ωrecon = 5 nS for feedforward synapses or ωrecurr = 1 ns for recurrent ones. Since we take the percentage150
of the synaptic weights in equation above, the final r.m.s. will vary between 0 and 1.151

All simulations and analyses were performed by NeoCortical Simulator (NCS) implemented with LINUX152
MPI on a Beowulf cluster (Brette et al. (2007); Hoang et al. (2013)). NCS input code were generated by a153
Python tool kit BrainLab (Drewes et al. (2009)).154

3 RESULTS

3.1 Synaptic pattern training155

At training stage, we consider the synaptic pattern training in the recurrent network by taking the156
feedforward pattern of d = 20, with the maximal strengths at the periodic diagonal band. Both feedforward157
and recurrent layers were spatiotemporally correlated at c = 0.8 andτcorr = 20 ms. After 20k seconds158
with STDP applied at recurrent synapses, the initial uniformly distributed synaptic weights developed the159
maximal strengths at the off-diagonal band, complementary to the feedforward pattern as shown in Fig. 2A160
(also see the Supplementary Video 1). The distribution of synaptic weights is bimodal in Fig. 2B, with161
most of the synaptic weights depressed (Song et al. (2000)). The average instantaneous firing rates of the162
recurrent layer were slightly decreased from 12.1 Hz to 10.7 Hz during the first and last 100 seconds,163
respectively during the training process, while the peak ISI stays unchanged (Fig. 2C).164

The mechanism of off-diagonal band formed at the recurrent layer could be explained with respect to165
the distribution of spike pair time interval ∆t in Fig. 4A. Each training neuron synapses 40 recurrent166
neurons according to Equ. 4, and training layer generates periodic peak firing neurons for index s± 10167
under the correlation of 0.8, whenever a location s is chosen. Therefore, the recurrent neurons most likely168
will fire with correlation at least to their ±10 recurrent local neighbor neurons, when the spiking training169
neuron was filtered by the fixed feedforward synaptic pattern. As a good indication of correlation, the time170
interval histogram of spike pairs in Fig. 4A shows that locally connected synapses on the diagonal band171
were slightly shifted with −5 ms < ∆t < 0 ms, which gave overall depression when convolving with the172
negative-favored STDP learning; On the contrary, the post-pre synaptic time interval in Fig. 4A shows173
long-range connected synapses at off-diagonal band were slightly more correlated at 0 ms < ∆t < 5 ms.174
Because all connections have 1 ms synaptic delay, there is a 1 ms delay for the positive peak of spike175
timing correlogram in Fig. 4A, dash line. The delay is more noticeable in Fig. 4B, solid line. This implies176
that the coincidently spiking neurons will be depressed. Although the peak of positive correlation is small177
in Fig. 4A, dash line, the potentiation is sufficient enough to overcome the negative effect in the STDP178
learning rule and decorrelation due to synaptic delay, by carefully choosing the ratio of Aqτq/Apτp as 1.05.179

To simplify the discussion, we identify a specific stimulus location as index 40 for a given time, the180
training layer elicited maximal firing at recurrent neuron index 30 ∼ 50 through the fixed synaptic pattern.181
These neurons will first fire spikes with correlation as in Fig.4A (solid line) through local synapses, i.e., the182
diagonal region of index 30 ∼ 50. The spikes will then propagate to the rest of neuron through long-range183
synapses, i.e., the off-diagonal region of 0 ∼ 30 and 50 ∼ 100, which will give more positive ∆t count in184
Fig.4A (dash line).185

3.2 Synaptic pattern reconstruction186

At reconstruction stage, we consider the feedforward synaptic pattern between the reconstruction and187
recurrent layer by freezing the synaptic pattern formed at training stage. Here, we still take the same188
spatiotemporal correlation (c = 0.8, τcorr = 20 ms) as the training stage. The initial uniformly distributed189
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feedforward synaptic weights recovered the maximal strengths at the diagonal band with 20k seconds190
plasticity applied as shown in Fig. 3A (also see the Supplementary Video 1). The distribution showed strong191
bimodal distribution as early as 10k seconds in Fig. 3B. The average instantaneous firing rate reduced from192
7.9 Hz to 5.8 Hz of the first and last 100 seconds, respectively during reconstruction phase, with the peak193
ISI shifting to the left (Fig. 3C).194

The reason that the reconstruction layer can recover the pattern trained at recurrent layer before is due to195
the spatiotemporally correlated on-going activity. If both reconstruction and recurrent layer are activated196
simultaneously at the same neuron index, the reconstruction layer will have the accurate spike-timing197
response from recurrent layer so that feedforward synapses can be recovered back to the original pattern.198
Fig. 4B. illustrates the spike pairs distribution between reconstruction and recurrent layers. The synapses199
located at diagonal region had a large peak with 0 ms < ∆t < 5 ms (Fig. 4B, solid line), and was200
potentiated. Because of this large correlation peak, we could choose Aqτq/Apτp up to 1.16, but still201
develop the potentiated diagonal pattern. This could be understood as neurons without local connection202
responded more to pre-synaptic neurons. While synapses located along the off-diagonal region had a203
trough at 0 ms < ∆t < 5 ms (Fig. 4B, dash line), which in turn depressed the synapses. This is due204
to the neurons with long-range connection firing spikes spontaneously and being reluctant to correlate205
with the pre-synaptic neurons. Although the spike pair counts at |∆t| > 25 ms are unbalanced (Fig. 4B),206
it has least impact on the overall effect when convolved with STDP modification function, because the207
largest modification happens at |∆t| < 5 ms. The spatiotemporally correlated ongoing activity gave the208
reconstruction layer an exact reference of where the information is stored, and the asymmetric STDP rule209
shaped the synaptic pattern. As a control, we take a random recurrent pattern during reconstruction stage,210
and the resulting feedforward connection doesn’t show any specific pattern, but rather synaptic competition211
as in Song et al. (2000) (figures not shown). This suggests that previously learned connectivity within R is212
necessary to reconstruct the feedforward connectivity.213

To measure how well the synaptic patterns were trained and reconstructed, we calculated the root mean214
square (r.m.s.) between the actual synaptic map and the synaptic template defined as Equ. 7. The synaptic215

weights were sampled at every second, and fitted to exponential function as: Erms × (1 − e−t
2/τrms),216

where Erms is the converged root mean square, and τrms is the time constant for the r.m.s. to converge.217
The trained synaptic map was index-wisely compared with the template map. The recurrent r.m.s. were218
almost saturated at 39.48% after 20k seconds of training, while the reconstructed synaptic pattern had219
similar quality with Erms = 38.26%, although it took longer to saturate in Fig. 4C.220

3.3 Effect of spatial correlation on pattern formation221

We next investigated the effect of spatial correlation between feedforward layer T/C and recurrent layer222
R (see Sec. 2.2). The r.m.s. of the stable synaptic weights is calculated to estimate how the synaptic map was223
trained and reconstructed from the template pattern. The time constant of the r.m.s., τrms is also estimated224
from the exponential function to predict how fast the synaptic map reaches its stable state. Fig. 5A indicates225
that r.m.s. decreases when the spatial correlation increases for both training and reconstruction. However,226
spatial correlation is NOT necessary to form the recurrent pattern during training: the quality of recurrent227
synaptic map does not change from c = 0.0 to c = 0.6 (Fig. 5A, circle line and Fig. 5C, upper row). This228
suggests that the emerging weight structure in recurrent network does not depend on spatial correlation,229
and is ensured by the temporal correlation τcorr = 20ms (see Sec. 3.4 for effect of temporal correlation). In230
contrast with the training, spatial correlation significantly changed the r.m.s. during reconstruction (Fig. 5A,231
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triangle line and Fig. 5C, bottom row). The pattern is not formed until c = 0.6. This suggests that STDP232
operates mainly via rate effects.233

The time constant of r.m.s. during training τ train
rms ranges from 144 to 220 seconds, and correlation234

monotonically decrease the time constant (Fig. 5B, circle line). By examining the scales of time units,235
we notice that the time constant for reconstruction is longer than the one of training by an order of236
magnitude. This result could be explained by the fact that fast learning usually is followed by more gradual237
improvements in memory (Alain et al. (2007)). However, the effect of the correlation on time constant of238
r.m.s. during reconstruction τ recon

rms is rather complex: The synaptic map converged to stable value within239
100 seconds without correlation introduced. τ recon

rms jumped up to about 7700 seconds when correlation was240
first introduced, then start to decrease when reconstructed synaptic pattern emerged at c = 0.6 (Fig. 5C,241
bottom row).242

3.4 Influence of decay time constant of stimuli and STDP function243

During both training and reconstruction of synaptic pattern, both recurrent and feedforward networks244
receive input stimuli generated by a short period of burst presented at random locations. The decay time245
constant of the stimuli, i.e., the time lasting before an input burst moves to another random location, was246
chosen from an exponential distribution with a mean of 20 ms in previous simulation. To investigate the247
influence of longer time constant of stimuli on the synaptic pattern formation, we increase the time constant248
of stimuli, τcorr, from 20 to 100 ms (Fig. 6A). The increase of τcorr strongly degrade the quality of the249
synaptic pattern formed in feedforward network (Fig. 6A, bottom middle), because of the disappearing250
of the potentiation peak in correlation (Fig. 6B, compare the dot dash line to solid line). However, longer251
τcorr preserved the pattern formed in recurrent network (Fig. 6A, top middle), although r.m.s. has 3.84%252
increase and it takes about 10 times longer to stabilize the pattern compared to τcorr = 20 ms.253

To further test the influence of time constant of the STDP function, we matched τp and τq with τcorr during254
both training and reconstruction processes, respectively. We found that the formation of the pattern were255
improved, if τp matches τcorr during training (Fig. 6A, top left) and τq matches τcorr during reconstruction256
(Fig. 6A bottom right). The potentiation peak in the correlation (Fig. 6B) is responsible for the improvement257
of quality of the pattern during reconstruction (figure not shown during training). Interestingly, the synaptic258
patterns were swapped, if τq matches τcorr during training (Fig. 6, top right) and τp matches τcorr during259
reconstruction (Fig. 6, bottom left). Both diagonal and off-diagonal connection patterns in recurrent network260
during training (Fig. 6A, upper row) shows that strong synapses are bidirectional. The relatively larger261
peak at positive intervals in Fig. 6C contributes to the dominance of the potentiation at the swapped region262
of the pattern during reconstruction (figure not shown during training).263

4 DISCUSSION

We presented a novel model wherein simple synaptic patterns are stored into and retrieved from a recurrent264
network through STDP under conditions of correlated spatiotemporal activity. As signals, we used very265
general Poisson spike trains with a Gaussian distribution of firing rates (Song et al. (2000)) , with correlation266
centered at the peak firing frequency. Connectivity patterns in a recurrent cortical network have been267
shown to be nonrandom (Song et al. (2005)). Here we limit the pattern to simple diagonal connectivity,268
i.e., short-range synapses, suggest a role for STDP to selectively potentiate synaptic patterns (Zou and269
Destexhe (2007)), and promote resonant learning in recurrent networks (Daucé et al. (2002)).270
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Our model could be applied generically to spiking networks that must transfer, store, then re-transfer271
simple synaptic patterns into another network. The paradigm might serve the underlying biological272
mechanism for the reward based system of Krichmar and Röhrbein (2013) or virtual neurorobotics (VNR)273
environment of Goodman et al. (2007). This is relevant in context of brain areas that have been shown274
to demonstrate both STDP and correlated spatiotemporal activity. The model provides a microcircuit-275
level explanation of how correlated activity temporally conjoins neurons into assemblies and selectively276
facilitates synaptic plasticity to support information storage and retrieval. For example, this been observed277
in hippocampus, especially CA3 (O’Keefe and Recce (1993); Traub et al. (1989)), which is known for its278
prominent recurrent synapses. Functionally, synaptic modification in hippocampus during task performance279
(such as navigation) is compatible with the dynamical organization and computational concept of our280
model. Likewise, correlated neuronal activity in neocortex has been observed while learning sensory281
input (Laurent and Davidowitz (1994); Linkenkaer-Hansen et al. (2001); Tateno et al. (2005); Pillow et al.282
(2008)), retrieving sensorimotor associations (Abeles et al. (1993); Vaadia et al. (1995)), and making283
decisions (Shadlen and Newsome (2001)). Cerebellar studies also show correlated spatiotemporal patterns284
(Middleton et al. (2008); Pillow et al. (2008)). A series of combined electroencephalogram (EEG) and285
intracellular in vivo measurements suggested that the required spatiotemporal correlation can arise from286
synchronous oscillation generated by the correlated activity of a population of neurons, during both awake287
and sleep states (Contreras and Steriade (1997); Destexhe et al. (1999); Buzsáki and Draguhn (2004)).288

In this work, we define the temporal correlation constant, τcorr, as the mean of the update time intervals289
for inhomogeneous Poisson process, and study the relationship between τcorr and STDP learning time290
constant (either τp or τq). This temporal correlation mechanism represents global discontinuity for saccades291
in vision and sniff in olfaction (Uchida et al. (2006)), or brain oscillation (Contreras and Steriade (1997);292
Destexhe et al. (1999); Buzsáki and Draguhn (2004)). This contrasts with previous works that temporal293
sequences were presented continuously where afferents fire continuously with a constant population rate294
(Masquelier et al. (2008); Nowotny et al. (2003)).295

How sensitive are the parameters of STDP to achieve learning and recall in our model? We first explored296
the effect of changing the background temporal correlation time constant, τcorr, on pattern formation during297
each of the phases. Surprisingly, storage of the feedforward to recurrent synaptic pattern was minimally298
affected by increasing τcorr alone, in the physiological range of 20 to 100 ms (Fig. 6A, top left). Increasing299
τcorr in concert with an increase of the positive learning time constant, τp as high as 100 ms enhances the300
efficiency of initial pattern storage of into the recurrent network (Fig. 6A, top middle). In either case, the301
synaptic patterns have formed a long-range bidirectional connection. Although such a large τp has not yet302
been reported, it is believed that such a widened LTP window can result from NMDA channel activation303
or calcium diffusion (Badoual et al. (2006)). On the other hand, increasing τcorr alone will impair the304
recalled pattern (as reported also by Song and Abbott (2001)); however, we found that this impairment is305
alleviated if the negative learning time constant, τq, is concurrently increased to 100 ms (which also results306
in an inversion of the stored pattern of synaptic strengths in both recurrent and feedforward networks).307
Prolongation of τq on this scale has been reported in rats (Feldman (2000)) and electric fishes (Bell et al.308
(1997)). In this case, a short-range bidirectional connection has been formed in the recurrent network.309
Nevertheless, Both long- and short-range bidirectional connections are potentiated (Song et al. (2005)).310

We also evaluated the impact of imposing “soft-bound” STDP rules (Kistler and van Hemmen (2000);311
van Rossum et al. (2000); Badoual et al. (2006); Morrison et al. (2007); Zou and Destexhe (2007)). We312
found that “soft-bound” STDP results in the formation of synaptic patterns at about the same rate as does313
the “hard-bound” model, but it produces a low contrast pattern, attributable to the unimodal distribution314
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of the synaptic weights. Thus our spatiotemporal correlation–based computing paradigm of synaptic315
pattern storage and retrieval is independent from whether “soft-” or “hard-bound” rule is applied. The316
effects of the recurrent network size and connectivity are investigated by performing the pattern training317
and reconstruction as well. Interestingly, all simple recurrent patterns, although at different levels of318
connectivity and size, contain essential information to reconstruct the feedforward patterns initially trained.319

The accuracy of pattern storage of our model was also evaluated using root mean square (r.m.s) error320
while co-varying the connectivity and size of the recurrent network. In general, a sparsely connected321
but larger size recurrent network (for example, 20% with 100 neurons) will have better performance on322
pattern storage and retrieval. We did not study recurrent networks larger than 100 neurons, due to the323
computational overhead involved. Further work should also include the evaluation of clustering of complex324
synaptic patterns under different conditions of brain activity.325
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Figure 2. Training diagonal pattern at recurrent layer. (A) Snapshot of recurrent synaptic map was plotted at different time by averaging each synaptic
strength over 10 seconds. Each pixel represents the synaptic strength from pre-synaptic neuron j to post-synaptic neuron i, which is normalized between 0 and 1
(see first snapshot for weight scale). All the synaptic weights are initialized uniformly. The synapses were selectively potentiated at the off-diagonal band, and
depressed for the rest area during the training stage. The black pixel indicates self-connection which was excluded (see Supplementary Video 1). (B) Histogram
of the synaptic weights plotted every 10 seconds over time. The bimodal distribution was formed at the end of training. (C) ISI distribution pooled from all the
neurons of recurrent layer of 100 seconds duration shows no difference at start and end of the training, where both peak at 6∼7 ms by noting the time is in log
scale.
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Figure 3. Rebuilding diagonal pattern at reconstruction layer. (A) Snapshot of feedforward synaptic map was plotted at different time by averaging each
synaptic strength over 10 seconds. All the synaptic weights are initialized uniformly. The synapse map were exactly rebuilt as the periodic diagonal band which
is trained at the recurrent layer before (see Supplementary Video 2). (B) Histogram of the synaptic weights plotted every 10 seconds over time. The strong
bimodal distribution was formed at the end of training. (C) ISI distribution pooled from all the neurons of recurrent layer of 100 seconds duration shows the peak
ISI was slightly shifted to the left after the reconstruction.
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Figure 4. Spike pairs histogram and variances of synaptic patterns. All possible spike pairs ∆t = tpost − tpre are binned for synapses both at diagonal
band (solid line), and at off-diagonal band (dash line) with 1 ms time step after the synapses converged. The distribution were normalized to the total spike pair
counts. Spike pair counts increase at small ∆t for diagonal synapses, and decrease at small ∆t for off-diagonal synapses. However, there are more counts for
positive |∆t| < 5ms at off-diagonal recurrent synapses (A), dot line and at diagonal feedforward synapses (B), solid line. In contrast, there are more counts for
negative |∆t| < 5 ms at diagonal recurrent synapses (A), solid line and at off-diagonal feedforward synapses (B), dash line. The convolution of histogram with
STDP function was evaluated to verify the weight drift (see text for details). (C) Root mean square (r.m.s.) of the varying magnitude between the estimated
synaptic weights and the observed ones were measured every second (only plot with every 1000 seconds). The r.m.s. were fitted to exponential functions. The
recurrent synaptic pattern (filled circle) has Erms = 39.48%, τrms = 144.4 s; the reconstruction synaptic pattern (filled triangle) has Erms = 38.26%,
τrms = 900.6 s.
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Figure 5. Effect of correlation on the r.m.serror and τrms. (A) Effect of correlation on the converged r.m.s. of training template pattern (filled circle) and
reconstruction of the trained pattern (filled triangle). (B) Corresponding time constants were estimated by fitting r.m.s. to exponential function, and then plotted
as a function of correlation. The time constant for reconstruction is longer than the one of training on an order of magnitude by noting the different scales. (C)
Synaptic map of both training (top row) and reconstruction (bottom row) were plotted at 20k seconds for correlation being 0.0, 0.6 and 1.0.
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Figure 6. Effect of decay time constant of stimuli and STDP window function. (A) Both recurrent (top) and feedforward network (bottom) were undergone
stimuli with correlation time, τcorr , at 100 ms. Feedforward network had a degradation of the reconstructed synaptic pattern by noting the scale of the
conductance (bottom middle), while recurrent network was not affected (top middle). The synaptic pattern can be preserved by matching τcorr with τp during
training (top left) and τq during reconstruction (bottom right), respectively. However, the synaptic patterns were swapped if τq = τcorr during recurrent
training(top right), and τp = τcorr during feedforward reconstruction(bottom left). The correlation of the stimuli was 0.8 for all the simulations. Histogram of
time interval, tpost − tpre, for τcorr = τp = 100 ms (dash), τcorr = 100 ms (solid) and τcorr = τq = 100 ms (dot dash) at diagonal region (B), and
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responsible for the synaptic pattern formed with potentiated synaptic weights.
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