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TECNICAL PROPOSAL, SCOPE OF WORK by UNR for HRL RFP 80063
Contract title for UNR reference: “Architectures of critical biological structures for brain simulation.”

A. Results and deliverables

As part of Task 2 of the DARPA BAA, the University of Nevada, Reno Brain Computation Laboratory
(UNR-BCL) will deliver to HRL documentation, tables, and diagrams describing biological principles of
brain network design suitable for specifying and programming computational simulations of large scale
neuromorphic architectures. {The actual programming of such simulation is not in the scope of Task 2.}

It is understood that Phase 1-3 funding by HRL, and continued participation of UNR, are contingent
upon (1) HRL s receipt of DARPA funding increments, and (2) mutually satisfactory milestone
performance in research and administration of each immediately preceding phase. It is also understood
that any advanced computational resources and related technical support needed to achieve SyNAPSE
objectives will be provided by HRL to UNR investigators.

No proprietary or intellectual property claims are anticipated.

B. Detailed technical rationale

Section IT1. Detailed Proposal Information

Technical Rationale

‘Traditional research in artificial intelligence and machine learning has viewed the brain as a
specially adapted information-processing system. More recently the field of social robotics has been
advanced to capture the important dynamics of human cognition and interaction. An overarching
societal goal of this research is to incorporate the resultant knowledge about intelligence into technology
for prosthetic, assistive, security, and decision support applications. However, despite many decades of
investment in learning and classification systems, this paradigm has vet to yield truly “intelligent”
systems. For this reason, many investigators are now attempting to incorporate realistic neuromorphic
properties into machine learning systems, encouraged by over two decades of neuroscience research that
has yielded quantitative parameters which characterize the brain’s interdependent electrophysiological,
genomic, proteomic, metabolomic and anatomic networks. For example, a search of the IS1 Web of
Knowledge for publications whose abstract contained words relating to in vivo or in vitro neocortical or
hippocampal research increased about 150-fold in the period 1985 to 2005 {from 18 in 1985, 1494 in
1995, 1o 2689 in 2005). Directly warehoused data collection motivated by the highly automated genomic
projects, such as the Allen Brain Atlas, is further accelerating the growth of publically avaitable data.
The outpouring of potentially useful data has sparked the development of over one hundred
neuroscience databases.

The ability to understand processing within the brain would facilitate the development of artificial
clectronic brains, and of tissue-implantable neuromorphic (biomimetic) chips, for example to bridge
regions of the brain damaged or disconnected by stroke or head trauma, or to detect and avert seizure
propagation. Artificial brain systems with sufficient emotional intentional, as well as abstract
knowledge-based intelligence could also be configured to assist in decision making for scenarios
invoiving resource aliocation under competing demands, such as industrial and business economics,
urban planning, and geopolitical conflicts.

Given the complexity of neural systems, developing tenable models to capture the essence of natural
intelligence for real-time application requires that we discriminate features underlying information
processing and intrinsic motivation from those reflecting biological constraints (such as maintaming
structural integrity and transporting metabolic products). Furthermore, despite the large and increasing
aumber of physiological parameters provided by experimental inquiry, most of the data relates either to



the very small scale of indi..uval or small groups of neurons {e.g., tracellular, 2-photon, or unit
recordings at discrete recording sites), or at the other extreme, the joint effect of thousands or millions of
neurons over miilimeter {(optical imaging) or centimeter fields (fMRI and PET). Thus the architecture
and response patterns at the truly cognitive scale, or “mesocircuit”, remain largely uncharacterized,
requiring that the brain modeler proposes and systematically tests plausible connection patterns and
learning dvnamics. Because mammalian brains contain from 10 million (mouse) to 100 billion (human)
neurons, the use of digital simulation, even with the aid of hundreds or thousands of clustered processing
units, is very limited in its capacity to model the dynamics of neural systems, for which a tenth or
hundredth of a millisecond precision may be needed for accuracy. We therefore agree with the goals and
approach of DARPA’s SyNAPSE, which requires that the biological parameters described above, taken
from the large and increasing body of scientific publication, be aggregated and translated into practical
specification of neural architectures that will “support critical structures and functions observed in
biological systems such as connectivity, hierarchical organization, core component <¢ircuitry,
competitive self-organization, and modulatory/reinforcement systems. As in biological systems,
processing will necessarily be maximally distributed, nonlinear, and inherently noise- and defect-
tolerant™ (BAA. page 4).

Technical Approach

We view our role in SyNAPSE as providing a translational research contribution: moving discrete
and disparate neuroscience findings, along with discoveries of key network dynamics from our own lab,
into concrete specification for neuromorphic models that can be transitioned from digital supercomputer
simulations to hardware emulation. To achieve this goal, we propose that Phase 0 be used to generate
detailed procedures and formats to be followed during subsequent Phases 1-3 of the project, each of
which will follow the following 4-step iterative cycie (for milestones, see part G, below):

Step 1. “Components” [months 1-2]: UNR-BCL investigators develop, using literature search and
expert opinion, a draft “Architecture Specification” document that lays out objectives in term of the
following 15 components:

(a) desirable types of tasks or behavior for the architecture, including benchmarks where applicable;
(b) averall scale of model, including permissible number of cells and the number of interconnections;
(¢) brain regions/structures (e.g., cortical, hippocampal, basal ganglia, brainstem);

(d) compiexity of network dynamics (especially degree of ongoing activity and up/down states);

(e) types of synapses and related dynamics;

(f) neuronal membrane channel dynamics;

(g) dendritic and other compartmental anatomy and related dynamics;

(h) probabilities of synaptic connections;

(1) nature of external stimuli to be input from environment into the model;

(i) acceptable pre-processing of sensory signals to represent early vision, audition, touch, etc;

(k) nature of electrical or motoric responses of the model;

(1) batch versus interactive functionality;

(m) stop-start versus real-time behavior;

(n) interface requirements for real/virtual robotic scenarios for the desired behavior environment; and,
(0) “dashboard” utilities for monitoring the functionality and progress of a simuiated model modules.

Step 2. “Consensus” [Months 3-4]: Consensus reached on final Architectural Specification among all
HRL-contracted investigators. Methods include iferative on-site and teieconferences, and electronic
exchange of drafts. HRL leadership to adjucate final approval.



Step 3. “Templates” Mor. ., 5 to mid-Phase]: UNR-BCL prov.des successive “Architecture
Specification” templates that include pseudocode for algorithms to be programmed (Task 3), including
documentation and, where appropriate, examples of computations. s

Step 4. “Collaboration” [Mid- to end-Phase]: UNR-BCL work in close collaboration with HRE-
provided programmers to achieve instantiated models of the “Architecture Specification” templates. This
will involve on-site as well as frequent electronic communication of results and feedback, During this
Step, UNR-BCL wili keep a careful web-based log of obstacles encountered and overcome, and
recommendations for revisions of obilectives in current and subsequent Phases. This log can be
maintained as an online wiki, accessible to team members granted password access by HRL.

FTechnical challenges and obstacles anticipated

The accuracy of the modeling process will depend upon the availability and consistency of the
neuroscience literature. To the degree possible, we will overcome such obstacles as they arrive using the
following approach: (1) when multiple studies with consistent results are found, consensus results wili
be utilized; (2} when conflicting results are found among studies, a consensus of the majority will be
utilized, retaining distinct alternatives for possible trial/substitution in the models; {3) when little or only
weak evidence is found, UNR-BCL investigators will seek voluntary expert opinion from within and
outside, through their network of colleagues in the fieid. {4) In such cases with little proven
mechanisms, but when several distinct hypotheses are maintained in the scientific community, these
several approaches will be compared in the architectural templates (tested using sample-based statistical
method such as bootstrapping and permutation analysis).

Discussion of Related Research

Ongoing UNR-BCL Research. During the course of SYNAPSE, it 1s anticipated that UNR-BCL will
maintain scientific funding from its current research sponsors, because SYNAPSE does not replace such
investigation. That is, this contract supports the rransiation, but not generation of new scientific
understanding. UNR-BCL will continue to explore the dynamical properties of micro- and mesocircuits
in the brain, and the relationships among attention, learning, and behavior. A motivating factor for
UNR-BCL participation in this contract is that final hardware products developed under SyNAPSE have
the potential to substantially accelerate future development and validation of high-level brain prototypes
by neuroscientists and cognitive researchers.

During the course of the contract, incorporation of alternative (non-spiking) computational models
as modules of a mode! should be considered:

1. Sensory preprocessing. The CNS expends a large portion of neural activity in preprocessing
sensory signals. Much research has been done in sensory neuroscience, so that visual scenes can be
decomposed by filtering kermels rather than trying to design spiking networks to achieve the the
same. For example, Gabor filters can be applied to images (representing early visual pathways} and
Fourier analysis to sound (representing cochlear, brainstem, and early auditory cortical pathways).

2. Motoric activation. Regions of front and prefrontal cortex, cerebelium, and basal ganglia are
involved in the “packaging” of motor movement sequences. Further, once activated, many motor
sequences require substantial subcortical computation. These are learned early in life, and tend to be
stereotypic (e.g., reaching, walking, emotional responses). Therefore, spiking premotor regions can
be interfaced to digital “winner-take-all” threads which lead to stereotypic behaviors easily
instantiated in real or virtual robotic platforms using traditional machine learning and Al tools.

(W8]



3. Abstracted microcircuit «.«d mesocircuit analogs. As neuroscience research progresses, it is hoped
that some of the dynamics of spiking networks may be abstracted in such a way that the essential
processing can be preserved without features necessitated only by biology (oxvgenation, nutrition,
metabolic waste, enzymatic thermal requirements). For example, spiking may be represented at a
higher dynamical or more intermittent level, or analog circuitry may be substituted for emergent
rhythms generated by larger-scale networks,

C. UNR Bio Summary (NSF-stvie biosketch. and a detailed CV are attached)
(see also section H, below)

Name & Title Education/interests Qualifications
Philip H. Goodman, | Medicine MD, Statistics MS | Director, UNR Braiﬁ Computation Laboratory,
MD, MS Physics BA, Biology BS 199%9-present !
Professor, Neural computation. Neuroscience Feliowship, ETH/UL Zunch
Biomedical Neuroscience of memaory. 1996-97
Engineering Cognitive basis for decision

making and planning. Supervised degree programs for over 253
15% overall FTE graduate students since 198§,

D/E. UNR’s expertise/previous accomplishments (P.1. for all erants is P. Goodman)

Program Title | Funding Agency | Coniract # Period
Neural Comput | ONR NO06G140710018 | 10/2006-9/2009
Neural Comput | ONR N0O00140010420 | 10/2000-9/2006
Neural Comput | ONR N0O0140210557 | 10/2000-9/2006
Neural Comput | ONR NO00149910880 | 6/1999-9/2000
DURIP ONR NO00140710704 | 4/2007-3/2009
DURIP ONR NO00140410454 | 4/2005-3/2008
DURIP ONR N0O00140210557 | 4/2002-3/2003

' DURIP ONR NO00140110552 | 4/2001-3/2002

The most recent annual research reports can be found online:

1. ONR Award N0O0G140710704, title: Large-Scale Biologically Realistic Models of Cﬁrtlca} &
Subcortical Dynamics with Social Robetic Applications

http://brain.cs.unr.edu/share/onrQ7/renorts07/NO00140710018 ONRO609 Report July(7.pdf
2. ONR Award N0O0O0140710704, title: Parallel Robetic Brains
htip://brain.cs.unr.edw/share/onrl7/reports07/NO0O0 140710704 DURIPO7 Report JulvQ7.pdf

T. Facilities

The Brain Computation Laboratory (BCL) 1s under the directorship of Philip H. Goodman, MD, MS, a
full-time professor of Medicine (School of Medicine) and Biomedical Engineering (graduate school
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program). The BCL is locatea . a former Department of Mines Building on the UNR campus. The.
building was renamed the “Applied Research Facility”, and is administered by the Vice President for
Research. The VPR allocated copious spaced for the student workstations and adjoining faculty office
dedicated to this Laboratory. The ARF is a site of linkage to UNR of the high-speed Internet HI.

G. Program schedule and milesiones
Phase § Anticipated start: 9/1/08 Anticipated duration: 9 months

Task 2: Architecture
UNR will specify and validate by simulation the function of core microcircuit assembiies using
measured synaptic properties. The chosen microcircuits must support the larger system
architecture and demonstrate spike time encoding, spike time dependent plasticity, and
competitive neural dynamics.

Phase 1 Anticipated start: to follow Phase 0 | Anticipated duration: 15 months

Task 2: Architecture

Task 2.3 Forebrain Models
UNR will develop models for the forebrain for planning, and decision making with varying
levels of neuroanatomical and neurophysiological details.

Phase 2 Anticipated start: to follow Phase T Anticipated duration: 15 months

Task 2: Architecture

Task 2.2 Integraie large-scale models
UNR will support HRL in the integration of models developed in Phase 1 into architecture with
10¢ neurons and 10'" synapses.

Phase 3 Anticipated start: to follow Phase 2 Aniicipated duration: 18 months

Task 2: Architecture

Task 2.1 Extend architecture 1o “car” scale
HRL with support from UNR will extend neuromorphm architecture developed in Phase 2 using
the scalable software design into cat scale (10® neurons) neuromorphic architecture.

H. Additional Information
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