Real-Time Simulation of Large-Scale Neural Models using NCS

Laurence C. Jayet Bray

Roger V. Hoang

Emily R. Barker

Frederick C. Harris, Jr.

Organization for Computational Neurosciences 2012

Saturday, July 21

Today's Outline

First Hour

- Introduction
- Equations and Implementation
- Requirements and Simulation on a Single Machine
- Input Language

Second Hour

- Simple Model
- Parameters Presentation and Testing
- Output Analysis

Third Hour

- Simulation on Multiple Machines
- Software Tools
- Robotic System Configuration
- Larger Networks and Complete Loop Execution
- Future Directions and Summary

Today's Outline

First Hour

- Introduction
- Equations and Implementation
- Requirements and Simulation on a Single Machine
- Input Language

Second Hour

- Simple Model
- Parameters Presentation and Testing
- Output Analysis

Third Hour

- Simulation on Multiple Machines
- Software Tools
- Robotic System Configuration
- Larger Networks and Complete Loop Execution
- Future Directions and Summary

Introduction

Presenters

Fred Harris

- Professor Department of Computer Science and Engineering
 - Ph.D. in Computer Science

Laurence Bray

- Post Doctoral Research Associate,
 - Soon to be promoted to Research Assistant Professor
 - Ph.D. in Biomedical Engineering

Roger Hoang

- o Ph.D. Candidate
 - Planning to graduate this coming school year
 - Majoring in Computer Science

Emily Barker

- B.S. Student
 - Starting her Senior year this fall
 - Majoring in Neuroscience

Reno, Nevada

University of Nevada, Reno

Brain Computation Lab

http://www.cse.unr.edu/brain/

Brain Computation Lab

Navigation

- ▶ Research Projects
- ▶ People
- Publications
- Sponsors
- Conferences
- Opportunities
- University of Nevada, Reno
- Department of Computer
 Science and Engineering
- School of Medicine
- Biomedical Engineering Program

Welcome to the Brain Laboratory!

Good Afternoon!

Founded in 2001, the brain lab is a joint research center between the departments of Computer Science & Engineering, Medicine, Physiology & Cell Biology, and the program of Biomedical Engineering. It also has neurobiological collaborations with the Brain Mind Institute at the EPFL (Switzerland), the University of Cergy Pontoise (France), and the University of Bonn (Germany).

Our researchers consists primarily of undergraduate/graduate students and alumni of the University of Nevada, Reno. They are actively developing computational innovations to understand the physiological processes that give rise to neocortical memory, learning, and cognition. Our models and experiments help understand brain pathophysiology and create brain-like artificial intelligence and neural prosthetic devices.

New Publications

- Design and Implementation of an NCS-NeuroML Translator
- Real-Time Human-Robot Interaction
 Underlying
 Neurorobotic Trust and Intent Recognition
- Correlation Maps Allow Neuronal Electrical Properties to be Predicted from Singlecell Gene Expression Profiles in Rat Neocortex
- Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex

NCS History

Version 1:1999

- Matlab Goodman, Markram, and McKenna
- 160-cell, 2-column architecture
 - Each cell was modeled as a single integrative compartment (point neuron) with a spike mechanism,
 - o calcium-dependent (AHP) channels, and
 - o voltage-sensitive A and M (muscarinic) potassium channels

Version 1b: 1999

- Direct translation to C from Matlab
- 24 times faster.
- o tested on mixed excitatory-inhibitory networks of up to 1,000 cells

Version 2: 1999

- o code was then redesigned and rewritten for distributed processing on an existing 20-cpu cluster (Pentium II).
- Initial trials of this code were performed on cortical networks of 2 to 1,000 cells

M.M. Kellog, H.R. Wills, and P.H. Goodman. "A biologically realistic computer model of neocortical associative learning for the study of aging and dementia." J. Investig. Med., 47(2), February 1999.

NCS History

Version 3: 2001

- completely redesigned using object-oriented design principles and recoded in C++
- objects, such as cells, compartments, channels, and the like, model the corresponding cortical entities.
- The cells, in turn, communicate via messages passed through synapse objects.
- Input parameters allow the user to create many variations of the basic objects, in order to model measured or hypothesized biological properties.

E. Courtenay Wilson, Phillip H. Goodman, and Frederick C. Harris, Jr. "Implementation of a biologically realistic parallel neocortical-neural network simulator" in Proceedings of the 10th SIAM Conf. on Parallel Process. for Sci. Computing, Portsmouth, Virginia, March 2001.

NCS History

E. Courtenay Wilson, Frederick C. Harris, Jr., and Phillip H. Goodman. "A large-scale biologically realistic cortical simulator" in Proceedings of SC 2001, Denver, Colorado, November 2001

Code Optimization & Revisions

- Rewrote the input parser
- Worked on code base
 - sevenfold sequential speedup over the version 3 code
 - added new features while shrinking our code base by more than 25%.
- Added More Biological Parameters.
- 35,000 cells and approximately 6.1 million synapses using 72% of the available 4GB of memory per node.

Code Optimization

Item	NCS3	NCS5	Ratio
Overhead a	294.167	1.897	155.1
Base $Cell/Cmp^b$	0.020	3.035	153.6
$Channel^b$	0.152	0.398	2.6
$Report^c$	0.017	4.113	239.4
Synapse, 0 Hebb ^{b}	0.031	0.383	12.5
Synapse, $+$ -Hebb ^b	0.020	0.368	18.1

- a) Seconds.
- b) Millions of Objects Processed per Second
- c) Millions of Values Reported per Second

Code Optimization

James Frye, James G. King, Christine J. Wilson, and Frederick C. Harris, Jr. "QQ: Nanoscale timing and profiling" In Proceedings of PMEO-PDS, Denver, CO, April 3-8 2005.

Hardware

2001

PIII 1GHz (60 CPUs)

P IV Xeon 2.2GHz (68 CPUs)

Myrinet 2000

ONR DURIP 2002: N000140210557

ONR DURIP 2001: N000140110552

Hardware

2007

2008

Sun v20z Opteron (60 CPUs)

ONR DURIP 2007:

Sun 4600s and 4500s 16 core boxes with 200GB of RAM connected by Infiniband And several 24TB disk arrays

ONR DURIP 2008:

Current NCS version 6

- GPU/CPU/cluster-based
- Multiple neuron types (version 5
 + izhikevich + framework for
 others)
- Ability for multi-scale modeling

Current Hardware

GeForce	GTX	690	Speci	fications

CUDA Cores	3072		
Base Clock	915 MHz		
Boost Clock	1019 MHz		
Memory Config	4GB / 512-bit GDDR5		
Memory Speed	6.0 Gbps		
Power Connectors	8-pin + 8-pin		
TDP	300W		
Outputs	3x DL-DVI Mini-Displayport 1.2		
Bus Interface	PCI Express 3.0		

Current Optimization

- C++11
- Heavily threaded
 - Latency hiding
 - Increased occupancy
- Modular message passing design
- GPU usage for parallel computation
- Load-balancing across heterogeneous clusters

Current Optimization

Cell Count	Synapse Count	NCS5 Simulation Time (Sec)	NCS6 Simulation Time (Sec)
~1,000	~2700	3.3	<1
~10,000	~250,000	4.4	<1
~100,000	~25,000,000	99.0	1.1

Comparison with other Simulators

Advantages:

- No programing language experience
- Large-scale networks simulation
- Real-time Execution
- Good for behavior, systems, and networks
- Framework for different level of abstraction

Disadvantages

- Lack of cellular and subcellular details
- No anatomical visualization yet

Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M. Bower, Markus Diesmann, Abigail Morrison, Philip H. Goodman, Frederick C. Harris, Jr., Milind Zirpe, Thomas Natschlager, Dejan Pecevski, Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier Rochel, Thierry Vieville, Eilif Muller, Andrew P. Davison, Sami El Boustani and Alain Destexhe "Simulation of networks of spiking neurons: A review of tools and strategies" Journal of Computational Neuroscience December 2007 (Vol 23), pp 349-398.

Equations and Implementation

```
int refractoryTime = refractoryTime[index];
float calcium = oldCalcium[index];
if (refractoryTime >= 0)
   newVoltage[index] = spikeShapes[index][refractoryTime];
   --refractoryTime;
    refractoryTime[index] = refractoryTime;
   newCalcium[index] = oldCalcium[index];
else
    float I = 0.0f;
   float voltage = oldVoltage[index];
   I += inputCurrent[index];
   I += channelCurrent[index];
   I -= leakConductance[index] * (voltage - leakReversal[index]);
   I += synapticCurrent[index];
   if (bit::extract(voltageClamp, index))
       voltage = clampVoltage[index];
   else
       float restVoltage = restVoltage[index];
       voltage = restVoltage +
                  (voltage - restVoltage) * persistence[index] +
                  dtC[index] * I;
   voltage = voltage < -80.0f? -80.0f : voltage;</pre>
    //Check for firing
   if (voltage > threshold[index])
       refractoryTime = spikeShapeLength[index] - 1;
       voltage = spikeShapes[index][refractoryTime];
       refractoryTime[index] = refractoryTime - 1;
       warpResult = mask;
       calcium += caSpikeIncrement[index];
    calcium *= caPersistence[index];
    newCalcium[index] = calcium;
    newVoltage[index] = voltage;
```

Compartments

```
unsigned int compartmentID = compartmentIDs[index];
float compartmentVoltage = compartmentVoltages[compartmentID];
unsigned int tauMIndex = tauMIndices[index];
unsigned int tauMEnd = tauMIndices[index + 1];
float t m = 0.0f;
for (; tauMIndex < tauMEnd; ++tauMIndex)</pre>
    if (compartmentVoltage < tauMVoltage[tauMIndex])</pre>
        t m = tauMValue[tauMIndex];
        break;
float m oo =
   1.0f / (1.0f + exp(-(compartmentVoltage - eHalfMinM[index]) /
                       slopeFactorM[index]));
float m = m[index];
m += (m oo - m) * dt / t m;
m = (m < 0.0f)? 0.0f : (m > 1.0f)? 1.0f : m;
m[index] = m;
unsigned int tauHIndex = tauHIndices[index];
unsigned int tauHEnd = tauHIndices[index + 1];
float t h = 0.0f;
for (; tauHIndex < tauHEnd; ++tauHIndex)</pre>
    if (compartmentVoltage < tauHVoltage[tauHIndex])</pre>
        t h = tauHValue[tauHIndex];
float h oo =
   1.0f / (1.0f + exp((compartmentVoltage - eHalfMinH[index]) /
                       slopeFactorH[index]));
float h = h[index];
h += (h oo - h) * dt / t h;
h = (h < 0.0f)? 0.0f : (h > 1.0f)? 1.0f : h;
h[index] = h;
float I = unitaryG[index] * strength[index] * pow(m, mPower[index]) *
          pow(h, hPower[index]) *
          (reversalPotential[index] - compartmentVoltage);
atomicAdd(compartmentCurrents + compartmentID, I);
```

Ka Channels

Kahp Channels

Km Channels

```
unsigned int index = indices[block::thread()];
const unsigned char type = RSEType[index];
float USE = USE[index];
float RSE = RSE[index];
float USEBase = USEBase[index];
float dt = elapsedTime - lastFireTime[index];
float firingValue = maxG[index];
if (type & 0x2u) //Facilitation
   USE += (1.0f - USEBase) * USE *
           exp(1000.0f * -dt / tauFacilitation[index]);
   USE = math::clamp(USE, 0.0f, 1.0f);
   USE[index] = USE;
if (type & 0x1u) //Depression
   RSE = 1.0f + ((RSE * (1.0f - USEBase) - 1.0f) *
                  exp(1000.0f * -dt / tauDepression[index]));
   RSE = math::clamp(RSE, 0.0f, 1.0f);
   RSE[index] = RSE;
switch(type)
case 0x0: //None
    firingValue *= USEBase;
break;
case 0x1: //Depression
   firingValue *= USEBase * RSE;
break;
case 0x2: //Facilitation
   firingValue *= USE;
break;
case 0x3: //Both
    firingValue *= USE * RSE;
break;
default:
break;
```

Short-Term Learning

```
//Negative learning
if (learningOn[index])
   float postDT = elapsedTime - lastPostFireTime[index];
   switch(learningType[index])
   case 0: //None
   break;
   case 1: //Exponential
       float positiveLearningModulator = positiveLearningModulator[index];
       positiveLearningModulator *=
           exp(1000.0f * -dt / positivePeakTime[index]);
       positiveLearningModulator += positivePeakDeltaUSE[index];
       positiveLearningModulator[index] = positiveLearningModulator;
       USEBase -=
           exp(1000.0f * -postDT / negativePeakTime[index]) *
           negativeLearningModulator[index];
       if (USEBase < 0.0f) USEBase = 0.0f;</pre>
       USEBase[index] = USEBase;
   break;
   case 2: //Triangle
       float negativeWindowWidth = negativeWindowWidth[index];
       if (postDT < negativeWindowWidth)</pre>
           float peakTime = negativePeakTime[index];
           float dUSE = negativePeakDeltaUSE[index];
           if (postDT < peakTime)</pre>
               dUSE *= (postDT / peakTime);
           else
               dUSE *= 1.0f - (postDT - peakTime) /
                        ( negativeWindowWidth - peakTime);
           USEBase -= dUSE;
           if (USEBase < 0.0f) USEBase = 0.0f;</pre>
            USEBase[index] = USEBase;
   break;
   default:
   break;
```

Long-Term Negative Learning

```
float USEBase = USEBase[index];
 float preDT = elapsedTime - lastPreFireTime[index];
 switch(learningType[index])
 case 0: //None
 break;
 case 1: //Exponential
     float postDT = elapsedTime - lastPostFireTime[index];
     float negativeLearningModulator = negativeLearningModulator[index];
     negativeLearningModulator *=
         exp(1000.0f * -postDT / negativePeakTime[index]);
     negativeLearningModulator += negativePeakDeltaUSE[index];
      negativeLearningModulator[index] = negativeLearningModulator;
     USEBase +=
         exp(1000.0f * -preDT / positivePeakTime[index]) *
         positiveLearningModulator[index];
     if (USEBase > 1.0f) USEBase = 1.0f;
     USEBase[index] = USEBase;
 break;
 case 2: //Triangle
     float positiveWindowWidth = positiveWindowWidth[index];
     if (preDT < positiveWindowWidth)</pre>
         float peakTime = positivePeakTime[index];
         float dUSE = positivePeakDeltaUSE[index];
         if (preDT < peakTime)</pre>
             dUSE *= (preDT / peakTime);
             dUSE *= 1.0f - (preDT - peakTime) /
                     ( positiveWindowWidth - peakTime);
         USEBase += dUSE;
         if (USEBase > 1.0f) USEBase = 1.0f;
         USEBase[index] = USEBase;
 break;
 default:
 break;
//if learning on
```

Long-Term Positive Learning

```
unsigned int firingIndex = firingIndices[index];
unsigned int PSGCount = PSGCounts[index];
-- PSGCount;
float PSGValue = PSGs[firingIndex][PSGCount];
unsigned int postNeuronID = postNeuronIDs[firingIndex];
float voltage = synapticReversal[firingIndex];
voltage -= voltages[postNeuronID];
float firingValue = firingValues[index];
float current = voltage * firingValue * PSGValue;
atomicAdd(synapticCurrents + postNeuronID, current);
bool save = false;
unsigned int saveIndex;
if (PSGCount > 0)
    save = true;
    saveIndex = atomicAdd(&numQueued, lu);
    if (saveIndex < block::size())</pre>
        queuedIndices[saveIndex] = firingIndex;
        queuedPSGCounts[saveIndex] = PSGCount;
        queuedFiringValues[saveIndex] = firingValue;
        save = false;
    else
        saveIndex -= block::size();
```

Post Synaptic Conductance

NCS 6 Implementation

- Plugin interface for multiple model support
 - o Currently have:
 - NCS 5 LIF Neurons
 - Izhikevich Neurons
 - ability to design your own
 - Have a student working on a Neuron CPU plugin.
- Runs on CPUs, CUDA devices, and OpenCL devices simultaneously

Requirements

NCS5 Software / Hardware

Linux based operating system

NCS6 Software / Hardware

Linux based operating system

NVIDIA GPUs

NCS5- Packages Needed

bison

flex

mpi-run

- : sudo apt-get install bison
- : sudo apt-get install flex
- : sudo apt-get install openmpi-bin
- : sudo apt-get install openmpi-dev

NCS6- Packages Needed

bison : sudo apt-get install bison

cmake : sudo apt-get install cmake

cuda toolkit : http://developer.nvidia.com/

o cd/home/userName/Downloads

o sh <cuda_toolkit_installer_name>

doxygen : sudo apt-get install doxygen

flex : sudo apt-get install flex

g++ version 4.4: sudo apt-get install g++-4.4

g++ version 4.6+

mercurial : sudo apt-get install mercurial

mpi-run : sudo apt-get install openmpi-bin

: sudo apt-get install openmpi-dev

Simulation on a single machine

NCS5 Steps

- To compile code:
 - o Make
- After the code is compiled, you run NCS5 in the directory with the input file

- To run code:
 - o ncs5pe <input file>

NCS6 Steps

- cd /home/userName/NCS6/NCS6/build
- To specify the number of devices available on the computer for the program (Only do this step once)
 - o mpirun applications/clusterSpecifier/clusterSpecifier single.cluster
 - applications/clusterInfo/clusterInfo single.cluster
- To compile code:
 - applications/ncsDistributor/ncsDistributor <space>
 ../files/NCS6/folderName/fileName single.cluster ncsout
- To run code:
 - o applications/simulator/simulator/ncsout

DEMO

Input Language

- Define the simulation as a whole
- Preliminary outline of other structures
 - Anatomy
 - o Stimuli
 - Reports
- Extrinsic connections / synapses
- Include files

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE_MODEL_model
   J0B
   FSV
           1e3
   DURATION
   SEED
          -21
   DISTANCE
          NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT SIMPLE MODEL STIM
REPORT VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

- Columns
- Layers
- Cells
- Compartments
- Channels

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
             800
  HEIGHT
  LOCATION
                       800
END COLUMN SHELL
COLUMN
  TYPE
        SIMPLE MODEL COLUMN
  COLUMN_SHELL SIMPLE_MODEL_SHELL LAYER_TYPE layer_SIMPLE_MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                       layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                       SIMPLE MODEL 1
                                     10
     CELL TYPE
                       SIMPLE MODEL 2
                                     10
END LAYER
```

Stimulus

- External stimulation (visual, audio...)
- Type of signals
 - Linear
 - o Pulse
 - Noise
 - o File-based
- Multiple times
- Different destinations

Stimulus

```
###########################
                             STIMULUS INJECTS
                                                   #####################################
STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                    realstim SIMPLE MODEL
        MODE
                                    CURRENT
        PATTERN
                                    PULSE
        DYN RANGE
                                             75
                                    0
        TIMING
                                    EXACT
        AMP START
        WIDTH
                                    .010
        TIME START
                                   0.500
        TIME END
                                   0.600
END STIMULUS
```

Connections

- Extrinsic and intrinsic connections
- Synapse connections
- From the source to the destination
- With or without decaying distance effects
- Recurrent connections

Connections

Synapses

- Connections between other cells and their compartments
- Excitatory
- Inhibitory
- Synaptic Waveform
- Learning
 - Short term synaptic dynamics
 - Facilitation
 - Depression
 - Long term synaptic dynamics (Hebbian Learning)
 - STDP rule

Synapses

```
SYNAPSE
  TYPE
      synEE SIMPLE MODEL
  SFD_LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT 0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                0.1
END SYNAPSE
########################## SHORT-TERM SYNAPTIC DYNAMICS ########################
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                    NO STDP
     LEARNING
                    NONE
END SYN LEARNING
SYN PSG
                    PSGexcit
     TYPE
     PSG FILE
                    ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

Reports

- Data about cells
- Report files:
 - Voltage
 - Current
 - o Firecount
 - Channel
 - Synaptic strengths
- Automatically generated and saved

Reports

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

DEMO

Break

Today's Outline

First Hour

- Introduction
- Equations and Implementation
- o Requirements and Simulation on a Single Machine
- Input Language

Second Hour

- Simple Model
- Parameters Presentation and Testing
- Output Analysis

Third Hour

- Simulation on Multiple Machines
- Software Tools
- Robotic System Configuration
- Larger Networks and Complete Loop Execution
- Future Directions and Summary

Simple Model

Architecture


```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE_MODEL_model
   J0B
   FSV
           1e3
   DURATION
   SEED
          -21
   DISTANCE
          NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT SIMPLE MODEL STIM
REPORT VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
           SIMPLE MODEL model
   TYPE
   J0B
           SIMPLE MODEL model
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
          NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT SIMPLE MODEL STIM
REPORT VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
           SIMPLE MODEL model
   TYPE
           SIMPLE MODEL model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT
          SIMPLE MODEL STIM
REPORT
      VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE MODEL model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT
          SIMPLE MODEL STIM
REPORT
      VOLTAGE CELL 1
 REPORT
      VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE_MODEL_model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT
          SIMPLE MODEL STIM
REPORT
      VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
          SIMPLE_MODEL_model
          SIMPLE MODEL model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT
          SIMPLE MODEL STIM
REPORT
      VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE MODEL model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NΟ
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT
          SIMPLE MODEL STIM
REPORT
      VOLTAGE CELL 1
 REPORT VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE_MODEL_model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NO
COLUMN TYPE
         SIMPLE MODEL COLUMN
STIMULUS INJECT
          SIMPLE MODEL STIM
REPORT
      VOLTAGE CELL 1
 REPORT
       VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE_MODEL_model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
SIMPLE MODEL STIM
 STIMULUS INJECT
REPORT
       VOLTAGE CELL 1
 REPORT
       VOLTAGE CELL 2
END BRAIN
```

```
BRAIN
   TYPE
           SIMPLE_MODEL_model
           SIMPLE_MODEL_model
   J0B
   FSV
           1e3
   DURATION
   SEED
           -21
   DISTANCE
           NO
COLUMN TYPE
         SIMPLE MODEL_COLUMN
STIMULUS INJECT SIMPLE MODEL STIM
REPORT VOLTAGE_CELL_1
 REPORT
       VOLTAGE CELL 2
END BRAIN
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
             800
  HEIGHT
  LOCATION
                       800
END COLUMN SHELL
COLUMN
  TYPE
        SIMPLE MODEL COLUMN
  COLUMN_SHELL SIMPLE_MODEL_SHELL LAYER_TYPE layer_SIMPLE_MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                       layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                       SIMPLE MODEL 1
                                     10
     CELL TYPE
                       SIMPLE MODEL 2
                                     10
END LAYER
```

```
################################ Define Column Shells ##########################
COLUMN SHELL
   TYPE
                 SIMPLE MODEL SHELL
   WIDTH
                  300
                 800
   HEIGHT
   LOCATION
                               800
END COLUMN SHELL
################################## Fill Columns #################################
COLUMN
   TYPE
          SIMPLE MODEL COLUMN
   COLUMN_SHELL SIMPLE_MODEL_SHELL LAYER_TYPE layer_SIMPLE_MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
   TYPE
                 layer SIMPLE MODEL shell
   LOWER
   UPPER
                 400
END LAYER SHELL
LAYER
       TYPE
                              layer SIMPLE MODEL
       LAYER SHELL
                             layer SIMPLE MODEL shell
       CELL TYPE
                              SIMPLE MODEL 1
                                                10
       CELL TYPE
                              SIMPLE MODEL 2
                                                10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                        800
END COLUMN SHELL
COLUMN
        SIMPLE MODEL COLUMN
  TYPE
  COLUMN_SHELL SIMPLE_MODEL_SHELL LAYER_TYPE layer_SIMPLE_MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                       layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                       SIMPLE MODEL 1
                                     10
     CELL TYPE
                       SIMPLE MODEL 2
                                     10
END LAYER
```

```
COLUMN SHELL
  TYPE
            SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                      800
END COLUMN SHELL
COLUMN
  TYPE
        SIMPLE MODEL COLUMN
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE layer SIMPLE MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
            layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                     layer SIMPLE MODEL
     LAYER SHELL
                     layer SIMPLE MODEL shell
     CELL TYPE
                     SIMPLE MODEL 1
                                  10
     CELL TYPE
                     SIMPLE MODEL 2
                                  10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
  TYPE
        SIMPLE MODEL COLUMN
  COLUMN_SHELL SIMPLE_MODEL_SHELL LAYER_TYPE layer_SIMPLE_MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                       layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                       SIMPLE MODEL 1
                                    10
     CELL TYPE
                       SIMPLE MODEL 2
                                    10
END LAYER
```

```
COLUMN SHELL
   TYPE
               SIMPLE MODEL SHELL
   WIDTH
                300
               800
   HEIGHT
                           800
   LOCATION
END COLUMN SHELL
################################# Fill Columns #################################
COLUMN
   TYPE
          SIMPLE MODEL COLUMN
   COLUMN_SHELL SIMPLE_MODEL_SHELL LAYER_TYPE layer_SIMPLE_MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
   TYPE
               layer SIMPLE MODEL shell
   LOWER
   UPPER
               400
END LAYER SHELL
LAYER
      TYPE
                          layer SIMPLE MODEL
      LAYER SHELL
                          layer SIMPLE MODEL shell
      CELL TYPE
                          SIMPLE MODEL 1
                                          10
      CELL TYPE
                          SIMPLE MODEL 2
                                          10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
             800
  HEIGHT
  LOCATION
                       800
END COLUMN SHELL
COLUMN
  TYPE
             SIMPLE MODEL COLUMN
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE layer SIMPLE MODEL
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
             800
  HEIGHT
  LOCATION
                       800
END COLUMN SHELL
COLUMN
  TYPE
             SIMPLE MODEL COLUMN
  COLUMN SHELL
             SIMPLE MODEL SHELL
             layer SIMPLE MODEL
  LAYER TYPE
END COLUMN
############################### Define Layer Shells ############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
             800
  HEIGHT
  LOCATION
                       800
END COLUMN SHELL
COLUMN
  TYPE
             SIMPLE MODEL COLUMN
  COLUMN SHELL
             SIMPLE MODEL SHELL
  LAYER TYPE
             layer SIMPLE MODEL
END COLUMN
############################### Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
             SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
             layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
            SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                      800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
            layer SIMPLE MODEL
END COLUMN
########################### Define Layer Shells ###########
LAYER SHELL
  TYPE
            layer SIMPLE MODEL shell
  LOWER
  UPPER
            400
END LAYER SHELL
LAYER
     TYPE
                     layer SIMPLE MODEL
     LAYER SHELL
                     layer SIMPLE MODEL shell
     CELL TYPE
                     SIMPLE MODEL 1
                                  10
     CELL TYPE
                     SIMPLE MODEL 2
                                  10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
            layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                     layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
             layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                     layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
            layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                     layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
             layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
             layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
            layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      laver SIMPLE MODEL
     LAYER SHELL
                      layer SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
COLUMN SHELL
  TYPE
             SIMPLE MODEL SHELL
  WIDTH
             300
  HEIGHT
             800
  LOCATION
                       800
END COLUMN SHELL
COLUMN
           SIMPLE MODEL COLUMN
  TYPE
  COLUMN SHELL SIMPLE MODEL SHELL
  LAYER TYPE
             layer SIMPLE MODEL
END COLUMN
############################## Define Layer Shells #############################
LAYER SHELL
  TYPE
             layer SIMPLE MODEL shell
  LOWER
  UPPER
             400
END LAYER SHELL
LAYER
     TYPE
                      layer SIMPLE MODEL
     LAYER SHELL
                      laver SIMPLE MODEL shell
     CELL TYPE
                      SIMPLE MODEL 1
                                   10
     CELL TYPE
                      SIMPLE MODEL 2
                                   10
END LAYER
```

```
CELL
   TYPE
                 SIMPLE MODEL 1
   COMPARTMENT
                 soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
         SIMPLE_MODEL_2
MENT soma_SIMPLE_MODEL somaE 0
   TYPE
   COMPARTMENT
END CELL
##############################
## Define Compartments
##############################
COMPARTMENT
   TYPE
                   soma SIMPLE MODEL
   SPIKESHAPE
                   spikeshape 1k default
   TAU_MEMBRANE 0.020
R_MEMBRANE 200
                              0.0
   THRESHOLD
                - 40
   VMREST
                  -60
END COMPARTMENT
########################### Define Spikeshape###################################
SPIKESHAPE
 TYPE
           spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
                  SIMPLE MODEL 1
   COMPARTMENT
                 soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
          SIMPLE_MODEL_2
MENT soma SIMPLE MOD
   TYPE
                 soma SIMPLE MODEL somaE 0
   COMPARTMENT
END CELL
##############################
## Define Compartments
##############################
COMPARTMENT
   TYPE
                   soma SIMPLE MODEL
   SPIKESHAPE
                   spikeshape 1k default
   TAU_MEMBRANE 0.020
R MEMBRANE 200
                              0.0
   THRESHOLD
                 -40
   VMREST
                   -60
END COMPARTMENT
########################### Define Spikeshape###################################
SPIKESHAPE
 TYPE
            spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
  TYPE
                 SIMPLE MODEL 1
   COMPARTMENT
                 soma SIMPLE MODEL somaE
END CELL
CELL
          SIMPLE_MODEL_2
MENT soma SIMPLE MOD
   TYPE
                 soma SIMPLE MODEL somaE
   COMPARTMENT
END CELL
###############################
## Define Compartments
###########################
COMPARTMENT
   TYPE
                   soma SIMPLE MODEL
   SPIKESHAPE
                   spikeshape 1k default
   TAU_MEMBRANE 0.020
                             0.0
   R MEMBRANE
                 200
   THRESHOLD
                - 40
                  -60
   VMREST
END COMPARTMENT
######################### Define Spikeshape#########################
SPIKESHAPE
            spikeshape 1k default
 TYPE
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
  TYPE
               SIMPLE MODEL 1
  COMPARTMENT
               soma SIMPLE MODEL somaE
                                         0
                                       0
END CELL
CELL
        SIMPLE_MODEL_2
MENT soma SIMPLE MOI
   TYPE
               soma SIMPLE MODEL somaE
  COMPARTMENT
END CELL
###############################
## Define Compartments
###########################
COMPARTMENT
  TYPE
                soma SIMPLE MODEL
  SPIKESHAPE
                spikeshape 1k default
                0.020
  TAU MEMBRANE
                          0.0
               200
  R MEMBRANE
  THRESHOLD
               -40
                -60
   VMREST
END COMPARTMENT
SPIKESHAPE
          spikeshape 1k default
 TYPE
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
  TYPE
             SIMPLE MODEL 1
  COMPARTMENT
             soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
        SIMPLE_MODEL_2
1ENT soma SIMPLE MOI
  TYPE
             soma SIMPLE MODEL somaE
  COMPARTMENT
END CELL
## Define Compartments
COMPARTMENT
  TYPE
               soma SIMPLE MODEL
  SPIKESHAPE
               spikeshape 1k default
  TAU_MEMBRANE 0.020
                       0.0
  R MEMBRANE
              200
  THRESHOLD
             - 40
  VMREST
               -60
END COMPARTMENT
SPIKESHAPE
 TYPE
         spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
                  SIMPLE MODEL 1
   COMPARTMENT
                  soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
          SIMPLE_MODEL_2
MENT soma SIMPLE MOD
   TYPE
                  soma SIMPLE MODEL somaE 0
   COMPARTMENT
END CELL
###############################
## Define Compartments
#############################
COMPARTMENT
                   soma SIMPLE MODEL
   TYPE
   SPIKESHAPE
                   spikeshape 1k default
                   0.020
   TAU MEMBRANE
                              0.0
   R MEMBRANE
                   200
   THRESHOLD
                  - 40
   VMREST
                   -60
END COMPARTMENT
########################### Define Spikeshape###################################
SPIKESHAPE
 TYPE
            spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
                  SIMPLE MODEL 1
   COMPARTMENT
                  soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
          SIMPLE_MODEL_2
MENT soma SIMPLE MOD
   TYPE
                  soma SIMPLE MODEL somaE 0
   COMPARTMENT
END CELL
###############################
## Define Compartments
#############################
COMPARTMENT
   TYPE
                   soma SIMPLE MODEL
   SPIKESHAPE
                   spikeshape 1k default
   TAU MEMBRANE
                   0.020
                              0.0
   R MEMBRANE
                   200
                               0
   THRESHOLD
                  - 40
   VMREST
                   -60
END COMPARTMENT
########################### Define Spikeshape###################################
SPIKESHAPE
 TYPE
            spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
               SIMPLE MODEL 1
   COMPARTMENT
               soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
               SIMPLE MODEL 2
   TYPE
   COMPARTMENT
               soma SIMPLE MODEL somaE
END CELL
##############################
## Define Compartments
############################
COMPARTMENT
   TYPE
                soma SIMPLE MODEL
   SPIKESHAPE
                spikeshape Ik default
                0.020
   TAU MEMBRANE
                          0.0
   R MEMBRANE
                200
   THRESHOLD
               - 40
                -60
   VMREST
END COMPARTMENT
SPIKESHAPE
 TYPE
           spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
  TYPE
               SIMPLE MODEL 1
  COMPARTMENT
               soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
               SIMPLE MODEL 2
   TYPE
               soma SIMPLE MODEL somaE
   COMPARTMENT
END CELL
##############################
## Define Compartments
##############################
COMPARTMENT
  TYPE
                soma SIMPLE MODEL
  SPIKESHAPE
                spikeshape 1k default
                0.020
  TAU MEMBRANE
                         0.0
  R MEMBRANE
                200
  THRESHOLD
               -40
   VMREST
                -60
END COMPARTMENT
SPIKESHAPE
 TYPE
            spikeshape 1k default
 VOLTAGES
            -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
                  SIMPLE MODEL 1
   COMPARTMENT
                  soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
          SIMPLE_MODEL_2
MENT soma SIMPLE MOD
   TYPE
   COMPARTMENT
                 soma SIMPLE MODEL somaE 0
END CELL
###############################
## Define Compartments
#############################
COMPARTMENT
   TYPE
                   soma SIMPLE MODEL
   SPIKESHAPE
                   spikeshape 1k default
                   0.020
   TAU MEMBRANE
                              0.0
   R MEMBRANE
                  200
                 - 40
   THRESHOLD
   VMREST
                   -60
END COMPARTMENT
########################### Define Spikeshape###################################
SPIKESHAPE
 TYPE
              spikeshape 1k default
 VOLTAGES
              -38 30 -43 -60
END SPIKESHAPE
```

Spike shape


```
CELL
   TYPE
               SIMPLE MODEL 1
   COMPARTMENT
               soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
         SIMPLE_MODEL_2
1ENT soma SIMPLE MOD
   TYPE
               soma SIMPLE MODEL somaE
   COMPARTMENT
END CELL
#############################
## Define Compartments
############################
COMPARTMENT
   TYPE
                 soma SIMPLE MODEL
   SPTKESHAPE
                 snikeshane lk default
  TAU MEMBRANE
                 0.020
                          0.0
   R MEMBRANE
                 200
                          0
   THRESHOLD
                 - 40
   VMREST
                 -60
END COMPARTMENT
SPIKESHAPE
 TYPE
           spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
               SIMPLE MODEL 1
   COMPARTMENT
               soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
         SIMPLE_MODEL_2
NENT soma SIMPLE MOD
   TYPE
   COMPARTMENT
               soma SIMPLE MODEL somaE 0
END CELL
#############################
## Define Compartments
############################
COMPARTMENT
   TYPE
                 soma SIMPLE MODEL
   SPIKESHAPE
                 spikeshape 1k default
   TAU MEMBRANE
                 0.020
                          0.0
  R MEMBRANE
                          0
                 200
   THRESHOLD
                 -40
   VMREST
                 -60
END COMPARTMENT
SPIKESHAPE
 TYPE
           spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

```
CELL
   TYPE
               SIMPLE MODEL 1
   COMPARTMENT
               soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
               SIMPLE MODEL 2
   TYPE
               soma SIMPLE MODEL somaE
   COMPARTMENT
END CELL
#############################
## Define Compartments
############################
COMPARTMENT
   TYPE
                soma SIMPLE MODEL
   SPIKESHAPE
                spikeshape 1k default
   TAU MEMBRANE
                0.020
                         0.0
   R MEMBRANE
                200
  THRESHOLD
                         0
                 -40
   VMREST
                 -60
END COMPARTMENT
SPIKESHAPE
 TYPE
           spikeshape 1k default
        -38 30 -43 -60
 VOLTAGES
END SPIKESHAPE
```

```
################################ Define Cells ##################################
CELL
   TYPE
                    SIMPLE MODEL 1
   COMPARTMENT
                    soma SIMPLE MODEL somaE 0 0 0
END CELL
CELL
                    SIMPLE MODEL 2
    TYPE
                    soma SIMPLE MODEL somaE 0
   COMPARTMENT
END CELL
############################
## Define Compartments
#############################
COMPARTMENT
   TYPE
                      soma SIMPLE MODEL
   SPIKESHAPE
                      spikeshape 1k default
                      0.020
   TAU MEMBRANE
                                  0.0
   R MEMBRANE
                      200
                                   0
   THRESHOLD
                       - 40
                                  0
   VMREST
                      -60
END COMPARTMENT
########################### Define Spikeshape###################################
SPIKESHAPE
 TYPE
              spikeshape 1k default
 VOLTAGES -38 30 -43 -60
END SPIKESHAPE
```

Membrane Potential

Channel a

```
COMPARTMENT
    TYPE
                       soma SIMPLE MODEL2
                       spikeshape_channels
    SPIKESHAPE
    TAU MEMBRANE
                       0.020
                                    0.0
    R MEMBRANE
                       200
    THRESHOLD
                       -40
    VMREST
                       -60
    CHANNEL
                       a
END COMPARTMENT
```

Channel a

```
CHANNEL Ka
        TYPE
                                           а
        M INITIAL
                                           0.0
                                                            0.0
        HINITIAL
                                           1.0
                                                            0.0
        REVERSAL POTENTIAL
                                           -80
                                                            0
        M POWER
                                           1
        H POWER
        E HALF MIN M
                                           11
        E HALF MIN H
                                           - 56
        SLOPE FACTOR M
                                           18
        SLOPE FACTOR H
                                           18
        UNITARY G
                                           0.12
        STRENGTH
                                           2.5
        V TAU VALUE M
                                           0.0002
                                                            9999
        V TAU VALUE H
                                           0.03
                                                            0.13
                                                                    0.18
                                                                             0.23
                                                   0.08
        V TAU VOLTAGE M
                                           100
        V TAU VOLTAGE H
                                           -21
                                                   - 1
                                                            10
                                                                    21
END CHANNEL
```

Channel m

```
COMPARTMENT
    TYPE
                       soma_SIMPLE_MODEL2
                       spikeshape channels
    SPIKESHAPE
    TAU_MEMBRANE
                       0.020
                                    0.0
    R MEMBRANE
                       200
    THRESHOLD
                       - 40
    VMREST
                       -60
    CHANNEL
                       m
END COMPARTMENT
```

Channel m

CHANNEL Km		
TYPE	m	
M INITIAL	0.0	0.0
REVERSAL POTENTIAL	-80	0
M POWER —	1	
E HALF MIN M	-44	
SLOPE FACTOR M	40 20	8.8
TAU SCALE FACTOR M	0.303	
UNITARY G	5	
STRENGTH	0.00015	
END CHANNEL		
_		

Channel ahp

```
COMPARTMENT
                       soma_SIMPLE_MODEL2
    TYPE
                       spikeshape_channels
    SPIKESHAPE
                                    0.0
    TAU MEMBRANE
                       0.020
    R MEMBRANE
                       200
    THRESHOLD
                       -40
    VMREST
                       -60
    CHANNEL
                       ahp1
END COMPARTMENT
```

Channel ahp

```
CHANNEL Kahp
                                          ahp1
        TYPE
        SEED
                                          999999
        M INITIAL
                                          0.0
                                                           0.0
        REVERSAL POTENTIAL
                                          -80
        M POWER
        UNITARY G
        STRENGTH
                                          0.00015
        CA SCALE FACTOR
                                          0.000125
        CA EXP FACTOR
        CA HALF MIN
                                          2.5
        CA TAU SCALE FACTOR
                                          0.01
END CHANNEL
```

TYPE	Soma-cNAC	
SEED	999999	
SPIKESHAPE	AP Hoff	
	_	•
SPIKE_HALFWIDTH	10	0
TAU_MEMBRANE	0.015	0.0
R MEMBRANE	200	0.0
THRESHOLD	-40	0.0
LEAK REVERSAL	0.0	0.0
LEAK CONDUCTANCE	0.0	0.0
VMREST	-65	0.0
CA INTERNAL	5.0	0.0
CA_EXTERNAL	0.0	0.0
CA_SPIKE_INCREMENT	100	0.0
CA_TAU	0.07	0.0
CHANNEL	a	

COMPARTMENT		
TYPE	Soma-cNAC	
SEED	999999	
SPIKESHAPE	AP Hoff	
SPIKE HALFWIDTH	10	0
TAU MEMBRANE	0.015	0.0
R MEMBRANE	200	0.0
THRESHOLD	-40	0.0
LEAK REVERSAL	0.0	0.0
LEAK_CONDUCTANCE	0.0	0.0
VMREST	-65	0.0
CA_INTERNAL	5.0	0.0
CA_EXTERNAL	0.0	0.0
CA_SPIKE_INCREMENT	100	0.0
CA_TAU	0.07	0.0
CHANNEL	a	
END_COMPARTMENT		

COMPARTMENT			
	TYPE	Soma-cNAC	
l .	SEED	999999	
	SPIKESHAPE	AP Hoff	
	SPIKE_HALFWIDTH	10	0
l .	TAU MEMBRANE	0.015	0.0
l .	R MEMBRANE	200	0.0
l .	THRESHOLD	-40	0.0
l .	LEAK_REVERSAL	0.0	0.0
	LEAK CONDUCTANCE	0.0	0.0
Ι.,	VMREST	-65	0.0
	CA INTERNAL	5.0	0.0
	CA_EXTERNAL	0.0	0.0
	CA SPIKE INCREMENT	100	0.0
	CA_TAU	0.07	0.0
	CHANNEL	a	
END_COMP	ARTMENT		

COMPARTMENT			
	TYPE	Soma-cNAC	
l .	SEED	999999	
	SPIKESHAPE	AP Hoff	
	SPIKE HALFWIDTH	10	0
	TAU MEMBRANE	0.015	0.0
	R_MEMBRANE	200	0.0
l .	THRESHOLD	-40	0.0
	LEAK_REVERSAL	0.0	0.0
	LEAK CONDUCTANCE	0.0	0.0
	VMREST	-65	0.0
Ι.	CA_INTERNAL	5.0	0.0
	CA_EXTERNAL	0.0	0.0
I .	CA_SPIKE_INCREMENT	100	0.0
l .	CA_TAU	0.07	0.0
	CHANNEL	a	
END_COMP	ARTMENT		

COMPARTMENT		
TYPE	Soma-cNAC	
SEED	999999	
SPIKESHAPE	AP Hoff	
SPIKE HALFWIDTH	10	0
TAU MEMBRANE	0.015	0.0
R MEMBRANE	200	0.0
THRESHOLD	-40	0.0
LEAK REVERSAL	0.0	0.0
LEAK CONDUCTANCE	0.0	0.0
VMREST	-65	0.0
CA_INTERNAL	5.0	0.0
CA EXTERNAL	0.0	0.0
CA SPIKE INCREMENT	100	0.0
CA_TAU	0.07	0.0
CHANNEL	a	
END_COMPARTMENT		

COMPARTMENT		
TYPE	Soma-cNAC	
SEED	999999	
SPIKESHAPE	AP Hoff	
SPIKE HALFWIDTH	10	0
TAU MEMBRANE	0.015	0.0
R MEMBRANE	200	0.0
THRESHOLD	-40	0.0
LEAK REVERSAL	0.0	0.0
LEAK CONDUCTANCE	0.0	0.0
VMREST	-65	0.0
CA INTERNAL	5.0	0.0
CA EXTERNAL	0.0	0.0
CA SPIKE INCREMENT	100	0.0
CA TAU	0.07	0.0
CHANNEL	a	
END_COMPARTMENT		

```
###########################
                             STIMULUS INJECTS
                                                   ######################################
STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                    realstim SIMPLE MODEL
        MODE
                                    CURRENT
        PATTERN
                                    PULSE
        DYN RANGE
                                             75
                                    0
        TIMING
                                    EXACT
        AMP START
        WIDTH
                                    .010
        TIME START
                                   0.500
        TIME END
                                    0.600
END STIMULUS
```

```
STIMULUS INJECTS
STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                    SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                   realstim SIMPLE MODEL
        MODE
                                   CURRENT
        PATTERN
                                   PULSE
        DYN RANGE
                                            75
                                   0
        TIMING
                                   EXACT
        AMP START
        WIDTH
                                   .010
        TIME START
                                   0.500
        TIME END
                                   0.600
END STIMULUS
```

```
STIMULUS INJECTS
###########################
                                         STIMULUS INJECT
  TYPE
                 SIMPLE MODEL STIM
   STIM_TYPE
                 realstim SIMPLE MODEL
   INJECT
                 SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
       TYPE
                             realstim SIMPLE MODEL
       MODE
                             CURRENT
                             PULSE
       PATTERN
       DYN RANGE
                                    75
                             0
       TIMING
                             EXACT
       AMP START
       WIDTH
                             .010
       TIME START
                             0.500
       TIME END
                             0.600
END STIMULUS
```

```
############################
                        STIMULUS INJECTS
                                          STIMULUS INJECT
   TYPE
                 SIMPLE MODEL STIM
  STIM TYPE
                 realstim SIMPLE MODEL
                 SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   INJECT
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
       TYPE
                              realstim SIMPLE MODEL
       MODE
                             CURRENT
       PATTERN
                             PULSE
       DYN RANGE
                                     75
                             0
       TIMING
                             EXACT
       AMP START
       WIDTH
                              .010
       TIME START
                             0.500
       TIME END
                             0.600
END STIMULUS
```

```
###############################
                        STIMULUS INJECTS
                                           STIMULUS INJECT
   TYPE
                  SIMPLE MODEL STIM
                  realstim SIMPLE MODEL
   STIM TYPE
  INJECT
                  SIMPLE MODEL COLUMN layer SIMPLE MODEL
                                                              SIMPLE MODEL 1
                                                                             somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
       TYPE
                               realstim SIMPLE MODEL
       MODE
                               CURRENT
       PATTERN
                               PULSE
       DYN RANGE
                                      75
                               0
       TIMING
                               EXACT
       AMP START
       WIDTH
                               .010
       TIME START
                              0.500
       TIME END
                              0.600
END STIMULUS
```

```
############################
                             STIMULUS INJECTS
                                                   ######################################
STIMULUS INJECT
    TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                    realstim SIMPLE MODEL
        MODE
                                    CURRENT
        PATTERN
                                    PULSE
        DYN RANGE
                                             75
        TIMING
                                    EXACT
        AMP START
        WIDTH
                                    .010
        TIME START
                                    0.500
        TIME END
                                    0.600
END STIMULUS
```

```
############################
                             STIMULUS INJECTS
                                                    ######################################
STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
         TYPE
                                     <u>realstim_</u>SIMPLE_MODEL
        MODE
                                     CURRENT
         PATTERN
                                     PULSE
         DYN RANGE
                                              75
        TIMING
                                    EXACT
        AMP START
        WIDTH
                                     .010
        TIME START
                                    0.500
        TIME END
                                    0.600
END STIMULUS
```

```
###########################
                             STIMULUS INJECTS
                                                   ######################################
STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                    realstim SIMPLE MODEL
        MODE
                                    CURRENT
        PATTERN
                                    PULSE
        DYN RANGE
                                    0
        TIMING
                                    EXACT
        AMP START
        WIDTH
                                    .010
        TIME START
                                    0.500
        TIME END
                                    0.600
END STIMULUS
```

```
############################
                          STIMULUS INJECTS
                                              STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                   SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                 realstim SIMPLE MODEL
        MODE
                                 CURRENT
        PATTERN
                                 PULSE
       DYN RANGE
                                 0
                                         75
        TIMING
                                 EXACT
        AMP START
        WIDTH
                                 .010
        TIME START
                                 0.500
       TIME END
                                 0.600
END STIMULUS
```

```
###########################
                           STIMULUS INJECTS
                                               STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                   SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                 realstim SIMPLE MODEL
        MODE
                                 CURRENT
                                 PULSE
        PATTERN
        DYN RANGE
        TIMING
                                 EXACT
        AMP START
        WIDTH
                                 .010
        TIME START
                                 0.500
        TIME END
                                 0.600
END STIMULUS
```

```
############################
                           STIMULUS INJECTS
                                               STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                   SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                 realstim SIMPLE MODEL
        MODE
                                 CURRENT
                                 PULSE
        PATTERN
        DYN RANGE
                                         75
        TIMING
                                 EXACT
        AMP START
        WIDTH
                                 .010
        TIME START
                                 0.500
        TIME END
                                 0.600
END STIMULUS
```

Amplitude


```
############################
                      STIMULUS INJECTS
                                      STIMULUS INJECT
  TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
STIMULUS
      TYPE
                           realstim SIMPLE MODEL
      MODE
                           CURRENT
      PATTERN
                           PULSE
      DYN RANGE
                                  75
      TIMING
                           EXACT
      AMP START
      WIDTH
                            .010
      TIME START
                           0.500
      TIME END
                           0.600
END STIMULUS
```

```
###########################
                           STIMULUS INJECTS
                                               STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                   SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
##############################define STIMULUS ##################################
STIMULUS
        TYPE
                                 realstim SIMPLE MODEL
        MODE
                                 CURRENT
        PATTERN
                                 PULSE
        DYN RANGE
                                         75
        TIMING
                                 EXACT
        AMP START
        WIDTH
                                  .010
       TIME START
                                 0.500
       TIME END
                                 0.600
END STIMULUS
```

```
###########################
                        STIMULUS INJECTS
                                          ######################################
STIMULUS INJECT
   TYPE SIMPLE_MODEL_STIM
STIM_TYPE realstim_SIMPLE_MODEL
INJECT SIMPLE_MODEL_COLUMN
                 SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
END STIMULUS INJECT
STIMULUS
       TYPE
                              realstim SIMPLE MODEL
       MODE
                              CURRENT
       PATTERN
                              PULSE
       DYN RANGE
                                     75
                              0
       TIMING
                              EXACT
       AMP START
       WIDTH
                              .010
       TIME START
                              0.500
      TIME END
                              0.600
END STIMULUS
```

```
##############################
                    STIMULUS INJECTS
                                   STIMULUS INJECT
   TYPE_
              SIMPLE MODEL STIM
   STIM TYPE
              realstim SIMPLE MODEL
   INJECT
              SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE 1
END STIMULUS INJECT
STIMULUS
      TYPE
                         realstim SIMPLE MODEL
      MODE
                         CURRENT
                         PULSE
      PATTERN
      DYN RANGE
                               75
      TIMING
                         EXACT
      AMP START
      WIDTH
                         .010
      TIME START
                         0.5
      TIME_END
                         0.6
     FREO START
                         50
END STIMULUS
```

Width / Frequency

Probability of Connections

Probability of Connections


```
SYNAPSE
  TYPE
      synEE SIMPLE MODEL
  SFD_LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT 0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                0.1
END SYNAPSE
########################### SHORT-TERM SYNAPTIC DYNAMICS #######################
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                    NO STDP
     LEARNING
                    NONE
END SYN LEARNING
SYN PSG
                    PSGexcit
     TYPE
     PSG FILE
                    ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
####################$YNAPSES SIMPLE MODEL MODEL##################################
SYNAPSE
   TYPE
            synEE SIMPLE MODEL
   SFD_LABEL
                  NO SFD
   LEARN LABEL
                  NO STDP
   SYN PSG
             PSGexcit
   MAX CONDUCT 0.4
   DELAY
             0.005 0.010
   SYN REVERSAL 0 0
   ABSOLUTE USE 0.25
                    0.1
END SYNAPSE
######################## SHORT-TERM SYNAPTIC DYNAMICS ##########################
SYN FACIL DEPRESS
      TYPE
                        NO SFD
                        NONE
      SFD
END SYN FACIL DEPRESS
SYN LEARNING
      TYPE
                        NO STDP
      LEARNING
                        NONE
END SYN LEARNING
SYN PSG
                        PSGexcit
      TYPE
      PSG FILE
                        ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
            synEE SIMPLE MODEL
  TYPE
                NO SFD
  SFD LABEL
  LEARN LABEL
                NO STDP
  SYN PSG
            PSGexcit
  MAX CONDUCT
           0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0
               0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
######################### SHORT-TERM SYNAPTIC DYNAMICS #########################
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
           SYNEE SIMPLE MODEL
 SFD LABEL
               NO SFD
               NO STDP
  LEARN LABEL
  SYN PSG
           PSGexcit
  MAX CONDUCT
           0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
######################### SHORT-TERM SYNAPTIC DYNAMICS #########################
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG_Vogels_FSV1k_TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
          synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
 LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT
           0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
############################ SHORT-TERM SYNAPTIC DYNAMICS ######################
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
          synEE SIMPLE MODEL
  SFD_LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT 0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0
               0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
############################ SHORT-TERM SYNAPTIC DYNAMICS ######################
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
          synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
  LEARN LABEL
               NO STDP
           PSGexcit
  SYN PSG
  MAX CONDUCT 0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0
               0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
######################## SHORT-TERM SYNAPTIC DYNAMICS ##########################
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
          synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT
           0.4
           0.005 0.010
  DELAY
  SYN REVERSAL 0
              0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
######################## SHORT-TERM SYNAPTIC DYNAMICS ##########################
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG_Vogels_FSV1k_TAU05.inc
END SYN PSG
```

Conductance Strength

Conductance Strength

Conductance Strength


```
SYNAPSE
  TYPE
          synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX_CUNDIICT
           0.005 0.010
 DELĀY
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
############################ SHORT-TERM SYNAPTIC DYNAMICS ######################
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     NO STDP
     LEARNING
                     NONE
END SYN LEARNING
SYN PSG
                     PSGexcit
     TYPE
     PSG FILE
                     ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
      synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT 0.4
  DELAY
           0.005 0.010
 SYN REVERSAL 0
              0
  ABSOLUTE USE 0.25
                0.1
END SYNAPSE
############################ SHORT-TERM SYNAPTIC DYNAMICS ######################
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                    NO STDP
     LEARNING
                    NONE
END SYN LEARNING
SYN PSG
                    PSGexcit
     TYPE
     PSG FILE
                    ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
      synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
  LEARN LABEL
               NO STDP
  SYN PSG
           PSGexcit
  MAX CONDUCT 0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0 0
 ABSOLUTE USE 0.25
END SYNAPSE
############################ SHORT-TERM SYNAPTIC DYNAMICS ######################
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                    NO STDP
     LEARNING
                    NONE
END SYN LEARNING
SYN PSG
                    PSGexcit
     TYPE
     PSG FILE
                    ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE
          synEE SIMPLE MODEL
  SFD LABEL
               NO SFD
  LEARN LABEL
               NO STDP
           PSGexcit
  SYN PSG
  MAX CONDUCT
           0.4
  DELAY
           0.005 0.010
  SYN REVERSAL 0
              0
  ABSOLUTE USE 0.25
                0.1
END SYNAPSE
######################## SHORT-TERM SYNAPTIC DYNAMICS ###########
SYN FACIL DEPRESS
     TYPE
                    NO SFD
                    NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                    NO STDP
     LEARNING
                    NONE
END SYN LEARNING
SYN PSG
     TYPE
                    PSGexcit
     PSG FILE
                    ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
  TYPE synEE_SIMPLE_MODEL
SFD_LABEL FACILITATION
LEARN_LABEL NO_STDP
SYN_PSG PSGexcit
  MAX_CONDUCT 0.4
DELAY 0.005 0.010
SYN_REVERSAL 0 0
  ABSOLUTE_USE 0.25 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                       FACILITATION
     SFD
                       B0TH
     FACIL TAU
                    0.376 0.0
     DEPR TAU
                      0.045
                                  0.0
END SYN FACIL DEPRESS
```

```
SYNAPSE
  TYPE _____ synEE SIMPLE MODEL
  SFD LABEL
               FACILITATION
  LEARN_LABEL NO_
SYN_PSG PSGexcit
               NO STDP
  MAX CONDUCT 0.4
  DELAY 0.005 0.010
SYN REVERSAL 0 0
  ABSOLUTE_USE 0.25 0.1
END SYNAPSE
SYN FACIL DEPRESS
    TYPE
                    FACILITATION
     SFD
                    B0TH
    FACIL TAU
                  0.376 0.0
    DEPR TAU
                    0.045
                              0.0
END SYN FACIL DEPRESS
```

```
SYNAPSE
  TYPE SYNEE_SIMPLE_MODEL
SFD_LABEL FACILITATION
LEARN_LABEL NO_STDP
SYN_PSG PSGexcit
  MAX CONDUCT 0.4
  DELAY 0.005 0.010
SYN REVERSAL 0 0
  ABSOLUTE_USE 0.25 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                       FACILITATION
     SFD
                       B0TH
     FACIL TAU
                       0.376
                                  0.0
     DEPR TAU
                       0.045
                                  0.0
END SYN FACIL DEPRESS
```

```
SYNAPSE
  TYPE SYNEE_SIMPLE_MODEL
SFD_LABEL FACILITATION
LEARN_LABEL NO_STDP
SYN_PSG PSGexcit
  MAX CONDUCT 0.4
  DELAY 0.005 0.010
SYN_REVERSAL 0 0
  ABSOLUTE_USE 0.25 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                       FACILITATION
     SFD
                       B0TH
     FACIL TAU
                       0.376
                                   0.0
     DEPR TAU
                       0.045
                                   0.0
END SYN FACIL DEPRESS
```

```
SYNAPSE
  TYPE synEE_SIMPLE_MODEL
SFD_LABEL FACILITATION
LEARN_LABEL NO_STDP
  SYN PSG PSGexcit
  MAX CONDUCT 0.4
  DELĀY 0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE_USE 0.25 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     FACILITATION
     SFD
                     B0TH
     FACIL TAU
                     0.376
                                0.0
     DEPR TAU
                     0.045
                                0.0
END SYN FACIL DEPRESS
```

```
SYNAPSE
  TYPE synEE_SIMPLE_MODEL
SFD_LABEL FACILITATION
LEARN_LABEL NO_STDP
  SYN PSG PSGexcit
  MAX CONDUCT 0.4
  DELĀY 0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE_USE 0.25 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     FACILITATION
     SFD
                     B0TH
                     0.376
     FACIL TAU
                                0.0
    DEPR TAU
                     0.045
                                0.0
END SYN FACIL DEPRESS
```

```
SYNAPSE
  TYPE
        synEE SIMPLE MODEL
  SFD LABEL
             NO SFD
  LEARN LABEL
             NO STDP
  SYN PSG
         PSGexcit
  MAX CONDUCT 0.4
  DELAY
         0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
              0.1
END SYNAPSE
SYN FACIL DEPRESS
    TYPE
                 NO SFD
                 NONE
    SFD
END SYN FACIL DEPRESS
SYN LEARNING
    TYPE
                 NO STDP
    LEARNING
                 NONE
END SYN LEARNING
SYN PSG
                 PSGexcit
    TYPE
    PSG FILE
                 ./input/EPSG Vogels FSV1k TAU05.inc
END SYN PSG
```

```
SYNAPSE
   TYPE
              synEE SIMPLE MODEL
   SFD LABEL
                  NO SFD
   LEARN LABEL
                  HEBBIAN
   SYN PSG
              PSGexcit
   MAX CONDUCT
              0.4
   DELAY
              0.005 0.010
   SYN REVERSAL 0 0
   ABSOLUTE USE 0.25
                    0.1
END SYNAPSE
###################### SHORT-TERM SYNAPTIC DYNAMICS ###########################
SYN FACIL DEPRESS
      TYPE
                         NO SFD
                         NONE
      SFD
END SYN FACIL DEPRESS
SYN LEARNING
      TYPE
                         HEBBIAN
      LEARNING
                         B0TH
      LEARNING SHAPE
                         EXPONENT
      NEG HEB WINDOW
                         0.1
                                     0.0
      POS HEB WINDOW
                         0.1
                                     0.0
      POS HEB PEAK DELTA USE 0.005
                                     0.0
      NEG HEB PEAK DELTA USE 0.0055
                                     0.0
      POS HEB PEAK TIME
                         0.02
                                     0.0
      NEG HEB PEAK TIME
                         0.02
                                     0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
  LEARN LABEL
                HEBBIAN
  SYN PSG
            PSGexc1t
  MAX CONDUCT
            0.4
            0.005 0.010
  DELAY
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
                HEBBIAN
  LEARN LABEL
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
            0.005 0.010
  DELAY
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
                     HEBBIAN
    TYPE
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
                HEBBIAN
  LEARN LABEL
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
            0.005 0.010
  DELAY
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
                HEBBIAN
  LEARN LABEL
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
            0.005 0.010
  DELAY
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
  LEARN LABEL
                HEBBIAN
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
  DELAY
            0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE
                     0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                                0.0
                     0.02
END SYN LEARNING
```

```
SYNAPSE
   TYPE
              synEE SIMPLE MODEL
   SFD LABEL
                   NO SFD
   LEARN LABEL
                   HEBBIAN
   SYN PSG
              PSGexcit
   MAX CONDUCT
              0.4
   DELAY
              0.005 0.010
   SYN REVERSAL 0 0
   ABSOLUTE USE 0.25
                    0.1
END SYNAPSE
############################## SHORT-TERM SYNAPTIC DYNAMICS ##########################
SYN FACIL DEPRESS
      TYPE
                         NO SFD
                         NONE
      SFD
END SYN FACIL DEPRESS
SYN LEARNING
      TYPE
                         HEBBIAN
      LEARNING
                          B0TH
      LEARNING SHAPE
                          EXPONENT
      NEG HER WINDOW
                         0.1
                                      0.0
      POS HEB WINDOW
                         0.1
                                      0.0
      POS HEB PEAK DELTA USE 0.005
                                      0.0
      NEG HEB PEAK DELTA USE 0.0055
                                      0.0
      POS HEB PEAK TIME
                         0.02
                                      0.0
      NEG HEB PEAK TIME
                         0.02
                                      0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
  LEARN LABEL
                HEBBIAN
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
  DELAY
            0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                      B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
  LEARN LABEL
                HEBBIAN
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
  DELAY
            0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
  TYPE
            synEE SIMPLE MODEL
  SFD LABEL
                NO SFD
  LEARN LABEL
                HEBBIAN
  SYN PSG
            PSGexcit
  MAX CONDUCT
            0.4
  DELAY
            0.005 0.010
  SYN REVERSAL 0 0
  ABSOLUTE USE 0.25
                 0.1
END SYNAPSE
SYN FACIL DEPRESS
     TYPE
                     NO SFD
                     NONE
     SFD
END SYN FACIL DEPRESS
SYN LEARNING
     TYPE
                     HEBBIAN
     LEARNING
                     B0TH
     LEARNING SHAPE
                     EXPONENT
     NEG HEB WINDOW
                     0.1
                                0.0
     POS HEB WINDOW
                     0.1
                                0.0
     POS HEB PEAK DELTA USE 0.005
                                0.0
     NEG HEB PEAK DELTA USE 0.0055
                                0.0
     POS HEB PEAK TIME
                     0.02
                                0.0
     NEG HEB PEAK TIME
                     0.02
                                0.0
END SYN LEARNING
```

```
SYNAPSE
   TYPE
              synEE SIMPLE MODEL
   SFD LABEL
                   NO SFD
   LEARN LABEL
                   HEBBIAN
   SYN PSG
              PSGexcit
   MAX CONDUCT
              0.4
   DELAY
              0.005 0.010
   SYN REVERSAL 0 0
   ABSOLUTE USE 0.25
                    0.1
END SYNAPSE
############################## SHORT-TERM SYNAPTIC DYNAMICS ##########################
SYN FACIL DEPRESS
      TYPE
                         NO SFD
                         NONE
      SFD
END SYN FACIL DEPRESS
SYN LEARNING
      TYPE
                         HEBBIAN
      LEARNING
                         B0TH
      LEARNING SHAPE
                         EXPONENT
      NEG HEB WINDOW
                         0.1
                                      0.0
      POS HEB WINDOW
                         0.1
                                      0.0
      POS HEB PEAK DELTA USE 0.005
                                      0.0
      NEG HEB PEAK DELTA USE 0.0055
                                      0.0
      POS HER PEAK TIME
                         0.02
                                      0.0
     NEG HEB PEAK TIME
                         0.02
                                      0.0
END SYN LEARNING
```

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

```
REPORT
  TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

```
REPORT
   TYPE
                     VOLTAGE CELL 1
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   CELLS
   PROB
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
                     1
   TIME START
   TIME END
                     100
END REPORT
REPORT
   TYPE
                     VOLTAGE CELL 2
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                     1
   TIME START
   TIME END
                     100
END REPORT
```

```
REPORT
   TYPE
                     VOLTAGE CELL 1
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR0B
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                     100
END REPORT
REPORT
   TYPE
                     VOLTAGE CELL 2
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                     1
   TIME START
   TIME END
                     100
END REPORT
```

```
REPORT
   TYPE
                     VOLTAGE CELL 1
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR0B
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                     100
END REPORT
REPORT
   TYPE
                     VOLTAGE CELL 2
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                     1
   TIME START
   TIME END
                     100
END REPORT
```

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
                      SIMPLE MODEL 1 VOLTAGE E.txt
   FILENAME
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

Reports

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
                      100
   TIME END
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

Reports

```
REPORT
   TYPE
                      VOLTAGE CELL 1
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                      100
END REPORT
REPORT
   TYPE
                      VOLTAGE CELL 2
   CELLS
                      SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PR<sub>0</sub>B
   REPORT ON
                      VOLTAGE
   FILENAME
                      SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
                      1
   TIME START
   TIME END
                      100
END REPORT
```

Reports

```
REPORT
   TYPE
                     VOLTAGE CELL 1
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 1 somaE
   PR<sub>0</sub>B
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 1 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                     100
END REPORT
REPORT
   TYPE
                     VOLTAGE CELL 2
   CELLS
                     SIMPLE MODEL COLUMN layer SIMPLE MODEL SIMPLE MODEL 2 somaE
   PROB
   REPORT ON
                     VOLTAGE
   FILENAME
                     SIMPLE MODEL 2 VOLTAGE E.txt
   ASCII
   FREQUENCY
   TIME START
   TIME END
                     100
END REPORT
```

Output Analysis

Graphing

- Tools:
 - Matlab
 - GNUplot

- Types of plots
 - Dot and Line graphs
 - Raster plots
 - Spectrogram

Types of Plots

Types of Plots

Types of Plots

DEMO

Break

Today's Outline

First Hour

- Introduction
- Equations and Implementation
- Requirements and Simulation on a Single Machine
- Input Language

Second Hour

- o Simple Model
- o Parameters Presentation and Testing
- Output Analysis

Third Hour

- Simulation on Multiple Machines
- Software Tools
- Robotic System Configuration
- Larger Networks and Complete Loop Execution
- Future Directions and Summary

CPU

- A single unit of execution (Core)
 - Often times sold with multiple cores
- A single instruction executed once per cycle per core
 - i.e. add X and Y
- Most of the silicon in the chip devoted to:
 - Branch Handling
 - Cache and Memory controllers
 - Out of order execution
 - o etc.
- Design optimized for general preformance

CPU Layout

3rd Generation Intel® Core™ Processor: 22nm Process

New architecture with shared cache delivering more performance and energy efficiency

> Quad Core die with Intel® HD Graphics 4000 shown above Transistor count: 1.4Billion Die size: 160mm² "Cache is shared across all 4 cores and processor graphics

GPU

- Groupings of 32 simple cores
- Single instruction executed 32 times per cycle
 - o i.e. add X_i Y_i
- Most of the silicon is devoted to ALUs (Arithmetic Logic Units)
- Design optimized for parallelism and floating point math performance

GPU Layout

CPU vs GPU

- Access to Memory
 - o CPU much closer to RAM and other memory
 - GPU has onboard memory, but
- Programming model
 - GPU much more suited to data parallel problems
 - typically image processing, graphics, matrix multiplication
 - Very array centric
 - Avoids pointer manipulation and branching
 - CPU much more suited to general computing problems
- Raw floating point performance
 - o CPU 100 GFLOPS (i7 980 XE)
 - GPU 1300 GFLOPS (GTX 480)
 - Both from 2010

MPI

- Message Passing Interface
- Handles the dirty details of networking
 - Endianness
 - Managing sockets
 - Grouping Nodes
- Provides many methods for sending data out
 - Single Node to Single Node (Send Receive)
 - Single Node to Many Nodes (Scatter)
 - Many Nodes to Single Node (Gather)
- Designed for use in high performance networks

Simulation on multiple machines

One-Time Step

- SSH keys allow password free access to all computers.
 - o ssh <computerName>
 - ssh-keygen -t rsa accept default options
 - o cd ~/.ssh
 - o cp id_rsa.pub authorized_keys

One-Time Step

- cd /home/userName/NCS6/NCS6/build
- Create a file with .mpi extension. This file specifies the number of devices available on each computer in the cluster. For example, we have marbles.mpi file that contains the following information:

Brain1 slots=2

Brain2 slots=2

- After creating a file with .mpi extension, run these commands:
 - mpirun --hostfile marbles.mpi <space>
 applications/clusterSpecifier/clusterSpecifier <space>
 marbles.cluster
 - o applications/clusterInfo/clusterInfo marbles.cluster

Steps

To compile code:

applications/ncsDistributor/ncsDistributor
<space> ../files/NCS6/ marbles.cluster
ncsout

To run code:

mpirun -np numberOfDevices -hostfile <space> marbles.mpi <space> applications/simulator/simulator ncsout/

DEMO

Software Tools

NeuroTranslate

NeuroTranslate

 Software tool that translates input files between NCS and NeuroML

N. Jordan, K. Perry, N. Narala, L. C. Jayet Bray, and F. C. Harris, Jr. Design and implementation of an NCS-NeuroML translator. In Proceedings of the International Conference on Software Engineering and Data Engineering (SEDE). Los Angeles, CA, June 2012.

Robotic System Configuration

Virtual NeuroRobotic (VNR)

Goodman P.H., Buntha S., Zou Q., Dascalu S.M., "Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures", *Front Neurorobotics*, vol. 1, no. 1, 11/2007.

Goodman P.H., Zou Q., Dascalu S.M., "Framework and Implications of Virtual Neurorobotics", *Front Neurosci.*, vol. 2, no. 1, pp. 123-128, 07/2008.

Overview

NCS

- Models integrate-and-fire neurons with conductance-based synapses
- First simulator to support real-time neurorobotics applications
- Experiments demonstrate biologically realistic behavior in real time

Server

- Brain Communication Server (BCS)
- Monitors the robotic avatar and creates the appropriate stimulus for proprioceptive feedback and premotor movement to replicate the role of a biological brainstem

NCSTools

NCSTools

 Software package that simplifies interaction and communication between NCS and remote agents

C. M. Thibeault, J. Hegie, L. Jayet Bray, and F. C. Harris, Jr. Simplifying neurorobotic development with ncstools. In Proceedings of the 2012 Conference on Computers and Their Applications. Las Vegas, NV, March 2012.

Visual / Audio

- Computer vision / audio
- Machine vision / audio
- Image / sound processing
- Filtering mechanisms (e.g. Gabor)
- Applications:
 - o external input
 - o reward-based learning

Robotic Interface

 Motions were programmed in C++ using the provided interfaces and the communication was accomplished using the NCSTools C++ client

Large Networks

Technical Approach

Neuroscience

Modeling

Virtual Neurorobotics Software and Hardware

Brain Model

Trust

- Behavior between a humanoid neurorobot and human actor
 - Oxytocin release
 - Social reinforcement
 - Reduction of inhibition
- Experiment has two conceptual phases:
 - Learning
 - Neurorobot initiates a sequence of motions
 - Human performs concordant or discordant actions
 - Neurorobot learns to trust the human
 - Challenge
 - Human reaches for another object
 - Depending on whether or not the neurorobot trusts the human the robot will hand over the object or retract the object

L. C. Jayet Bray, S. R. Anumandla, C. M. Thibeault, R. V. Hoang, P. H. Goodman, S.-M. Dascalu, B. D. Bryant, and F. C. Harris, Jr. Real-time human-robot interaction underlying neurorobotic trust and intent recognition. Neural Networks, 32:130-137, 2012.

Trust and Affiliation

Capuchin Monkeys Display Affiliation Toward Humans Who Imitate Them

Annika Paukner, 1* Stephen J. Suomi, 1 Elisabetta Visalberghi, 2 Pier F. Ferrari 1,3

SCIENCE VOL 325 14 AUGUST 2009

Time spent facing

Willingness to exchange token for food

Paradigm

LEARNING

Robot Initiates Action

1. Robot brain initiates arbitrary sequence of motions

Human Responds

2. Human moves object in either a similar ("match"), or different ("mismatch") pattern

Match: robot learns to trust

Mismatch: don't trust

CHALLENGE (at any time)

Human Acts

3. Human slowly reaches for an object on the table

Robot Reacts

4. Robot either "trusts", (assists/offers the object), or "distrusts", (retract the object).

trusted

Microcircuitry

Video Input – Gabor Filtering

- Images are processed and values are sent to the simulated visual pathways (V1, V2 and V4)
- Input closely resembles how visual information is processed in a biologically realistic brain

Trust the Intent Recognition Discordant Motions

Trust the Intent Recognition Concordant Motions

Discordant > Distrust

Concordant > Trust

Emotional Speech

- Allows for more natural interaction between humans and robots
 - o Determine the ideal behavior from a simple reward feedback
- Emotional Speech processor
 - Successfully distinguished "sad" and "happy" utterances
- Integrated into neurorobotic scenario
 - The robot received a spoken reward if the correct decision was made
- Neurorobot successfully and consistently learned the exercise
- Step toward the combination of human emotions and virtual neurorobotics

L. C. Jayet Bray, G. Ferheyhough, E. Barker, C. M. Thibeault, P. H. Goodman, and F. C. Harris, Jr.. Emotional speech processing in neurorobotics. In revision, 2012.

REWARD-BASED LEARNING THROUGH ESP

L. C. Jayet Bray, G. Ferheyhough, E. Barker, C. M. Thibeault, P. H. Goodman, and F. C. Harris, Jr.. Emotional speech processing in neurorobotics. In revision, 2012.

ESP CLASSIFICATION PERFROMANCE

TABLE I
HUMAN CLASSIFICATION CONFUSION MATRIX

Category	Anger	Fear	Нарру	Sad	Error
Anger	62	3	5	0	11.4%
Fear	5	62	1	2	11.4%
Нарру	5	8	56	1	20.0%
Sad	0	1	1	68	2.9%
Average Error					11.4%

ESP RECOGNITION PERFROMANCE

TABLE II
OFFLINE MODE RECOGNITION CONFUSION MATRIX

Category	Happy-M	Sad-M	Happy-F	Sad-F	Error
Нарру-М	16	0	0	0	0.0%
Sad-M	2	13	0	0	13.3%
Нарру-F	0	0	17	1	5.6%
Sad-F	0	0	0	12	0.0%
Average Error					4.7%

ESP RECOGNITION PERFROMANCE

TABLE III
LIVE MODE RECOGNITION CONFUSION MATRIX

Category	Нарру-М	Sad-M	Happy-F	Sad-F	Error
Happy-M	22	0	0	0	0.0%
Sad-M	0	16	0	0	0.0%
Happy-F	0	0	19	1	5.0%
Sad-F	0	0	0	19	0.0%
Average Error					1.3%

Navigation

- Navigate to familiar location
 - Prefrontal Cortex
 - Hippocampus (CA1 and Subiculum)
 - Entorhinal cortex
- Computational system representing a navigating rodent
- Reward at the end of a sequence of 3 turns
- Showed learning performance without biased decisions
- Short-term memory

L. C. Jayet Bray, C. M. Thibeault, J. A. Dorrity, B. D. Bryant, F. C. Harris, Jr., and P. H. Goodman. A microcircuitry of hippocampal, entorhinal and prefrontal loop dynamics during sequential learning. Frontiers in Computational Neuroscience, In review, 2011.

Paradigm

L. C. Jayet Bray, M. Quoy, F. C. Harris, Jr., and P. H. Goodman. A circuit-level model of hippocampal place field dynamics modulated by entorhinal grid and suppression-generating cells. Frontiers in Neural Circuits, 4(0), 2010.

Microcircuitry

Complete Loop Execution

Requirements

Save

- NCS files (NCS_core)
- Configuration files (Reward_Based_Learning)
- Robotic files (Webots_Neighborhood)
- Folders in home directory

Steps

Start voServer on port 20003

- cd /home/username/NCS_core/voServer
- ./server <space> -p <space> 20003

Open volnterpreter

- o cd/home/username/NCS_core/ncstools/bin
- ./voInterpreter <space>/home/username/Reward_Based_Learning/input/navigation.cfg

Start NCS

- cd /home/username/Reward_Based_Learning
- ./ncs5e 1 ./input/navigation.in

Steps

Video Capture

- cd /home/username/Reward_Based_Learning/card_color_detection
- ./recognize_card

Start webots and load world

webots

DEMO

Future Directions

Future Directions

- Multi-Scale/Mixed Models:
 - Izhikevich and NCS and ... all in the same model
- Published Interface for New Neuron/Synapse Models
 - Allow your own coding of neurons and synapses and use our parallel code.
- Speed....
 - o Always here ☺
- More Parameters on NCS Neurons/Synapses
- Visualization: 2D and 3D

Future Directions

- Research into Memory:
- Tools:
 - o GUI Brain Builder,
 - Output Analysis
- ModelDB
- Input language options
 - o PyNN (like)

Summary

First Hour

- Introduction
- NCS history and development
- Current enhancements
- Equations and Implementation
- Software and hardware requirements
- How to run a small model on a single machine
- Overview of the input language

Second Hour

- Detailed description of available parameters
- Demos
- Output analysis

Third Hour

- CPU, GPU, and MPI
- How to run on multiple machines
- Software tools
- Robotic system configuration
- Large scale models
- Complete loop execution
- Future directions

Simulator Comparison

Biological Detail

Simulator Comparison

Number of Neurons

Acknowledgments

Office of Naval Research

DARPA Synapse project and HRL

Brain Computation Laboratory University of Nevada, Reno

Laurence Jayet Bray Fred Harris, Jr Sergiu Dascalu Director

in funded collaboration with
U de Cergy-Pontoise and CNRS, Paris, France
University of Bonn, Germany
Brain Mind Institute (Blue Brain Project), EPFL, Lausanne, Switzerland

Mathias Quoy René Doursat Florian Morman Henry Markram Jim King

Oral session IV: Navigation

- Monday July 23
- 10:40 11:00
- Talk: O12
- Goal-Related Navigation of a Neuromorphic Virtual Robot
 - Laurence Jayet Bray, Emily Barker, Gareth Ferneyhough, Roger Hoang, Bobby Bryant, Sergiu Dascalu, and Frederick C Harris

Workshop 4

- Multi-Scale Modeling in Computational Neuroscience II: Challenges and Opportunities
 - o Wed: 9-6

Brain Computation Lab

http://www.cse.unr.edu/brain/

Brain Computation Lab

Navigation

- ▶ Research Projects
- ▶ People
- ▶ Publications
- Sponsors
- Conferences
- Opportunities
- University of Nevada, Reno
- Department of Computer
 Science and Engineering
- School of Medicine
- Biomedical Engineering Program

Welcome to the Brain Laboratory!

Good Afternoon!

Founded in 2001, the brain lab is a joint research center between the departments of Computer Science & Engineering, Medicine, Physiology & Cell Biology, and the program of Biomedical Engineering. It also has neurobiological collaborations with the Brain Mind Institute at the EPFL (Switzerland), the University of Cergy Pontoise (France), and the University of Bonn (Germany).

Our researchers consists primarily of undergraduate/graduate students and alumni of the University of Nevada, Reno. They are actively developing computational innovations to understand the physiological processes that give rise to neocortical memory, learning, and cognition. Our models and experiments help understand brain pathophysiology and create brain-like artificial intelligence and neural prosthetic devices.

New Publications

- Design and Implementation of an NCS-NeuroML Translator
- Real-Time Human-Robot Interaction
 Underlying
 Neurorobotic Trust and Intent Recognition
- Correlation Maps Allow Neuronal Electrical Properties to be Predicted from Singlecell Gene Expression Profiles in Rat Neocortex
- Heterogeneity in the Pyramidal Network of the Medial Prefrontal Cortex