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Welcome to the Brain Laboratory!
Good Morning!

Founded in 2001, the brain lab is a joint research center between the departments of Computer
Science & Engineering, Medicine, Physiology & Cell Biology, and the program of Biomedical

Engineering. It also has neurobiological collaborations with the Brain Mind Institute at the EPFL
(Switzerland), the University of Cergy Pontoise (France), and the University of Bonn (Germany).

Our researchers consists primarily of undergraduate/graduate students and alumni of the
University of Nevada, Reno. They are actively developing computational innovations to
understand the physiological processes that give rise to neocortical memory, learning, and
cognition. Our models and experiments help understand brain pathophysiology and create
brain-like artificial intelligence and neural prosthetic devices.
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What is NCS?

The NeoCortical Simulator (NCS) is designed for
modeling large-scale neural networks and systems

One of the first simulators to support neurorobotic
applications

Different types of neuron models available:
o Leaky integrate-and-fire / Hodgkin-Huxley
o Izhikevich

Free and open source

Developed and maintained by the UNR Brain
Computation Laboratory



Why use NCS?

Biological brain models

Real-time Simulation

Different levels of abstraction

Several neuron models

GPU computation

No programming language experience required
Good for modeling neural systems and networks

Up to 1M neurons and 100M synapses in quasi real-
time



Modeled Brain Regions Using NCS
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History of NCS

* Version 1:1999
o Matlab — Goodman, Markram, and McKenna
o 160-cell, 2-column architecture

* Each cell was modeled as a single integrative
compartment (point neuron) with a spike
mechanism,

ocalcium-dependent (AHP) channels, and

ovoltage-sensitive A and M (muscarinic)
potassium channels

M.M. Kellog, H.R. Wills, and P.H. Goodman. “A biologically realistic computer model of neocortical associative
learning for the study of aging and dementia.” J. Investig. Med., 47(2), February 1999.




History of NCS

e Version 1b: 1999
o Direct translation to C from Matlab
o 24 times faster.

o tested on mixed excitatory-inhibitory networks of
up to 1,000 cells

M.M. Kellog, H.R. Wills, and P.H. Goodman. “A biologically realistic computer model of neocortical associative
learning for the study of aging and dementia.” J. Investig. Med., 47(2), February 1999.




History of NCS

 Version 2: 1999

o code was then redesigned and rewritten for
distributed processing on an existing 20-cpu
cluster (Pentium Il).

o Initial trials of this code were performed on
cortical networks of 2 to 1,000 cells

M.M. Kellog, H.R. Wills, and P.H. Goodman. “A biologically realistic computer model of neocortical associative
learning for the study of aging and dementia.” J. Investig. Med., 47(2), February 1999.




History of NCS

[tem NCS3 | NCSH | Ratio
Overhead® 294.167 | 1.897 | 155.1
Base Cell/Cmp® 0.020 | 3.035 | 153.6
Channel” 0.152 | 0.398 2.6
Report© 0.017 | 4.113 | 239.4
Synapse, 0Hebb? 0.031 | 0.383 | 12.5
Synapse, +-Hebhb? 0.020 | 0.368 | 18.1

a) Seconds.

b) Millions of Objects Processed per Second
c¢) Millions of Values Reported per Second




History of NCS

NCS3 vs NCS5

= NCSS Enlarged
o )
g 777777 | v Synapse s
. 77777 SN\ Channel =
s Base Caell IS o
o /"1 Overhead 7 -8
E /A
8 18 o
2 3 7 © E
=3 g ' —
o w <
e -1
3 o
| B \ at
| - N Y y :
'l:I;l'l’All‘l'l 7 '_‘:. ’ — e o
= i).ll“l‘l'l'l‘l; g “ ‘ -_’-’______-——-"'—-.-

James Frye, James G. King, Christine J. Wilson, and Frederick C. Harris, Jr. “QQ: Nanoscale timing and profiling” In
Proceedings of PMEO-PDS, Denver, CO, April 3-8 2005.




NCS5 Hardware
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Sun 4600

Sun v20z Opteron 16 core boxes with 200GB of RAM
(60 CPUs) connected by Infiniband

And several 24TB disk arrays
ONR DURIP 2007: ONR DURIP 2008:



Current NCS version 6
implementation

e GPU/CPU/cluster-based
o Runs on CPUs and CUDA devices simultaneously

* Plugin interface for multiple model support
o LIF/HH Neurons
o lzhikevich Neurons
o Ability to design your own

e Ability for multi-scale modeling



NCS 6 Software / Hardware

* Linux based operating system
* NVIDIA GPU (GeForce GTX 400 series or higher)

GeForce GTX 480

Inrio
\ A A A

1536MB [ 384-bit
GDDRS
Cores 480

Gfx / Proc / Mem
Clock

Power Connectors 6:pin + 8-pin
Power 250W

SLI 3-way

Length 10.5 inches
Thermal Dual Slot Fansink:

DL-OVt
Outputs DL-OVI
mini-HDMI

Memory

700/ 1401 / 1848 MHz

GeForce GTX 690 Specifications

CUDA Cores 3072
Base Clock 915 MHz
Boost Clock 1019 MHz

Memory Config 4GB / 512-bit GDDR5

Memory Speed 6.0 Gbps

Power Connectors 8-pin + 8-pin

TDP 300W

3x DL-DVI

Outputs Mini-Displayport 1.2

Bus Interface PCI Express 3.0



Current Optimization

C++ 11
Heavily threaded
o Latency hiding
o Increased occupancy
Modular message passing design
GPU usage for parallel computation
Load-balancing across heterogeneous clusters



Performance Data
Izhikevich

Izhikevich 1 second simulation

¢ Rcurons (o Siapsce 00

0.90
4 400 40 1.00
8 500 50 1.03
8 1000 100 3.16

Izhikevich 10 second simulation

¢ cuon (o Synapsce 00

8.98
4 400 40 9.89
8 500 50 10.13
8 1000 100 23.97



Performance Data
LIF

LIF 1 second simulation

# Neurons (k) | Synapses (M)

| 25 6 1.36
4 50 12 1.18
8 50 12 0.99
8 300 75 2.82

LIF 10 second simulation

# Neurons (k) | Synapses (M)

1 25 6 13.53
4 50 12 11.63
8 50 12 9.34
8 300 75 28.08



Leaky Integrate-and-Fire Model



Brain

Define the simulation as a whole
Preliminary outline of other structures
o Anatomy

o Stimuli

o Reports

Extrinsic connections

Include files



Brain

BRAIN
TYPE Two_cell MODEL_model
JOB Two_cell MODEL_model
FSV 1600
DURATION 1
SEED -21
DISTANCE NO

Wit RRRE RN R COLUMN  TY P BRI R R
COLUMN_TYPE TWO_CELL_MODEL_COLUMN

HAEAHHHAHEARHH AR HE AR HE AR STIM INIJECTHANHEAH A AR A R B
STIMULUS_INJECT TWO_CELL_MODEL_STIM

R R A R A R A A R R R A R R A R R R R A R R R A R AR A R R R AR
Wit RRREH R R REPORTS st s i i i

REPORT VOLTAGE_CELL_1
REPORT VOLTAGE_CELL_2

END_BRAIN




Columns
Layers

Cells
Compartments
Channels

Anatomy



Anatomy

BHERBABHHHHH R R ERAEE DeTilne Column Shells #HHAHBEHHHERASHHHHARREREN
COLUMN_SHELL

TYPE TWO_CELL_MODEL_SHELL
WIDTH 300

HEIGHT 800

LOCATION 0 800

END_COLUMN_SHELL

HHRHRHR R UL Columns AHAHEHEHEH T R R R R i

COLUMN
TYPE TWO_CELL_MODEL_COLUMN
COLUMN_SHELL  TWO_CELL_MODEL_SHELL
LAYER_TYPE layer_TWO_CELL_MODEL

END_COLUMN

HHRHOH R R DeTine Laver Shells #######ananan i
LAYER_SHELL

TYPE layer_TWO_CELL_MODEL_shell
LOWER 0
UPPER 49

END_LAYER_SHELL

BHHEBHBHHHHH R EE AR B HEHHERAEE P Layers BHUHHEREEEIREREEEHHER B HHHHERREEHH
LAYER

TYPE layer_TWO_CELL_MODEL
LAYER_SHELL layer_TWO_CELL_MODEL_shell
CELL_TYPE TWO_CELL_MODEL_1 1
CELL_TYPE TWO_CELL_MODEL_2 1

R R R R A R R R R A R R R R R R R R R R R R R R A R B H R R B H R HY

#o----- connections
R R R R R R R R R R A R R R A R R R R A AR R AR R H R R R AR R H Y
lcONNECT
TWO_CELL_MODEL_1 somaE
TWO_CELL_MODEL_2 somaE

synEE_TWO_CELL_MODEL 1 ©
END_LAYER




Channels

 Km

o Only has one activation particle (m). Inhibits its
parent cell from reaching threshold

 Kahp

o After Hyper Polarization Channels (Kahp) are
voltage independent but Calcium dependent

e Ka

o Helps the cell deal with background noise. It has
both an activation (m) and inactivation (h) particle



Channel Km

CHANNEL Km
TYPE
M INITIAL
REVERSAL POTENTIAL
M POWER
E HALF MIN M
SLOPE FACTOR M
TAU SCALE FACTOR M
UNITARY G
STRENGTH
END CHANNEL

m

0.0

-80

1

_44

40 20
0.303

5

0.00015

8.8




Channel Kahp

CHANNEL Kahp

TYPE

SEED

M INITIAL

REVERSAL POTENTIAL

M POWER

UNITARY G

STRENGTH

CA SCALE FACTOR

CA_EXP_FACTOR

CA HALF MIN

CA_TAU SCALE FACTOR
END CHANNEL

ahpl
999999
0.0
-80

.00015
.000125

.5
.01

ONNOOOMN




Channel Ka

CHANNEL Ka
TYPE a
M INITIAL 0.0 0.0
H INITIAL 1.0 0.0
REVERSAL POTENTIAL -80 0
M POWER 1
H_POWER 1
E_HALF MIN M 11
E_HALF_MIN H -56
SLOPE_FACTOR M 18
SLOPE_FACTOR_H 18
UNITARY G 0.12
STRENGTH 2.5
V_TAU VALUE M 0.0002 9999
V_TAU VALUE H 0.03  0.08  0.13
V_TAU VOLTAGE M 100
V_TAU_VOLTAGE H -21 -1 10

END CHANNEL

0.

21

18

0.

23




Stimulus

External Stimulation (visual, audio...)
Type of signals
o Linear
o Pulse
o Noise
o File-based
Multiple times
Different Destinations



Stimulus

HRH R R R STIMULUS INJECTS HH R R I T R

STIMULUS_INJECT

TYPE TWO_CELL_MODEL_STIM
STIM_TYPE realstim_TWO_CELL_MODEL
INJECT TWO_CELL_MODEL_COLUMN layer_TWO_CELL_MODEL TWO_CELL_MODEL_1 somaE 1

END_STIMULUS_INJECT

HHHERHHHA R SR AR R deTine STIMULUS #EHESAHHHEEARHHRRARHHRAARHHRANHE

STIMULUS
TYPE realstim_TWO_CELL_MODEL
MODE CURRENT
PATTERN PULSE
TIME_INCREMENT 0.1
FREQ_COLS 100
CELLS_PER_FREQ 1
DYN_RANGE 0 75
TIMING EXACT
SAMESEED NO
AMP_START 4
WIDTH .010
TIME_START 0.500
TIME_END 0.600

#FREQ_START 99999

END_STIMULUS




Connections

Extrinsic and intrinsic connections
Synapse connections

From the source to the destination

With or without decaying distance effects
Recurrent connections



Connections

T R R
CONNECT
TWO_CELL_MODEL_1 somaE
TWO_CELL_MODEL_2 somaE
SsynEE_TWO_CELL_MODEL 1 ©




Synapses

Connections between other cells and their
compartments

Excitatory

Inhibitory

Synaptic Waveform

Learning

o Short term synaptic dynamics
* Facilitation
* Depression

o Long term synaptic dynamics (Hebbian Learning)
e STDP rule



Synapses

BRI ASYNAPSES  TWO_CELL_MODEL _MODE LA H A A A A HE i E |

SYNAPSE
TYPE SynEE_TWO_CELL_MODEL
SFD_LABEL NO_SFD
LEARN_LABEL NO_STDP
SYN_PSG PSGexcit
MAX_CONDUCT  ©.004
DELAY 0.005 ©.010

SYN_REVERSAL © 6]
ABSOLUTE_USE 0.25 0.1
END_SYNAPSE
HARGHHARA AR R Rt NO SFD HUHHART AR AR B AR A R R R H R

SYN_FACIL_DEPRESS

TYPE NO_SFD

SFD NONE

FACIL_TAU 0.0 0.0
DEPR_TAU 0.0 0.0

END_SYN_FACIL DEPRESS
HHHHHAHAHHHHHARHEHEHAHHEE Long-term synaptic Dynamics #HHHHHHHHHEHERH

SYN_LEARNING

TYPE NO_STDP
LEARNING NONE
LEARNING_SHAPE EXPONENT
NEG_HEB_WINDOW 0.1
POS_HEB_WINDOW 0.05

POS_HEB_PEAK_DELTA_USE ©0.02
NEG_HEB_PEAK_DELTA_USE ©.01
POS_HEB_PEAK_TIME 8.005
NEG_HEB_PEAK_TIME 8.005

END_SYN_LEARNING

coocooQooQ
coocooQ0Q

HHAH A A AR AR A A AR HH##E synaptic CONDUCTANCE WAVEFORMS ######H#FHIHIHH

SYN_PSG
TYPE PSGexcit
PSG_FILE . /EPSG_Vogels FSV1k_TAU®5.1inc
END_SYN_PSG




Reports

* Data about cells
e Report files:
o Voltage
o Current
o Firecount
o Channel
o Synaptic strengths
* Automatically generated and saved



Reports

HHHE AR TWO_CELL_MODEL_MODEL REPORTS ##asit st

REPORT
TYPE
CELLS
PROB
REPORT_ON
FILENAME
ASCII
FREQUENCY
TIME_START
TIME_END

END_REPORT

REPORT
TYPE
CELLS
PROB
REPORT_ON
FILENAME
ASCII
FREQUENCY
TIME_START
TIME_END

END_REPORT

VOLTAGE_CELL_1

TWO_CELL_MODEL_COLUMN layer_TWO_CELL_MODEL TWO_CELL_MODEL_1 somaE
1

VOLTAGE

TWO_CELL_MODEL_1_VOLTAGE_E.txt

1
]
100

VOLTAGE_CELL_2

TWO_CELL_MODEL_COLUMN layer_TWO_CELL_MODEL TWO_CELL_MODEL_2 somaE
1

VOLTAGE

TWO_CELL_MODEL_2_VOLTAGE_E.txt

1
]
100




Izhikevich Model



Files

 Neuron file
e Synapse file
e Current file



Neuron File

* Parameters * Regular Spiking

o NeuronlID ‘ || neuron.in 3%

6 0.62 D.2 -65 8 -60 -12

O a
ob
oC
od
o u

oV



Synapse File

* Parameters
o PreNeuron
o PostNeuron
o Delay
o Weight
o APlus
o AMinus
o TauPlus
o TauMinus



Current File

* Parameters * Regular Spiking

O NeurOn |D ‘ current.in 3¢ ‘

O 0.01 1101 1

o Time start
o Time end
o Amp

o Width

o Frequency



Robotic Applications with NCS



Technical Approach
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Virtual NeuroRobotic (VNR)

Brain
Communication
Server

Premotor
Input

Proprioceptive
Feedback

Visual/
Auditory
Stimulus

Control

Image/Sound Robotic
Processing Interface

Laurence C. Jayet Bray, Sridhar R. Anumandla, Corey M. Thibeault, Roger V. Hoang, Philip H. Goodman, Sergiu M.
Dascalu, Bobby D. Bryant, and Frederick C. Harris, Jr. “Real-time human-robot interaction underlying neurorobotic
trust and intent recognition” Neural Networks, 32:130-137, 2012.




Robotic Interface

e Constructed using
Webots 5

* Motions were
programmed in C++
using the provided
interfaces and the
communication was
accomplished using the
NCSTools C++ client




Trust

e Behavior between a humanoid neurorobot and
human actor

o Oxytocin release
* Social reinforcement
* Reduction of inhibition
* Experiment has two conceptual phases:
o Learning
o Challenge



Paradigm

Learning Challenge (at any time)
Robot Initiates Action Human Responds Human Acts Robot Reacts
1. Robot brain 2. Human moves object 3. Human slowly 4. Robot either “trusts”,
initiates arbitrary in either a similar reaches for an (assists/offers the
sequence of (“match”), or different object on the table object), or “distrusts”,
motions (“mismatch”) pattern (retract the object).
Match: robot Mismatch:
learns to trust don’t trust

P &

trusted distrusted
d % &»’ é.
-

Sridhar R. Anumadla, Laurence C. Jayet Bray, Corey M. Thibeault, Roger V. Hoang, Sergiu M. Dascalu, Frederick C
Harris, Jr., and Philip H. Goodman “Modeling Oxytocin Induced Neurorobotic Trust and Intent Recognition in Human

Robot Interaction” In Proceedings of the IJCNN (2011) July 31-Aug 5, 2011, San Jose, CA.




Concordant Motions Video




Discordant Motions Video




Emotional Speech

Allows for more natural interaction between humans
and robots

o Determine the ideal behavior from a simple reward
feedback

Emotional Speech processor
o Successfully distinguished “sad” and “happy” utterances

Integrated into neurorobotic scenario

o The robot received a spoken reward if the correct decision
was made

Step toward the combination of human emotions
and virtual neurorobotics



Reward-based Learning
Through ESP

STy
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Reward-based Learning Through

Virtual Robot sees red

Virtual Robot sees blue

ESP

NCS

Simulation

Virtual Robot points to red

Virtual Robot points to blue

Virtual Robot points to red

_
3a
\
3b
{ Visual Premotor ]
Cortex Cortex

&= » 2 o I




Navigation

Navigate to familiar location

o Prefrontal Cortex

o Hippocampus (CA1 and Subiculum)
o Entorhinal cortex

Computational system representing a navigating
rodent

Reward at the end of a sequence of 3 turns

Showed learning performance without biased
decisions

Short-term memory



Paradigm

VL1

VL9I

VL12
=

2

—

VL13

Jayet Bray L. A Circuit-Level Model of Hippocampal, Entorhinal and Prefrontal Dynamics Underlying Rodent Maze

Navigational Learning. Ph.D. Dissertation. University of Nevada, Reno, 2010.




Navigation Video
Incorrect Choice




Navigation Video

Correct Choice




Future Directions
Simulator & Tools

* Near Term:
o GUI-based brain model builder and visualizer
o Multi-Scale modeling
o Input language options
* Long Term:
o Simulated fMRI data
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