
NCS Cell Equations

The NeoCortical Simulator (NCS) was developed at The University of Nevada,
Reno by the Brain Computation Lab under the direction of Dr. Phillip Goodman.
At the single cell level NCS solves a limited and slightly reordered form of the Hodgkin-
Huxley Model that is similar to Equation (1). However, during the numerical integra-
tion a constant membrane leak is added. This is explained further below.

CN
dV

dt
− IM − IA − IAHP − Iinput − Isyn + Ileak = 0 (1)

The currents expressed in this equation fall into several different categories that are
only briefly explained here. To begin, both IM and IAHP contribute to the membrane
voltage by controlling spike-frequency adaptation. These are small ionic currents that
have a long period of activity when the membrane voltage is between rest and threshold.
IM is the Noninactivating Muscarinic Potassium Current and is defined by

IM = ḡMSm
P (Ek − V ) (2)

Where S is a non-dimensional Strength variable added to NCS and P is the power that
the activation variable m is raised to. This is essentially decreasing the slope of the
activation variable as explained in Section 2.6. The change of that activation variable
is defined as
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ε is the scale factor.
V1/2 satisfies the equation m∞(V1/2) = 0.5.
ω, η and ξ are slope factors affecting the rate of change of the activation variable

m.
This channel is defined in NCS through the input file format as:
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CHANNEL Km
TYPE m
M_INITIAL 0.0 0.0
REVERSAL_POTENTIAL -80 0
M_POWER 1
E_HALF_MIN_M -44
SLOPE_FACTOR_M 40 20 8.8
TAU_SCALE_FACTOR_M 0.303
UNITARY_G 5
STRENGTH 0.00015

END_CHANNEL

Notice that (2) is different from the traditional equation shown below in Equation (4).
This reverse of the driving force explains the sign changes in Equation (1).

IM = ḡMmm (V − EK) (4)

IAHP is the current provided by the other small spike-adaptation contributing chan-
nel. These are voltage independent potassium channels that are regulated by internal
calcium.

IAHP = ḡAHPSm
P (Ek − V ) (5)

Where S is a non-dimensional Strength variable added to NCS and P is the power that
the activation variable m is raised to. The change of that activation variable is defined
as

dm

dt
=
m∞ −m

τm
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τm =
ε

f(Ca) + b

m∞ =
f(Ca)

f(Ca) + b

Where
ε is the scale factor.
b is the backwards rate constant, defined as CA Half Min in the NCS documenta-

tion.
f(Ca) is the forward rate constant defined by (7).

f(Ca) = κ[Ca]i
α (7)

Internal calcium concentrations are calculated at the compartment level in NCS.
Physiologically the calcium concentration of a cell increases when an action potential
fires. After the action potential has ended the internal concentration of calcium will
diffuse throughout the cell where it is taken up by numerous physiological buffers.
In NCS this diffusion/buffering phenomena is modeled by a simple decay equation
defined by Equation (8).

[Ca]i(t+ 1) = [Ca]i(t)
(

1− dt

τCa

)
(8)
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Where
dt is the simulation time step.
τCa is the defined time constant for the Ca decay.
When an action potential fires in NCS the internal calcium concentration is in-

creased by a static value specified in the input file.
This channel is defined in the NCS input file format as:

CHANNEL Kahp
TYPE ahp1
SEED 999999
M_INITIAL 0.0 0.0
REVERSAL_POTENTIAL -80 0
M_POWER 2
UNITARY_G 6
STRENGTH 0.00015
CA_SCALE_FACTOR 0.000125
CA_EXP_FACTOR 2
CA_HALF_MIN 2.5
CA_TAU_SCALE_FACTOR 0.01

END_CHANNEL

The third and final channel type modeled in NCS is the transient outward potassium
current or Ka. This channel requires hyperpolarization for its activation; meaning that
the channel will open during inhibitory synaptic input. This is defined by (9).

IK = ḡMSm
PhC (Ek − V ) (9)

Where as before S is a non-dimensional Strength variable added to NCS, P is the
power that the activation variablem is raised to and C is the power that the inactivation
variable h is raised to. The change of activation and inactivation variables is defined
by (10) and (11).
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V1/2m satisfies the equation m∞(V1/2m) = 0.5.
ξ is slope factor affecting the rate of change of the activation variable m.
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V1/2h satisfies the equation h∞(V1/2h) = 0.5.
η is slope factor affecting the rate of change of the inactivation variable h.

τm and τh are voltage dependent. NCS allows this dependence to be defined using an
array of values for both the voltages and time constants. This is defined by (12).

τ(V ) =



τ(1) if V < V (1),
τ(2) if V < V (2),
...
τ(n) if V < V (n)
τ(n+ 1) else

(12)

This channel is defined in NCS through the input file format as:

CHANNEL Ka
TYPE a
M_INITIAL 0.0 0.0
H_INITIAL 1.0 0.0
REVERSAL_POTENTIAL -80 0
M_POWER 1
H_POWER 1
E_HALF_MIN_M 11
E_HALF_MIN_H -56
SLOPE_FACTOR_M 18
SLOPE_FACTOR_H 18
UNITARY_G 0.12
STRENGTH 2.5
V_TAU_VALUE_M 0.0002 9999
V_TAU_VALUE_H 0.03 0.08 0.13 0.18 0.23
V_TAU_VOLTAGE_M 100
V_TAU_VOLTAGE_H -21 -1 10 21

END_CHANNEL

The leakage current is voltage-independent and is modeled by (13). Notice that the
driving force is expressed using the normal convention. This is the reason the leakage
current is subtracted in the membrane voltage equation rather than added, as seen in
the traditional membrane voltage equations.

Ileak = gleak (V − Eleak) (13)

The synaptic currents are calculated by

Isyn = ḡsynPSG(t) (Esyn − V ) (14)

The numerical integration scheme employed by NCS is similar to an Eulerian method
however, as mentioned above a constant leak term is added to the discretized form of
(1). To begin the current values defined above are summed

ITotal = IM + IA + IAHP + Iinput + Isyn − Ileak (15)
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The new voltage is then calculated as a combination of the defined membrane rest-
ing potential, the previously calculated membrane potential, the membrane resistance,
capacitive time constant and the total currents.

V (t+ 1) = Vrest + (V (t)− Vrest)
(

1− ∆
τmem

)
+ ∆

ITotal
Cn

(16)

Rearranging for clarity

V (t+ 1) = V (t) + (Vrest − V (t))
∆

τmem
+ ∆

ITotal
Cn

(17)

Where
Cn =

τmem
Rmem

Rmem is the defined resistance of the membrane.
τmem is the defined capacitive time constant of the membrane.

Notice the form of (1) in a simple Eulerian integration scheme would be

V (t+ 1) = V (t) + ∆
ITotal
Cn

(18)

The addition of the middle term in Equation (17) numerically drives the membrane
voltage of the cell back to a predefined resting potential.
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