QQ: Nanoscale Timing and Profiling

James Frye™ James G. King®™ Christine J Wilson®*
Frederick C. Harris, Jr.™

*Department of Computer Science and Engineering
*Brain Computation Lab
°Biomedical Engineering

University of Nevada, Reno NV 89557

Abstract

QQ is set of tools for timing and memory profiling capable of analysis at nanoscale time res-
olution. It is platform independent and useful for either sequential, distributed, or parallel
programs. The output can be visualized using various graphics packages. Currently QQ uti-
lizes the IA32 hardware architecture to monitor performance but can be readily ported to other
hardware. QQ can be implemented and customized quickly and is scalable.

Keywords: profiling, nanoscale resolution, memory use

1 Introduction

When developing a complex program that requires massive computational power, proper tracking
of performance is crucial for development. Effective optimization requires some means of accurately
measuring the effects of code changes quickly.

An example of a complex system is the NeoCortical Simulator (NCS) [9, 10, 11]. It is a large-
scale biologically realistic simulator of cortical neurons. It has simulated biological neural networks
with 106 cells and 10° synaptic connections successfully[6]. Since NCS utilizes the fastest available
hardware for processing and internodal communication, the code was the only place where we could
make significant performance improvements. Optimization is crucial since a goal for NCS is the
simulations approach real-time processing speeds. Therefore, considerable effort has been devoted
to optimizing the code for both speed and memory utilization [2].

A review of the currently available software packages for temporal profiling quickly lead to the
need for a new set of tools. The available performance monitors that were reviewed included TAU
Portable Profiling Package [5], and SvPablo: A multi-Language Performance Analysis System [7].

TAU is compact and able to trace individual user-defined code blocks. It also utilizes hardware
1

counters, but relies on pre-compiling code to embed the timing commands using a pre-compiler
that is not compatible with gcc. SvPablo utilized hardware counters like QQ, but the graphical
interface and meta-meta-format output was more than what was necessary for our analysis.

QQ was developed as a set of tools that can accurately measure either elapsed time or number
of machine instructions executed and memory usage with a minimum of overhead. The name QQ
is not an acronym but was chosen as a name prefix simply because the letter Q is seldom used as
the first letter of a variable or function name and would minimize potential conflicts with existing
code. QQ was used extensively in the development and optimization of NCS, and has been applied
to a number of other programs.

The organization of this paper is as follows: Section 2 will address the design considerations and
implementation of QQ. Section 3 covers what QQ’s capabilities are and defines its features. Also,
some examples for output and output processing are included in this section. Section 4 covers
examples of QQ in action. An example of its use in a sequential and parallel program are detailed.
Section 5 gives some concluding remarks and defines the future work and direction of development

of the QQ tools.

2 QQ Design

2.1 Nanoscale Timing

Straightforward measurement of NCS elements is difficult. Different algorithms contribute vary-
ing numbers of elements in an input-dependent sequence. This makes NCS unlike other compute-
intensive programs that mainly consist of a few loops iterating many times over the same code.
Performance is not adequately measured by a relatively coarse-grained tool such as gprof [1]. The
documented gprof resolution is approximately a hundredth of a millisecond or 1075 seconds. And
current system timing routines (Linux gettimeofday, MPI Wtime, etc.) typically measure to an
accuracy of, at best, microseconds (1076 seconds). At current processor speeds, this translates to

a granularity of several thousands of instructions.
2

NCS demanded precise timing measurements on the order of tens or hundreds of machine cycles,
or 1072 seconds. Therefore, without the resolution provide by the QQ tools, the effect of a change

to any single element may have been overlooked.

2.2 Hardware Time Stamp Counter

Most modern microprocessors include a hardware based time stamp counter. NCS is currently
compiled for use on the Intel IA32 (Pentium) architecture. Each processor contains a 64-bit hard-
ware counter, which is zeroed when the processor is booted, and thereafter increments every clock
cycle. The chance that the program would run long enough to roll the counter over again is not a
problem since at current processor speeds the 64-bit counter would roll over once in a century. The
TA32 instruction set provides the RDTSC instruction, which stores the time stamp counter contents
into the edx:eax register pair. Subtracting the values of two successive calls to this instruction
thus gives a count of processor cycles. The actual elapsed time is derived by division by the clock
frequency and is theoretically accurate to the processor clock frequency, or (at current CPU speeds)
a fraction of a nanosecond.

Factors such as pipelining and out-of-order execution reduce the accuracy to several tens of clock
cycles. Although steps such as issuing serializing instructions bracketing a code section can be
taken to reduce the impact of this type of overhead, these steps alter the timing of the code being
measured.

By itself, the RDTSC instruction, or its cognates in other architectures, provides a simple means
of measuring the elapsed time between two points in a program. This is a useful and important
performance measurement. Post-processing routines can process the data to provide elapsed time

in seconds or clock cycles.

2.3 Sequential Profiling

Frequently it is necessary to collect more detailed information, for example, marking the time
at which a particular event occurs, or tracing the amount of time spent within a repeatedly called
section of code. A major consideration was to reduce overhead associated with the monitor. In-
strumentation calls were included in a non-obtrusive way and included in the code via a simple
compile flag QQ_ENABLE.

QQ is based on the notion of tracing named events. Each event is characterized by a key, which
identifies the particular event, and an event time. In addition, depending on the type of event, a
value, count or state flag may be necessary. The different event types are combined into an event
union.

When the profiler is initialized by calling the QQInit function, it allocates memory for a user-
specified number of events, initializes the event pointer to the first event, and sets the base time to
the current RDTSC value.

After initialization, one or more of the QQAdd* functions are called to add event types to the
internal name table. Each function is passed a name (character string) for the type of event, and
returns the integer key for the event. These keys are variables in the program space, and are the
only remnants of QQ that remain in code when compiled with the QQ_ENABLE flag off.

The individual event recording functions are thus reduced to a minimum: each checks to see if
the event pointer has overflowed the allocated buffer. If not, the RDTSC instruction is called, the
key, count, and any other information is written to the current event, and the event counter is
incremented.

The QQRecord function allows event recording to be turned off and on under program control.
It does this by caching the current event pointer and replacing it with a value greater than the
maximum allocated, thus allowing the event recording functions to use a single test to determine

whether or not an event is to be recorded.

When profiling has finished, the QQOut function is called to write the saved event information to

a file.

2.4 Parallel Profiling

For parallel programs, besides all the topics discussed in the previous section, additional steps
needed to be taken. The initialization in QQInit does an MPI_Barrier call to synchronize, as nearly
as possible, timings on all nodes.

Each node has its own event buffer, recording an independent set of events. On output, the
buffers from all nodes are combined into a single file, along with information to identify each node.

This file can later be read and the information converted to a specified format for analysis.

2.5 Profiling Memory Use
2.5.1 Profiling Memory Allocation

Profiling memory usage is more difficult than profiling execution time. At this time a completely
satisfactory solution seems impossible. However, QQ has tried to gather as much useful information
as possible.

For example, in a Linux system, it is possible to obtain the total memory allocated to a process at
any point in time by reading the statm pseudo-file in the process directory of the /proc filesystem.
From this file, the number of 4 KByte pages allocated to the process can be read. While this
number includes both code and data space, and may include the total memory allocated rather
than what is currently in use, this value can be considered an upper boundary value.

The GetMemoryUsed function uses the previously mentioned method to return the total memory
allocated to the program at the time when the function is called. By recording memory usage values
prior, during and after a specific block of code is executed, it is possible to obtain a reasonable idea
of how much memory is being used by that particular block of code. However, it does not allow
for direct measurements on the scale of individual structures or objects.

The system allocates memory to a program in units of pages. It is up to the internal memory
5

allocator (generally in the malloc library) to parcel the pages into smaller units. If this memory
allocation is done directly by calls to malloc library functions, it is easily measured by using the pre-
processor to redefine the function call to a different function, which records allocation information
and passes the operation through to the actual allocation function.

Thus, for example, the malloc function can be redefined to be:

#ifdef MEM_STATS
#define malloc(arg) MemMalloc (MEM_KEY, arg)
#endif

Each call to malloc in the code now becomes a call to the MemMalloc function, and the new
call contains an additional argument, which is the key under which the allocated memory will be
recorded. Each chunk of allocated memory is stored in a C++ map object, indexed by its address
(the pointer value returned by the malloc call). The call to free is redefined to remove the item
corresponding to the address from the map. In this way, a consistent record of all currently-allocated
memory is maintained, and the record for each item may contain information on the type of object,

what routine allocated it, and so forth.

2.5.2 Monitoring Object Creation

In principle it should be possible to do something similar to the above for objects by overloading
the new and delete operators, although we have not yet done so. Instead, a simpler method was
used.

Each object constructor must have calls to the MEMADDOBJECT and MEMFREEOBJECT routines added
to them. When memory profiling is turned off, these calls evaluate to empty statements; when it is
on, they evaluate to calls to the memory recording functions and contain the object’s this pointer
and the sizeof (this) value as arguments.

These functions allow most explicitly allocated memory and objects defined in the code, to
be recorded. Memory that is allocated internally by various library functions or standard C++

objects can not be recorded, however. The information available, although not complete, is still
6

quite useful. If nothing else, the amount recorded as allocated by the profiler can be compared to
the total memory allocated to the program. If the two quantities are significantly different, the

memory is probably being allocated somewhere internally.

3 Analysis Routines

The timing interface for QQ includes many functions for tracing temporal events. Figure 1

shows the complete application programing interface currently available.

| Prototype

Description

void QQInit (int nEvents); Initialize the package, specifying the max
number of events to be recorded.

(Note: need to add error return if
insufficient memory.)

void QQBaseTime (void); Reset the base RDTSC value in QQInit.
This might be done if for instance there
was a substantial amount of time spent in
program initialization before the section of
interest begins.

int QQAddState (char *); Add a state type event to the table.
This may have two values, on or off.

int QQAddMark (char x); Add a mark type event to the table.
This simply records the event time.

int QQAddCount (char *); Add a count type event to the table.

This records an event time and an
associated integer count.

int QQAddValue (char *); Add a count type event to the table.
This records an event time and an
associated floating point value.

void QQStateOn (int key); Set state key to ON.

void QQStateOff (int key); Set state key to OFF.

void QQMark (int key); Record mark for key.

void QQCount (int key, int count); Record count for key.

void QQValue (int key, double value); Record value for key.

void QQRecord (int flag); Set recording ON or OFF, according to

whether flag is TRUE or FALSE.
void QQOut (char *filename, int node, int nodes); | Write event info to filename, storing it
as for this node of nodes total.

Figure 1: QQ API

Since the QQ tools are intended for programmers, the output was formatted to be flexible.
Most programmers prefer to write their own custom analysis code, or pipe the output to a general

purpose tool such as gnuplot [8], for example. Unlike similar applications, the output was created
7

to be flexible, precise and detailed, rather than processed via predefined functions. To this end,
the output is stored in binary in the following format.

Each block of code to be traced is given a key. In the output file, the number of keys nkeys (int)
is followed by the length of the key name string, keylen (int). Then for each key, the following
information is output, the index of the key, the key type and its name. Then, the information
regarding the nodes is output. The number of nodes nnodes(int) is defined. For each node the
following information is output, the offset or index in file at which the data for the node starts, the
number of entries for the node, the base tick count for the node and the frequency of the node in
MHz. Once this information has been defined, the data for each node is output.

During the evaluation of NCS the following two programs were created and are included as

examples:

e Summary statistics is a simple C program which reads the QQ output file and produces a

summary report of the time spent in each state, the number of times each event or state, etc.

e Profile viewer is a simple graphical application. Data is read from the output file, and piped
to gnuplot for display. A simple interface allows the user to select which nodes, events, and

time ranges are displayed.

4 Examples

Now that we have given an overview of QQ, some examples will help show how it can be used
to profile and optimize code. In this section we present two examples, a sequential piece of code
and a large parallel piece of code. The first will show how the code must be modified to be used

and the second will give a big picture overview of what we were able to accomplish with QQ.

4.1 Sequential Code: BCS

BCS, the Brain Communication Server, is a companion program intended to coordinate data

flow between NCS and a separate client. These clients under development make use of NCS in
8

some way such as a virtual organism in a virtual environment, or eventually robotic actuators
maneuvering in the real world.

Ideally, this server should have minimal impact on the simulation’s execution while transferring
the necessary information securely and accurately, so it also needs profiling for optimum perfor-
mance. Even though BCS is a sequential program, it can still use QQ to evaluate code sections
even without QQ’s parallel features.

Inserting QQ into the program is easily done. Certain profiling needs to be performed in the
main file of the program as it started. The code segment in Figure 2 shows the few lines needed to

perform the profiling.

QQInit (1000); //create space for large number of possible events
QQBaseTime(0); //reset timer

//create new event to monitor load functions
QQload = QQAddState("load");

QQStateOn (QQload); //Begin monitoring
loadAppList();
loadScriptList();

QQState0ff (QQload); //End monitoring

Figure 2: Basic QQ profiling

Of course, BCS also makes use of an Object Oriented design, and the example code given in
Figure 3 show how a QQ event can be declared once in the main file, but used in a class defined
elsewhere. By putting the event declaration in the main file, we ensure that multiple class instances
don’t try to add the same event multiple times and we acquire a single event key to be shared by
all instances of the class.

When the profiling is complete, the QQ output file is generated with a single function call. This
9

// from main file:
int gatherTime; //global scope

gatherTime = QQAddState("gather"); //inside a main function

// from class file:
extern int gatherTime; //declared in main file

class function() \{
QQStateOn(gatherTime); //turn on state at start of block

QQState0ff(gatherTime); //turn off state at end of block
}

Figure 3: QQ Events in classes: Create and Use separately

is illustrated in Figure 4.

// when monitoring is finished:
QQOut ("myProfile", 0, 1);

Figure 4: Code for QQ Output illustrated

The simple and consistent layout of the QQ output file allows for the collected data to be extracted
easily. Once the time values are read, they can be manipulated in whatever way the programmer
prefers. Using all data, or selecting only a portion to view, it is easy to handle and forward to an
appropriate process. In Figure 5 they are put into a table by the previously mentioned st program.

When performing the profiling, the program should be compiled with the value QQ_ENABLED
defined (in gcc this is done by adding -DQQ_ENABLED to the command line). Later, by removing
QQ_ENABLED, the profiling functions can stay in the source code, but will perform no operations.

10

File myProfile: 1 nodes
Node 0: 2592.403 MHz, 10 keys, 122 states, ticks from 15956 to 105435813502
ET = 40.671068 sec

State outputs: Counts are millions of cycles

Hits Time Percent Name
1: 2 0.000889 0.002% ’load’
2: 46 0.562092 1.382% ’setpath’
3: 8 0.159862 0.393}% ’getdata’
4: 8 0.166010 0.408%, ’gettime’
5: 2 0.000241 0.001%, ’setpattern’
6: 20 0.953694 2.345), ’launch’
7: 8 0.158786 0.390% ’reportcount’
8: 20 0.385492 0.948), ’mkdir’
9: 8 0.000237 0.001% ’gather’

Figure 5: QQ output displayed by st

Even though a large number of events may have been originally declared for initialization of QQ,
the events will no longer take up that amount of memory. In fact, the only remnants are the

integers declared by the user to store the event keys.

4.2 Parallel Code: NCS

For our parallel example we will discuss QQ’s usage with NCS. NCS is an object-oriented,
biologically realistic neocortical-neural network simulator. As discussed earlier, this is the appli-
cation that actually led to the design and implementation of QQ [2] The simulator incorporates
laboratory-determined synaptic and membrane parameters into a large-scale simulation, thus mod-
eling realistic cortical modules. Parallel processing of this very large-scale, object-oriented simulator
is key for modeling biological accuracy of synaptic and membrane dynamics, while preserving the
relationships among neurons. Results show biological accuracy in synaptic and membrane dynam-

ics, as well as suggest that computational models of this scope can produce realistic spike encoding

11

of human speech [3, 4].

4.2.1 Optimization Targets

Three factors limit the performance of NCS as a parallel program: load imbalance, message-passing
overhead, and synchronization. Each of these areas was addressed in this work, and this section

describes the solutions that were developed.

Load Balancing For many applications load balancing is a simple matter of assigning an equal
number of work units to each node. Version 3 of NCS (NCS3) used this method, but for a number
of reasons it proved less than satisfactory in practice.

Factoring synapses into the load-balancing process is complicated by the fact that computation
takes place on a particular synapse only when the synapse is in the firing state. It is not possible to
predict when or how often a synapse fires because firing is determined by the input stimuli. Indeed,
obtaining the patterns of synapse firing is the goal of an NCS simulation.

This unpredictability applies to memory usage as well: the amount of memory needed to construct
the brain can be computed as the sum of its components, but a running brain needs significant
additional memory to hold the dynamic information that represents synapse firing states. The
exact amount required is impossible to predict, but in practice the current implementation seems
to require about equal amounts of memory for static and dynamic data.

The total amount of computation is determined by assigning some weight, say 1.0 for simplicity,
to a basic cell and ratios of this amount to other components that may be added. Using QQ we
were able to measure these individual values and create a ratio table that was used to compute
weights/costs for these components. After this factor is applied, a simple summation gives a total
compute weight for each cluster of cells. Then, using the cluster weights, clusters can be assigned to
each node according to some scheme which balances the compute load according to the computing

power available on each processor.

12

In order to run the largest models it is necessary to balance memory use, rather than compute
load, and accept the resulting inefficiency. So we proceeded to optimize message passing and

memory usage as well.

Message-Passing Overhead Upon close examination, it is obvious that the message passing
scheme used by NCS3 most likely had a number of inefficiencies. The most notable of these was
the use of the same communicator and message format for distributing stimulus and report data
and the synapse firing messages. This required the inclusion of a message type field in the message
packet, as well as additional overhead needed to distribute messages of different kinds to the proper
destinations.

In addition, messages were pre-allocated, with a 60-byte message object allocated for every
synapse. This wasted memory, because only a small fraction of synapses (typically less than 1%)
are actively firing (and thus transmitting a message) during any particular timestep.

NCS5 separates the three functions. Stimulus messages and reports are now produced locally on
each node(Excepting real-time I/0.). This approach reduces the traffic on the network and, along
with other optimizations, allows the size of the individual synapse firing message to be reduced
from 60 to 20 bytes. In the NCS3 message packaging scheme, each message transmitted about 40
bytes of unnecessary information, resulting in a 200% overhead.

While these changes improved performance significantly, further analysis showed that more im-
provement was possible. The old algorithm passed messages through several layers, with a typical
message packet read and written perhaps five times or more in its progress from source to destina-
tion.

In the new scheme, the message becomes a logical entity which has no existence as an individual
object. This makes it possible for the bulk of the information in a message to be written once, when
sent, and read once, when it is received at its final destination. Instead of individual messages,

the program deals with packets containing many messages. The packet size is chosen to match the
13

most efficient Myrinet transfer size, which is 1 KByte in the current implementation.

Synchronization Most of the computation time in the NCS program is used in computing the
effects of synapse firings on the receiving compartments. The firing rates, however, are essentially
random, being determined by the brain’s reactions to stimulus. Therefore it can be expected that,
regardless of how well the number of synapses is balanced between nodes, the actual amount of
computation will vary both between nodes and over time.

As a consequence, one node, and probably not the same node at each timestep, will take the
longest amount of time to finish its computations. If a simple end of timestep barrier is used for
synchronization, then all the other nodes will be idle for some part of the timestep. Figure 6 shows
an example of this idle time. Node 1 has (for the displayed timesteps) the heaviest load, and so
displays little or no idle time (labeled MessageBus: : Sync in the figure), while the others display
more, with the amount varying between nodes and between timesteps.

We used this data to redesign the MessageBus. Recall from basic biology that the electrochem-
ical pulse from a firing cell propagates along its synapses at a relatively slow speed, so that the
transmission time between the sending and receiving cells typically translates to several tens of sim-
ulation timesteps. Thus for each node there is an event horizon, which depends on the minimum
synapse propagation time of the nodes with which it communicates. If this minimum time is dt,
then nothing other nodes do at time T can affect this node until time T+dt. Therefore, a barrier
mechanism constructed to utilize this event horizon can allow some of the end-of-timestep idle time
to be used. A node may simply continue to work until it reaches T+dt. Meanwhile, messages have
continued to arrive from the other nodes, and unless the node is consistently under-loaded, these
messages will contain SYNC flags indicating that their nodes have progressed to another timestep.

Synchronization now becomes a relatively simple matter. On initialization, a NodeTime array
is allocated, with entries for each node from which the node receives messages. As SYNC packets

are received, these times are updated. When the node reaches the end of each timestep, these
14

o.4 —

0.2

MessageBus::Sync
eliverMsgs

MessageBus

DoStim —

o L
5.05e+06 5.055e+06 5.06e+06 5.06

Node O: Time (microsec)

5e+06 5.07e+06 5.075e+06 5.08e+06 5.085e+06 5.09e+06 5.095e+06 5.1e+06

Message’Bus::Sync'
MessageBus::DeliverMsgs

Dostim——m—— -
DocCell| ——

o L L L L L L L L
5.05e+06 5.055e+06 5.06e+06 5.065e+06 5.07e+06 5.075e+06 5.08e+06 5.085e+06 5.09e+06 5.095e+06 5.1e+06
Node 1: Time (microsec)

Message’Bus::Sync'
MessageBus::DeliverMsgs

DosSstim -
DocCell

0.4

o L L L L L L L L L
5.05e+06 5.055e+06 5.06e+06 5.065e+06 5.07e+06 5.075e+06 5.08e+06 5.085e+06 5.09e+06 5.095e+06 5.1e+06
Node 2: Time (microsec)

T T
MessageBus::Sync
MessageBus::DeliverMsgs

DoStim ————— -
DoCell | ———

0.4

o
5.05e+06 5.05

5e+06 5.06e+06 5.065e+06 5.07e+06 5.075e+06 5.08e

L
+06 5.085e+06 5.09e+06 5.095e+06 5.1e+06
Node 3: Time (microsec)

Figure 6: Idle Time]%ge to Load Imbalance.

NodeTimes fields are checked. If the other nodes are within the minimum time difference, then the
node can proceed to the next timestep; if not, it must wait for more packets to be received and

check again.

4.2.2 Results

In addition to the algorithmic improvements described in the preceding subsection, many other
optimizations have been made in the process of creating version 5 of the NCS program. These are
too numerous to describe individually. Indeed, most are obvious, and of no great theoretic interest.
This section describes the cumulative effect of all optimizations.

It is difficult if not impossible to define a simple performance metric for NCS. For a number of
reasons, the time a particular NCS brain takes to process some input file is only a useful performance
measure for that particular brain design and input.

One reason is that NCS defines many different components, which the user may include in fairly
arbitrary proportions and connect in a large number of ways. Since the behavior of NCS is highly
non-linear, these differences can result in large variations in processing time for models which might
appear superficially similar.

On the basis of these and other issues, the approach taken here is to measure, on the same input,
the performance of particular functional areas, or groups of operations with similar characteristics.
Because the groups share common performance features, the effect of a change in the area on the
whole program can be estimated. The area’s speed change can be compared between program
revisions.

We have tested with many models but due to space we will only present some of the results from
the model 1Column. This model was used in the development of NCS3. It models a single column
of three layers, each having two cell types, excitatory and inhibitory. Input is from an artificial
pulse stimulus. It exhibits an unrealistically high cell firing rate. Figure 7 shows the time usage of

the components in a one simulated second run of the 1Column model just described. Note that we
16

NCS3 vs NCS5

NCS5 Enlarged

o
o
Synapse 17
8 Report _| 8
8 — NNNNNNNN O EL T] i
E======1 Base Cell o
i 1 Overhead ©
lo B
o
@ _
= ~ 5
5 B 1o &
g - 18 0
3 | :
' - o ﬂ.)
) B E
E] =
(= 8 o S
c o 1< g
e - R 3
= [&]
=1 o O
8 L 1™ x
o} i [
[o
o 1N
S i
e}
_lo
<
o
o

Figure 7: Share of CPU Time Used by Functional Areas, 1Column Model.
have expanded the figure portion for NCS5 since the optimization was quite successful.

5 Conclusions and Future Work

In conclusion, we have developed and tested an new profiling tool that allows nanoscale timing
of code segments, profiling, and memory usage analysis. QQ has proven to be a valuable set of tools
for the profiling and optimization of various programs. The temporal resolution allows for fine-
grained measurements of specific events or blocks of code. It can be used on sequential, distributed
and parallel programs without modification.

The incorporation of the various hardware implementations by using different flags on the exe-
cutable would extend the usability of these tools. Also, the ability to measure memory at an object
or event level with a small memory and performance footprint, is an area that requires additional

work.

References

[1] Free Software Foundation. gprof user manual. http://www.gnu.org/software/binutils/
manual/gprof-2.9.1/gprof.html (10/27/04).

17

2]

3]

[10]

[11]

James Frye. Parallel optimization of a neocortical simulation program. Master’s thesis, Uni-
versity of Nevada, Reno, December 2003.

J. C. Macera, P. H. Goodman, F. C. Harris, Jr., R. Drewes, and J. Maciokas. Remote-
neocortex control of robotic search and threat identification. Robotics and Autonomous Sys-
tems, 46(2):97-110, February 2004.

James B. Maciokas. Towards an Understanding of the Synergistic Properties of Cortical Pro-
cessing: A Neuronal Computational Modeling Approach. PhD thesis, University of Nevada,
Reno, August 2003.

University of Oregon. Tau portable profiling. http://www.cs.uoregon.edu/research/
paracomp/tau/tautools.

M.C. Ripplinger, C.J. Wilson, J.G. King, J. Frye, F. C. Harris, Jr., and P.H. Goodman.
Computational model of interacting brain networks. American Federation of Medical Research
Conference, January 2004.

Luis De Rose, Ying Zhang, and Daniel A. Reed. Svpablo: A multi-language preformance
analysis system. http://citeseer.nj.nec.com/derose98svpablo.html, 1997.

Thomas Williams and Colin Kelley. gnuplot user manual. http://wuw.gnuplot.info/
docs/gnuplot.html (11/29/03).

E. Courtenay Wilson. Parallel implementation of a large scale biologically realistic neocortical
neural network simulator. Master’s thesis, University of Nevada, Reno, August 2001.

E. Courtenay Wilson, Phillip H. Goodman, and Jr. Frederick C. Harris. Implementation of
a biologically realistic parallel neocortical-neural network simulator. Proc. of the 10* SIAM
Conf. on Parallel Process. for Sci. Comput., March 2001.

E. Courtenay Wilson, Frederick C. Harris, Jr., and Phillip H. Goodman. A large-scale biolog-
ically realistic cortical simulator. Proc. of SC 2001, November 2001.

18

