A Framework for Reuse and Parallelization of
Large-Scale Scientific Simulation Software

Manolo E. Sherrill 2 Roberto C. Mancini ?
Frederick C. Harris, Jr.? Sergiu M. Dascalu®

aDepartment of Physics

b Department of Computer Science and Engineering,
University of Nevada, Reno, NV 89557

Abstract

Software designed for the scientific community often fails due to the nature and
life span of the code being developed. In this paper a software framework is pro-
posed for supporting large scale scientific computations in the physics domain. This
architecture was applied to simulations of laser ablation, in particular Li and Ag.
The architecture can be effectively reused for other research projects and allows
expansion to parallel computation without any significant additional work.

Key words: laser ablation, software framework, code reuse, parallelization,
simulation

1 Introduction

Several difficulties affect software development in scientific programming. The
often short lived nature and highly changing aspect of most scientific pro-
grams produce a dilemma for the developer. Small programs are crafted in a
temporary manner to test algorithms and methods to solve specific compu-
tational problems. In cases where a code’s “lifetime” exceeds expectations, it
becomes very difficult to incorporate it into larger simulation programs due
to variable name conflicts, poor organization, non-robust implementation and
a lack of consistent style [1,2]. In regards to pre-existing simulation program,
additional complications arise when new projects are undertaken that require
large modifications to the execution topology [3,4]. It is impractical in most
cases to place various options into a program in anticipation of future project
requirements. Older simulation programs have the added difficulty of being
overburdened with obsolete or unnecessary functionality for the project at

Preprint submitted to Elsevier Science 23 September 2005

hand and thereby complicating the adaptation procedure. Unfortunately, the
removal of un-needed routines leads to a high probability of introducing errors
into the program.

Our work has focused on scientific simulations of laser ablation. This field of
physics fits the description just provided with pieces of code that have been
written once and used, and modified over and over again, for years. Like any
scientific field the simulations have to change as the real world knowledge in-
creases. This knowledge will increase as experimentalists look to confirm or
study data presented by the simulations. Therefore, the code has the poten-
tial to be used over and over again and be modified many times at unknown
frequencies. We found in our simulations that the standard sequential devel-
opment models did not fit or work effectively in this field and we developed a
new framework that we present in this paper.

This paper, in its remaining parts, is organized as follows: Section 2 presents
a background into the laser ablation simulations that precipitated the archi-
tecture. Section 3 describes the framework design that is the foundation for
this work. Section 4 gives details on several results. Section 5 follows with
conclusions and future work.

2 Laser Ablation

Laser ablation refers to the process of ablating material from a solid or liquid
target, with a low intensity laser ranging from 1x10” W/cm? to 1x10'® W /cm?.
Typically, a pulsed laser is used to irradiate the target. It deposits the bulk of
its energy in the skin depth region of the target where this volume of material
is heated and then undergoes melting, evaporation, and possibly plasma for-
mation. The material in the gaseous state then forms a plume that expands
away from the target’s surface with normal to the surface velocities of a few
10 pm/nsec. When a series of ablation events are performed, where the dura-
tion of the irradiation of the target is allowed to stay constant (that is the full
width at half maximum (FWHM) of the temporal pulse shape is fixed) while
the fluence is allowed to increase, a transition between evaporative plume to
plasma plume formation can be observed [5].

Laser ablation is commonly used in both experimental physics as ion sources,
and in industry for the generation of thin films. In fact, laser ablation has
proven to be the most consistent method of producing high quality thin films,
in particular, for stoichiometrically complex material. This technique has been
used in the manufacturing of electronic and optical films, super-conductors,
ferroelectrics, piezoelectric and photoelectric materials as well as tribological
coatings such as diamond like thin films [6]. In the last 4 years, more exotic

systems have entered this application arena. Pico- and femto-second lasers
have found their place in the thin film synthesis and annealing. A further exotic
ablation process is matrix-assisted laser desorption ionization (MALDI), used
to place large biomolecules, such as proteins, in a free environment for use in
mass-spectroscopy and other studies [7].

From the early to mid 1960’s, after the availability of the first ruby lasers, a
substantial effort toward the understanding of laser matter interaction from
both the theoretical and the experimental perspective was under way. Solid,
liquid, and gas targets interactions were all investigated. These investigations
lead researchers to think of possible applications; and by 1965, the laser was
successfully shown to be a useful tool in producing thin films on a substrate
[8]. For the generation of thin films, lasers driven ablation waned.

Laser ablation acquired new interest during the late 1980’s for a series of work
done on the synthesis, in particular, of high quality stoichiometrically com-
plex high temperature superconductor (YBayCusO7_;) [9] through the use of
pulsed laser deposition. Pulse laser deposition (PLD) produced a greater con-
gruent ablation than other deposition techniques. The shorter pulse durations
allowed for the thermalization of a shallower volume of target material. This
preserves the stoichiometric properties during the transfer of the material to
the substrate where the thin film is grown. With the accessibility of higher
frequency lasers (Nd: YAG 1.06 pm), the target volume accessed directly by
the laser energy was also reduced. This added to a greater congruent ablation,
as well as a reduced effect of subsurface heating - the main cause of splash-
ing: the ejection of molten globules from the surface of the target. By 1992,
Saenger, K. [6] reported over 180 thin films synthesized with PLD. These ma-
terials included metals, inorganic and organic compounds as well as polymer
films; and in the last few years, PLD has been used in the development of
nano-materials such as the synthesis of carbon nanotubes [10].

Though there has been a large body of experimental work dedicated to the
characterization of ablation plumes produced under various experimental pa-
rameters and targets, little attention had been paid toward a fundamental
understanding of simple systems. This is primarily the outcome of the ab-
lation communities’ desire to have information on specific systems for the
synthesis of particular materials. It is also recognized that the complexity of
even the simplest systems can elude theoretical characterization. This is due
in part, to the myriad of possible plume constituents such as atoms, atomic
and molecular ions, clusters, and micron size particles, whose abundances may
change with a small change in laser fluence.

Work that has attempted to describe ablation physics, in general, has resided
either in the detailed modeling of laser target interactions [11] or the model-
ing of the expanded plume through gas dynamic simulations [12], [13], [14] or

hybrid models [15]. Interestingly, detailed study of the plasma in the region
between the target and a few millimeters from the target has not been un-
dertaken [16]; although it is this region of the plasma that defines the level
populations and the ionization abundances of the plasma far away and later
in time (in the absence of background gases).

Our work focuses on the modeling and analysis of a laser ablation plume for
the region from tens of microns to a few millimeters away from the target sur-
face and early in time (20-100 nsec after the end of the laser pulse). The target
of our laser is illustrated in Figure 1, and the experimental setup is illustrated
in Figure 2. This work attempts to provide detailed quantitative information
of laser ablation in this spatial and temporal regime for a modest stoicho-
metrically complex target. To this end, a series of theoretical and modeling
techniques have been developed to deal with specific issues that arise in the
modeling of atomic kinetics and line emission formation in multi-component
ablation plasmas.

Nd YAG (1.06 pm)

\ / Pt (0.2 pm thick)

}7 L Example of Several—— | L1l |
— 1.5 mm

6 mm

Laser Shots ——

Li- Ag (0.5 pm thick) — |

[] (]
Magnified Cross Section Target Coupon
(Coupon from Above) (Front View)

Fig. 1. Target Design.

3 Framework Development

During the development of the multi-element and multi-spatial zone spectro-
scopic model, timings recorded for several execution trials indicated that our
initial program written in a sequential form required an unacceptable amount

Nd YAG (1.06 pm)
Virtual

\ Beam smoothing’
image

optics

e Camera lens

Spectrograph/CCD
T 1D image of plume and spectra
A

Fig. 2. Experimental Configuration.

of time to execute. Due to this fact a parallel implementation of the simu-
lation code was pursued. For various technical reasons the program became
too cumbersome to confidently perform modifications to include new physical
effects even though good programming practices were employed. This condi-
tion is unfortunately not uncommon when dealing with complex simulation
programs mainly because of the manner in which the software is designed
and implemented [17-19]. The solution to this problem would lead in a new
direction of software development for this project.

This section discusses the specific difficulties in dealing with complex simula-
tion codes and draws from work done by the system developers community
to describe a new methodology for constructing and implementing research
simulation programs. As an example, this method is applied to the new spec-
troscopic software developed for this work. However, the underlining ideas are
general and can be applied to other research-related software applications as
well.

3.1 Difficulties in Scientific Code Development

Scientific software developed in research environments suffers from several ma-
jor difficulties. Usually, software is written in rather ad-hoc way, with little
regard to software engineering methods. Small programs are written to test
algorithms and ideas and if they solve a specific computational problem they
are “bolted onto” other pieces that need them. So they start with a piece of

code that was meant to be temporary, but it is now part of something larger.
Since the code was never expected to be anything more than a trial piece
of code, the developer never followed the traditional design and documen-
tation patterns that would be expected from a software company. Once the
code’s lifetime has exceeded its expectations it becomes very difficult to add
to larger simulations. This difficulty can be due to poor organization, variable
name conflicts, lack of good development style, lack of documentation, and
many other issues. Once those issues are hurdled, the simulation desired has
changed and something extra has to be added, or new things are learned in
the science and the model has to change. The parts that are still relevant are
ripped out and put together with the new ideas and the process starts over
again. Older simulation programs have the added difficulty of being overbur-
dened with obsolete or unnecessary functionality for the current project and
thus they complicate the adaptation procedure. Unfortunately, the removal
of un-needed routines leads to a high probability of introducing errors into
the program. Then once the software “works” there is the desire to run it
on larger problems on larger machines with more processors. This change in
architecture is sometimes impossible.

3.2 Paradigm

For several years operating system developers have dealt with similar prob-
lems as those faced by computational physicists in regards to engineering
software. From their work two predominant paradigms for operating system
architectures or kernel architectures have emerged. The traditional monolithic
kernels (typical of most UNIX operating systems and similar in form to most
physics codes) are characterized as a collection of procedures usually compiled
separately and linked into a single large executable code. They are often imple-
mented in a small number of layers. Protection, however, from the corruption
of data (encapsulation) by other layers or procedures is non-existent. Interest-
ingly, monolithic operating systems have noted examples were the complexity
of the program grew to such an extent that the modifications needed to remove
bugs led to the introduction of new bugs and to the eventual abandonment of
the operating system [20].

The other kernel architecture is exemplified by the design of the microker-
nel. Here only a very small set of functions are included in the kernel. The
remaining functionality needed by the operating system is included (i.e. mem-
ory management, file system services, etc.) as separate modules and are run
as separate processes as needed. Interprocess communication between mod-
ules occurs through message passing. Though modules can communicate with
each other, often for many operations the microkernel acts predominately as
a centralized point of connection and communication[21].

To clarify the meaning of a modular implementation we must describe the
qualities of a module [22-24]. A module is allowed to depend only on the
interfaces of other modules and not on their implementations. This quality
immediately precludes the use of global variables between modules. Modules
are designed to encompass a large element of functionality such as a memory
subsystem. A purely modular implementation allows modules to interconnect
freely with each other. This is in contrast to a layered model were connectivity
is limited to elements “above” an “below” a given element [21].

Even though operating systems based on a microkernel design are usually
slower than the monolithic ones due to increased overhead of message passing
they do possess many advantages that may be enlisted in dealing with software
engineering problems found in simulation programs. The microkernel structure
forces system developers to employ functional components in a modularized
manner since they are ran as separate processes. This is one of the most im-
portant qualities exploited for the new method we propose. Communication
between processes only occurs through well-defined and clean software inter-
faces - requiring all transferring variables to be listed at the interface. This
makes it easy to maintain, develop and replace modules without affecting the
rest of the system. Moreover, message passing facilitates the creation of soft-
ware where tasks can be distributed among several computers to lower overall
execution times. One other positive feature of microkernel operating systems
is their tendency to use random access memory (RAM) more efficiently than
monolithic ones, since they have the capability to create or destroy processes
(functionality) as the need arises. This is in contrast to the monolithic imple-
mentation where executable instructions and data of various functions remain
in memory - even after they are needed - until execution is completed [25].

3.8 Implementation Strategy

Although the low level message passing primitive used in the microkernel de-
sign is not appropriate for scientific applications, the technique provides mo-
tivation for exploring the use of parallel message passing (PMP) libraries as a
means of implementing a microkernel like strategy. In using a PMP libraries,
application modules like the microkernel case run as separate processes and
in turn separate memory address spaces - each processes is controlled and
protected by the operating system. Pathological modules that access memory
outside of their specified spaces cannot corrupt variables in other modules.
This quality thereby reduces the time needed for diagnosing problems. Fur-
thermore, in using PMP libraries, the execution of processes is no longer lim-
ited to one machine. Inherently, two desirable conditions have been obtained
- true modularity and parallel capability.

At this point the most drastic deviation from the microkernel design is made
- the elimination of the central program from which modules are typically
mounted (the microkernel itself). The removal of this hub like structure alle-
viated two technical difficulties: First was the need for adding variables and
complexity to the central program simply to transport data from one module
to another and secondly, in regard to a parallel implementation, to prevent a
network bottleneck from occurring at the computer node that contained the
central program. This modification facilitated a more peer style implemen-
tation where modules are connected to each other like Tinker-Toys and the
program topology resembles the natural interconnections of the subject being
modeled.

With the removal of a centralized data transferring module went a conve-
nient process control center - recall that the microkernel added and removed
processes as needed to improve efficiency. To retain this feature a new hier-
archical program structure was needed - an ordered multi-layer model was
chosen where a process communicates only directly with members of its own
layer or adjacent layers [26]. Processes are spawned by the next higher-order
parental layer. The removal of a process is signaled typically by its parent, or
more rarely, by a module within its own layer.

In this structure constraints on the interconnectivity of a given module have
led to an implementation that has characteristics of both modular and lay-
ered schemes. Even though the implementation is far from ideal in regards
to either scheme, an important benefit has been gained: the employment of
layers prevents overly complex program topologies that may have otherwise
occurred in a purely modular design. As in any layered model, signals and,
to a lesser extent, data must be passed through to target modules residing
deeper within the structure. Though this relaying of information from layer to
layer may seem contrary to the original removal of the microkernel, it is noted
that within each layer many modules are usually involved in the transporting
of information and with modules deployed across many computer nodes the
probability of a bottleneck is severely reduced.

As mentioned earlier, PMP libraries are used to communicate between pro-
cesses. Specifically, the Parallel Virtual Machine (PVM) libraries developed
at Oak Ridge National Laboratories were used [27]. To implement the lay-
ered structure of modules a new library referred to as the Workbench library
was developed by the authors on top of the PVM libraries to assist in com-
mon tasks used in spawning and communicating between layer processes. The
use of the Workbench libraries circumvents the main problem of using PMP
libraries directly - often, coding becomes tedious and programs become too
cumbersome, in particular for a multi-layered program where PMP libraries
function calls are used directly in source code, thereby destroying the original
intention for this development.

The Workbench library acts as a set of utilities built on the virtual machine
presented by PVM much like UNIX utilities are built on top of the virtual
machine presented by the UNIX kernel. These utilities transport data between
modules without the requirement of specifying data type and in regards to
arrays reduces significantly the number of function calls to initialize a transfer.
Furthermore, these libraries maintain data structures for accessing processes,
tasks and processes locations (computer node). In addition, functionality has
been added to send information directly to layers for file I/O, thereby reducing
the amount of data that must be relayed through higher order layers. Figure 3
lists Workbench multi-layer library procedures developed by the authors of
this paper.

[Procedure | Description |

initp_info | Initializes parental information structure.
get_me Returns label from an ordered list of the current

process.
get_cmytid | Returns the PVM process id.
myinit Receives parent level information for communication.

x_cque_c | Parallel queue send and received data from lower
level processes.
x_rdat_c | Receives data from the adjacent child level.
x_rdat_p | Receives data from adjacent parental level.
xrflg p | Receives flag from parental processes.
x_rtids_p | Receives task id’s from parental processes.
xriflg.c | Receives flag from child processes.
x_riflg_p | Receives flag from parental processes.
x_sdat_c | Sends data to child adjacent processes.
x_sdat_p | Sends data to parental adjacent processes.
x_stids Sends task id’s to adjacent processes.
xsflg_.c | Sends flag to child level processes.
x_siflg p | Sends initialization flag to parent processes.
x_skflg ¢ | Sends kill flag to child level processes.
openf This is a driver routine used to open files in a
location defined by a given system environment
variable (envstring) with a given unit number
(unitnum) with a file name (ctemp).

X_Sp_c Spawns child processes.
pk Packs data and send to adjacent level.
upk Unpacks data from adjacent level.
destin Sends data by direct or broadcast to target
processes.
recv Receives data from processes.

Fig. 3. Public module procedures of the multi-layer library.

4 Framework Instantiation

The techniques of the development scheme described in the previous section
were applied to the spectroscopic model discussed in Section 2 (and in more
detail in [28]), in particular, to the highest density case - occurring early in
time and close to the target surface. Included in this model is the capability
of calculating a gradient in the direction along the line-of-sight of the spec-
trometer. The existence of this gradient was discussed in Chapter 2 of [28],
in regards to the experimentally observed self-reversal feature in the Li: 3d-
2p lineshape. To accommodate a gradient, the theoretical plasma is divided
into zones - each containing the same abundances of each species but each
described by a unique temperature and atom number density.

For this plasma environment, optical depths are large, thereby requiring a
separate calculation for the radiation transported through the different zones.
The radiation from one zone does not, in this plasma, affect the population of
another. From this assumption the atomic kinetics of each zone is left uncou-
pled and can be calculated independently. From these qualities a three layer
model can effectively be constructed.

It should be re-emphasized here before going any further that the modular
framework is simply a framework. Except for the amount of data transferred
between processes and for the the topology of the implementation, the modules
are independent from the physics codes embedded into them. Or, in other
words, the modular framework constitutes a software network that the physics
codes communicate through.

The framework that has been developed is in essence a set of library routines
that allow us to write simple programs to handle the entire communication
between legacy code modules. These routines allow us to separate the compu-
tation from the communication (since the legacy code does not know anything
about communication). This division allows the code developers to separate
sequential physics routines and therefore parallelize on a coarse grained level.

As a matter of notation, this communication is illustrated in the figures of
this paper via lines connecting triangles. The triangles and diamonds repre-
sent the communication interface that is provided by the Workbench libraries.
The circles inside of the triangles represent the legacy simulation code, usu-
ally written either in Fortran or C. Triangles pointing to the right have the
capability to spawn processes and have typically spawned the processes they
communicate to the right with. Figure 4 shows how a single zone of the sim-
ulation is connected.

In our implementation, the lowest layer modules (Layer IV) contain a set of
single element kinetic models (SEKM) represented by the circles that compute

10

Layer II1 Layer IV

O ag
O u
O »

SC

Self-Consistent Single Element
Module Atomic Kinetic
Models

Fig. 4. Single plasma zone multi-element atomic kinetic object [Layers III and IV]
are shown.

the populations of each element found in a particular zone of the plasma.
The next higher layer of modules, the parental layer (Layer III) of the lowest
layers, contains the self-consistency routines (SC) that check the multi-element
kinetic calculation for completion. Because these are structured as separate
triangles they end up as separate processes and can be calculated at the same
time as others in the same layer. This calculation is iterated until the self-
consistent layer narrows in on the correct solution, as illustrated in Figure 5.
The data flow between the layers is shown with arrows between the triangles.

Once a self-consistent solution is obtained, the SC layer then signals the SEKM
for emissivity and opacity data that is then relayed to the next higher layer -
the radiation transport layer (Layer IT). Here, data from each zone is accumu-
lated and used to generate the synthetic spectra for one complete plasma. It
is also here where experimental lineouts and the theoretically created spectra
are compared (as shown in Figure 6). Layers II-IV represent the synthetic
spectral object (SSO).

The comparison of the experimental data to synthetic spectra is done in an
automated manner by the use of a search engine. The search engine typically
generates a large number of temperature and density profiles for which the
physics model must produce a quantitative comparison between theoretical
and experimental spectra. The temperature and density profile generated by
the search engine is stored in a parallel queue (PQ). Initially, PQ spawns
several synthetic spectral objects that load atomic and spectral data and then
wait ready to generate synthetic spectra from the profiles dispensed from the
PQ. The number of SSOs generated depends upon the computer architecture
that the simulation is run on but can be as large as allowed by the number
of CPUs, as presented in Figure 7. The search engine, in search for the best
synthetic to experimental spectral fit, generates thousands of profiles. Once
the search is complete, PQQ sends termination signals to each SSO. In each

11

Fractional . Single element AK model.

abundences Q Self-consistent procdure.

ZTmal=ZLiFLi+ZAgFAﬂ .))
N =N_ZToul Initialization

Z4, #Conv

Ag Computing individual
fractional pop. Return
<Z> & #levels converged
Li for i™ itertation.

Self-
Consistent
Iteration
Loop

7', #Conv Iteration to

Self-Consistency

Nenl ’Te Ag NCW 1\]e :ZLlNﬂLn + ZAgNaAé'

Sent to single element

kinetic models for i" +1
Li iteration.

Self-consistency is met when the fractional populations of all levels from all elements
varies no more than a set tolarence from the previous self-consistent iteration.

Fig. 5. Multi-element atomic kinetic model schematic diagram.

SSO a signal is relayed to the deepest layer where termination first begins.
Termination continues to propagate up until all the SSOs are destroyed.

5 Conclusions and Future Work

In this paper we have presented the motivation for a change in software ar-
chitecture for maintenance and increased performance of large scale scientific
simulation software. This need resulted in the development of a new library,
called Workbench, that allows for protection and encapsulation of existing
legacy code as well as for parallelization of this sequential code.

This methodology deals with the primary problem of research software: con-
stant evolution. The typical monolithic software design usually employed in
simulation code is quite inflexible to change. The methodology we developed
includes a set of user library functions to link modular elements through well
defined interfaces. These interfaces allow for an easy exchange of data, and
the message passing utilities employed to connect the modules allow for the
easy parallel execution of the modules across a set of networked computers.

Workbench is beneficial for simulations for a variety of reasons. First, when the
experimentalists discover data that requires a modification to our software we

12

SC @
4@} @
(]
SC Q@
4@ @
(]
RT e @
4@ @
Q
SC Q@
<b @
(]
SC @
4@ @
(]
Layer II Layer III Layer IV
Radiation . Single Element
If- &
Transport Se M%(iﬁlslgem Atomic Kinetic
Module Models

Fig. 6. Synthetic spectral object involving five plasma zones [Layers II, IIT and IV]
are shown.

do not have to recompile everything. Because the modules are wrapped into
separate executables (and processes) we only have to recompile and relink the
modules only when changing specific components of the model. Second, the
physics components can be tested and modified individually before adding
them to a larger simulation. Third, it allows us to change the topology quite
easily and benefit from using parallel processing. Using the framework pre-
sented, we have run simulations on sequential machines as well as large parallel
machines with significant reduction in execution times on the latter. Fourth, it
helps keep the legacy simulation software modules separate, thereby providing
certain protection from the use of code written by someone else.

13

Synthetic Spectral

Object
Search Parallel
Engine Queue
SE PQ
Layer |

Layer Il

Layer Il Layer IV

Fig. 7. Diagram showing the communication of the parallel queue with three con-
current plasma spectral models (synthetic spectral objects). Layers I-IV are shown.
The plasma executables remain in memory processing jobs until the parallel queue

(PQ) is empty.

14

In the future, we are looking at applying the framework described in this paper
to a variety of other types of physics software that our research group uses.
This will allow us to effectively reuse the original legacy code, a code that
remains important (even critical) for conducting research but was developed
without rigorous software engineering method. Furthermore, the separation
of code into distinct processes will support easier modification and mainte-
nance of programs, as well as utilization of parallel architectures for increased
execution performance of the original software.

References

[1] S. Schach, Object-Oriented and Classical Software Engineering, 5 Edition,
WCB/McGraw-Hill, 2002.

[2] C. Lung, J. Cochran, G. Mackulak, J. Urban, Computer simulation software
reuse by generic/specific domain modeling approach, International Journal of
Software Engineering & Knowledge Engineering 4 (1) (1994) 81-102.

[3] S. Huband, C. McDonald, Debugging parallel programs using incomplete
information, in: Proceedings of the 1st IEEE Computer Society International
Workshop on Cluster Computing, 1999, pp. 278-286.

[4] E. Luque, R. Suppi, J. Sorribes, Overview and new trends on psee (parallel

system evaluation environment), in: Proceedings of the Euromicro Workshop
on Parallel and Distributed Processing, 1993, pp. 443-450.

[5]) L. J. Radziemski, D. A. Cremers (Eds.), Laser-Induced Plasmas and
Applications, Marcel Dekker, 1989, pp. 1-67.

[6] D. B. Chrisey, G. K. Hubler, Pulsed Laser Deposition of Thin Films, Wiley-
Interscience, 1994.

[7] A. A. Puretzky, G. D. B., G. B. Hurst, M. V. Buchanan, Imaging of vapor
plumes produced by matrix assisted laser desorption: A plume sharpening
effect., Phys. Rev. Lett. 83 (1999) 444-447.

[8] H. M. Smith, A. F. Turner, J. Appl. Opt. 4 (1965) 147-148.
[9] D. Dijkkamp, et al., Appl. Phys. Lett. 51 (1987) 619-621.

[10] A. Puretzky, H. Schittenhelm, X. Fan, M. Lance, L. Allard, D. Geohegan,
Investigations of single-wall carbon nanotube growth by time-restricted laser
vaporization., Phys. Rev. B 65 (2002) 245425.

[11] P. Lorazo, L. J. Lewis, M. Meunier, Simulation of picosecond pulsed laser
ablation of silicon: The molecular-dynamics thermal-annealing model., Proc.
SPIE 4276 (2001) 57-61.

[12] K. R. Chen, J. N. Leboeuf, R. F. Wood, G. D. B., J. M. Donato, C. L. Liu,
A. A. Puretzky, Accelerated expansion of laser-ablated materials near a solid
surface., Phys. Rev. Lett. 75 (1995) 4706-4709.

[13] R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, D. B. Geohegan,
Dynamics of plume propagation and splitting during pulsed-laser ablation,
Phys. Rev. Lett. 79 (8) (1997) 1571-1574.

15

[14] R. F. Wood, J. N. Leboeuf, A. A. Geohegan D. B., Puretzky, K. R. Chen,
Dynamics of plume propagation and splitting during pulsed-laser ablation of
silicon in helium and argon, Phys. Rev. B 58 (3) (1998) 1533-1543.

[15] R. F. Wood, J. N. Leboeuf, K. R. Chen, G. D. B.; A. A. Puretzky, Dynamics
of plume propagation, splitting, and nanoparticle formation during pulsed-laser
ablation., Applied Surface Science. 127-129 (1998) 151-158.

[16] J. C. Miller, R. F. Haglund (Eds.), Laser Ablation and Desorption, Academic
Press, 1998, pp. 255-289.

[17] J. Cooling, Software Engineering for Real-Time Systems, Addison-Wesley, 2003.

[18] M. Pidd, Simulation software and model reuse: a polemic, in: Proceedings of
the Winter Simulation Conferemce, 2002, Vol. 1, 2002, pp. 772-775.

[19] V. Hlupic, Simulation software: an operational research society survey of
academic and industrial users, in: Proceedings of the Winter Simulation
Conferemce, 2003, Vol. 2, 2003, pp. 1676-1683.

[20] A. S. Tanenbaum, A. S. Woodhull, Operating Systems Design and
Implementation, Prentice Hall, 1997.

[21] S. A. Maxwell, Linux Core Kernel Commentary, Coriolis, 2001.

[22] R. Pressman, Software Engineering: A Practitioner’s Approach, 6 Edition,
McGraw-Hill, 2004.

[23] I. Sommerville, Software Engineering, 7** Edition, Addison-Wesley, 2004.

[24] K. Kim, S. Hong, Identifying fault prone modules: an empirical study in
telecommunication system, in: Proceedings of the 2nd Software Maintenance
and Reengineering Conference, 1998, pp. 179-183.

[25] D. P. Bovet, M. Cesati, Understanding the Linux Kernel, O’Reilly, 2001.

[26] J. Rolia, K. Sevcik, The method of layers, IEEE Tran. on Soft. Engr. 21 (8)
(1995) 689-700.

[27] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM:
Parallel Virtual Machine — A User’s guide and tutorial for networked parallel
computing, MIT Press, Cambridge, MA, 1994.

[28] M. E. Sherrill, Spectroscopic modeling and characterization of a laser-ablated
li-ag plasma plume, Ph.D. thesis, University of Nevada, Reno (May 2003).

16

