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i
Abstract

This thesis presents a new algorithm named Minimum Average Distance (MAD)
for multicast routing in computer networks. For performance evaluation, we will com-
pare it with a different algorithm known as LS multicast routing which was presented
in [6] in 1991 and has been introduced into Internet recently.

The new algorithm focuses on low-cost routing. It supports the group concept
and the unknown-destination delivery. It uses a minimum average distance method
to select the forwarding links to achieve the low-cost goal. The algorithm defines
a distance radius and uses it to support the unknown-destination delivery without
requiring the multicast packets to carry individual group member addresses. Another
important feature of this algorithm is that no delivery tree has to be maintained, which
saves memory and computation time. Moreover, its computation time complexity is
only linear in the group size.

A simulation model is implemented. The simulation results strongly show that
the new algorithm has a better performance than the compared algorithm, in both

cost and delay.



iii
Acknowledgements

I would like to thank Professor Harris, my advisor, for his generous help when it
is most needed, for his guidance, support, and encouragement throughout the thesis
process.

[ am very grateful to Professor Wishart and Professor Johnson for serving on my
committee and for their valuable time.

Finally, a special thank to my parents and my husband, for their support, their

encouragement when things were not easy, and their belief in my abilities.



Contents

Abstract
Acknowledgements
List of Figures
List of Tables

1 Introduction

2 Review of the Literature
2.1 Main Issues in Routing . . . . . .. ... ... ... ... ...
2.2 Classification of Routing Schemes . . . . . .. ... .. ... ... ..
2.3 Unicast Routing . . . . . . . .. .. ... ..
2.3.1 Bellman-Ford Algorithm . . . . . ... .. ... ... .....
2.3.2  Dijkstra’s Algorithm . . . . ... ... ... oL
2.3.3 Floyd-Warshall Algorithm . . . . ... .. ... ... .....
2.3.4 Distributed Bellman-Ford Algorithm . . . ... .. ... ...
2.4 Broadcast Routing . . .. ... .. .. .. o
2.5 Multicast Routing . . . . . . .. .. oo
25.1 Flooding . . . . . . ...
2.5.2 Spanning Trees . . . . . .. ... o
2.5.3 Reverse-Path Forwarding (RPF) . . .. ... .. .. ... ...
254 RPF and Prunes . . .. .. .. .. ... ... ... .. ..
2.5.5 Steiner Trees . . . . . . . oL
2.5.6 Flow Model and Optimal Routing . . . . . ... .. ... ...
2.5.7 Related Algorithms for Multicast . . . . ... ... ... ...

3 The Proposed Algorithm
3.1 Main Issues in Internetwork Multicast . . . . . . . . . . .. ... ...
3.2 Algorithm Description . . . .. . ... ... L L o
3.3 Example . . .. .o
3.4 Practical Considerations . . . . . . . . . . .. ... .. ... .. ...

4 Simulation Model and Results
4.1 Performance Measurements . . . . . . . . . . ... .. ... .. ...
4.2 Network Parameters . . . . . . . . . . . . ...
4.3 Data Structures Used with Simulation . . .. ... ... ... ....
4.3.1 Network . . . . . . . .

v

il
iii
vi

vil



4.3.2 Packets . ... ...
4.4  The Compared Algorithm .
4.5 The Simulation Model . . .
4.6 Simulation Results . . . . .

4.7 Simulation Results Analysis
5 Conclusions and Future Work

Bibliography

43
44
44
48
50

59

61



vi

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Example Network . . . . . . .. ... o 38
Events . . . . . 46
Delay (N =40) . . . . .. . o 52
UL (N = 40) . o o oot e e e e 52
Delay (N =T75) . . . . .o 53
UL (N = 75) e o o oo e e e e 53
Delay (N =97) . . . . . . 54
UL (N = 97) 0 oo oot e e 54
Delay (N =123) . . . . . . 55
UL (N =123) 0 o oo e e 55
Delay Reduction . . . . . . .. .. Lo 56
Util. Reduction . . . . . . ... . o 56
Delay (Enlarged, N =40) . . ... .. ... .. ... .. .. .. ... 57
Delay (Enlarged, N =75) . . . .. ... . . . .. . 57
Delay (Enlarged, N =97) . . . ... ... . ... ... 58
Delay (Enlarged, N =123) . . . . . . ... .. ... ... 58



List of Tables

2.1 Steiner Tree Heuristics [8]
2.2 LS Truncated Broadcast
2.3 LS Multicast . . . . . . . . ... ...

4.1 Network Parameters . . . ... .. .. .. ...

4.2 Tree Algorithm . . . . .. ... .. ... ...

vii



Chapter 1

Introduction

Routing is one of the most important aspects of computer networks. Unicast
routing has been the dominant scheme used in network routing. However, in the past
few years, multicast routing has seen widespread use in those networks that support
it. There exist many cases where an application must send the same information to
more than one destination, such as:

e updating all copies of a replicated file or database.
e sending data packets to all participants in computer mediated conference.
e emailing to more than one receiver.
e dissemination of intermediate results to a set of processors supporting a dis-
tributed computation.
Multicast routing can be defined as follows: Given a network (N, L), where N is
a set of nodes and L a set of links. a source node s€ N, and a set of destination nodes
DCN. If 1 < |D] < |N| — 1, then the problem is a multicast problem. If |D| = 1,
then the problem is a unicast problem and if |D| = |N| — 1, then the problem is a
broadcast problem.
The subset D is called a group, and there can be more than one group existing

in a network at the same time. Multicasting should be more efficient than unicas-



ting separate copies to each destination, because it should reduce the transmission
overhead.

Modern networks also require the unknown-destination delivery function for rout-
ing. If a set of destinations can be identified by a single group address, such a group
address can be used to reach one or more destinations whose individual addresses are
unknown to the sender, or whose address may change over time.

Algorithms for solving the multicast routing problem can be divided into two cat-
egories: low-delay algorithms and low-cost algorithms. Low-delay routing algorithms
minimize the path length from the source to every destination node. This usually
requires that the message be sent to every destination along the shortest path. Low-
cost routing algorithms minimize the total traffic. The total traffic is equivalent to
the total length of the path in a delivery tree. Finding a minimum cost routing tree
is a Steiner Tree Problem in a graph, which is known to be NP-completel[8].

This thesis presents a new algorithm for multicast routing. This algorithm is
aimed at low-cost routing, and supports the unknown-destination delivery function
as well.

In Chapter 2 we review what is known about routing problems, describing differ-
ent aspects of the problem and some known algorithms from the literature. Chapter 3
gives the formal description of our proposed algorithm and a simple network example
to explain the algorithm. Chapter 4 develops a simulation model for our proposed
algorithm and a compared algorithm which is presented in [6]. Chapter 5 concludes

this thesis with a discussion of the advantages of our algorithm.



Chapter 2

Review of the Literature

The routing algorithms that we refer to will be the algorithms used in the
network layer protocol that guides the packets through the communication subnet to
their correct destination. The network is abstracted into a set of nodes and links, or
a graph. A subnetwork is treated as a node at this level, so that the activities within

a subnetwork are hidden. In other words, we consider point-to-point links.

2.1 Main Issues in Routing

The two main functions performed by a routing algorithm are the selection of
routes for various source-destination pairs and the delivery of messages to their correct
destination once the routes have been selected.

The two main performance measures affected by routing algorithms are packet
delay and the throughput. The packet delay is defined to be the time between the
generation of a packet and the arrival of that packet at its destination. The through-
put is commonly defined to be the difference between the offered load and the rejected
load, where the offered load is the messages issued by each node, and the rejected

load is the messages rejected by the network because of traffic congestion|[4].



2.2 Classification of Routing Schemes

There are a number of ways to classify routing algorithms. We briefly discuss
some of the classifications [4, 6, 13], and then pay more attention to the ones that are
related to our work.

The first classification we will look at is based on the decision time. The times
at which routing decisions are made depend on whether the network uses datagrams
or virtual circuits. In a datagram network, two successive packets of the same source-
destination pair may travel along different routes, and a routing decision is necessary
for each individual packet. In a virtual circuit network, a routing decision is made
when a virtual circuit is set up. We are mainly concerned with datagram routing.

The second classification divides routing algorithms into centralized and dis-
tributed. In centralized algorithms, all routing choices are made at a central node,
while in a distributed algorithm the computation of routes is shared among the net-
work nodes with information exchanged between them as necessary.

The third classification of routing algorithm is based on the routing strategies.
There are four major types of routing strategies: fixed routing, flooding routing,
random routing, and adaptive routing.

One of the simplest routing strategies is fixed routing. In this case, a route is
selected for each source-destination pair of nodes in the network. The routes are fixed,
or at least only changed when there is a change in the topology of the network. Thus
the costs used in designing routes cannot be based on any dynamic variable such as
traffic. It can, however, be based on cost or expected traffic. The advantage of fixed
routing is its simplicity. Its disadvantage is its lack of flexibility.

Another simple routing strategy is flooding routing. This technique requires no



network information, and works as follows. A packet is sent by a source node to every
one of its neighbors. At each node, an incoming packet is retransmitted on all outgoing
links except for the link that it arrived from. If the incoming packet is a duplicate it
will not be forwarded. This ensure that the flooding process will eventually terminate.
This technique is highly robust and can be used to send high-priority messages. The
disadvantage of flooding is the total traffic load that it generates.

The next routing strategy is random routing. With random routing, a node
selects only one outgoing path for retransmission of an incoming packet. The outgoing
link is chosen at random, generally excluding the link on which the packet arrived.
Random routing has the simplicity and robustness of flooding with less traffic load.
To ensure that the routing process terminates, it may have to keep track of the
duplicated packets. Also, a pure random routing scheme may fail to cover all nodes
in the network. One way to solve this problem is to forward packets to the outlinks
round-robinly. Random routing is not commonly used because of the unpredictable
delay and high traffic caused by this scheme.

The final routing strategy is adaptive routing. Adaptive routing strategies adapt
to measurable changing condition such as topology change and by other elements
such as adaptive routing update time.

The fourth classification of routing algorithms is based on the transmission meth-
ods. There are two major classifications of transmission methods, store-and-forward
and hot-potato forwarding.

Store-and-forward is probably the easiest to explain and the most widely imple-
mented. When a packet or message arrives at a intermediate node on its path to the
destination site, it waits in a queue for its turn to be transmitted on the next link in

its path.



Hot-potato forwarding states that for all packets simultaneously arriving at a
given node and not intended for reception at that node are immediately placed onto
the outbound links leaving that node. If two or more packets contend for the same
outgoing link to achieve minimum distance routing, then all but one will be misrouted
to links which produce longer paths to the eventual destination.

The fifth classification of routing algorithms is based on the number of destina-
tions a packet may be addressed to. We’ll focus on this type of routing. Three types
of routing schemes are Unicast Routing, Broadcast Routing, and Multicast Routing.

Unicast Routing is defined to be routing from a single source node to a single
destination node in the network and will be discussed in Section 2.3. Broadcast
Routing is routing from a single source node to all other nodes in the network and we
will be described in Section 2.4. Multicast Routing is routing from a single source to
a subset of the other nodes in the network. We will refer to this subset as a group.
Multicast Routing also includes the case of routing from a single source to several
groups which may overlap one another. We will discuss this type of routing in Section
2.5.

We must point out that the above three types of routing are not mutually exclu-

sive; on the contrary, they often coexist in a network.

2.3 Unicast Routing

Unicast routing is the dominant activity in the network. It can be seen as
a special case of multicast routing, but it is never treated that way because of its
dominance. In this section we will describe the shortest-path based algorithms which
are widely used in network routing[4].

In a network each link is assigned a cost, which can simply be one, the recent



traffic, or the queue length at the link. The cost for the same link from the two
opposite directions can therefore be different. The goal of the shortest-path based
routing is to choose a path which gives the minimum sum of link costs.

In unicast routing algorithms, each node usually has a routing table with entries

of the form

‘ destination ‘ distance ‘ next hop ‘ ‘

where next hop tells which link to take to reach the destination on the shortest path
from the current node. When a packet arrives at a node, the shortest path is looked
up from the table and the packet is sent to the “next hop” link. The routing table is
updated when there is a topology change or a change in link cost. Link cost change
is possible only when the link cost reflects the traffic. In this case, a cost change
message is nothing but a traffic report, which is broadcast periodically.

Several shortest path algorithms are important to us. We describe them precisely

since we will implement some of them for our study.

2.3.1 Bellman-Ford Algorithm

The first algorithm we wish to look at is the Bellman-Ford Algorithm [4, 13]. In
this algorithm you first find the shortest paths from a given source node subject to
the constraint that the paths contain at most one link; then find the shortest paths
with a constraint that paths can be at most two links; and so on. This algorithms

proceeds in stages and is formally described below. First we must define a few terms

that will be used.

s = source node



0 if ¢+ = 7;
di; = 00 if the two nodes are not directly connected;
< oo if the two nodes are directly connected.
h = max. no. of links in a path at the current stage
D™ = cost of the shortest path from s to n with < A links.

The algorithms has two steps; the first step is just initialization and the second step

is repeated until none of the costs change:

1. Initialize:

DO = o0, for all n # s

n

D =0, for all h

2. For each successive h > 0:

D;h-l_l) = mlH]{D;h) + d]n}

The path from s to ¢ terminates with the link from j to .

For the iteration of step 2 with h = k, and for each destination node n, the
algorithm compares potential paths from s to n of length & + 1 with the path that
existed at the end of the previous iteration. If the previous shortest path has less
cost, then that path is retained. Otherwise, a new path with length k& 4 1 is defined
from s to n; this path consists of a hop from node j to node n. In this case, the path

from s to j that is used is the k-hop path for j defined in the previous iteration.

2.3.2 Dijkstra’s Algorithm

The second algorithm is known as the Dijkstra’s algorithm[4, 13]. You first find
the shortest paths from a given source node to all other nodes by developing paths in
order of increasing path length. The algorithm also proceeds in stages. By the k-th

stage, the shortest paths to the k nodes closest to (least cost away from) the source



node have been determined; these nodes are in a set M. At stage k+ 1 , the node not
in M that has the shortest path from the source node is added to M. As each node
is added to M, its path from the source is defined. Before we can formally describe

the algorithm we must define some notation.

N = set of nodes in the network
s = source node
M = set of nodes so far incorporated by the algorithm
0 if 2 = j;
di; = 00 if the two nodes are not directly connected;

< oo if the two nodes are directly connected.

D, = cost of the shortest path from s to n, currently known to the algorithm

The algorithm has three steps. The first step again is initialization and the second
and third steps are repeated until M = N. That is, steps 2 and 3 are repeated until

final paths have been assigned to all nodes in the network.

1. Initialize:
M = {s}

D, =ds, for n # s

2. Find the neighboring node not in M that has the least-cost path from
node s and incorporate that node into M:
Find w ¢ M such that D, = minD;, j ¢ M

Add wto M

3. Update least-cost paths:
D, = min{D,,, D, + d,, } for all n ¢ M
If the latter term is the minimum, the path from s to n is now the path

from s to w concatenated with the link from w to n.
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2.3.3 Floyd-Warshall Algorithm

The third main unicast algorithm is the Floyd-Warshall algorithm[4]. This
algorithm finds the shortest paths between all pairs of nodes. It also assumes that
there are no negative length cycles. For clarity, suppose we want to find the shortest
paths from node 1 to all other nodes.

Let DZ(»;L) be the shortest path length from node ¢ to 7 when only nodes 1 to n

can be on the intermediate path. The algorithm goes as below.
0

‘ (nt1) _ - (n)  pn) (n)
2. D” = mlH{Di]' 5 DL n-I—l) —|— D(n-l—l),j}

Step 2 is repeated until n reaches N, the number of nodes in the network.

2.3.4 Distributed Bellman-Ford Algorithm

The fourth main algorithm is the Distributed Bellman-Ford algorithm [4]. We
will describe the basic form of the algorithm and then some improvements for solving
problems that the basic algorithm cannot handle.

First let us look at the basic algorithm. Consider a routing algorithm that routes
each packet along a shortest path from the packet’s source to its destination. The
link cost may change either due to link failures and repairs, or due to changing
traffic conditions in the network. It is therefore necessary to update shortest paths in
response to these changes. Algorithms which do this are called distributed algorithms.
The main idea is to compute the shortest distances from every node to every other
node by means of a distributed version of the Bellman-Ford algorithm.

Assume that each link (7,7) has a positive length d;;, the network is strongly

connected (meaning that all nodes in the network are mutually reachable), and if
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(¢,7) is a link, then (j,¢) is also a link. This algorithm only requires that each node
know the length of its outgoing links and the identity of every node in the network.
The algorithm calculates the shortest distance D; from each node ¢ to, for exam-

ple, node 1. Let N(¢) denote the neighbors of node ¢, the Bellman-Ford algorithm

(ht1) _ - (b
D; = jrer]l\lf%)[dij + Dj ], ) 75 1

suggests that only the information on the neighbors of ¢ is necessary for calculation
to carry on. The distributed asynchronous Bellman-Ford algorithm is as follows:

At each time ¢, a node ¢ # 1 knows D; (), the latest distance estimate of node
J € N(z), and D;(t), the latest distance estimate of node 7. Here distance means
the distance to node 1. Initially these distances are set to be arbitrary positive
values (usually quite large.) Each node updates its information only at some times

to,t1,...1,. At any time t;, one of the three events occurs:

(1) Node i updates D;(t) by D;(t) = minjeN(i)[dij—l—Dé (t)] and all D; (t) unchanged.
(2) Node i receives from some j € N (i) new D; and update D;

(3) Node ¢ is idle, no estimates held by node ¢ are changed.

All nodes performs the same calculations in parallel and asynchronously, and all D;(t)
converge to the correct shortest distances within finite time.
Now let us look at some improvements on the distributed Bellman-Ford algo-
rithm, most of which are based upon versions of distributed shortest path algorithms.
First, Humblet[7] proposed an adaptive distributed shortest path algorithm which
does not suffer from the “routing table looping” behavior associated with the Bellman-
Ford distributed shortest path algorithm. For the basic Bellman-Ford distributed al-

gorithm, link failures will cause the looping problem, i.e., some nodes will be updating
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their routing table endlessly, incrementing the distance entry forever (this is known
as counting), and messages will cycle back and forth among involved nodes. In other
words, the algorithm will not converge. In [7], the problem was solved by setting an
upper-bound on the maximum length that a link can achieve, and more importantly,
by maintaining at each node a shortest path tree that is rooted at that node.

Next Awerbuch and Gopal[2] proposed an approximate distributed Bellman-Ford
algorithm which has a polynomial message complexity. This algorithm is an improve-
ment upon the basic algorithm which suffers from exponential message complexity
in some scenarios. The only difference between the approximate algorithm and the
basic algorithm is in the adopting rule. In the basic algorithm, the adopting rule
is: Suppose node z, with a label a(z), receives a'(z) from z. If a'(z) < a(x), then
x adopts a’(x) and sets the value of parent(z) to z. In the approximate algorithm,
the adopting rule is: Suppose node x, with a label b(x), receives b'(z) from z. If
b'(xz) < b(z)/k, then x adopts b'(z) and sets the value of parent(z) to z. Where the
label a(x) and b(z) are the current known shortest distance from node s to node z,
and parent(x) contains the identity of its previous node on the current known shortest
path from s to z. Note that the two algorithms become identical when £ = 1. For

the approximate algorithm k is greater than or equal to 1.

2.4 Broadcast Routing

There are many cases in which a message needs to be broadcast to all nodes in
the network. The most important use is to transfer control information when links
are removed or the topology is changed. Flooding and Spanning tree are two major
algorithms for broadcasting.

Flooding is a simple algorithm for broadcasting. A node broadcasts an update
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message to all nodes by sending the message to its neighbors, which in turn send the
message to their neighbors other than the one from which the message comes.

Given a connected graph G = (V, E) with V the vertex set and FE the edge
set, and a weight W;; for each edge (¢,7), the problem is to construct a spanning
tree with minimum sum of edge weights. Such a tree is called a Minimum Weight
Spanning Tree (MST). An MST may be useful for disseminating messages destined
for every node in a data network. An edge weight represents the communication cost
of a message along the edge in either direction, and the total spanning tree weight
represents the cost of broadcasting a message to all nodes along the spanning tree.

Broadcast algorithms often need a sequence number for each packet to avoid du-
plicates received at a node; and sometimes a periodical broadcast is used to guarantee
that up-to-data information will become available within some fixed time. Spinelli
and Gallager[12] proposed an algorithm for broadcasting network topology change,
which does not require a sequence number and does not require a periodical broadcast.
The main idea of the algorithm is to keep each network node informed of the entire
network topology when the topology occasionally changes over time. This algorithm
is an event driven algorithm, i.e., it sends messages only in response to receiving other
messages, or in response to topological changes in adjacent links.

Gossiping[9] is another way to broadcast. In Gossiping, each node exchanges
information with exactly one of its neighbors at prescribed time instants. At different
times, a node may exchange information with different neighbors. In doing so, every
node is eventually informed of the state of all other nodes after what is defined as
the cyclic gossiping time. To minimize the gossiping time and the number of links
required for information exchange, the gossiping procedure is first mapped into a

graph coloring problem, in which adjacent edges are colored with different colors; for
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a graph with k distinct colors, at time ¢, t = 0,1,2,..., each pair of vertices which
are joined by an edge colored ¢ = t(mod k) exchange all of their information at that

time. Some limited results are given in [9].

2.5 Multicast Routing

There is a large potential demand for multicast transmission such as e-mail,
where a message has to be sent to more than one address; distributed database
management, where a query may be sent to several sites that may have the data to
answer it; and tele-conferencing. Deploying multicast routing algorithms in a very
large network is a complex task. In this section, we will first review several basic
multicast routing algorithms, then we will introduce some other algorithms which

describe different aspects of multicast routing.
2.5.1 Flooding

Flooding is the simplest algorithm and was described in Section 2.4. A node
in the network will receive a packet that was sent to a multicast destination. It will
first try to ascertain whether this is the first reception of this particular packet or
whether this is a duplicate. If it is a first transmission, it will transmit a copy of
the packet on all neighbors, ensuring that the packet eventually reaches all network
destinations. The key problem to any flooding implementation is indeed the test for
“first reception.” One of the methods for solving this problem is by looking in the
link state database, if the received link state update is newer than the local value,

the database is updated and the packet is forwarded, else it is ignored.
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2.5.2 Spanning Trees

A more efficient solution than flooding is the “spanning tree” technique. One
will simply build up an “overlay” network by marking source links as “part of the
tree” and other links as “unused.” The set of selected links forms a loopless graph
or a tree which spans to all nodes in the network. Once a spanning tree has been
built, the propagation of multicast packets becomes very simple. When a multicast
packet is received it is immediately forwarded to all outgoing links that are part of
the tree except the incoming link. Since the tree is loopless, we guarantee that the
packet will reach all destinations. But the basic spanning tree has two drawbacks: it
does not take into account group membership and it concentrates all the traffic into
a small subset of the network links. This results in an algorithm that is very easy to

implement, but is very inefficient.
2.5.3 Reverse-Path Forwarding (RPF)

The RPF algorithm takes advantage of a routing table to “orient” the network
and to compute an implicit spanning tree for each network source. In its simplest

form, the RPF algorithm works as follows:

1. When a multicast packet is received, note source S, and the incoming link [

(which can be thought of as an adjacent node.)
2. If I belongs to the shortest path to S, forward the packet to all links except 1.

3. If the test in step 2 is false, refuse the packet.

The advantage of this simple form is that RPF does not require any more re-
sources than the normal “unicast” routing table; if we know how to compute the

route toward S, then we can safely process multicast packets received from S.
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One obvious drawback of RPF is it only works when hop-distance is used, or
when the distances in opposite directions are equal. The problem with the simple
form of RPF is that group membership is not taken into account when building the

tree and packets are simply flooded to the whole network.
2.5.4 RPF and Prunes

The “pruning” idea is to complete the basic RPF by memorizing the group
membership and to forward a packet only if there is a group member down the tree.
This will result in minimal trees but requires very dynamic updates. When a multicast
transmission starts from source S, the first packet is propagated to all the network
nodes. This is the flooding. The leaf nodes will all receive the first multicast packet.
If there is a group member attached to the leaf node, everything is fine, but if there
is no group member the node does not want to receive further packets. It will thus
send back a “prune message” to the node that sent it this packet: don’t send further
packets from source S to group GG on this interface I.

The intermediate nodes that receive the prunes memorize them. If they have
received a prune message through all the interfaces on which they forwarded the first
packet and if there is no local recipient, they have no need for receiving from this
source further packets for that group. They will forward the prune command up the
RPF tree. Eventually, the tree will include only the branches that lead to active
recipients.

There are two obvious drawbacks in the flood and prune algorithm:

1. The first packet is flooded to the whole network.

2. The nodes must keep states per group and source.
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2.5.5 Steiner Trees

Given a connected, weighted graph G = (V, E'), where V is the vertex set and
E the edge set, also given a subset M of V, we can find more than one subgraph
S = (V',E') of G such that M C V' and there is a path in S between every pair of
nodes in M. S is defined to be a Steiner Graph. The Steiner Tree problem in a graph
is to find a Steiner Graph 7' such that the sum of edge weights in 7" is the minimum.

If we forward a packet along a Steiner Tree that connects the multicast destination
nodes and the source node, the communication cost will be the minimum. This will
eventually help reduce the packet delay and increase the throughput.

Since the Steiner Tree problem is NP-complete [8], no polynomial time algorithms
for this problem exist. Many heuristics have been developed, and Table 2.1 [8] gives

a listing of existing heuristic solutions to the Steiner Tree problem in a graph.
2.5.6 Flow Model and Optimal Routing

The shortest path algorithm is a greedy algorithm because it puts all the traffic
between a source-destination pair on the single shortest path. Optimal routing tries
to build a precise model for overall optimality and solve a nonlinear optimization
problem, i.e., the traffic is distributed among all possible paths between the pair. In
this subsection, we will first describe the model for unicasting and then introduce the

model for multicasting.

Unicasting Flow Model. Let F;; be the traffic arrival rate at link (z,7). F;; is

called the flow of link (¢, 7).



‘ Method ‘ Submethod ‘ Acronym ‘ Complexity ‘
Path heuristics shortest paths SPH O(n(e + vlogw))
repetitive SPH-N O(n*v?)
SPH-V O(nv?)
SPH-zN O(n*v?)
SPH-NN O(n*v?)
with origin SPOH O(e + vlogv)
Kruskal KBH O(nv?)
Y YH O(n*elogv)
Tree heuristics MST MSTH O(e + vlogv)
greedy GTH O((v — n)*v + n?)
distance network DNH O(e + vlogv)
repetitive RDNH | O((v — n)in?* + v%)
multiple MDNH O(ev + v*logv)
simulated annealing SAH
hill climing HCH
Vertex heuristics | average distance ADH O(v?)
fast FADH O(v?)
restricted RADH O(n*elogv)
median MH O((v — n)v?)
antimedian AMH O((v — n)v?)
upgrading UH O(v3 4 vn?)
modified upgrading MDH
Contraction CH O(v?)
Dual Accent DAH
Set Covering SCH

Table 2.1: Steiner Tree Heuristics [8]

18



19

Let the cost function for optimization be

D =% Di(F;) Dy(F;) = - _ .
( 2 ]

i,5)
where C; is the link capacity of (z,j).
Denote w(k,[) to be a source-destination pair (SD pair) from node k to node I,

let r, be the input arrival rate entering k£ and destined for [. Let P, be the set of

paths connecting k and [, and z, be the flow of a path p. Then for link (z, j)

Fi; = > Ty

p containing (z,7)
The optimization problem is defined as
minimize ZDij(Fij)
,J

subject to Z Ty, =Ty, Tp >0
pEFY

The solution is the specification of traffic flow to each path. The major problem
is that an analytical solution to the problem does not exist in most cases. Several

iterative algorithms had been developed and are covered very thoroughly in [4].

Multicasting Flow Model. Stassinoponlos and Kazartzakis give a model for the
multidestination optimal dynamic routing problem in [14] and [15]. Their algorithms
are based on the maximal flow-minimal cut theorem|[11] and solve the problem by an
iterative link-by-link optimization method. The following is the model:

Let N be the set of nodes, M C N is the set of destination nodes, and L is
the set of directed links (p,q), p,g € N. Link (p,q) has the capacity C,, > 0. If
i = (j, k) is an source-destination pair with j € N, k € M — {j}, we let z; and r;
denote the initial traffic and external arrival rate at node j destined for node k. The

set [ comprises all source-destination pairs ¢ for which z; or r; is nonzero. Each link
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(p,q) € L can serve traffic belonging only to some source-destination pairs in general.
We denote by I, to be the set of all pairs in [ for which there is an path from the
source to the destination node passing through link (p, ¢).

For each ¢ € I, define a nonnegative capacity allocation function &;(-,-) where

domain is the set of links L, i.e.,
(p,q) — &(p.q)

the capacity allocated for each source-destination pair over the whole network is given

by the family {&(,-)}ier which must satisfy

Y &ilpg) = Cpyy Y(pg) €L

i€lpq

fz’(Z%Q) =0, 1 & I

For each ¢ € I we say that the subset A; C N is a cut if A; contains the source and
N — A; contains the destination node.
We let A; be the family of all possible cuts A;. For each ¢ € [ the external arrival

rate r; can be served if and only if

> Gilp.g)— 1 > 0,VA; € A,

(p,9)€A;

Our problem is the minimization of

max < max xz( Z fi(PaQ)—ﬁ')
(

el A;EA; pra)EA;
b 2

and to maximize

. . -1 Ny — 7.
wle {5, 00 ]

P,q)EA;
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The determination of the flow on a single link requires an O(|n|®) time complexity
per iteration for a network of n nodes, based on this model and the solution given

in [15].
2.5.7 Related Algorithms for Multicast

In this subsection, we briefly introduce several earlier algorithms and then pay
more attention to the link state algorithms by Deering[6] which are relatively new
and have been experimented with on the Internet. First we will give some detailed
description of Deering’s algorithms. This will help understand the assumptions made
in our proposed algorithm presented in Chapter 3. The details are also necessary be-
cause we will simulate one of Deering’s algorithms and compare it with our algorithm
in Chapter 4.

Aguilar[1] proposed a algorithm for internet multicast routing which makes use of
the IP (Internet Protocol) header for the destination address. The maximum size of an
IP header is 60 bytes, of which 20 are used for identification and control information,
including 4 for an internet destination address. The other 40 bytes can be used for
options. These 40 bytes can be used for the internet addresses of multiple destinations.
Since each address uses 4 bytes, with 8 bytes for control information, eight destination
addresses can be included; this together with the already existing IP destination gives
us 9 possible addresses. The routing follows “shortest” paths and the algorithm places
all its destination addresses in an Internet packet. During propagation, the packet is
replicated at gateways and the address list is partitioned among the newly created
packets, according to their next Internet stop. This scheme’s advantage is that it can
be done without additional protocol information and no changes to the subnetwork

routing. It can be deployed in an internet regardless of the subnetworks transmission
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mode and regardless of whether the subnets have or do not have multicast capacity.
The drawback for this algorithm is that it limits the size of the multicast destinations
to only 9.

Belkeir and Ahamad[3] proposed two heuristic algorithms in dynamic multicast
which update the multicast tree incrementally as the membership changes and re-
duce the total bandwidth required for sending data and control messages. These two
algorithms are Restricted Broadcast Algorithm (RBA) and Nearest-Insertion Algo-
rithm (NTA).

Restricted Broadcast Algorithm (RB) is a broadcast-tree based algorithm. The
idea is to construct a multicast tree for each multicast group as the sub-tree of a
minimal cost broadcast spanning tree. This type of multicast tree can be computed
in polynomial time. The broadcast tree is constructed once and used as the basic
structure to support message delivery for all multicast groups. Furthermore, when
the membership of the group changes, the algorithm is executed by a node to update
the multicast tree incrementally.

In Nearest-Insertion Algorithm (NI), when a multicast tree needs to be extended
(when a new member joins the group), all links in the broadcast tree should be con-
sidered as potential candidates to be added to the multicast tree. The algorithm
considers all nodes and links, and chooses the ones that are on the path to a partici-
pant node in the group which is nearest to the new member.

The advantage of the RB and NI algorithm is that they have no disruption of
the multicast tree since the trees are incrementally updated without reconstruction.
The problem is the broadcast tree is fixed, not dynamic, which does not respond to
the change of traffic in the network, and the maintenance of a separate multicast tree

is still required for each source-group pair.
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Early in 1983, Bharath-Kumar and Jaffe[5] studied several heuristic algorithms
for multicast routing and evaluated their performance. These algorithms are Mini-
mum Spanning Tree (MST), Minimum Destination Cost (MINDC), Nearby Heuristic
1 (NH1), Nearby Heuristic 2 (NH2), and Nearest Neighbor Heuristic (NN).

A minimum spanning tree for the “induced graph” (also called distance graph[8]),
I(G), of the given graph G is constructed and used for multicast. The algorithm is
as follows:

Given network graph G, source node s, and destination node set D, with |D| = m,
we define I(G) to be the complete graph on m 4 1 nodes (one node s and one for
each d € D) with cost sd(t, j) associated with edge (¢, 7) where sd(¢, j) is the shortest
distance from ¢ to j in G. The algorithm executes following steps:

1) Determine sd(z, j) for every i,5 € {s} U D.

2) Construct 1(G).

3) Determine the Minimal Spanning Tree T' for I((), and route according to T

as follows:

a) For each neighbor of sin T', s sends a copy of the message. Node s includes

in each message the portion of 7' rooted at that neighbor.

b) Each node receiving such a message sends out copies if it is not a leaf of

the tree, using the same distribution algorithm as the source.

MINDC uses local information, which is defined to be the shortest path informa-
tion from the source to all destinations. This algorithm is to choose the routing that
minimizes DC, i.e., the message is sent from the source to each destination node on

its shortest path routes.
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Both NH1 and NH2 algorithms require nearby information defined as the shortest
path tables of the neighbors of the source node as well. In NH1, the source node uses
all information available to its neighbors as follows. Assume that s were to bifurcate
to neighbors ny, ny, and n3. Assume further that s routes to a set of destinations
D; through n; with D; N D; = () for i # j and U;D; = D. Then the local cost of the
routing is the sum of the costs of the three links, connecting s to ny, ny, and n3. The
estimated global cost is Z%Zl)(sum of costs from n; to each node in D;).

Algorithm NH1 routes from s to its neighbors by choosing the routing that has
the smallest total estimated cost. Once this is done, intermediate nodes choose their
next nodes in the same way. One of major problem with NH1 is that it has to consider
all 2™ partitions of D, giving an exponential time complexity.

In NH2, the algorithm investigates the possibility of using the neighbors one by
one. The destination d closest to s is chosen, and the neighbor n; which lies on the
shortest path from s is investigated. For each d' € D, if the least cost path from n
to d' is smaller than that from s to d’, d' is assigned to n;. After every d' € D is
examined, if any are left unassigned, the one that is closest is chosen next. Let n,
be the neighbor on the shortest path from s to it. We now attempt to assign the
remaining destinations to ny as above. The procedure continues until all destinations
are assigned to neighbors of s. A copy of the message to be routed is sent to these
neighbors. Then, the analogous procedure is used at each of these nodes.

In NN algorithm, each node I that has responsibility to route to a certain desti-
nation sends the message on the shortest path to the destination nearest to 7. Also,
responsibility for all other destinations are transferred to that destination.

Deering[6] implemented, among others, two algorithms based on link-state (LS)

routing: LS Truncated-Broadcast Routing and LS Multicast Routing. As mentioned



25

previously, we will give more details for these two algorithms. We first introduce a
protocol called “Host Membership Protocol” which is the basis of the multicast in [6],

then describe basic LS routing and the two algorithms introduced by Deering.

The Host Membership Protocol. This protocol provides information for routers
so that routers can learn which host groups are present on their directly-attached
subnetworks. The protocol enables every router attached to a subnetwork to learn
which host groups are present on the subnetwork, when the router starts up; to detect
when a new host group appears on the subnetwork; and to detect when a host group
disappears from the subnetwork.

The Host Membership Protocol is based on a simple query-response scheme. On
each subnetwork, one of the attached routers is elected as the interrogator. The inter-
rogator periodically multicasts a host membership query packet to the subnetwork,
the query packet is sent to the all-hosts group, whose scope is local to the subnetwork,
and to which all hosts belong.

For each group that is present on the subnetwork, one member host responds
to the query by multicasting a host membership report packet. The report packet
is addressed to the group that is being reported, and is sent with a maximum hop-
limit of one. This results in delivery to all other members of that group on the same
subnetwork, plus all attached routers. The report serves two purposes: it tells the
routers that the group is present, and it tells the other members not to report the
group. The routers conclude that a group is no longer present when no report is
received for the group after a small number of queries. This protocol comprises two
algorithms: the Host algorithm and the Router algorithm.

The host algorithm operates on abstract objects called “membership”; a mem-
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bership m has the following attributes:
m.group  host group address
m.subnet attached subnetwork identifier
m.timer  retransmission/delay timer
m.count retransmission counter
Whenever an upper-layer protocol invokes the JoinGroup operation, a new member-
ship is created. This informs the routers of the group’s presence, in case there were
no previous members present on the subnetwork—the sooner the routers learn of the
group, the sooner they are able to forward multicast packets destined to the group
onto the subnetwork, thus minimizing join latency. When an upper-layer protocol in-
vokes the LeaveGroup operation, the corresponding membership is deleted. When a
host receives a host membership query, it does not respond immediately. Instead, for
each group to which it belongs on the subnetwork and whose scope is wider than the
subnetwork, it sets its membership’s timer to a random delay value between zero and
some maximum delay 7y; a separate random delay is chosen for each group. When a
membership’s timer expires, a corresponding host membership report is transmitted.
Whenever a host membership report is received, if the host belongs to the re-
ported group, it stops its timer for that group and abstains from sending its own
report.
The router algorithm operates on two types of object. A “group presence” object
p has the following attributes:
p.group host group address
p.subnet attached subnetwork identifier
p.time-left  time left until group is assumed absent
and an “attached subnetwork” object k has the following attributes:
k.interrogator true if this router is interrogator for k

k.timer retransmission/query timer
k.count retransmission counter
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The k.interrogator Boolean is set by an interrogator election algorithm.

When a router starts up, it immediately sends N queries at intervals of 7T}, so
that it may quickly learn what groups are present without waiting for the interrogator
to issue the next periodic query. After the initial N transmissions, if the router has
been elected interrogator, it proceeds to send periodic queries at intervals of 7}, until
it fails or resigns as interrogator.

Whenever a router receives a host membership report from a particular group on
a subnetwork, it resets the time-left for that group to a value 7,,. If a group’s time-left
expires, the router concludes that the group is no longer present on the subnetwork

and deletes its record.

Link-State Routing. Under the link-state routing algorithm, every router moni-
tors the state of each of its incident links or subnetworks. The state of a subnetwork
includes whether or not the subnetwork is operational, the set of neighboring routers
reachable across the subnetwork, and in some cases, a measure of the traffic load on
the subnetwork. Whenever the state of a subnetwork changes, the routers attached
to that subnetwork broadcast the new state to every other router in the internetwork.
The broadcast may be accomplished by a special-purpose, high-priority flooding pro-
tocol that ensures that every router quickly and reliably learns the new state. All
routers know the state of all subnetworks and all routers, from which they can each
determine the complete topology of the internetwork. Each router independently
computes the shortest paths from itself to every possible destination, using Dijkstra’s

algorithm.



28

1. on change of designated router on subnetwork k:
k.interrogator = k.designated
2. on change of topology:
for each route r, r.parent = undefined
3. on receipt of multicast packet from s to g via subnetwork k:
if 4 route r such that r.destination = s
if r.parent = undefined, <compute r.parent, r.child, r.leaf >
if r.parent = k
for each subnetwork j
if r.child[7] and (( not r.leaf[;]) or (3 group presence p
such that p.group= ¢ and p.subnet= j))
send copy of packet on subnetwork j

Table 2.2: LS Truncated Broadcast

LS Truncated-Broadcast Routing. Given the complete topological knowledge
available in every LS router, any router can directly compute the shortest-path broad-
cast tree rooted at any particular source s, using Dijkstra’s algorithm. The router
can also identify from the tree computation, which of its child subnetworks are leaf
subnetworks in the broadcast tree for s.

The LS truncated-broadcast algorithm is shown in table 2.2. This algorithm
operates on “route” objects, which are the entries in the LS routing table; a route
object r has the following attributes of relevance to this algorithm:

r.destination internetwork destination address

r.parent parent subnetwork, for broadcasts from destination
r.child[k] child flags, per attached subnetwork &
r.leaf[k] leaf flags, per attached subnetwork &

The algorithm also operates on the “group presence” and “attached subnetwork”
objects described earlier except that each attached subnetwork k has one additional

attribute:

k.designated: true if this router is LS designated router for subnetwork k.
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In Table 2.2, each numbered item is called an event. There are three events in
this algorithm, as described below.

Event 1. The election of a designated router to serve as a membership interrogator
is required by the Host Membership Protocol.

Event 2. On any change of topology, the LS routing algorithm recomputes its entire
routing table.

Event 3. Delivery of multicast packets by truncated-broadcast. The source of an
incoming multicast packet is looked up in the routing table. If the route entry contains
an undefined parent value, that indicates that this is the first multicast packet from
that particular source since the last topology change; in that case, the parent, child,
and leaf fields are computed. The router then checks that the packet arrived on the
correct parent subnetwork for its source and, if so, forwards it on all child networks
that are not leaf subnetworks or that have members of the destination group, which
is the normal truncated-broadcast forwarding procedure. The determination of the
parent, child, and leaf values for a route entry entails the execution of Dijkstra’s
algorithm to compute the shortest-path broadcast tree rooted at the source.

The algorithm works by starting with a node for the root, and iteratively adding
all other nodes to the tree, nearest nodes first. When the router adds a descendent
subnetwork node to its own node, it sets the child and leaf flags for that subnetwork,
when the router adds a descendent router node to one of those child subnetwork
nodes, it clears the leaf flag for that subnetwork. When all the nodes have been

added to the tree, the child and leaf information is complete.

LS Multicasting Routing. This algorithm is an extension of the LS truncated-

broadcast algorithm. The main idea behind this algorithm is to consider the set of
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1. on change of designated router on subnetwork k:
k.interrogator = k.designated
2. on appearance of disappearance of group g on subnetwork k:
if k.designated
flood link-state update, reporting change of g on &
3. on generation or receipt of link state update, reporting change of g:
for each cache record ¢ such that c.group = g
discard ¢
4. on change of topology:
for each cache record ¢
discard ¢
5. on receipt of multicast packet from source s to group g via subnetwork k,
with remaining hop limit Al
if 4 no cache record ¢ such that c.source = s and c.group = g
create cache record ¢; c.source = s; c.group = g
<compute c.parent and c.min hops attributes>
if c.parent = k
hl=hl-1
for each subnetwork j
if hl > min-hops[y]
send copy of packet on subnetwork j

Table 2.3: LS Multicast

groups present on a subnetwork to be part of the state of that subnetwork. Whenever
the set of groups changes, as with any other state change, the designated router for
that subnetwork floods a link-state update message to all other routers, reporting the
change. All routers end up with complete and consistent knowledge of which groups
are present on which subnetworks.

The LS multicast algorithm is shown in Table 2.3. The algorithm operates on
“cache record” objects that hold the information required to forward multicast pack-

ets. A cache record c has the following attributes:

c.source source of multicast packet
c.group destination of multicast packets
c.parent parent subnetwork, for multicast from c.source

c.min-hops[k] min hops to c.group, per attached subnetwork &
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The algorithm also operates on “attached subnetwork” objects as defined for the
router part of the Host Membership Protocol, except that each attached subnetwork

k has one additional attribute:

k.designated: true if this router is LS designated router for subnetwork k

Similar to LS Truncated algorithm, this algorithm defines five events as follows.
Event 1. The election of a designated router serves as an membership interrogator,
as required by the Host Membership Protocol.

Event 2. Whenever the procedure for the Host Membership Protocol detects the
appearance of a new group on an attached subnetwork or the disappearance of a
previously present group, if the router is the LS designated router for that subnetwork,
it invokes the LS protocol procedures to flood a link-state update, reporting the
change.

Event 3. When a link-state update for a group is generated by the procedure for
event 2 or received from another router, all cache records referring to that group are
discarded.

Event 4. Similar to event 3, whenever there is a topology change, all cache records
are discarded.

Event 5. Multicast packet from source s to group ¢g. Look up the cache record for
that (source, group) pair; if there is no such record, create one and compute its parent
and min-hops attributes. Then if the cache records shows that the packet arrived via
the correct parent subnetwork, decrement the hop limit and forward a packet to each
child subnetwork which leads to a group member within the remaining hop limit. A
child subnetwork k is indicated by a finite value of min-hops[k] which is the distance

to the nearest group member via k in the delivery tree.
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Chapter 3

The Proposed Algorithm

In this chapter we propose an algorithm for datagram multicast routing which
we call Minimum Average Distance algorithm. We first give a brief description of
the main issues which we need to address. Then we give a formal description of our

algorithm and a simple example to explain the algorithm.

3.1 Main Issues in Internetwork Multicast

For clarity, we will restate here some of the concepts previously introduced. In
internetworks, multicast packets are delivered to each member of a multicast group.
A multicast group is a set of destination nodes to which a message needs to be
delivered. Each destination node is a member of the group. For each source there can
be many different destination groups. For up-layer users, they need only know the
group address, not the group member addresses. This is the “unknown-destination”
delivery feature. It is the router that takes the burden of addressing the message to
group members.

We assume that the subnetwork supports multicast (most local-area networks
have the ability to address and deliver a packet to a set of destinations.) Based on

this assumption, we omit the detail of a subnetwork and treat each router as a node.
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In this context, we use node and router interchangeably.

A multicast group may be of arbitrary size, the membership of a multicast group
may change dynamically, and the members of a group may be located anywhere in
the internetwork.

We use the datagram model (or connectionless model) for our multicasting. Each
packet doesn’t carry the multiple destination addresses, each router maintains a rout-
ing table for all nodes, and each routing table entry records the shortest path and the
first-hop node for each destination. Each router can determine the complete topology
of the internetwork and can independently compute the shortest paths from itself to
every possible destination. We also assume that routers maintain the group-member
information which ensure that every router knows the membership of a group. When
a packet arrives at a router, the router can independently decide whether there is any
member in its attached subnetwork to which the packet will be forwarded.

We assign each link a state which includes the length of the link, the membership
of a group, and whether the link has been disconnected or is reconnected. Whenever
a link state changes, we assume that there is a designated router which broadcasts the
new state to every other router in the internetwork and that all routers will quickly
and reliably update their state database corresponding to the new state.

For a dynamic multicast routing algorithm, some basic requirements should be
considered:

1) The algorithm should be computationally efficient: an algorithm is hardly
useful if it requires more than a linear time to determine to which link a packet is to
be sent. A constant time complexity is preferred.

2) The algorithm should be scalable: it should not heavily dependent on network

size, group size, etc.
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3) The algorithm should be compatible with unicast routing: it should not re-
quire excessive information compared with unicast routing, and should not change
dramatically from unicast environment.

4) The algorithm should seek a minimization of delay and traffic: these two goals
may or may not conflict with each other. A minimum cost tree may require packets
to reach some member host along a non-shortest path. But when the minimum cost
tree is utilized, the entire traffic is reduced, which may help reduce the delay.

Another important issue is that of the low-delay and low-cost routing. Low-delay
routing is to minimize the path length from the source to every destination node. It
usually requires the message to be sent to every destination along the shortest path
or its equivalent as in unicast routing. FEach link is assigned a length which can
simply be 1 or the recent traffic rate or queue length on the link. The link length
from two opposite directions can be different. Low-cost routing is to minimize the
total traffic, which is equivalent to the total length of the paths in a delivery tree.
In graph-theoretic terms, a minimum delay routing corresponds to a shortest-path
tree, while a minimum-cost routing corresponds to a Minimum Steiner Tree in a
graph. Finding a Minimum Steiner Tree is an NP-complete problem. There exist
some heuristic algorithms for computing low-cost multicast tree, as listed in Chapter
2, but they either suffer from high computational cost or are not suitable for the
datagram environment.

Our algorithm focuses on low-cost multicasting. This algorithm’s computational
complexity is only linear in the group size. In chapter 4, the simulation result shows
that the performance of this algorithm is sufficiently satisfactory.

The main idea behind this algorithm is that we use the minimum average dis-
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tance method to select the forwarding links. When a packet arrives at a node, the
algorithm computes the average distance for each neighbor of the current node, where
the average distance is the average distance from the neighbor node to all nodes in its
responsible destination set. Then we select the neighbor node which has the minimum
average distance to forward the packet. This procedure continues until all destination
members are processed. A simple example presented in Section 3.3 will demonstrate
the operation of the algorithm. Another important feature of this algorithm is that
we do not construct the delivery tree at all. It uses the routing tables of neighbor
nodes to compute the next node to which the packet will be forwarded, this saves

memory and computation time.

3.2 Algorithm Description

First, we give the definitions for the following variables which will be used in
the algorithm description.
G: The destination set, that is, a group.
G;: Node ¢’s responsible destination set.
N;: Node ¢’s open neighborhood set, i.e., all of node ¢’s neighbor nodes except
for node ¢ itself.
D;: Neighbor j’s responsible destination set.
L

: Average length from the neighbor node j to its responsible destination set.

oL

=

.» The assigned neighbor set.

S

: The shortest path distance from node 7 to node j.

7]

We also define the routing table at each node with entries as:

‘ destination ‘ shortest distance ‘ next hop ‘

where “next hop” is used in the shortest path algorithm for both unicasting and
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multicasting. Next hop tells which link to take to reach the destination on the shortest
path from the current node. We do not use next hop directly, but compute the next
hop based on our algorithm. Following is the description of the algorithm:
1. A packet p addressed to group (G is now at node ¢:

if 7 is the source node then p.radius = oo; A; = 0;

else p.radius = R, where R is a radius which is carried with p.

A; = {k}, where p is from neighbor k of node .
if p.radius = 0 then stop.

2. Compute node ¢’s responsible set
G; ={glg € G, and d;;, < p.radius, and g # i} (3.1)
3. For each 7 € N; and j ¢ A;, compute j’s destination set
D; ={glg € G;, and d;, < d;;} (3.2)
and the average length

Li = (dij+ > diy— Lj)/|1D; (3.3)
geD]
where j;]- is the sum of the overlapped next-hop link, defined as
Li= > (njx— Dl
n]k>1
where nj; is the number of members in D; that will be sent via link £ from
node j, and [;; is the length of the link.
if (all D; = 0) or (N; = A;), stop.

4. Let J be the subscript such that

Ly= min L;
JEN;,JZA;
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and

R = ?g%)](djg (3.4)

send a packet with radius R to node J.
5. Gy =G, — Dy A=A, U{J}

if G; =0, stop

else loop back to step 3.
When a packet arrives at a node : and is addressed to group (G, we give a condition
to limit the size of the destination set; that is, to decide to which members of group
GG should be sent the packet from the current node . We use a variable p.radius as
the condition. The value of p.radius is the path distance between the current node
and the remotest destination member. That is, the current node 7 only sends packets
to those members (in G;) whose shortest path distance from node ¢ to them is less
than or equal to p.radius (step 2). If node ¢ is the source node, we set p.radius = oo;
this means that at the beginning, we consider all members of the group G as the
destination set. If node 7 is not the source node, the packet must have come from
its parent node; the packet then carries a radius with it which was computed at the
parent node. A; at the source node is ). When a packet arrives at node 7 from its
parent, A; initially contains the parent node. A; will be increased by adding node
’s neighbors one by one until it contains all of the neighbors or other terminating
conditions are satisfied (step 3).

For each neighbor j € N; and j € A;, we compute j’s responsible destination
set D; by (3.2) and each j’s average length L; by (3.3). We then send the packet
together with a radius to the selected neighbor node which has the minimum average

path length. The radius is computed by (3.4); it is the path length between the
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selected neighbor node and the remotest member from G;. G; is updated by taking
out the destination set of the selected neighbor node. A; is updated by adding in the
selected neighbor node.

The algorithm will terminate at a node in three cases:
)ifall D; =0
2)if N; = A;
3)if G =10
If none of the above condition are satisfied, it will go back to step 3 to process
other neighbor nodes until one of the three conditions is satisfied.
Each node executes the same algorithm as its ancestors whenever a packet arrives.
The whole algorithm execution will finally stop when the radius for every packet

becomes zero.

3.3 Example

We use the network shown in Figure 3.1 to illustrate our algorithm. The re-
sult shows that the cost generated by our algorithm is 11; but with shortest path

algorithm, the total cost is 13.

Figure 3.1: Example Network

Assume that the source node is S, and the destination set G = {F, F, M }.



At node S

1) The packet is generated at S, p.radius = oo, Ag =

2) Gs = {E,F, M}
3) Ns = {H,C,B,M}, As=10

Dy={E} Ly=3+2=5

Do ={E,F} Lo=(3+4+2)/2=45

Dp={FM} Lg=(2+2+3)/2=35

Dy ={M, F} Ly=(440+2)/2=3

1)J=M R=2

send packet to node M with R =2

5) Gs ={E} As={M} goto step 3

3) Ns — As = {H,C, B}
Dy={E} Ly=5
Do ={E} Loc=T
D=0 Lp=o

1) J=H R=2

send packet to node H with R =2

5) Gs =0 stop

At node M:

1) G={E,F,M}, pradius =2, Ay = {5}

9) Gy = {M, F}

3) Na= {B,S, F} Ay = {S)}
D=0 Lg=oo
Dp={F} Lp=2/1=2

1) J=F R=0

Ny — Ay = {B, F}
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send packet to node F with R =10

5) Gy ={M} Am={S,F} goto step3
3) Nm— Am = {B}
Dg =10 stop

At node H:
1) G={E,F,M}, pradius =2, Ay ={S}
2) Gy ={F}
3) Ny ={E,S} Ny — Ag ={FE}

Dp={F} Lg=2
4) J=F R=0

send packet to node E with R =0

5) Gg =10 stop

40

In the end, all packets at all involved nodes have R = 0; the entire algorithm execution

is terminated.

3.4 Practical Considerations

For more efficiency, we can allow the packet to carry a limited number of mem-

ber addresses. Suppose we let the packet carry the addresses of the four remotest

members, the radius R will be smaller and the algorithm will converge faster. As we

saw in Chapter 2, the IP header usually has 40 bytes for optional use[l]; therefore,

such consideration is highly feasible.
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Chapter 4

Simulation Model and Results

4.1 Performance Measurements

The simulation study will measure two different relationships: one is delay versus
offered load, the other is utilization versus offered load. Delay is defined to be the
interval between the time a packet is generated and the time the packet arrives at
the destination. In a multicast environment, the delay is the average delay for all
destinations. If a packet is sent to a destination more than once, we only count
the delay for the first one. Offered load is defined to be the offered rate of packet
generation. Utilization is defined to be the average utilization of all links. We also
define the throughput as:

throughput = offered load
(In networks, throughput is commonly defined as offered load — rejected load[4]. In

our simulation, we always have rejected load = 0.)

4.2 Network Parameters

The parameters of interest in our algorithm are defined in Table 4.1. Note that
the ms in the table should be interpreted as a relative time unit. The initial group

population is also the average number of active groups, with the group birth and
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ty transmission rate, bits/ms

iy packet transmission time, ms

Au unicast packet generation rate, packel/ms
Am multicast packet generation rate, packet/ms

Ag birth and death rate of groups, group/ms
G initial group population

Gmax maximum size of a group

Gmin minimum size of a group

Table 4.1: Network Parameters

death rates being equal.

4.3 Data Structures Used with Simulation

4.3.1 Network

A network is a set of nodes and a set of directional links, where nodes can be
numbered from 0 to N — 1 for a network with N nodes. Connectivity information
is stored in a list of neighbors which is attached to every node. For the simulation
purpose, We only need to maintain one copy of the network topology description
(connectivity and link length), although in reality the description is duplicated at
every node.

The information stored at a node includes:
1. Routing table. For our purpose, the following entry is enough. For an N

nodes network, there should be N — 1 entries for each routing table.

‘ destination ‘ distance ‘ next hop ‘

2. Group table. This is a global group table. Each entry comprises a group
number and a bit map indicating which node is in the group. If there are k groups

existing in network, there should be k entries for the group table.

‘ group ‘ node 1 ‘ node 2 ‘ ‘
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3. Group presence table. This is a local group table. It is a hash table since
groups join and leave and insert/delete operations are expected. This table indicates

that the current node is participating in which group.

‘ group 1 ‘ group 2 ‘ group 3 ‘ ‘

4. For the proposed algorithm, a node also needs the routing tables from its neigh-
bors. For simulation, we don’t need to store duplicated tables at different nodes. We
may ignore the impact of transferring routing table information between neighbors.
(In fact, if data transfer is not desirable, a separate calculation will also be able to
generate the neighbors’ routing tables at a small cost.)

5. For the algorithm we are comparing ours with we need, as described earlier,

a set of cache records at each node.

‘ source ‘ group ‘ parent ‘ min-hops| ] ‘

where ‘min-hops’ is an array of K elements for K neighbors.

4.3.2 Packets

We define three types of packets: DATAS, DATAG, and GRPJL. All packets

have the common fields:

type the packet type

src where the packet is originated

at-node currently the packet is at which node
from-link from which link the packet comes to this node

to-link to which link the packet will be forwarded

Each type of packet has its particular fields:

1) DATAS: This type is unicast data packet with a single destination address.

dst-addr destination address
seq sequence number for this (src, dst) pair
birth-time when the packet is generated
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2) DATAG: This type is multicast data packet with a group destination address.

gid destination group address

seq sequence number for this (src, grp) pair
radius proposed algorithm only

radius-time when the radius is computed

hop-limit compared algorithm only

birth-time  when the packet is generated

3) GRPJL: This type is group Join/Leave packet.

gid group that src is joining/leaving

op JOIN/LEAVE

4.4 The Compared Algorithm

We simulate and compare the performance of our proposed algorithm with the
LS multicast routing algorithm by Deering [6]. Both algorithms require roughly the
same amount of information, but Deering’s algorithm, a low-delay algorithm, needs
to maintain a delivery tree for each active source-group pair. For simplicity, we omit
the detail of a subnetwork, and treat each router as a node, which can also serve as

a host. A simplified version of Deering’s algorithm is given in table 4.2.

4.5 The Simulation Model

We use a software called smpl, which is described in [10], as our tool for the
simulations. The smpl package is an event-oriented simulation language which is
designed for the simulation of computer and communication systems.

We use a smpl facility, which in essence is a server in the queuing model, to
represent the links between nodes. Link < z,7 > is considered different from link
< j,2 > as physically they are two channels and can have unequal length. Hence
they are defined as two facilities. The utilization of this facility will be equal to the

utilization of the links. A smpl token is used to represent a pointer to a packet.
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1. On appearance/disappearance of group ¢ on node k:
flood link-state update, reporting change of g on k
2. On generation/receipt of link-state update, reporting change of ¢
for each cache record ¢ with c.group = ¢
discard ¢
3. On receipt of multicast packet from source s to group ¢ via node k
with remaining hop-limit Al
if no cache recode ¢ such that c.source = s and c.group = ¢
create cache record ¢; ¢.source = s; c.group = ¢
<compute c.parent and c.min-hops>
if c.parent = k
hl = hl —1
for each adjacent node j
if hl > min-hops|[j]
send copy of packet to node j

Table 4.2: Tree Algorithm

We assume that the packet generation interval for both unicast and multicast
is exponentially distributed with mean 1/A, and 1/}, respectively. We also assume

that the group’s birth and death interval is exponentially distributed with mean 1/,.

Event routines. The simulation model comprises six event routines as shown in
Figure 4.1. We assume a broadcast protocol for link state report which includes group
membership change report (Join, Leave). To ensure fast delivery of such information
and not go into the details of flooding protocols, we pre-calculate a broadcast tree.
The broadcast packet will have the highest priority. When a broadcast packet arrives
at a node, the packet will be forwarded to all neighbors in the broadcast tree except
where it is from. The events are described as follows.

DATAGEN The simulation enters this event when a data packet is generated
at a node. The packet can be either a unicast data packet or a multicast data

packet. For unicast, a destination node is randomly picked up; for multicast, a
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preschedule

GRPBIRTH

==
s @ GRPDEATH

Figure 4.1: Events

destination group is randomly picked up; and for each packet being generated, a
PKTARR event is scheduled. Finally an event for the same data type is scheduled,
whose time exponentially distributed with mean 1/\, or 1/),,, respectively.
GRPJL This event means a node joins/leaves a group. The join/leave period is
exponentially distributed.

On a BIRTH event, a group size is randomly chosen between min-size and max-
size, and a set of nodes are randomly picked up as group members. A packet of type
GRPJL and operation JOIN is generated for each group member, with a random
delay, then a PKTARR event is scheduled for each packet. Another BIRTH event is
also scheduled, in time exponentially distributed with mean 1/,.

On a DEATH event, a group is randomly chosen. Then for each group member, a
packet of type GRPJL and operation LEAVE is generated, also with a random delay.
Similarly a PKTARR event is scheduled for each packet. Another DEATH event is

scheduled too, similar to a BIRTH event.
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PKTARR This event is entered when a packet arrives at a node, or when a packet
is just generated at a node. This is the major event where activities for the two
algorithms differ. Generally, if this node is a destination node, do statistics. If the
packet needs to be forwarded, calculate the link(s) the packet should be forwarded
onto and schedule a REQLINK event for each forwarding link. The three different
types of packets are treated differently as described below:

DATAS: Unicast packet. This packet is simply to be sent to the next hop which
can be looked up from the routing table.

DATAG: Multicast data packet. One of the algorithm procedures radius (for the
proposed algorithm) or tree (Deering’s algorithm) is to be called to compute the next
hops, then the replicated packets are sent to these next hop nodes.

GRPJL: Group join/leave packet. If the node is the one that originates the
packet, both the local group table and the global group table in this node are updated.
If it is not the originating node, only the global-group table is updated. The packet is
also forwarded to the neighbors in the broadcast tree. For the compared algorithm,
the receiving node of this packet will delete all cache records ¢ such that c.group
equals the involved group.

REQLINK The packet tries to reserve a link for transmission. If the link is available,
schedule a PKTARR event in time ¢, and a FREELINK event immediately. If the
link is busy, this event will be queued at the link, and later when the link is free, the
queued event will be scheduled again.

FREELINK The link previously reserved is released after the transmission is com-
pleted. The head of the queued packets along with the REQLINK event at that link

will be scheduled by the system to occur immediately.
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4.6 Simulation Results

For simplicity, we call our algorithm “Radius algorithm” and Deering’s algorithm
“Tree algorithm.” We randomly generated four networks with 40, 75, 97, and 123
nodes respectively (these sizes are sufficiently representative.) In each network, the
group population fluctuates along an average, by a birth/death procedure, and the
group size fluctuates as a random number uniformly distributed in a certain range.
In the simulation, the multicast packet generation rate \,, is set to be the same as he
unicast rate A,. These rates are changing for different passes of simulation. The rates
are assigned the values with which no severe congestion is observed and reasonable
utilizations are obtained. The following table gives other parameter ranges for the

four networks:

network | G | Gumin | Gmax | av. # hit Ag t, | link
links ratio len
40 3 2 39 2.95 91% 1/1000 | 0.1 1
75 5 2 37 2.59 91% 1/1000 | 0.1 1
97 4 2 48 3.22 92% 1/1000 | 0.1 1
123 3 2 40 3.25 | 86-95% | 1/1000 | 0.1 1

See Section 4.2 for the meaning of the variables. In the table, the value 1/1000
for A\, means that the group birth and death rate is 1/1000 of the unicast packet
generation rate.

The hit ratio is the ratio for not reconstructing the delivery tree for Tree algo-
rithm. This is not a free variable, rather it is the function of other parameters. We
choose the parameters so that the ratio is approximately slightly over 90%, which
should be a reasonable assumption. This ratio can be decreased by increasing group
appearance/disappearance or group membership change frequency, or by increasing
group size or the number of groups.

We execute both our algorithm and Deering’s algorithm with exactly the same
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network parameters.

We assume that the time for the reconstruction of the delivery tree for Tree is
(E + N)log N units[11], where N is the number of nodes, and E is the total number
of links in the network. This is equivalent to transmitting ((£ + N)log N)/L packets
from one node, where L is the packet length (in bits). We also assume that the time
for selecting the next hop for Radius algorithm is G5 x N; units for each node, where
Gs 1s the destination group size and N; is the number of links at that node. This
time is equivalent to transmitting Gy x N;/L packets.

The first 3,000 packets received at each node (on average) are discarded to en-
sure that the network reaches a steady state; then we will do the statistics for the
subsequent 10,000 packets received at each node (on average).

The simulation results are shown in Figures 4.2 to 4.11. In these figures, the
horizontal axes represent the message rate which is the offered load. The vertical
axes represent the delay (Figures 4.4, 4.6, and 4.8), utilization (Figures 4.5, 4.7,
and 4.9), and reduction percentage (Figures 4.10 and 4.11), respectively. Figures
4.12,4.13, 4.14, and 4.15 are the enlarged lower portion of Figures 4.2, 4.4, 4.6, and
4.8, respectively. Figures 4.10 and 4.11 are the average reduction percentage for delay

and utilization on the three larger networks, by using the following formula:

3 T,—R;
722:13 L % 100%

A=

where
A: average percentage delay or utilization reduction.
T; . Tree delay or utilization for the :th network.
R; : Radius delay or utilization for the :th network.

The results for the smaller, 40 node network, are based on a different range of
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message rates (100 to 800) from that used in the three larger networks (50 to 400),
because the smaller network can tolerate higher message rates for both algorithms.
Therefore, the reduction cannot be averaged with the lager network results. We give

similar calculations in the following table for the 40 node network.

Message rate 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
Delay reduction | -2.6 | 2.5 | 17.0 | 10.3 | 29.8 | 23.2 | 29.6 | 2.6
Util. reduction | 0.0 | 5.0 | 74| 56| 43| 6.0 3.4 3.0

In the table, the numbers in the last two rows are reduction percentages.

4.7 Simulation Results Analysis

The simulation results show that our algorithm has a better performance than
the compared algorithm since both the delay and the utilization are lower on the four
networks. At certain crucial message rates, the delay can be lowered by 40-50%. The
delay reduction at these rates means Radius can support higher offered load than can
Tree.

Since the results for all four networks are similar, we only give a detailed analysis
of the 75 node network (Figures 4.4, 4.5, and 4.13). For this 75 node network, when
the message rate is from 50 to 100 packets/unit time, the delay goes from 0.55 to
0.58 for Radius and from 0.57 to 0.60 for Tree. In such a low message rate range, the
main delay for both algorithms is caused by the transmission delay. Since Tree needs
to reconstruct the delivery tree occasionally, this causes the higher delay than that of
Radius. When the message rate is higher than 100 packets/unit time, the delay and
utilization for both algorithm increase, but the delay and utilization for Radius are
always lower. The reason is given as follows:

When the message rate increases, the corresponding utilization of links increases,

as seen in figure 4.5. Utilization reflects the traffic load. The increased traffic causes
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some packets to be queued for the available links. At this time, the queuing delay
becomes dominant, while the transmission delay becomes insignificant. A few calcu-
lations can also show that the delivery tree computation time will have little impact
on the total delay at higher message rates. The 75 node network has £ = 97 links,
therefore the tree computation time is (N + E)log N = 1071, which is roughly the
time to transmit one packet from a node. Suppose on average a packet travels half
the “diameter” of the network, or v/75/2 = 4.33 hops to reach its destination, with
a 90% cache hit ratio, the probability of having one tree computation on its way is
4.33 x 0.1 = 0.433. In other words, a packet will on average need 0.433 tree computa-
tions, or equivalently, in its total delay a portion of 0.433 packet transmission times is
caused by tree computations. Given that a packet transmission time is 0.1 in the time
scale shown in the delay figures, from Figure 4.4, we can see the delay at the higher
range is in the order of 100 to more than 1000 packet transmission times, compared
with which 0.433 is certainly a tiny portion. In the case when the queuing delay plays
the major role, the Radius algorithm shows more advantages, since it is a low-cost
algorithm. Reduced total cost means reduced total traffic load, while the reduction in
traffic load will decrease the waiting time for queued packets. Therefore, the total de-
lay is eventually decreased. This is why Radius has lower delay than Tree, despite the
fact that Tree always uses the shortest paths and Radius may use longer paths from
time to time. Note that for the 123 nodes network in Figure 4.8, there is a crossover.
From the figure, we can see that the curve for Radius is smoothly increasing when
the message rate increases, while the curve for Tree suddenly slows down when the
message rate increases from 300 to 350, and goes up again for the message rate 400.
This might be caused by some special combination of network topology and message

distribution, since both the network and the messages are randomly generated.
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Chapter 5

Conclusions and Future Work

We conclude this thesis with a discussion of the relative advantages of our
algorithm and some possible future work.

Performance. The simulation results show that our algorithm has a better
performance. Both the delay and utilization are lower than that for the compared
algorithm. When the message rate is very low and the groups are static, the compared
algorithm might offer a slightly lower delay. But in that case, the delay is very low
for both algorithms.

Functionality. This algorithm supports transmission from any node to any
group, where the member of the group may be distributed across any number of
groups, and may join and leave an group independently at any time.

Scalability. This algorithm is insensitive to the network topology, group size,
and the number of groups. Whenever topology changes or a group birth or a group
death occurs, or group membership changes, this algorithm executes exactly the same
way.

Compatibility. Our algorithm is compatible with unicast environment. It does
not require excessive information compared with that used in unicast environment.

The routing tables of the neighboring nodes are usually available for many unicast
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algorithms such as the distributed Bellman-Ford algorithm mentioned in Chapter 2.

Reliability. This algorithm has the same probability of loss, or damage of
packets as the unicast routing. Whenever the routing table changes, the radius R is
set to be oo; this guarantees that no loss is caused by the routing table change.

Simplicity. This algorithm is conceptually simple and easy to implement;
computation time complexity is only linear in group size, therefore it is very efficient.
In addition, no delivery tree is to be maintained, so that no cost is incurred by
maintaining such a tree. It handles the transient groups as efficiently as the permanent
groups and will not cause CPU or memory congestions for the routers when there are
a large number of source-group pairs.

One problem our algorithm faces is that there might be certain conditions under
which a group member receives a message with prolonged delay. Because non-shortest
paths are taken, when a node receives a message through a much longer path than the
shortest path, this will be undesirable for time constraint applications. All low-cost
algorithms have the same problem, and there may be times at which some control
must be exercized to prevent it from happening.

This algorithm has been designed under the “link state” environment, that is,
every node knows the network topology and the global group information. Another
situation is that a node only knows the state of its neighbors, which is where the
distributed Bellman-Ford algorithm finds its application. It will be useful to develop

a low-cost routing algorithm for such environments.
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