University of Nevada
Reno

Image Maker

A professional paper submitted in partial fulfillment of the
requirements for the degree of Master of Science
with a major in Computer Science.

by

GuoLiang Sun

Dr. Frederick C. Harris, Jr., advisor

May 1998



Abstract

Image Maker is a program which runs on the Be[9] Operating system (BeOS).
It allows the user to create a new image based upon available images. Users can load
many kind of image files, select the interesting areas (small images), move them to
where they want them, and then save them. When the user wants the new image,
Image Maker renders all small images into a combined image and displays it. A
Binary Tree and a parallel algorithm are used in Image Maker’s design. Image
Maker can be used to create a Web page or serve as the basis for animation game.
It can be treated as an independent software package or plugged into other software

as a new feature.



il
Acknowledgments

As my formal education at the University of Nevada comes to a close, it is only
appropriate that I thank those who have helped me make it to this point in my life.

My wife and my son for their encouragement and support of my success. Mr.
William E. Bull, for his cooperation and helpfulness, as well as his BeBOX. Dr. Ed
Wishart and Dr. Bruce Johnson, who served as committee members and spent time
reviewing and critiquing this project as well as providing support and encouragement,
along the way. And finally, Dr. Frederick C. Harris, Jr., my advisor, for his sup-
port and encouragement for the completion of this project as well as the guidance

throughout my graduate program.



Contents

Abstract
Acknowledgments
List of Figures
List of Tables

1 Introduction

2 Implementation

2.1 Loading Image Files . . . . . . . ... . .. .
2.2 Creatinga New Tile . . . . ... ... . . L.
2.3 Binary Search Tree (BST) . . . .. ... ... ... ... ... ...
2.4 Rendering the BST . . . . . . .. ... o o oo
2.5 Editing the BST . . . . .. .. .. oo
2.6 Parallel Algorithm . . . .. ... ... Lo

2.6.1 Parallel Rendering Algorithm in BST . . . . . . ... ... ..

2.6.2 Multi-threaded Render . . . . . . ... .. ... ... ...

3 Functionality
3.1 Overview . . . . . ..o
3.2 Options . . . . . .

4 Conclusion and Future Work
4.1 Conclusions . . . . . . . .
4.2 Future Work . . . . . . . ..

Bibliography

iii

ii

iv



v

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Combined image using Microsoft Word. . . . . . . ... ... .. ... 2
A PhotoShop screen. . . . . . . . ... ... o 3
Drag and copy a selection . . . . .. ... ... L. 4
Image Maker Model. . . . . .. .. ..o oL 7
Tileh. . . o o o 9
Image Treeh . . . . . oo oL 12
TileNode.h . . . . . . .. o 12
Algorithm for selecting tile’'sdata. . . . . . .. .. ... ... ... 14
The bounds of a new bitmap object. . . . . . .. .. ... ... ... 15
Algorithm for rendering a BST. . . . . .. .. ... ... ....... 20
Open filepanel. . . . . . . .. .. oo 22
Images are loaded by Image Maker. . . . . .. .. ... ... ... .. 23
A new tileisselected. . . . . . . ... oL 24
Anew tileismoved. . . . . ..o Lo 25
All tilesina BST.. . . . . . . . . o o 25
A new combined image. . . . .. ..o 26
A new combined image modified. . . .. .. ..o 27
An image of asubtree. . . . . ... Lo 28



List of Tables

3.1 Image files used in testing



Chapter 1

Introduction

Combining images into a complex image is very popular and useful. Reusing
available images to make a new image should be easy, efficient, and fast. There are
lots such images in Web sites and advertisements. Many software packages let you
create a new image based upon available images. For example, consider Microsoft
Word[3]. You can use it as a text editor, a graphic editor, and an image editor.
Figure 1.1 shows an image created by someone using Microsoft Word. It consists
of three images: rabbit, turtle, and donkey. The three images have an order or a
layering. The order or the layer identifies their overlapping behavior. The layer is
very important in combined image processing. The upper layer images can shadow
the lower layer images when they are overlapping.

Microsoft Word allows user to insert images anywhere, to change the sizes of
images, and to keep the order as they are inserted. When user inserts an image, the
whole image is composed, as a single atomic whether the user likes the whole image
or not. The user cannot select only interesting areas from an image.

PhotoShop[10] is a full image processing software package which allows the user

to select any area in an image. Figure 1.2 shows a PhotoShop screen. In the image



Figure 1.1: Combined image using Microsoft Word.

window, we can see the image, which consists of a background image, an image of
a girl, and an image of a few women. Each image has a layer, which indicates its
layering location among these images.

PhotoShop runs on an Intel 80386 or higher processor; a hard drive with at least
20 megabytes of available space after loading PhotoShop’s 20 megabytes of program
data; and at least 16 megabytes of RAM allocated to an application. Figure 1.3 shows
another capability of PhotoShop where an area of an image which is selected and a
copy of that selection was moved to another place in the image.

We implemented a project we called Image Maker. Our goal was to render
many small images into an image efficiently. Image Maker was developed on the
BeOS (Be Operating System). The BeOS is a multitasking, heavily multi-threaded
system. The structure of the BeOS is optimized for dealing with real-time, high-
bandwidth data types. Image Maker has a graphic user interface (GUI)[5], allows
users to load different format image files, select unlimited number small images from

these images, and render all small images into a new image.



i
&
5
3¢
A=
=
1
&
| "=
L]
e
i
=
[ E
=
E 3
i =
.n
”.ﬁ

e R
R e
e

:

R

i

BT R e R
e

o
s
e

e

.
i

L
38

e

e

.

SR

AR o

e

i

e

W.W

A PhotoShop screen.

Figure 1.2



..<. xv.., i e Lo | i ,\mws.t.q:.,www.s
ik mN i : ! : : i || - «Mm,mwwmmmwwwm“mwo?

e bowEe

.xw?s?hwz%%wm e

=

101N

Drag and copy a selecti

Figure 1.3



Chapter 2 discusses the method used in Image Maker. Image Maker consists
of loading various format image files, selecting small images (tiles) from these images,
storing these tiles in a Binary Search Tree (BST), rendering the BST into a new im-
age, and editing the new image. The parallel algorithm used in the rendering portion
of Image Maker is also explained in this chapter. Chapter 3 presents the function-
ality overview and menu options, and Conclusion and Future Works are presented in

Chapter 4.



Chapter 2

Implementation

In this chapter, we explain the overall method of Image Maker. From loading
image files to rendering the new image, an object-oriented design methodology was
used throughout the whole design process of Image Maker. Figure 2.1 presents
the model we used for Image Maker. First a window object receives all events.
The window object then passes these events one a time to Bitmapview object. A
simple message passing algorithm was used to implement the communication between
Window object and Bitmapview object. Finally all events are handled in Bitmapview

object.

2.1 Loading Image Files

There are many kind image files such as TIFF, GIFF, PEG, etc., and each kind
of image file has a different format. Some formats have identifiers that are in the
headers of image files, and some have the identifiers in the tail of image files, and
some are in both the headers and the tails. In order to load a variety of image files,
we must solve the various format problems.

The BeOS (Be Operating System) version 1.6.1 or later version provides the

Be datatype library (libdatatypes.so) which deals with various data types. Using



APPLICATION

Application
-
Window
R
|
[ 1 1
Moru File_Fanel BITHMAP-VIEW
b
MennItem s
BITMAP VIEW
BView
r’.\
Bitmapview : . File Cache
l() List_of files
Imags Troe
Lacl:
File_MNode
s
| |
THe Pmdored Node 2 A part of relationshin
Buounds — _ o
L efttop & Inkerense association
source i ape : . 1 to many relationship
I Bitmap O 0to 1relaticnship

Figure 2.1: Image Maker Model.



libdatatypes.so the programmer can convert various image files such as “TIFF”,
“GIFF”, “JPEG”, “PEG”, and a few others, into bitmap[7] objects. There are two
APIs in this library: the program API and the Translator API. The program API is
used by normal applications, and contains functions for identifying data and trans-
lating into another type that has been registered. The translator API is used by the
writer of the data types, and allows the user to write the add-on “handlers” that the
library dynamically loads to handle various data types.

In Image maker, all image files are converted into bitmap objects when they
are loaded. The format of a bitmap file consists of a header followed by bitmap data.

The header is big_endian and consists of the following data fields:

uint32 magic; DATA BITMAP

Rect bounds; The bounds of the bitmap

uint32 rowbytes; The number of bytes (not pixels) stored per row in the image

data.

e color_space colors; either B.COLOR_8 BIT or B_LRGB_32_BIT.

The data follows in the format specified by the colors member. Typically, the
data is unsigned bytes for B.COLOR_8 BIT or RGBA Interleaved unsigned bytes
which uses 32 bits per pixel for B_RGB_32_BIT. The data is then stored row by row,
from the top to the bottom of the image.

After converting an image into the bitmap format, a bitmap object is created to
represent the data, and we can access the bitmap data through this bitmap object.
We also have the capability of creating a bitmap object without initializing its data.

The bitmap data can also be modified anytime after it is created.



2.2 Creating a New Tile

A tile is small image with rectangular bounds. It contains a bitmap object,
which represents the small image, and some other information associated with it.
Figure 2.2 shows all data information associated with a tile. In Figure 2.2, filename
and source_image indicate the source data of a tile; bounds which is a rectangular
shape gives the location and the area of a tile in the source_image, and lefttop
gives the location of the upper left corner of a tile in the new image.

class Tile{

public:

Tile (char *filename, Rect * rect);
Tile (char *filename);
“Tile();
char filename[20];
Point x*lefttop;
Rect *bounds;

Bitmap *image;
Bitmap *source_image;

Figure 2.2: Tile.h.

When an image file is loaded, a tile is created only with the image filename, and
the function get_tile(Tile *&tile) (see Figure 2.3) is called. This function checks
the tile’s source_image first. If the source_image is not found, a function using the
filename reads the image file and then converts it into a bitmap object. If the tile’s
bounds are not given, the source_image is returned. Otherwise the tile’s bitmap
object is returned. This function is used to load an image file first and then get the

tile data from that image when the tile’s bounds are given.



10

After the source_image is displayed on the window, the user can drag any area
within the window to define a tile. A rectangle displayed on the window traces the
new tile’s bounds when the user drags across the window using the mouse. After
the mouse is released, the new tile’s bounds are selected. If user does not like it,
user can drag again and again until the desired tile is selected. The user can also
move the selected tile to where they want. This movement changes the lefttop
point of the tile. The user can then store the tile which will add it to the image
tree. If user does not wish to save the current tile, the next dragging will cancel it.
To save a tile, a new node (Figure 2.4) is created using the tile and is added into
the BST by calling insert(Tile_Node *new node) (see Figure 2.3 Image Tree.h).
It is important to note that the tile’s bitmap object still is empty until the BST is

rendered (see Section 2.3).

2.3 Binary Search Tree (BST)

A Binary Search Tree (BST) is a special kind of tree. Each node in BST has
a data item, and for a given node, the data items of the left subtree of that node
are less than the data item in that node; and the data items in the right subtree of
the node are greater than the data item in that node. Using a BST, we can achieve
efficiency in both searching, adding, or deleting nodes|6].

Why did we choose a BST for use in Image Maker? We had many choices:
arrays, lists, trees etc. When we set out to design Image Maker, we had a few

things in mind for the data structure chosen:

e It had to store tile information.

e It had to keep the order in which the tiles were added to it.



11
e It had to be easy to add or delete a tile.
e [t made searching for data fast.

e It was suitable for multi-threaded rendering.

We found that the BST was the best data structure to solve these problems.
Another good feature of the BST is its ability to allow parallel rendering of a new
image. Figure 2.3 shows the interface of our BST used in Image Maker. In this
Figure, root is the root of BST; lock is a semaphore [8], is used for multi-threaded
synchronization during the rendering of the BST; and Rendered indicates whether of
the BST has been rendered.

In Figure 2.3, Tile_Node is the important data type which defines a node of our
BST. The interface of a node is shown in Figure 2.4. Each node in the BST has a tile,
an integer value, a Rendered Tile object, and three Tile Node pointers referencing
the parent node, the left child node, and the right child node respectively. The integer
z_value is the search key in BST, and represents the layer in a new image when a
new node is created. The new node’s z_value is greater than the previous node’s
z_value, and each node has a unique z_value. Rendered_Tile is an object which
contains a bitmap object. The bitmap object holds the rendered image below this

node. More detail of Rendered_Tile object will be covered in Section 2.4.

2.4 Rendering the BST

Rendering the BST means combining all the tiles created so far into one image.

There are three phases in this process.

e Getting the tile’s data from its source image. A tile is a new bitmap object. It

has bounds and location in its source image. Figure 2.5 shows the algorithm of



12

class Image_Tree{
public:
Image_Tree();
~Image_Tree();

void blend(Tile_Node *ndl, Tile_Node *nd2, int order);
int retrieve(int key, Tile_Node &search_Tile);

int remove(int key, Tile_Node *node);

bool swap(Tile_Node *go_down, Tile_Node *go_up);

void insert(Tile_Node *node);

void reset (Tile_Node *node);

Tile_Node *select_tile(Point *point);

Bitmap *show_Image(Tile_Node *node);

bool render (Tile_Node *node) ;

Bitmap xget_tile( Tile *tile);

bool Rendered;

private:
Tile_Node *root;
Tile_Node *sel_tile;
sem_id lock;

Figure 2.3: Image_Tree.h

class Tile_Node {
public:
Tile_Node( Tile *newtile, int value);
“Tile_Node( );

Tile *tile;

int z_value;

bool Available_job;
Rendered_Tile *render_tile;
Tile_Node *parent ;
Tile_Node *1ift_child;
Tile_Node xright_child;

Figure 2.4: Tile_ZNode.h



13

how to select a tile’s bitmap data from the source image into the tile’s bitmap

data.

e Combining the two tiles into one combined bitmap image. When a tile is saved,
a new node, which contains that tile, is created and is added into the BST. A
node has a z_value which indicates the layer of a tile in the BST. To combine
two tile nodes, we first determinate which node holds the combined bitmap
object based on z_values in them. Then a new bitmap object is created in it.
The bounds of the new bitmap object cover two tile’s bounds; no bigger, no
smaller. Figure 2.6 shows the size relationship between the bounds of the new

object and the bounds of two tiles.

Just like the first item in this list, we copy the data in the small z_value node
into the new bitmap object’s data, and then the tile’s data in the big z_value
node. If two tile bounds overlap, the upper tile shadows the lower one. The

area which is not covered by the tiles is set to be transparent.

e Combining a tile with a combining image object, or two combined image objects.
A tile or a combined image object contains a bitmap object, which we use when
rendering the new image. Rending two such bitmap objects is like rendering
two tile bitmap objects. The rendering algorithm is the same as the algorithm

used in the previous item.

In summary, each node gets the tile image data from the tile’s source image first,
and then combines two nodes each time from the leaf up to the root of a BST until

the root node is rendered.



Procedure get_tile

Input : A Tile object: tile
Output : The tile’s bitmap object if its bounds were given
Otherwise the bitmap object of the tile’s source image

0 begin

1 if tile->source_image == NULL

2 AppMakeMap( ..., tile->source_image, ...) // load image
3 if tile->image == NULL

4 if tile->bounds == NULL

5 return tile->source_image

6 else

7 tile->image = Bitmap( tile->bounds, B_RGB_32_BIT)

8 Height = tile->bounds->heigh()

9 widthl = tile->image->BytesPerRow()

10 width tile->source_image->BytePerRow()
11 datal = (unsigned char* )tile->image->Bits()

12 data = (unsigned char* )tile->source_image->Bits()

13 for j = 0; j < Height; j++

14 for i = 0; i < widthl; i++

15 datal[(j*widthl) + i] = datal[(j +
tile->lefttop->y)*width +
tile->lefttop—>x*4 + i]

16 return tile->image

17 else

18 return tile->image

19 end

Figure 2.5: Algorithm for selecting tile’s data.

14



15

Figure 2.6: The bounds of a new bitmap object.

Once the BST is rendered, subsequent rendering of the tree does not have to
render the whole BST. Since some subtrees are not changed and are rendered already,
only the changed parts of the BST need to be rendered again. That is why we call

the BST an image cache tree.

2.5 Editing the BST

Image Maker renders all the tiles in a BST into a combined image. If user
wants to modify the new image, Image Maker provides the menu to edit the new
image. The user can select a tile, change its location, or the user can delete it.

To modify a BST, the first thing is select a tile which the user wants to change. In
Figure 2.3 , select_tile(Point *p) is used to search the nodes in the BST and find
the tile which contains the point p. If such a tile is found, the node which contains
that tile is returned. The parameter, p, of the select_tile function, is the mouse
clicking point. The user can click anywhere on the window. If clicked on a tile, the

tile is displayed. If two or more tiles contain the same point, only the top tile node



16

is selected.

After a tile is selected, the user can change its location by using the mouse and
clicking on it and dragging it to a new location or the user can delete it. All changes
are written back into the BST.

Inserting or deleting a node changes the structure of the BST. Moving a selected
node only modifies the tile’s location, but all of these changes affect the new image.
Each time the BST is modified, all the nodes on the path from the current modified
node (include adding a new node) to the root are reset. This means that all the
combined images in those nodes are removed. When re-rendering the BST, these are

the only nodes that are rendering again.

2.6 Parallel Algorithm

Rendering a BST maps quite naturally to a parallel algorithm. Because the BeOS
supports multi-threaded algorithm, we made our BST renderer multi-threaded. There
are two problems which a parallel rendering algorithm must solve. The first is how to
partition the rendering job and the second is how to communicate among threads[4],

and these are discussed next.
2.6.1 Parallel Rendering Algorithm in BST

Rending a BST means combining all the tiles in each node into a new bitmap
image. For a given node it may or may not have rendering job available now. There

are three cases we must consider when dealing with nodes during rendering, they are:

e Fisrt, if a node is rendered, the node is called a rendered node. In this case,
a rendering thread does not go on further down the tree because there is no

rendering job below this node[1].



17

e The second case involves the rendered image in the node’s left or right child
node. But it may not be available now, in this case, the rendering thread skips
the node and goes further to check the node’s children. This node is called a

waiting node.

e The third case involves a node which has a rendering job, but it has been taken
by another thread. The current thread skips this node also. This type of node

is also called a rendering node.

How does the rendering thread know whether a node has a job or not? Two vari-
ables are used to represent a node’s rendering status. A variable called Render_status

in Rendered_Tile.h has four values:

0 stands for the tile in a node that has not been combined with the combining

image in either of the node’s children.

1 indicates the tile in a node has been combined with the combined image in

the node’s left child node.

2 is similar to 1, except this node has been combined with the combined image

in the node’s right child node.

3 means that the node is rendered. There are not rendering job available below

this node.

In cases 0, 1, and 2 the node can be waiting node or rendering node. But in case
3, the node is a rendered node. If a node is a leaf node, Render_status is assigned to
3 after the tile is selected from its source image and the combined image in the node

is assigned with the tile’s bitmap image.



18

Another variable, Available_job, is declared in Tile Node.h with a boolean
data type. This variable indicates whether a rendering job is available or not in a
node, and is initialized to true. That means the rendering job available in that node.
If the Available_job is false, the thread skips this node.

A variable called Rendered in Image_Tree.h indicates whether the whole BST
is rendered or not. If the tree is completely rendered, the rendering threads are ter-
minated. The problem of what to do when several rendering threads find a rendering

job at a node at same time is covered in the next sub_section.

2.6.2 Multi-threaded Render

When the command to render the new image is issued, the main thread|[2] spawns
a drawing thread first, and then the rendering threads. The user can control the num-
ber of rendering threads via a GUI menu. After a rendering thread is spawned, it im-
mediately checks the BST to find a rendering job by calling render (Tile_Node *Ptr)
in Image Tree.h (see Figure 2.3). Figure 2.7 gives the algorithm for this function.

When rendering with more than one thread there are some synchronization issues
that must be resolved. To solve the synchronization problem a semaphore named
lock, is used in Image Tree.h. When the current rendering thread finds a ren-
dering job in a node, it acquires lock first. After getting lock, the thread checks
Available_job again. If it is still true, the node is marked. The thread then re-
leases lock and then renders the node. If the Available_job has been changed into
false, the thread releases lock and goes further on the tree to check another node.
When finding a rendering job, the thread must first acquire the lock and then check

Available_job again. In that way, the synchronization problem is solved.



19

The sequence of searching for rendering jobs for a thread is the same as traveling
the BST in a pre-order traversed. The combining of tiles starts from the leaf nodes
and moves up to the root. After the root node is rendered, rendering of the BST is
done, and Rendered is set to true. The combined bitmap image in the root node
is the new rendered image, all rendering threads exit, and the draw thread is woken
up to draw the new rendered image. Figure 2.7 shows the renderer thread algorithm.
The Ptr is the root of the BST or the root of a subtree in the BST that the user want

to render.



20

Step 1. Getting the tile bitmap data:
if Ptr->tile is NULL
Ptr->tile->image = get_tile(Ptr->tile)

Step 2. Initializing the combined bitmap image in the node:
if Ptr->render_tile is NULL
Render_status = 0, 1, 2, or 3 // based on its children nodes
Ptr->render_tile = Rendered_Tile(Render_status,...,Ptr->tile->image)

Step 3. Combining with the combined images in its children nodes:
switch Ptr->render_tile->Render_status
case 0
if Ptr->left_child is rendered
blend Ptr with Ptr->left_child
Ptr->render_tile->Render_status = 1
return false
if Ptr->right_child is rendered
blend Ptr with Ptr->right_child
Ptr->render_tile->Render_status = 2
return false
break
case 1
if Ptr->right_child is rendered
blend Ptr with Ptr->right_child
Ptr->render_tile->Render_status = 3
return false
break
case 2
if Ptr->left_child is rendered
blend Ptr with Ptr->left_child
Ptr->render_tile->Render_status = 3
return false
break
case 3
return false

Step 4. Rendering its sub-tree
if Ptr->left_child is not NULL and is not rendered
Ptr = Ptr->left_child
Goto Step 1
if Ptr->right_child is not NULL and is not rendered
Ptr = Ptr->right_child
Goto Step 1

Figure 2.7: Algorithm for rendering a BST.



21

Chapter 3

Functionality

3.1 Overview

In this Chapter we use several figures, of different format types, to demonstrate
the functionality of Image Maker. Image Maker was written in C++ and consists
of approximately 3800 lines of code and was implemented on a BeBOX. The BeBOX
is a machine consisting of dual 133 Megahertz 603e Motorola PowerPC Processors,
with 32 Megabytes of RAM. Image Maker was implemented under version 1.6.1
BeOS. This OS supports different image file formats, and the formats we used to

show the functionality of Image Maker are listed in Table 3.1.

Filename N1.tif  N2.jpg N3.png N4.gif Nb5.bmp
File type TIFF JPEG PEG GIFF  BITMAP
Image size | 630x457 640x420 630x461 780x480 630x457
Data size 864k 923k 617k 311k 864k

Table 3.1: Image files used in testing.



22

3.2 Options

e Loading image files.

The user can load an image file in the current directory via Image Maker’s
GUI In the Image Maker Window, the user chooses Open option from the
File menu.This is notated File->0Open. Figure 3.1 shows the file panel which
lists all the files in current directory pull down menu to load an image. The
open folder allows the user to select files from different folders. Once you double
click on an image file’s name, the image is displayed in the window. Figure 3.2
shows two different format images loaded by Image Maker, and the fact that

they are treated identically once they are loaded.

File Online image Create Select Show Options Exit

[ ize | Wlodified

TF 0jectar - Thursday, March 27 1297,
& dne Tue, Now 25 1905, 08:11:5
<GP dHF Monday, February 24 1007
< Monday, February 24 1007
P Dpng Monday, February 24 1007
453 ApphakeBitriap.cop Thu, Now 30 1995, 113152

39 ikems =]

Figure 3.1: Open file panel.

e Selecting a tile, move it around the window, and save it.

When an image file is loaded, the user can choose Create->New to select a new

tile, and then drag a rectangular area using the mouse to select an interesting



1 mae Maker O ———

File Owfle_image Create Select Show  Optioms  Exit

L mane ke ——

File Seleet  Show  Options  Exit

Online_image Create

=l - ; : =¥,

Figure 3.2: Images are loaded by Image Maker.

23



24

portion of the image. A rectangle is displayed that indicates the area which
was selected. The user can drag any area in the window and can do this many
times, but only the last area dragged is kept in the buffer. Figure 3.3 shows
a tile that has been selected. After selecting a new tile the user can change
its location. Choose the Create->Move menu option and then drag the tile to
anywhere on the window. The new tile’s location is changed when user moves
it. Figure 3.4 shows the new tile which has been moved. To save the new tile,
choose the Create->Save menu option. After the current tile is saved the user

can select a new tile based upon the current image in the window.

Figure 3.3: A new tile is selected.

e Displaying all the tiles which are saved in the BST.

When a new tile is saved, a tile node is created and inserted into the BST. The
user can choose the Show->A11_tiles menu option and Image Maker will
display each tile in the BST in the location where the tile was saved. Figure 3.5

shows the window which displays all tiles in a BST.



L tmage Maker | |

File Online_image (reate Select Show Options  Exit

Figure 3.4: A new tile is moved.

|| Image Maker |

File Online_image Create Select Show  Options  Exit

Figure 3.5: All tiles in a BST.



26

e Rendering the image.

Rendering all the tiles in a BST into a new image is the main purpose of Image
Maker. This new image is different from the images in Figure 3.5. Because
all the tiles are combined into a new image and are not displayed separately.
When the user select the Show->Render->Image menu option, Image Maker
renders the tiles in the BST, and then displays the new combined image on the

window. Figure 3.6 shows the new image created by Image maker.

e

File Online_image Create Select Show Options Exit

A

==

Figure 3.6: A new combined image.

e Modifying the new image.

If the user is not satisfied with the new image, Image Maker allows the user
to modify it. The image consists of the tiles in the BST, and editing the BST
changes the image. The user can select any tile in the BST, and after a tile is
selected the user can change its location or delete it. Figure 3.7 shows an image

which is modified from the image in Figure 3.6.



27

Pila Onlins_imaags Creats Salaet  Show  Optlone  Buit

Figure 3.7: A new combined image modified.
e Render a subtree of a BST.

The default rendering of Image Maker is to render the whole BST. To render
a subtree of a BST, the user must select a tile node. This node then becomes
the root node of a subtree, and then the user can click Show->Render->Subtree
menu option to render that subtree. Figure 3.8 displays a subtree of the image

in Figure 3.7



Pile Online_image Create Select

]| L=

Show Options  Exit

&
ki

LLL

Figure 3.8:

An image of a subtree.

28



29

Chapter 4

Conclusion and Future Work

4.1 Conclusions

We have developed and presented Image Maker which is an application that
runs under the BeOS version is 1.6.1 or later. The BeOS for PC has just been released,
and Image Maker also runs on it with no modifications. Image Maker allows the
user to use available images, to create a new image, which consists of many tiles or
small images selected from these original images. Image Maker is easy to use, and
fast, and its GUI makes all the operations very clear and simple. Image Maker uses
a single thread to render all tiles into a new image, but the user can also use multiple
threads to render the image in parallel. We leave the number of threads as an option
under the Options menu. A BST is used in Image Maker since it is very efficient
for adding, searching, and deleting tiles. The user can render the whole BST or a
subtree of the BST. Besides being efficient, the BST was selected because it naturally
suits a parallel rendering algorithm. The operations of Image Make do not have a

fixed order, and all the input is done by using the mouse.



4.2

30

Future Work

There are several things that we are still considering for future work. They are:

Allowing the user to select any shaped area from an image instead of a rectangle.

This would make the selection much more flexible.

Allowing the size of a tile to be changed (such as enlarging or shrinking). This

would be useful in the creation of much more specialized image.

Using different blending algorithms when combining two bitmap objects. For

example, mixing two bitmap objects gets an average pixel value bitmap object.

Adding some image processing into Image Maker such as smoothing and

sharpening .

Modifying Image Maker to use it as a plug in a Game Maker or Anima-
tion Maker. This would be very beneficial for network tile-based games where
only a portion of the image changes each move. Currently the whole image is

transmitted over the network.
Porting Image Maker to other operating systems.

There is only one semaphore in Image Tree.h for managing multi-threaded
rendering. This has the potential to make multi-threaded rendering slow. We
can put a semaphore in each node of a BST to speed this up, but OS’s usually

have limits as to the number of locks/semaphores available.

Currently we keep the source images in a memory cache. If too many different

image files are opened, that may use up the memory. We can delete the source



31

image after we use it. This will cost a lot of time to load that image again when

we reference it again.



32

Bibliography

[1] Robert Allen and Luigi Cinque. “A parallel algorithm for graphic matching
and its maspar implementation.” IEEFE Transaction on Parallel and Distributed
system, 8(5):490-501, 1997.

[2] Aaron Cohen. Win82 Multithreaded Programming. O'Reilly & Associates, 1998.

[3] Michael Halvorson and Michael Young. Running Microsoft Office97. Microsoft
Press, 1997.

[4] Vipin Kumar and Ananth Grama. Introduction to Parallel Computing Design
and Analysis of Algorithm. The Benjamin/Cummings Publishing Company, 390
Bridge Parkway Redwood City, California 94065, 1993.

[6] Kevin Mullet. Designing Visual Interfaces : Communication Oriented Tech-
neques. Prentice Hall, A Simon & Schuster Company Upper Saddle River, NJ
07458, 1995.

[6] George J. Pothering. Introduction to Data Structures and Algorithm Analysis
with C++. West Publishing Company, 610 Opperman Drive P.O. Box 64526 St.
Paul, MN55164-0526, 1995.

[7] Roger T. Stevens. Quick Reference to Computer Graphics Terms. Academic
Press Professional, 955 Massachusetts Avenue, Cambridge, MA 02139, 1993.

[8] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, A Simon &
Schuster Company Upper Saddle River, NJ 07458, 1992.

[9] The Be Development Team. Be Developer’s Guide. O’Reilly & Associates, 1997.

[10] Elaine Weinmann. Photoshop 4. Peachpit Press, 2414 Sixth Street Berkeley, CA
94710, 1997.



