University of Nevada
Reno

Parallel Computation and Graphical Visualization
of the Minimum Crossing Number of a Graph

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science
with a major in Computer Science.

by

Umid Tadjiev

Dr. Frederick C. Harris, Jr., Thesis advisor

August 1998

The thesis of Umid Tadjiev is approved:

Thesis Advisor

Department Chair

Dean, Graduate School

University of Nevada

Reno

August 1998

Dedication

To my grandfather, Khasan Rasulev.

i

il
Acknowledgements

I would like to express deepest and sincerest gratitude to my advisor, Professor
Harris, for all his help, guidance and encouragement throughout my academic career
at University of Nevada, Reno in general and Master’s program in particular.

I also wish to thank Professor Louis and Professor Pinsky for being on my com-
mittee and their valuable time.

A very special thank goes to my mother and brother, for their continuing support
of my endeavors in the New World.

I would like to thank my high school Mathematics teacher, Felix Spektor, for
showing that learning science can be fun.

I would also like to say thank you, to Marat Zhaksilikov, for his help on graph

drawing part of the project.

iv
Abstract

Finding the minimum crossing number of a graph is an interesting and challenging
problem in graph theory and applied mathematics. Real world applications of this
problem, such as circuit layout and network design, are becoming more and more
important.

This thesis presents a parallel algorithm for finding the minimum crossing number
of a graph, based on the first sequential algorithm presented in [20]. This parallel
algorithm was tested on various architectures and a comparison of the corresponding
results is given, including running time, efficiency, and speedup. Implementation of
the algorithm gives us an ability to verify conjectures proposed for various families of
graphs, as well as apply the algorithm to real world applications.

Another important aspect of the problem is ability to draw the solution on the
2 — D plane. This thesis gives an overview of graph drawing algorithms, starting
with the famous result by Fary, and presents a new algorithm for drawing complete

graphs, that uses the output of the previous algorithm.

Contents

Dedication

Acknowledgements

Abstract

List of Figures

List of Tables

1

2

7

Introduction

Current Results

2.1 Problem Statement
2.2 Results for Selected Families of Graphs
2.3 Conjectures for Crossing Number Problem

Proposed Algorithm

3.1 Definitions and Notation
3.2 Rotational Embedding Schemeo
3.3 Depth First Search with Branch-and-Bound
3.4 Description of the Algorithm

Sequential and Parallel Computation Results
4.1 Parallelization of the Original Algorithm
4.2 Results.

Drawing Planar Graphs

5.1 Overview of the Previous Work and Result by Fary
5.2 Algorithm by DeFraysseix, Pach, and Pollack
5.3 Algorithm by Chrobak and Payne and other algorithms

A New Algorithm for Drawing Complete Graphs
6.1 Description of the Algorithm
6.2 Results.

Conclusions and Future Work

Bibliography

ii
iii
iv
vi

vii

[y

vi

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

03 X 02 5
A Planar embedding of a grapho 10
Planar portion of K5 (first 9edges) 13
Beginning to lay down the last edge for K5 14
Drawing of K5 with 1 crossing 14
Speedup for Ky as a function of p processors (PVM) 17
Comparison of speedup for Kg (PVM, MPI, Shared Memory) 19
Canonical ordering 22
Placing w41 - - -« o o o o o 23
Drawing produced by Chrobak and Payne’s algorithm 28
Drawing produced by Harel and Sardas’ algorithm 28
Output produced for K¢ 30
Drawing outer triangle and centers 31
Drawing lower cycle oL oL 32
Drawing upper cycle oL 33
Final drawing of Kg. oo 33
Drawing of K7 o 34
Drawing of Kg o e 34

vii

List of Tables

4.1
4.2
4.3
4.4
4.5

4.6

Computation time (in seconds) for Kg - Kg with p processors (PVM) 16

Efficiency for Ky as a function of p processors (PVM) 17
Computation time (in seconds) for Kg - Kg with p processors (MPI) . 18
Efficiency for Kg as a function of p processors (MPI) 18
Computation time (in seconds) for Kg - Kg with p processors (Shared

Memory) 19

Efficiency for Ky as a function of p processors (Shared Memory) . . . 19

Chapter 1

Introduction

Finding the minimum crossing number of a graph is one of the many interesting
unsolved problems in graph theory. The problem is easily stated and the minimum
crossing number has been found for some graphs, but the solution for a general case
has not been found. It has been shown by Garey and Johnson that the problem is NP-
complete and conjectures have been made concerning the minimum crossing number
of some families of graphs. Despite being extensively studied by many mathematicians
in the field of graph theory, no algorithm existed for solving the problem until 1996,
when the first sequential algorithm was proposed in [20].

This thesis presents the results of the implementation of that algorithm, as well
as the results of parallel implementation on different architectures and a comparison
of those results.

Graph drawing is another equally important problem in graph theory. In 1948
Féry proved in [12] that every planar graph can be drawn on the 2 — D plane using
only straight lines. A variety of graph drawing algorithms have been developed based
on that famous result by Fary. We present a new algorithm for drawing graphs that
uses the output of our parallel algorithm.

The rest of this thesis is outlined as follows: Chapter 2 provides the background

information on the problem, as well as the problem statement. It also reports on the
current state of affairs in this field of graph theory. In Chapter 3 we describe the
first algorithm proposed to find the minimum crossing number of a graph. Chapter 4
presents the results of the sequential and various parallel implementations of this
algorithm as well as their comparison and analysis.

Graph drawing algorithms based on the work by Fary are presented in Chapter 5.
Chapter 6 describes a new algorithm for drawing graphs. Conclusions and directions

for Future Work are provided in Chapter 7.

Chapter 2

Current Results

Question about the crossing number of a graph represents one of the many impor-
tant problems in graph theory and applied mathematics with numerous applications
in areas of network design and circuit layout. Here is how Paul Turan described this

problem when he first encountered it [37]:

In July 1944 the danger of deportation was real in Budapest, and a
reality outside Budapest. We worked near Budapest, in a brick factory.
There were some kilns where the bricks were made and some open storage
yards where the bricks were stored. All the kilns were connected by rail
with all the storage yards. The bricks were carried on small wheeled trucks
to the storage yards. All we had to do was to put the bricks on the trucks
at the kilns, push the trucks to the storage yards, and unload them there.
We had a reasonable piece rate for the trucks, and the work itself was
not difficult; the trouble was only at the crossings. The trucks generally
jumped the rails there, and the bricks fell out of them; in short this caused
a lot of trouble and loss of time which was rather precious to all of us (for
reasons not to be discussed here). We were all sweating and cursing at

such occasions, I too; but nolens-volens the idea occurred to me that this

loss of time could have been minimized if the number of crossings of the

rails had been minimized. But what is the minimum number of crossings?

2.1 Problem Statement

Informally, the crossing number of a graph G, denoted v(G), is the minimum
number of crossings among all good drawings of G in the plane, where a good drawing
has the following properties:

(a) No edge crosses itself

(b) No pair of adjacent edges cross

(c) Two edges cross at most once

(d) No more than two edges cross at one point

Garey and Johnson proved in [14], that this problem is NP-Complete. Erdds and
Guy [11] compiled a survey of the problem and minimum crossing numbers have been

found for some families of graphs and conjectures have been proposed for others.

2.2 Results for Selected Families of Graphs

Families of graphs for which the minimum crossing number has been found are
products of C,,, such as C,, x C}, and bipartite graphs. First, we will describe what

those graphs are, but a few background definitions are needed in order to proceed.

Definition 2.2.1 A walk of length k is a sequence vy, e1,v1, €, ..., €, V; of vertices

and edges such that e; = v;_1v; for all 1.

Definition 2.2.2 A trail is a walk with no repeated edge.

Definition 2.2.3 A path is a walk with no repeated vertez.

Definition 2.2.4 A u,v — walk is a walk with first vertex v and last vertex v, these

are its endpoints, and it is closed if u = v.

Definition 2.2.5 A cycle is a closed trail of length at least one in which “first =

last” is the only vertex repetition. Cycle of length n is denoted by C,.

Definition 2.2.6 The Cartesian product of graphs G and H, written G x H, is the

graph with vertex set V(G) x V(H) specified by putting (u,v) adjacent to (u',v") if
and only if

(1) u=1', and vv' € E(H)

or

(2) v=1', and uu' € E(QG)

For example, Fig 2.1 shows a product of C5 and Cs.

1 (1,a) (1,b)

Figure 2.1: C5 x Cy

Crossing numbers have been found or conjectured for some families of graphs,
namely complete graphs, bipartite complete graphs, and products of cycles. Guy

and Jenkyns have found the bounds for the toroidal crossing number of K, ,, in [17].

There they have shown that the crossing number of K, , lies between

1 /(m n d 1fm-1 n—1
L2)\l2) ™ 6\ 2 2
In 1971 Kleitman found the crossing number for K5, on the plane in [23], and

he also showed that for 1 < min(m,n) <6

m m—1 n n—1

PEoa) = SIS

Damiani et al. have determined an upper bound for the crossing number of the
complete graph drawn on the pages of a book. A table giving this bound based upon
the number of pages and the number of vertices is given on page 80 of [7]. The
crossing number for K3, has been found by Richter and Siran in 1996 [30]. Ringeisen
and Beineke have determined the crossing number for C3 x C), in [32] and they have
also showed in [2] that

v(Cy x Cp) =2n , for n > 4 and

v(Ky x C,) =3n, for n > 3.

Dean and Richter proved that crossing number of Cy x Cy4 is 8 [8], and crossing
number for Cs x Cs has been shown to be 15 by Richter and Thomassen in [31].

Finally, Kle3¢ et al. proved in [24] that crossing number for C5 x C,, is 3n.

2.3 Conjectures for Crossing Number Problem

Although results have been obtained for some graphs in families like K,,, K,
and C), x C},, a general solution for graphs in those families is still unknown. However,
there are conjectured solutions for K, K, , and C;, x Cy,.

Guy has conjectured in [16] that the minimum crossing number of K, is equal

to:
Sk < BRI 1)
" 4
It has been proven that the above mentioned formula is true for all K,,, where
n < 10.

Zarankiewicz has conjectured in [41] that

m m—1, n n—1

I

V(Km,n) =

Another conjecture was made by Harary et al. in [18] and it deals with products

of cycles C,, x C,,. It was conjectured that

v(Cp x Cp) =n(m—2) for m<n

Guy has also conjectured the minimum crossing number of complete graphs in
the case of rectilinear graphs [16], where all edges are assumed to be straight lines.
However, counter examples were given by Thorpe and Harris in [36] which showed
that the actual minimum crossing number for rectilinear complete graphs was lower

than conjectured for graphs as small as K5 and Kj3.

Chapter 3

Proposed Algorithm

In this chapter we describe an algorithm for finding the minimum crossing num-

ber of a graph. The algorithm was originally proposed in [20].

3.1 Definitions and Notation

In order to present this algorithm we must first define some terms from topolog-
ical graph theory which will be used through the rest of this Chapter and Chapter 4.

In general these definitions are as in [3].

Definition 3.1.1 For our purposes a compact-orientable 2-manifold, or simply a sur-

face, may be thought of as a sphere, or a sphere with handles.

Definition 3.1.2 The genus of the surface is the number of handles.

Definition 3.1.3 An embedding of a graph G on a surface S is a drawing of G on S

in such a manner that edges intersect only at a vertex to which they are both incident.

Definition 3.1.4 A region in an embedding is called a 2-cell if any simple closed
curve in that region can be continuously deformed or contracted in that region to a

single point.

Definition 3.1.5 An embedding is called a 2-cell embedding if all the regions in the

embedding are 2-cell.

An algebraic description of a 2-cell embedding was observed by Dyck [9] and
Heffter [21]. This description is referred to as a Rotational Embedding Scheme which
will be covered in Section 3.2

And finally, the relationship between the number of regions of a graph and the
surface on which it is embedded is described by the well-known generalized Euler’s

Formula [3]:

Let G be a connected graph with p vertices and q edges with a 2-cell
embedding on the surface of genus n having r regions. Then p — ¢+ r =

2 —2n.
3.2 Rotational Embedding Scheme

With these definitions as a background, we now look at the Rotational Embed-
ding Scheme, first formally introduced by Edmonds [10] in 1960 and then discussed
in detail by Youngs [40] a few years later. The following is the formal statement of

the Rotational Embedding Scheme as given in [3] on pages 130-131.

Let G be a nontrivial connected graph with V(G) = {v1,vs, ..., v}
For each 2-cell embedding of G on a surface there exists a unique p-
tuple (my,m,...,m,), where for i = 1,2, ...,p, m : V(i) — V(i) is a
cyclic permutation that describes the subscripts of the vertices adjacent
to v;. Conversely, for each such p-tuple (my, 72, ..., m,), there exists a

2-cell embedding of G on some surface such that for « = 1,2,...,p the

10

subscripts adjacent to v; and in the counterclockwise order about v;, are

given by ;.

For example consider Figure 3.1 which gives a planar embedding of a graph.
From this graph we obtain the following counterclockwise permutations associated

with each vertex:

™ = (654a2) o = (1a4a3)
73 = (2,4) = (3,2,1,5)
s = (4,6) g — (5,1)
2 3
1 4
6 3

Figure 3.1: A Planar embedding of a graph

From these permutations we can obtain the edges of the graph and the number
of regions of the graph. For instance, this graph has 4 regions. The edges for one of
these regions can be traced as follows:

1) Start with edge (1,2)
2) Go to permutation 75 and find out who follows 1, and it is 4. Therefore
the second edge is (2,4).
3) Go to permutation 74 and find out who follows 2, and it is 1. Therefore
the third edge is (4,1).
4) Go to permutation 7; and find out who follows 4 and it is 2. This yields
edge (1,2) which was the original edge so we are finished.
The region we looked at was bounded by the edges (1,2), (2,4), and (4,1). The other

regions and edges can be found in a similar manner.

11

The important thing to note at this point is the converse portion of the Rotational
Embedding Scheme, that every collection of vertex permutations corresponds to an
embedding on some surface. Given a set of permutations, we can trace the edges and
determine the genus of the surface.

A computer program to generate all vertex permutation schemes for a graph
was developed in [27]. This program counts the regions of the resulting embedding
and using Euler’s formula determines if a given graph has a planar embedding. The
code for this program can be found in [26], and we will make extensive use of it in

Sections 3.4 and 4.1.

3.3 Depth First Search with Branch-and-Bound

If the solution space of a problem can be mapped to a tree, where each interior
vertex is a partial solution, edges toward the leaves are options that refine the partial
solution, and the leaves are complete solutions, then there are various algorithms
that can search the tree to find the optimal solution. A Depth First Search (DFS)
algorithm is one such algorithm which, as its name implies, searches more deeply into
the tree for a solution whenever possible. Once a path is found from the root to a
leaf representing a solution, the search backtracks to explore the nearest unsearched
portion of the tree. This continues until the entire tree has been traversed.

The Branch and Bound portion allows us to change one simple part of the DFS
algorithm. When the cost to get to a vertex v exceeds the current optimal solution,
we then tell the DFS algorithm not to traverse the subtree having v as its root.

This method exhaustively covers the entire search space even after finding an
initial solution. However, it does not cover those sections of the search space that

lead to solutions that are guaranteed to cost more than the current optimal solution.

12

When the entire tree is covered the current optimal solution is the globally optimal

solution.

3.4 Description of the Algorithm

An amazing fact about this problem is that there was not a single citation in the
literature that discussed how to solve this problem algorithmically. Several heuristics
and conjectures were found [11, 14, 16, 37|, but there were no algorithms. The first
sequential algorithm for calculating the minimum crossing number of a graph was
presented in [20].

In this algorithm the solution space from the crossing number problem is mapped
onto a tree and then a DFS with branch-and-bound is employed to search for the
minimum crossing number. The vertex set makes up the root of the tree and |F| (the
number of edges) branches are coming out of root. Each of the branches corresponds
to the first edge that is added to the graph. On the next level of the tree there are
|E| — 1 branches coming out of each node. There are |E| levels in the tree, from top
to bottom, and the path to each leaf corresponds to a unique permutation ordering
of the edges.

First, edge (7, 7) is selected and then Euler’s formula is used to determine if the
edge from vertex i to vertex j can be added without crossings (which is done by
keeping track of the number of regions in the graph during construction). If the
answer is positive, then the edge is added and next one is selected. Otherwise, an
edge is selected (among the already added edges) which should be crossed (it may be
the only edge crossed, or it may turn out to be the first one in a list of crossed edges).
After choosing edge (k,[) to be crossed by edge (i, j), a new vertex m is created and

edge (k,l) is removed. Next, partial edges (k,m), (m,l) and (i,m) are added and

13

edge (m, j) is drawn in the same way.

When drawing and edge, one should remember that no pair of adjacent edges
cross, that two edges cross at most once and that an edge cannot cross itself. Another
important point is to keep track of all partial edges and keep in mind that partial
edges are actually part of an edge. In the case above, edge (i, m) is part of edge (i, j)-

In order to understand the algorithm, let us walk through the procedure with
K5 as our example. There are 10 edges in K5 and 9 of them can be added without

creating any crossings (see Figure 3.2).

d i

Figure 3.2: Planar portion of K5 (first 9 edges)

When we try to add the last edge, Euler’s formula shows that the resulting graph
is not planar, which means that when edge (4, j) is added then at least one crossing
is created.

The next step is to select edge (k, 1) as the edge to cross, insert vertex m, remove
edge (k,l) and, finally, to add partial edges (k,m), (m,1), and (i,m). The result is
shown in Figure 3.3.

After drawing these partial edges, the algorithm tries to lay down the rest of edge
(1,7) and it does so without any more crossings, as shown in Figure 3.4

The algorithm then backtracks, knowing that the new bound for number of cross-

ings is one. It will then back up through the rest of the tree and try other branches

14

O

q

Figure 3.3: Beginning to lz?y down the last edge for Kj

q
[«

Figure 3.4: Drawing of K5 with 1 crossing

only to find out that there are multiple ways to draw K5 with one crossing, but none

with zero crossings.

15

Chapter 4

Sequential and Parallel
Computation Results

4.1 Parallelization of the Original Algorithm

The parallel algorithm for this work was very straightforward. In order to obtain
some initial results we performed a basic static partitioning of the search tree among
the p processors in our parallel machine. This method, along with its benefits and
drawbacks, is discussed in detail in [25].

The implementation of this algorithm was developed on and run on a network of
Pentium 133 machines running Linux. This network of machines was linked together
into a parallel cluster with PVM [15] using a host-node programming style. This
configuration was chosen for its ease of use and availability, but in the future we wish
to modify the implementation to have dynamic partitioning of the search space.

For evaluation of this algorithm and its implementation we decided to use the
family of complete graphs, denoted K,, as our test cases. This family was selected
for a few reasons. First it is one of the few families of graphs where there are some
known answers since it is well-studied family. Secondly, it is one of the few families

with a conjectured formula for the minimum crossing number. For complete graphs

16

of size 10 and less, a simple formula provides the minimum crossing number [16]:

gy = IR

This formula, which is conjectured by Richard Guy to be the exact answer for
all n, provided a ball park for an initial bounds when doing our branch-and-bound

search.

4.2 Results

The results of the sequential and parallel versions are as in [34] and they are
are shown in Table 4.1. This basically shows that the computation times for Ky and
K7 are so small that we do not have to worry about the parallel implementation;
however, Kg has a computation time that makes it very desirable to compute its

minimum crossing number, and that of larger members of the family, in parallel.

Table 4.1: Computation time (in seconds) for Kg - Kg with p processors (PVM)

p=1|p=2|p=4
K 0 0 1
K, 8 4 3
Kg | 12230 | 6251 | 3794

From this point on we dealt with Ky almost exclusively. We will attack Ky and
others in this family when we have finished some optimization issues that we will
discuss in Chapter 7. The numbers just presented for Ky yield the speedup given in
Figure 4.1 and an efficiency as given in Table 4.2.

The interesting thing to note is the time for Kg with four processors. For this
computation two of the slaves finished in almost identical times of about 3050 seconds,

while the other two were both around the final result of 3794 seconds. This detail

17

speedup

0 | | | |
0 1 2 3 4 5
number of processors

Figure 4.1: Speedup for K3 as a function of p processors (PVM)

Table 4.2: Efficiency for Ky as a function of p processors (PVM)

‘ Ky 1.0 | 0.9782 | 0.8058

points out one of the major problems with static partitioning in tree search algorithms,
and that is lack of a balanced workload. For this reason we must consider dynamic
partitioning of the workload in the future.

It was interesting for us to see how two different message-passing interfaces, PVM
and MPI will compare to each other. Therefore, the code was ported to LAM/MPI on
the same network of workstations, with the only difference being that the operating
system had been changed from LINUX to SOLARIS. Results, analogous to those

given in Table 4.1, are shown in Table 4.3. Efficiency achieved for Kz with MPI

18

implementation is shown in Table 4.4.

Table 4.3: Computation time (in seconds) for K4 - Kg with p processors (MPI)

p=1|p=2|p=4
K 0 3 3
K, 8 5 3
Kg | 12230 | 6553 | 3897

Table 4.4: Efficiency for Kg as a function of p processors (MPI)

‘ Ky 1.0] 0.9332 | 0.7846

In the message-passing environment, like MPI or PVM, the major drawback is
communication overhead. Therefore, it was interesting to rewrite the implementation,
which was intended for network of workstations, for a shared memory multiprocessor.
The performance increase was expected because communication overhead was elim-
inated and more powerful computational resources were used (SGI Power Challenge
vs. network of P5 133). The structure of the original algorithm was left unchanged.
The message passing was replaced by the introduction of the shared memory. The
completely asynchronous nature of the original algorithm eliminated the need for
barrier synchronization. Results for shared memory implementation are shown in
Table 4.5 and corresponding efficiency is shown in Table 4.6.

Comparison of the speedup for different implementations is shown in Figure 4.2.

19

Table 4.5: Computation time (in seconds) for Kg - Kg with p processors (Shared
Memory)

p=1|p=2|p=4
K 0 0 0
K; 4 2 1
Ks | 5823 | 2977 | 1771

Table 4.6: Efficiency for Kg as a function of p processors (Shared Memory)

p=1 p=2 p= 4
‘ Ky 1.0 | 0.9779 | 0.8220

5 |
SM’ <—
PVM’ +—
'MPT' B
4 i
3+ i
speedup
2 - i
1r i
0 | | | |
0 1 2 3 4 5

number of processors

Figure 4.2: Comparison of speedup for Kg (PVM, MPI, Shared Memory)

20

Chapter 5

Drawing Planar Graphs

5.1 Overview of the Previous Work and Result by
Fary

Finding the minimum crossing number of a graph is important, but a graph-
theoretical representation of the solution is hard to visualize and to comprehend.
Also, the process of converting the graph-theoretical representation of the solution
into the visual one can be very time consuming, especially as number of vertices
increases. This leads us to a problem of drawing graphs on a 2-D plane. A lot of
research has been done in this area and number of algorithms for drawing a general
graph on 2-D plane have been proposed. One of the first graph drawing algorithms
was proposed by Tutte in 1963 [38]. [29] proposed an algorithm for drawing a planar
graph when the cyclic order of the edges at each vertex is known. [35] is a good source
of papers on this subject, and [1] gives an annotated bibliography of graph drawing
algorithms.

The foundation of the algorithms for drawing planar graphs on the 2-D plane
was laid down by the work of Fary [12] in 1948. In this seminal work he proved that
every planar graph can be drawn on 2-D plane using only straight lines. [5] offered

an algorithm that would draw planar graphs nicely and [4] described a linear time

21

algorithm for convex drawing of planar graphs.
We will describe algorithms that are based on Fary’s result, namely those by
DeFraysseix, Pach, and Pollack[13], and by Chrobak and Payne|6].

First, let’s give some definitions that we will be using throughout this chapter.

Definition 5.1.1 The Manhattan distance between (r,y) and (z',y') is

lz—a' [+]y—y'[

Definition 5.1.2 An embedding of a planar graph is called Fdary embedding if every

edge is represented by a straight line.

Definition 5.1.3 A planar graph is called a mazimal planar graph if it can not have

any more edges added without destroying its planarity.

Fdary’s embedding is constructed by using canonical representation of planar
graph, this representation is defined in a lemma given in [13] (see [13] for lemma’s

proof), and that definition is given next.

Definition 5.1.4 Let G be a mazimal planar graph embedded in the plane with
exterior face u, v, w. Then there exists a labeling of the vertices v = u, vo = v,

.., Uy =w (such a labeling of vertices is called a canonical representation of planar

graph) meeting the following requirements for every 4 <k < n:

(i) The subgraph Gy—1 C G induced by vy, va, ..., Vg1 is 2-connected, and the

boundary of its exterior face is a cycle Crp_1 containing the edge uv,

(i) vy is in the exterior face of Gy—1, and its neighbors in Gy_1 form an (at least

2-element) subinterval of the path Cy_1 — uv. (see Figure 5.1)

22
v(k)

s
=

v(l) =u v(2) = v

Figure 5.1: Canonical ordering

5.2 Algorithm by DeFraysseix, Pach, and Pollack

This algorithm constructs a Fary embedding of a planar graph with n vertices
on 2n — 4 by n — 2 grid. The algorithm works in a following manner: we are given
a planar maximal graph G with exterior face u,v,w and canonical labeling of its
vertices v; = u, vy = v, ..., v, = w. Suppose that during the kth step of the algorithm,

subgraph G}, already has a Fary embedding on a grid with following properties:
1) vy is at (0,0), vy is at (2k — 4,0)

2) Let v; = wq, ws, ..., w, = v denote the vertices of the exterior face of Gy and

x(w;) their respective x-coordinates. Then

z(wr) < z(wy) < ... < z(wy)

3) Slopes of the edges [w;, w;;1],1 < j < m, are either +1 or —1.

23

Condition (3) implies that the intersection point of the line passing through w;
with slope +1 and the line passing through w;(i < j) with slope —1 is a lattice
point P(w;, w;). If we denote the neighbors of v41; in Gj41 (they form an interval on
the boundary of Gj1, see Lemma) as wy, wp41, ..., w, then we can consider placing
Vk+1 at point P(w,, w,). Our only concern with the choice of P(w,,w,) will be that
P(w,, w,) may be on the same line as w,, making it impossible to lay down a straight-

line edge from w, to P(w,, w,) (see Figure 5.2).

Figure 5.2: Placing v,

In order to avoid this problem we should deform the existing Fary embedding
of G} by moving some vertices one unit to the right, but we should ensure that the
deformed embedding is still a Fary embedding. This means that we should define a
set of vertices to be moved and then move them in some consistent manner. One way
to accomplish that goal is to define a set of vertices to be moved through recursion.
Assume that for every vertex w; on the exterior face of Gy a subset M (k, w;) C V(Gy)

has been defined which confirms to the following conditions:

a) w; € M(k,w;),iff j > 1

24
b) M(k,wi) D M(k,ws) D ... D M(k,wp)

c) For any set of nonnegative numbers (g, as, . . ., a,;) sequential translation of all
vertices in M (k,w;) by a; to the right (1 < ¢ < m) does not result in Gy, losing
its property of being a Fary embedding (some vertices will be moved several

times).
For example, for k¥ = 3 given conditions can be satisfied by the following Fary em-
bedding:
v1 = (0,0),v = (2,0),v3 = (1,1) and
M(3,v1) = {v1,v2,v3}, M(3,v2) = {vs,v3}, M(3,v3) = {vs}
Applying condition ¢) with a1 =, =1, a; = 0,¢ # p+ 1,4 # ¢ will give us a

new Fary embedding of Gy, if we place vg11 at P(w,, w,). The vertices of the exterior

face of G411 will be:

U =Wy, W, ..., Wp, Vi1, Wy, - -, Wy =V

and sets M will be defined as:

Mk +1,w;) = M(k,w;) U{vgs1},i <p

M(k +1,v541) = M(k, wpy1) U {vgs1},

Mk +1,w;) = M(k,w;),7 > ¢

(the resulting embedding is still a Fary embedding, see [13] for proof). But how do
we define sets M7 Sets M are defined through a sequence of inductive permutations.

First, we define m; = (1,2). Now, suppose 7 is defined and vertex vy1 is adjacent to

the vertices v;,, vy, - . ., v;; in Gy (in counterclockwise order). Then, 7, is generated

25

by inserting k£ +1 just to the left of 2 and n+k+1 just to the left of 7; in permutation
7. 1f we identify vertex v; with the index j, then

M(k,v;) = {j|j < n,j does not precede i in 7} =

= {jli < j < k,j does not precede i in 7}
This step is the most expensive one in the algorithm, in terms of time, and it takes
O(n log(n)) to execute (see [13]).

We assumed that a canonical ordering of the graph and its planar embedding
are available, when algorithm starts processing the graph. A planar embedding can
be obtained using a variety of algorithms, including the one described in the previ-
ous chapters, which will give all planar embeddings of a graph, or an algorithm by
Hopcroft and Tarjan [22], which will give an embedding of a graph. The canonical

ordering of the graph can be obtained using the following procedure:
e Pick two vertices v; and v, and label the rest of the vertices with —1.

e Process vertex vy by visiting all of its neighbors and changing their labels.

Suppose v is a neighbor of v;. Then there are three possibilities:

— v has a label of —1, and it is changed to 0

— v has a label of 0, which means that one of its neighbors, call it u, has
already been visited. If v, is adjacent to u in the circular ordering of

neighbor vertices around v, change v’s label to 1. Otherwise make it 2.

— v has a label of j > 0. If two vertices adjacent to vy in the circular ordering
of neighbor vertices around v have been already processed, change v’s label
to 7 — 1. If only one has been processed, v’s label remains j. If none has

been processed, change v’s label to j + 1.

26

e After vy has been processed, any vertex with label 1 can be chosen to be v;,1 in
the canonical ordering. This process continues until no such v;; can be found
or all vertices have been processed. The existence of the canonical ordering

guarantees that all vertices will be processed.

This algorithm constructs Fary embedding of a graph with n vertices on a

(2n — 4) x (n—2) grid in O(n log(n)) time.

5.3 Algorithm by Chrobak and Payne and other
algorithms

The algorithm by Chrobak and Payne [6] is also based on Fary’s result and it
represents a refinement of the algorithm by DeFraysseix, Pach and Pollack, since it
reduces the running time to O(n). The idea behind this algorithm is the same as
in algorithm by DeFraysseix, Pach, and Pollack, but appropriate distribution of the
information in the vertices of the graph yields linear-time complexity.

As in the algorithm by DeFraysseix, Pach, and Pollack a planar embedding and
canonical ordering of a graph are needed. Also, wy,ws, ..., w,, again denotes the
cycle Cj_q, which is an exterior face of Gy_i. If wy,...,w, are neighbors of v; in
Cr—1, then we say that vy covers wpy1,. .., we—1.

Gy, is viewed as a forest consisting of trees L(wy), ..., L(w,) whose roots are
members of Cy, = {ws,...,w,}, where L(v;) is defined as a set of vertices that have
to be moved every time v;’s position is adjusted (so sets L are similar to sets M in
the previous algorithm). The children of a node are the vertices that it covers. A
forest is represented as a binary tree 7' and left T-child of a node is defined as its
leftmost child, and right T-child of a node is its next child to the right. The root of T

is vy, and Cy = {wy, ..., w,} consists of vy, its right T-child, its right T-child’s right

27

T-child, etc. L(w;) consists of w; and its left T-subtree. So, a T-subtree having w; as
its root is Uj>; L(w;).

When embedding v, we do not need to know the exact coordinates of w, and
wy. All that is needed by the algorithm is their y-coordinates and their relative
x-coordinates (z(w,) — x(w,)), which is enough to compute y(vi), and the relative

x-coordinate of vy, z(vy) — z(w,).

Definition 5.3.1 For every vertex v # vy, the x-offset of v is
Az(v) = z(v) — z(w)

where w is T-parent of v.

Definition 5.3.2 If w is an ancestor of v, the z-offset between w and v is

Az(w,v) = z(v) — z(w)

In this algorithm the following information is stored for each vertex v:

Left(v) = left T-child of v
Right(v) = right T-child of v
Ax(v) = the z-offset of v from its T-parent

y(v) = the y-coordinate of v

The algorithm has two phases. During the first phase vertices are added to
the graph one by one and x-offsets and y-coordinates are computed. During the
second phase the whole tree is traversed and x-offsets are accumulated to get the
x-coordinates. The pseudocode of the algorithm, as well as proof of its correctness
and linear running time is given in [6]. A drawing produced by Chrobak and Payne’s

algorithm is shown in Figure 5.3.

28

Harel and Sardas [19] have further refined the algorithm by Chrobak and Payne
to produce more aesthetically pleasing drawings of graphs, with the same grid size
and running time (see Figure 5.4 for a drawing of the same graph as in Figure 5.3).
Schnyder [33] has developed a different algorithm that runs in a linear time and

embeds a graph with n vertices onto a grid of size (n — 2) x (n — 2).

Figure 5.4: Drawing produced by Harel and Sardas’ algorithm

29

Chapter 6

A New Algorithm for Drawing
Complete Graphs

As one can see, the drawings produced by the algorithms described in Chapter 5
are not very “nice” looking. That is the reason why we decided to come up with a new
algorithm that would produce nicer looking drawings, and also take the burden of

converting the graph-theoretical representation into a graphical one off our shoulders.

6.1 Description of the Algorithm

Typical output produced by the algorithm described in Chapter 3 is shown in
Figure 6.1. As one can see, translating that output into a drawing is a tedious process,
that gets even more tedious when number of vertices increases further. To make most
of that pain go away, we designed an algorithm, which produces a graph drawing by
analyzing the output given in Figure 6.1.

In order to convert this graph-theoretical representation into a graphical one this

new algorithm does the following:

(1) Read in the output of the algorithm, described in the previous chapters and
find 2 vertices that are not connected with each other (we will call them centerl

and center2).

(2)

30

Regions of the optimal solution are:
9-1-6

phppwoocncnclncn\loophphm
I\D(XJ(XJMH\ICF\IHHH(OQO
O WO O NOONWWPSd ONOO

Number of crossings -- 3
Search for the optimal solution took 0 sec.

Figure 6.1: Output produced for Kjg

Out of all the regions, that do not contain centerl and center2, pick one with
the lowest sum of orders of vertices (call it the outer triangle/region, although

it is not necessarily a triangle).

Inside the outer triangle there are 2 cycles, that are defined as cycles that
contain all neighbors of a center, but not all elements of a cycle are necessarily
connected with the center. The upper cycle is the one that contains zero or one
vertex from the outer triangle. If the upper cycle includes one vertex from the
outer triangle then that vertex will be the upper point of the outer triangle.
If not, i.e. there are zero vertices from the outer triangle in the upper cycle,
then we have to find 2 vertices of the outer triangle that are contained in the
lower cycle. Those 2 vertices of the outer triangle will form the foundation of

the outer triangle, with the remaining vertex being the upper point.

31

(4) Draw the outer triangle, since we know which point is on the top (upper point),
and which ones are in the foundation. Moreover, we can find out which point

is on the right and which one is on the left from the region information.

(5) Draw 2 centers inside the outer triangle in the following manner: find the dis-
tance between the outer triangle’s foundation and the top (denote it d), then
put the upper center on a line passing through the top and orthogonal to the
foundation d/4 units below the top point; put the lower center d/8 units above
the foundation. In the example, given in Figure 6.2, vertices 1 and 2 are the

centers and the outer triangle is formed by vertices 5,6, and 7.

Figure 6.2: Drawing outer triangle and centers

(6) In the lower cycle find the vertex that precedes the right vertex of the outer
triangle and draw it inside the outer triangle, close to the edge connecting the
right and the top vertices and making sure that the lower center is inside the

newly created triangle.

(7)

(8)

(9)

(10)

32

Draw the lower cycle by putting all of its remaining vertices on the edge con-
necting the vertex added in the previous step, and the left vertex of the outer

triangle.

Connect vertices of the lower cycle with the lower center (those that should be

connected, see Figure 6.3).

Figure 6.3: Drawing lower cycle

Draw the upper cycle, with its upper point being a vertex that has the fewest
number of connections with the members of the lower cycle or the one that
is the upper point of the outer triangle. The upper cycle should also form a
triangle, like the lower cycle. We have already defined what the upper point
of that triangle should be. The foundation of that triangle is formed by the
vertices that have the most number of connections with the lower cycle (see

Figure 6.4).

Find the vertex with the lowest index and all of its neighbors already placed.
Draw that vertex with its coordinates being the average of the coordinates of

its neighbors (if there is no such vertex then draw the remaining edges). Find

33

Figure 6.4: Drawing upper cycle

the next such vertex and draw it using the same procedure, etc.

(11) If we missed some vertices in the previous step, because their neighbors were

not drawn, then repeat the previous step (see Figure 6.5).

Figure 6.5: Final drawing of Kg

6.2 Results

This algorithm was tested on Kg, K7, and Kg, and it was implemented using V:

C + + GUI framework [39]. Drawings for K7 and Kg are shown in Figure 6.6 and

34

Figure 6.7 respectively. In those figures, the original vertices are shown as circles,

and the vertices created as a result of crossings are shown as squares.

Figure 6.6: Drawing of K5

Figure 6.7: Drawing of K

35

Chapter 7

Conclusions and Future Work

We have presented a parallel algorithm for calculating the minimum crossing
number of a graph. This has been built upon the proposed sequential algorithm that
was presented in [20]. We have implemented this algorithm, and shown its capabilities
by comparing the sequential and the parallel versions on some of the initial members
of the family of Complete Graphs (K7 and Kj3) that are not trivial.

We see this work continuing in various different ways. First we would like to
examine the computational method used in the sequential method and see if there
are portions that can be improved, since this could improve the parallel version dra-
matically. This would range from looking at a best first search with a dynamic queue
of work as Quinn and Deo presented in [28] to looking at various graph theoretic ways
to legally prune the tree more effectively. Secondly we would look into any similarities
between solutions for K, and K,_; and try to figure out if solution for K, can be
obtained from the solution for K, ; (since we have solutions for K4, K7, and Kg).

Then we would like to go back to calculate the crossing number for several families
which are very important when looking at circuit design, such as the rest of K,
K(mmn), and various others. We are hoping that at around Kj, we will be able to

show a counter-example (as was done with the rectilinear crossing problem [36]) to

36

the conjecture proposed by Richard Guy [16] many years ago as the exact solution of
this problem.

Another direction of future work involves further testing and enhancing current
GUI interface, used to produce drawings. After getting results for more graphs,
we should test our graph drawing algorithm on those graphs, possibly adding more

features.

37

Bibliography

1]
2]
3]
[4]

[5]
[6]
[7]

8]

[9]
[10]

[11]

[12]
[13]

[14]

G. Di Battista, P. Eades, R. Tamassia, and 1.G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Comput. Geom., 4:235-282, 1994.

L.W. Beineke and R.D. Ringeisen. On the crossing numbers of products of cycles
and graphs of order four. J. Graph Theory, 4:145-155, 1980.

G. Chartrand and L. Lesniak. Graphs and Digraphs. Wadsworth & Brooks/Cole
Advanced Books & Software, Monterey, CA, 2nd. edition, 1986.

N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex draw-
ings of planar graphs. In J.A. Bondy and U.S.R. Murty, editors, Progress in
graph theory, pages 153—-173. 1984.

N. Chiba, T. Yamanouchi, and T. Nishizeki. Drawing planar graphs nicely. Acta
Inform., 22:187-201, 1985.

M. Chrobak and T.H. Payne. A linear-time algorithm for drawing a planar graph
on a grid. Inform. Process. Lett., 54:241-246, 1995.

E. Damiani, O. D’Antona, and P. Salemi. An upper bound to the crossing
number of the complete graph. J. Combin. Inform. System Sci., 19(1-2):75-84,
1994.

A .M. Dean and R.B. Richter. The crossing number of Cy x Cy. J. Graph Theory,
19(1):125-129, 1995.

W. Dyck. Beitrage zur analysis situs. Math. Ann., 32:457-512, 1888.

J. Edmonds. A combinatorial representation for polyhedral surfaces. Notices
Amer. Math. Soc., 7:646, 1960.

P. Erdos and R. Guy. Crossing numbers of graphs. In Y. Alavi, et al., edi-
tor, Graph Theory and Applications, pages 111-124. Springer-Verlag, New York,
1973.

[. Fary. On straight line representation of planar graphs. Acta Sci. Math.
(Szeged), 11:229-233, 1948.

H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41-51, 1990.

M.R. Garey and D.S. Johnson. Crossing number is NP-Complete. SIAM J. of
Alg. Disc. Meth., 4:312-316, 1983.

38

[15] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. PVM: Parallel Virtual Machine — A User’s guide and tutorial
for networked parallel computing. MIT Press, Cambridge, MA, 1994.

[16] R.K. Guy. A minimal problem concerning complete plane graphs. In Y. Alavi,
D.R. Lick, and A.T. White, editors, Graph Theory and Applications, pages 111—
124, Berlin, 1972. Springer-Verlag.

[17] R.K. Guy and T.A. Jenkyns. The toroidal crossing number of K,, . J. Combin.
Theory Ser. B, 6:235-250, 1969.

(18] F. Harary, P.C. Kainen, and A.J. Schwenk. Toroidal graphs with arbitrarily high
crossing numbers. Nanta Mathematica, 6:58-67, 1973.

[19] D. Harel and D. Sardas. An algorithm for straight-line drawing of planar graphs.
Algorithmica, 20:119-135, 1998.

[20] Frederick C. Harris, Jr. and Cynthia R. Harris. A proposed algorithm for cal-
culating the minimum crossing number of a graph. In Yousef Alavi, Allen J.
Schwenk, and Ronald L. Graham, editors, Proceedings of the Fighth Quadren-
nial International Conference on Graph Theory, Combinatorics, Algorithms, and
Applications, Kalamazoo, Michigan, June 1996. Western Michigan University.

[21] L. Heffter. Uber das problem der nachbargebiete. Math. Ann., 38:477-508, 1891.

[22] J. E. Hopcroft and R.E. Tarjan. Efficient planarity testing. J. Assoc. Comput.
Mach., 21:549-568, 1974.

[23] D.J. Kleitman. The crossing number of Kj,. J. Combin. Theory Ser. B, 9:315-
323, 1971.

[24] M. Kles¢, R.B. Richter, and I. Stobert. The crossing number of C5 x C,. J.
Graph Theory, 22(3):239-243, 1996.

[25] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-
puting: Design and Analysis of Algorithms. The Benjamin/Cummings Publish-
ing Company, Inc., Redwood City, CA, 1994.

[26] C. Lovegrove. Crossing numbers of permutation graphs. Master’s thesis, Clemson
University, Clemson, SC 29634, May 1988.

[27] C. Lovegrove and R.D. Ringeisen. Crossing numbers of permutation graphs.
Congr. Numer., 67:125-135, 1988.

(28] M.J. Quinn and N. Deo. An upper bound for the speedup of parallel best-bound
branch-and-bound algorithms. BIT, 26(1):35-43, 1986.

[29] R.C. Read. A new method for drawing a planar graph given the cyclic order of
the edges at each vertex. Congr. Numer., 56:31-44, 1987.

[30] R.B. Richter and J. Sirdii. The crossing number of K3, in a surface. J. Graph
Theory, 21(1):51-54, 1996.

39

[31] R.B. Richter and C. Thomassen. Intersection of curve systems and the crossing
number of C5 x Cs. Discrete Comput. Geom., 13:149-159, 1995.

[32] R.D. Ringeisen and L.W. Beineke. The crossing number of C3 x C,. J. Combin.
Theory Ser. B, 24:134-136, 1978.

(33] W. Schnyder. Embedding planar graphs in the grid. In Proc. Ist. Ann. ACM -
SIAM Symp. on Discrete Algorithms, pages 138-147, San Francisco, 1990.

[34] U. Tadjiev and F.C. Harris, Jr. Parallel computation of the minimum crossing
number of a graph. In Michael Heath, Virginia Torczon, Greg Astfalk, Petter E.
Bjorstad, Alan H. Karp, Charles H. Koelbel, Vipin Kumar, Robert F. Lucas,
Layne T. Watson, and David E. Womble, editors, Proc. of the 8" SIAM Conf.
on Parallel Process. for Sci. Comput., Minneapolis, Minnesota, March 1997.
SIAM.

[35] R.Tamassia and I. G. Tollis, editors. Graph Drawing (Proc. GD ’94), volume 894
of Lecture notes in Computer Science. Springer-Verlag, 1995.

[36] J.T. Thorpe and F.C. Harris, Jr. A parallel stochastic optimization algorithm
for finding mappings of the rectilinear minimal crossing problem. Ars Comb.,
43:135-148, 1996.

[37] P. Turan. A note of welcome. J. Graph Theory, 1:7-9, 1977.

[38] W.T. Tutte. How to draw a graph. Proc. London Math. Soc., 13(3):743-768,
1963.

[39] Bruce Wampler. V: C++ GUI Framework. http://www.objectcentral.com.

[40] J.W.T. Youngs. Minimal imbeddings and the genus of a graph. J. Math. Mech.,
12:303-315, 1963.

[41] K. Zarankiewicz. On a problem of P. Turdn concerning graphs. Fund. Math.,
41:137-145, 1954.

