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Abstract 
 
 
 
This paper presents a case study of large scale software transitions. 

This is the first part our virtual reality of mine ventilation systems project. 

This project is based on an existing software package called MFIRE. 

“MFIRE is a computer simulation program that performs normal ventilation 

network planning calculations and dynamic transient state simulation of 

ventilation networks under a variety of conditions. The program is useful 

for the analysis of ventilation networks under thermal and mechanical 

influence. MFIRE simulates a mine's ventilation system and its response to 

altered ventilation parameters: external influences such as temperatures, 

and internal influences such as fires. “[16] 

MFIRE was written in FORTRAN. Modern virtual reality software and 

utilities are typically written in C++, an object orientated programming 

language. Since communication between C++ and FORTRAN is difficult 

and the ability to modify the code is vital, we needed to convert the existing 

FORTRAN code to C++ with the exact same functionality.  

This paper also discusses the transition methodology and the 

debugging of the code. 
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1. Introduction 
 

MFIRE is a computer simulation program that performs normal 

ventilation network planning calculations, and dynamic transient state 

simulation of ventilation networks under a variety of conditions. The 

program is useful for the analysis of ventilation networks under thermal and 

mechanical influence. MFIRE simulates a mine's ventilation system and its 

response to altered ventilation parameters, external influences such as 

temperatures, and internal influences such as fires. Extensive output 

enables detailed quantitative analysis of the effects of the proposed 

alteration to the ventilation system. 

Network simulation using digital computers has become widespread 

throughout the mining industry.  However, as the sophistication of the 

simulator increases (MFIRE, for example), the complexity of input data 

requirements and interpretations of results requires more skil l and 

knowledge from the users.  Perhaps the most difficult part of using MFIRE 

is to construct the data set describing the mine's physical layout and its 

ventilation properties. The initial attempts to get the data set running often 

reveal unknown or ignored aspects of the mine's ventilation[16]. 

MFIRE was written in Fortran 77. Our purpose is to use the output of 

MFIRE and display the mine and its ventilation three-dimensionally on a 

computer screen. This paper is the first part of the whole project. In Section 2 we 

present a background on mine ventilation, software to do it, and the development 

of MFIRE. Section 3 presents some of the differences between FORTRAN and 

C++ that we had to deal with. Section 4 covers our code transition and debugging 

of our code is presented in Section 5. Conclusion and Future work are discussed in 

Section 6.  
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2. The Background of MFIRE 
 

2.1 What is MFIRE 

 

Mine ventilation control and mine fire detection and fighting are 

inseparable.  Mine fires produce gases and heat, which the ventilation systems 

transport through the mines.  These gases can be poisonous and/or 

explosive[5,6,7]. The heat can cause ventilation disturbances, which take the gases 

along unexpected routes or affect the formation of explosive methane mixtures. 

The calculation of the airflow distribution in mine ventilation systems as a 

result of fans, thermal forces, and flow resistances is a formidable mathematical 

problem[3,4].  It comprises the solution of twice as many equations as there are 

airways; half of these equations are quadratic equations[4].  This sort of problem 

led to the design of special analog computers in the 1950's and 60's and, from the 

early 1960's on, to the increasing use of electronic digital computers[11].  With the 

rapidly increasing availabil ity and capacity of digital computers, airflow rate and 

pressure loss distribution calculations, commonly called ventilation network 

calculations, have become routine, and a great number of computer programs exist 

for this purpose[13].  Practically all the programs are capable of performing the 

required calculations, although differences exist in how the square equations are 

linearized, the mass conservation law is introduced and observed, the fan 

characteristics are simulated, and the thermal drafts are considered.  All of the 

early programs were based on steady-state conditions.  

Of greatest concern in the past were the fire-generated ventilation 

disturbances[8,9,10,11].  Ventilation engineers developed a large number of 

methods, by manual calculation, to detect potentially unstable airways with 

airflow reversals in case of a fire[5].  When the analog and digital computers 

became available for ventilation planning, they were almost immediately applied 

to this problem.  The expected fire-generated ventilating pressures were manually 
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inserted into the network simulations, with their values usually obtained from 

experience or from rough calculations.  The mutual influence of fire intensities 

and ventilation conditions were not taken into account.  If gas concentrations were 

calculated at all, they were only calculated for the cases where no recirculation 

existed[12,13].  All calculations were, as in conventional network calculations, 

based on steady-state conditions or based on the assumption that no changes with 

time occur. 

The U.S. Bureau of Mines and Michigan Technological University first 

solved this problem with steady-state analysis, and the resulting program became 

known as the MTU/BOM code.  Because the mine fire process is dynamic in 

nature, work on the transient-state modeling problem continued. The resulting 

program, MFIRE[16], accommodates dynamic state modeling of the fire[14].  

MFIRE version 2.20[16], which was finished in 1995, includes calculations 

based on mass flow rates, natural ventilation, sp l i ne or least squares fan curve 

fitting and boundary fixing, air reversal and r ecir culation calculations.  

Condensation and evaporation in the mass flow and heat exchange calculations 

was removed from MFIRE 2.20 but will hopefully be incorporated in a later 

version.  The program is useful for the analysis of ventilation networks under the 

influence of natural ventilation, fans, fires, or any combination of these.  MFIRE 

simulates a mine's ventilation system and its response to altered ventilation 

parameters such as the development of new mine workings or changes in 

ventilation control structures, external influences, and internal influences.  

Extensive output enables detailed, quantitative analysis that the alteration will 

cause in the ventilation system. 

 

2.2 The History Leading up to MFIRE Development 

 
Ventilation network calculations have been performed for several 

centuries[15]. Due to mathematical difficulties caused by diagonal airways, the 
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preferred method of practitioners was a trial and error approach in which junction 

and mesh equations were made compatible.  Since the beginning of this century, 

airflow and pressure loss distributions in a large number of more frequently 

occurring subnetworks were analytically and graphically determined.  These were 

the subjects of numerous publications and were of considerable help to 

practitioners[3,4,5,6,8,9]. 

Trial and error methods, which can be surprisingly eff icient in one case, can 

become frustratingly ineff icient in another.  A large number of methods of 

successive approximation were consequently developed.  Atkinson's solution in 

1854 for a single diagonal airway and Cross's method because of its general 

applicability and simplicity became the widest known examples[3,4].  Some of 

these methods were based on the linearization of the quadratic resistance equation 

and used in electric analog computers.  Practically all of the methods were tested 

for their util ity with digital computers when these became available. 

The forerunners of analog computers were fluid flow models.  They were 

used in several countries but never found wide application.  The similarity 

between node and mesh equations in ventilation networks with Kirchoff's laws of 

electrical networks made the electrical models persuasive.  The first patent for an 

electric analog computer for water and gas networks was awarded in 1941 in 

Germany.  This computer used fi lament bulb resistance to model the second power 

resistance function in the network calculations[8,9].   

The idea was taken up or independently discovered in several countries, but 

the limited working range of commercially-available filament bulbs made them 

inflexible and the number installed remained small.  Development of a specially- 

constructed low voltage lamp in the United States overcame this obstacle and in 

1954 a "network analyzer" was installed at the U.S. Bureau of Mines, after six 

earlier installations had shown their usefulness with waterworks[14].  

In 1951-52, the University of Nottingham (UK) pioneered the idea to 

combine an electrical network simulation of the nodes and mesh equations of 
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ventilation networks with a manual approximation method for the resistance 

equation.  This led to the design of the commercially available "National Coal 

Board Network Analyzer", which found a wide distribution[14].  Home-buil t 

models and modifications, using different approximation methods for the 

resistance equation, were used in almost all mining countries.  At some places 

ancil laries for adjustment steps without calculations were introduced. 

An electromechanical analog computer, in which the approximation of the 

resistance equation was automatically performed, was first developed in 1950 at a 

German coal mine.  It became commercially available in 1952.  Thirteen of these 

computers were installed in German coal mines and a larger number were installed 

abroad and for gas and water companies.  In 1959, electronic function generators 

for the simulation of the resistance equation were introduced in Japan; in 1960 the 

German manufacturer adopted this principle, also.  In 1964, a British model 

became commercially available and may be the only one stil l on the market.  In 

1962, the French coal mines buil t an electronic model which has been used for 

several decades[11]. 

Fully automatic analog computers for ventilation network calculations are 

excellent planning tools.  Their handicap is that they are single purpose machines.  

All-purpose digital computers became commercially available in the late 1950's 

and predictably replaced the majority of the analog computers. 

The literature reports that the first network calculations with digital 

computers were performed for waterworks in the United States in 1957[10].  The 

first digital ventilation network calculations were reported in Belgium in 1958 and 

in Germany in 1959.  Following the lead of gas and water companies, efforts to 

replace the expensive analog computers with digital computers began in Germany 

in 1958.  The replacement progressed quite rapidly since many of the analog 

computer users were cooperating with this effort.  The literature reports that the 

same coal company that had pioneered the use of electromechanical analog 

computers performed almost all of their network calculations on digital computers 
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by the end of 1959.  By the end of 1969 the majority of analog computer users, 

representing 80 % of the German coal production, had switched to digital 

computers[10,11]. 

Since the first attempts with the Cross method of balancing pressure losses 

gave poor convergence most other known approximation methods were initially 

attempted.  These were dropped when it was found that you could overcome the 

convergence problem by assembling meshes in such a way that airways with high 

resistance factors (or even better, with high products of airflow rates and 

resistance factors) occurred in as few meshes as possible.  The mesh assembly was 

done in a systematic way by arranging a tree in a sequence from tree tip to root, 

which allows the computer to elect correct movements when assembling the 

meshes[4,5].  

From 1961 on, it became customary to include natural ventilation obtained 

from information on temperatures and elevations in every mesh.  Fixed quantity 

airways had always been a feature of analog computers and were included in the 

earliest applications of digital computers.  Fan characteristics were treated in 

different ways as storage allowed.  A FORTRAN version of a type of standard 

program became a part of the IBM program library in 1966; in 1967 it was 

adopted by the British National Coal Board for ventilation planning purposes at its 

divisional computer centers.  It has been used for instructional purposes at 

Michigan Technological University (MTU) since 1967.  Although many 

enhancements and attempts at improvements were made, it is basically still in its 

original form and is the core of the MFIRE program[2,3]. 

As the availability of digital computers increased, the number of users 

doing creative work in ventilation planning increased tremendously.  Due to 

personal, societal, or company restraints, much work went unreported.  However, 

by analyzing available published literature, it is clear that continental European 

ventilation engineers cooperated closely.  An advanced program capable of 

performing high-speed calculations for large networks was in use in France in 
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1961.  A storage saving program based on the Cross method of flow rate balancing 

was introduced in 1967.  In Japan network calculations with digital computers 

started in 1961.  Convergence-improving mesh assemblies were reported in 1969.  

In Russia, first attempts with digital computers were made in 1963.  In 1965 and 

1967, reports on different approximation methods were published.  In Great 

Britain, the first network calculations with the meshes assembled manually were 

reported in 1964.  A program with automatic mesh assembly was described in 

1965.  In the United States, the first program to prove the usefulness of digital 

computers was described in 1963; an improved version allowing the inclusion of 

fan characteristics was reported in 1964.  Both programs still required the manual 

assembly of meshes[12,13]. 

In 1967, a much more sophisticated program with mesh assembly and 

assignment of initial airflow rates performed by the computer was reported and in 

1970 a new version of the program which accommodated fixed quantity airways 

was described[9]. 

Over the past two decades efforts focused on: (1) replacing the Cross 

method with more efficient approximation methods, (2) combining network 

calculation for optimization purposes with operations research approaches, (3) 

making the programs more user friendly in particular by using interactive graphics, 

(4) combining network calculations with temperature and concentration 

calculations, and (5) extending network calculations to transient state 

conditions[2]. 

The first objective has been a continual goal since the first days of digital 

computer use.  So far, all results seem to confirm that the Cross method for 

networks of ordinary size and complexity is as good or better than other methods. 

The second objective is a very valid one since network calculations are only a 

means to an end.  The third objective is probably the most important one[8]. 

The non-steady-state behavior of ventilation systems has attracted research 

in connection with control problems since the 1950's.  Studies concentrated upon 
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the effects of explosions, gas outbursts, and other mechanical disturbances[10].  A 

publication describing the use of digital computers for this purpose originated in 

Poland in 1972[9] and another one using analog computers was published in 

Yugoslavia in 1984[13]. 

Efforts to combine ventilation network calculations with the precalculation 

of temperatures and humidity started in Japan in 1969.  An early program that 

included temperatures, humidity, methane and dust concentrations, plus a transient 

state methane simulator originated at the University of Pittsburgh in 1972.  In 

1975, at the First International Mine Ventilation Congress, reports on four 

programs from the United States and Great Britain for combined network, 

temperatures and humidity calculations were given.  At the Third Congress in 

1984, a program for temperature, humidity, and radon concentrations was 

introduced from Australia[13]. 

Litigation connected with the Sunshine mine fire in the mid-1970's showed 

that existing programs could only partially simulate the interaction of mine fires 

and ventilation systems.  Although manual non-steady-state temperature 

precalculations had become a common feature and steady-state fume 

concentrations were easy to add as long as no recirculation occurred, manual 

insertions of thermal draft, and throttling effects proved to be cumbersome and the 

handling of recirculation to be impossible[2]. 

This led to the development of a new program at MTU in 1975 and 1976.  

The goals of this program were to determine the equil ibrium between fires and 

ventilation systems in steady- state conditions at any given time.  The crucial heat 

exchange between rock and air were calculated under non-steady-state conditions.  

The program was based on mass flow rates and considered natural ventilation in 

all meshes and throttling effects in all airways.  Airflow reversal and fume 

recirculation were also calculated.  This program, sometimes referred to as the 

MTU/BOM code, was the primary building block of MFIRE[16]. 
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3. Differences between FORTRAN and C++ Code 
 

3.1 Data Types 

 
In FORTRAN, there are three basic data types, IN TEGER, REAL, and 

CHARACTER. They are corresponding to the int , fl oat , and ch ar  data types 

in C++. The I NTEGER and REAL variables need not to be defined and can be 

used directly. Any variable begins with letter I - N is an integer variable. Others 

are REAL variables. In our code transition, we define all the variables begin with 

I - N as int . Others are defined as doub l e. 

FORTRAN and C++ both support arrays. The subscripts of FORTRAN 

arrays begin at 1 while C++ arrays begin at 0. For simplification of our transition 

and avoiding artificial errors, we define arrays in C++ one element larger than the 

arrays in FORTRAN and do not use the element subscribed with 0. Thus the 

subscripts are the same in FORTRAN and C++. 

 

 

3.2 Input and Output 

 

FORTRAN uses READ statements to input data from console and data file; 

and uses WRI TE statements to output information to console and output fi le. 

FORTRAN reserves unit 5 for console input and unit 6 for console output. Data 

files and output files are opened with OPEN statements and are associated with a 

unit number at the time of open. The opened files are good for input and output at 

the same time. But you should be careful if you consider doing both input and 

output operations against a same file. 

FORTRAN inputs and outputs are formatted. Incorrect format of input data 

will result in errors. List directed inputs and outputs are acceptable and should be 
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assigned at time of code design. List directed console input and output converts 

data to ASCII or from ASCII automatically. File input and output in list directed 

form are treated in binary code to save disc space and accelerate the computation 

time. The binary form of data can be read only by FORTRAN code.  OPEN, 

REWI ND, BACKSPACE, ENDFI LE, and CLOSE statements are available for fi le 

operations. 

C++ generally uses i ost r eam instances to handle input and output 

operations. Two instances ci n and cout  are reserved for console input and 

output. File input and output are handled by user-defined instances of if st r eam 

and of str eam classes. C++ input and output are unformatted. Specific formats 

are manipulated with i ost r eanm manipulators, such as set w(n), 

se t pr eci si ons(n). By default, C++ io stre ams communicate with a file in 

ASCII mode.  

Since the data formats are different, it is diff icult to communicate between 

C++ code and FORTRAN code thought the use of intermediate data fi le. Direct 

function calls between C++ code and FORTRAN code are also difficult and 

troublesome. And since we wanted to modify the code, it was necessary to convert 

the existing FORTRAN code to C++. 

 

 

3.3 SUBROUTI NES and functio ns 

 

FORTRAN SUBROUTI NES and FUNCTIONS are corresponding to the 

functions in C++. FORTRAN SUBROUTIN ES are functions that do not return 

values and are corresponding voi d functions in C++. By default, the parameters 

of FORTRAN SUBROUTI NES and FUNCTI ONS are passed by reference. If a 

SUBROUTI NE or FUNCTI ON is called with (a) value parameter(s), the 

parameter(s) is/are temporarily passed by value. By default, every variable that 
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appears in a FORTRAN SUBROUTI NE or FUNCTI ON is a local variable, and 

every local variable is static. This means that the value of a local variable is 

retained between SUBROUTI NE and/or FUNCTI ON calls. There are no “global” 

variables in FORTRAN. FORTRAN uses COMMON statements to allow variables 

in different FUNCTI ONS and SUBROUTI NES to share the same memory space. 

Since COMMON variables in different SUBROUTI NES and FUNCTI ONS occupy 

the same memory space, the variables can be considered as global variables.  

In our code transition, we initially allowed all the parameters to be passed 

by reference. Since in C++, a constant parameter can not be passed by reference, 

we need to fix parameters that have to be passed by value. The situation was 

picked out at compilation time. All variables declared in the COMMON statements 

are declared as global variables. Others are declared as local variables. It is not 

necessary to declare all the local variables to be st at i c . We had to fix a few of 

the variable at debugging time. In our code conversion, we found only a few 

variables that needed to be declared as stat i c  variables.  

 

 

3.4 Arithmetic Operators 

 

In FORTRAN and C++, the arithmetic operators (+, - , * , /) are the same 

and have the same precedence order. FORTRAN has an exponentiation operator 

(** ). C++ has no corresponding operator. We chose to use a standard function 

pow(double, double) instead.  

 

 

3.5 Relational Operators 

 

The relational operators are different between FORTRAN and C++. There 
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is a simple correspondence, or mapping, from one language to the other and the 

operators have the same precedence order. Table 1 gives the operators: 

 
 

3.6 Flow of Control 

 

The flow control statements of FORTRAN and C++ are quite different. The 

basic flow control statements that appeared in MFIRE are given in Figure 1.  

 

 

 

The I F( ) … and I F( ) THEN…ELSE…ENDI F statements are corresponding 

to the i f …else… statements in C++. The DO…CONTI NUE statements are 

equivalent to the f or  loops. Code relating to these simple structures is easily 

converted.  

Table 1:  The relational operators in FORTRAN and C++ 
 

FORTRAN C++ 
.EQ.  == 
.NE.  !=  
.LT.  < 
.LE.  <= 
.GT.  > 
.GE.  >= 

.NOT.  !  
. OR. ||  

.AND.  && 
 

IF() …   
IF() THEN … ELSE … ENDIF  
DO … CONTINUE 
GOTO statements 

Figure 1: Flow control statements in MFIRE 
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We had a lot of trouble with the GOTO statements in FORTRAN. The 

got o statement is also available in C++, but it is rarely seen in C++ programs 

because the following features are available (Figure 2).  

 

 

In our code transition, we use whi l e loops and do  … whi l e loops and 

combined them with the statements in Figure 2 to handle all the GOTO statements 

in the FORTRAN code. We will discuss the transition of GOTO statements in next 

section. 

 

 

4. The Code Transition 
 

  

MFIRE consists of three pieces of code, Mfire 0. f or , Mf ire 1. f or  

and Mf i r e2. f or . This work is restricted in the first half of MFIRE, e.g. the 

code conversion of Mfir e0.for  and Mfir e1.for .  

Mfi r e0. f or  has just a few lines of code and has no complicated flow 

control structures. The conversion of code for this part has been discussed in the 

previous section. Mfi r e1. f or  has over 5000 lines of code and there are many 

SUBROUTI NES and GOTO statements. The following subsections will discuss the 

conversion of the SUBROUTINES and GOTO statements. 

 

ex it          A function that causes immediate program termination. 

r etu r n     A statement that terminates the execution of a function. 

br eak        A statement that terminates execution of a loop or switch statement. 

cont i nue   A statement that causes an immediate branch to the loop test. 

Figure 2: Flow control statements in C++ 
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4.1 The SUBROUTI NE Structure 

 

There are total 25 SUBROUTI NES in Mfi re1 . f or . They are called by 

the main program and other SUBROUTI NES. The subroutine call relationship is 

given in Table 2(p.15). There are only simple calls, no recursive calls. 

In conversion, the SUBROUTI NES were converted to voi d functions in 

C++. The main program was converted to the mai n function. The DATA B LOCK 

was converted to a header fi le (va r . h) where all the global variables are declared 

and initialized.  

 

 

4.2 Regrouping Code into a Function 

 

This section focuses on a common code structure we found in MFIRE. A 

flow chart for this structure is shown in Figure 3 (p.16). In our conversion, one 

function was broken down into two functions. Since the rear part of the function is 

executed by every branch of the code, the rear part is regrouped as a function. 

When the condition is true, the new function is called and returned. 

Figure 5 (p.17) provides a sample piece of the FORTRAN code that was 

extracted from Mfire1 . f or . In this code segment, there are many GOTO 300 

statements. The label 300  is at the end of the program. We regrouped the code 

between label 300  and label 350  as a new function. 

The converted C++ code is listed in Figure 7 (p.18). The code between 

label 300  and label 350  is regrouped as a new function. Every GOTO 300 

statement is converted to a function call to this new function. 

(m_go_to_300( marky, n s top, opt i on, md1 , j, kv) ). 
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Table 2: The subroutines and their relationship in Mfir e1.for  
 

main calls Subs They call
ARR ---
BASE ---

CCDATA READIN
CDCH READIN

CDENDS KALPHA
CDJUNC ---
CH4EVA ---
CHECK1 ---

LSFAN
CHSFIT

SPLINE
FWCT ---
INPUT READIN

ARR
BASE

LSFAN
MBLNC

ITR
MSLIST
NVP1
NVP2

SPLINE
MBLNC ---
MSLIST ---
NVP1 ---

SPLINE
OUTPUT

LSFAN
RECIRC CDJUNC
RGLT ---
PREP ---

TEVAL ---
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Figure 3: Regroup to a new subroutine or function (Flow Chart ) 
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……………… 
      CAL L IN PUT ( 1,N STOP, MARKY,MAXNO, KV)  
      IF  ( NSTOP.GT.0) GO TO 300  
      CAL L CHECK1 (NS TOP,MAXNO,KV )  
      IF  ( NSTOP.GT.0) GO TO 300  
      IF  (NE TW.NE.1) THE N 
         CALL INP UT ( 2,NSTOP,MARKY,MAXNO,KV)  
         I F ( NSTOP.GT. 0) GO TO 300  
      ENDI F 
……………………… 
 
      CAL L IN PUT ( 3,N STOP, MARKY,MAXNO, KV)  
      IF  ( NSTOP.GT.0) GO TO 300  
      CAL L CCDATA (MA RKY, NSTOP)  
      IF  ( NSTOP.GT.0) GO TO 3 00 
      IF  ( MARKY.E Q.1) THE N 
         CALL CDCH (N STOP)  
         I F ( NSTOP.GT. 0) GO TO 300  
      ENDI F 
……………………… 
C 
      IF  ( NETW.GE. 1.O R.NT EMP.GE.1 ) GO TO 300  
      IF  ( OPTI ON.EQ.' CONTI NUE' ) G O TO 350  
……………………… 
C 
C 
300   IF  (MA RKY. LE.0 ) THEN 
……………………… 
 
350   STOP 
 

Figure 5: FORTRAN code to be regrouped as new function 
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……………… 
  inp ut ( 1,ns t op, mark y ,maxno, kv);  
  if  ( nst op >  0)  
     m_go_to_ 300( mark y ,ns t op, opti on,md1,j , kv) ;  

  che ck1 ( nst op,maxno , kv) ;  
  if  ( nst op >  0)  
       m_go_ t o_300(marky , nst op,o ptio n,md1,j, kv);  
  ass ert( netw !=  1);  
  if  ( net w != 1)  {  
    i nput (2, nsto p,mar ky, maxn o,kv ) ;  
    i f (n s top >  0 )  
         m_go_to_ 300( mark y ,ns t op, opti on,md1,j , kv) ;  
  }  

 
……………… 
  inp ut ( 3,ns t op, mark y ,maxno, kv);  
  if  ( nst op >  0)  
      m_g o_to _300( marky,n s top , opt i on, md1, j ,kv ) ;  
  ccd ata ( marky,n s top ) ;  
  if  ( nst op >  0)  
     m_go_to_ 300( mark y ,ns t op, opti on,md1,j , kv) ;  
  if  ( marky = = 1)  
    c dch ( nst op);  
  if  ( nst op >  0)  
     m_go_to_ 300( mark y ,ns t op, opti on,md1,j , kv) ;  
   
……………………… 
  if  ( net w >= 1 | | n t emp >=  1)  

m_go_ t o_300(marky , nst op,o ptio n,md1,j, kv);  
 
 
……………………… 
 
void m_go_to_ 300( i nt &marky,i nt& nsto p,  

             char * opt i on, char * md1,  
        int &j, i nt& kv){  
  int i=0 , nnb=0,n nj=0 , nnf num=0,k= 0,l= 0;  
……………………… 
 
}  
 

Figure 7: C++ code converted from FORTRAN code in Figure 5. 



 

19 

 
4.3 Modify the IF  statements 

 

There were several pieces of code made up with IF  statements that were 

structured in the flow chart shown in Figure 9, code2 is executed when the 

condition is false. So, we reversed the if  condition and include the code2 in the 

new if  block. 

 

 

 

Figure 10 is a code segment from Mfi r e1.f or .   Figure 12 (p.20) is the 

corresponding C++ code after conversion. 

 

 

 

Figure 9: To revise the if  statement (Flow chart) 

I F (MARKY. EQ.1) G O TO 100  
NSTOP1=0 

       CALL CHSFIT ( NSTOP1)  
100    I TCT=0 
       IF  (IO UT.L E.( - 1) .AND.MARKY. LE.0 )  

Figure 10: To be revised IF statement (FORTRAN) 
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4.4 Restructuring GOTO Statement into a Loop 

 

There were several sections of code where there was a label before a block 

of code and an I F statement after it. If the condition checked by the IF  statement 

was true, the GOTO statement would transfer control to the label before the block 

of code. We restructured this as a do … whi le  loop. The loop body is from the 

label to the IF  statement. The loop body is to be executed at least once. Figure 15 

(p.21) provides some sample code (from the function out put ) for this case. 

Figure 17 (p.22) is the corresponding C++ code after conversion. 

 

  if  ( marky ! = 1) {  
    n s top 1=0;  
    c hsfi t (n s top 1);  
  }  
  itc t =0;  
     i f (i out <=  ( - 1) && mar ky <= 0 )  

Figure 12: Revised IF statement (C++ code after conversion) 

 

Figure 9: Regroup as a new do … while  loop (Flow chart) 
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            IZ =0 
            LL=0 
1530        II =0 
            DO 1540 I =1, NB 
               IF (NO ( I) . GT. 0) THE N 
                  IF  ( TQR(I) . GT. TSR.O R.II . EQ. 0) TH EN 
                     TSR=TQR(I )  
                     I I= I  
                  ENDI F 
               ENDIF  
1540        CONTI NUE 
            IF (I I .EQ. 0) GO TO 159 0 
            IF (L L.GT . 0) TH EN 
               KK=0 
               DO 155 0 J=1, LL 
                  K=LST( J )  
                  IF ( TQR(I I ). GT.T QR( K)) KK= KK+1 
1550           CONTIN UE 
               I F ( KK. GE. ( LL- 2) . AND. TQR( I I) . GT.2 0. 0) GO TO 15 60 
               GO TO 1590 
            ENDIF  
1560        LL=LL+1 
            LST( LL) =II  
            NO( II ) =- NO(I I )  
            JSS=JS(II )  
            JFF=JF(II )  
1570        DO 1580 I =1, NB 
               IF (NO ( I) . GT. 0) THE N 
                  I F( ( JS( I ) . EQ. JSS. OR. JF( I ) . EQ. JSS. OR. JS( I ) . EQ.J FF. OR.  

     .               JF( I) . EQ. JFF). AND. (T QR( I ). GT. 20. 0)) TH EN 
                     LL=LL+1 
                     LST( LL) =I  
                     NO(I )= - NO(I )  
                     I F ( JS( I) . EQ.JSS) THEN 
                        JSS=JF( I)  
                     ELSE I F ( JF(I ) .E Q.J SS) THEN 
                        JSS=JS( I )  
                     ELSE I F ( JS(I ) .E Q.J FF) THEN 
                        JFF=JF( I)  
                     ELSE 
                        JFF=JS( I)  
                     ENDI F 
                     GO TO 1570 
                  ENDI F 
               ENDIF  
1580        CONTI NUE 
            IZ =IZ +1 
            IF (I Z.LE . 3) GO TO 1530 
1590        CRT1=0.0  

Figure 15: FORTRAN code to be regrouped as do … while  loop 
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 do {  
 i i =0;  
 f or (  i=1 ; i<= nb;i ++)  
   if  ( no[ i ] >  0)   
     i f (t qr[i ] > t sr | | i i == 0)  {  
       tsr =tqr [ i];  
       ii= i ;  
     }   
 i f (i i ==0) br eak; / /go _to_ 1590 ;  
 i f (l l > 0) {  
   kk= 0;  
   for (  j =1;j <=ll ; j++ ) {  
     k =lst [ j];  
     i f (t qr[i i ] >  tqr [ k]) kk= kk+1 ;  
   }  
   if  ( kk < (l l - 2) || tqr [ ii] <  2 0.0) bre ak;  
 }  
 l l =ll +1;  
 l s t[l l ]=i i ;  
 no[ii ] =- no[ii ] ;  
 j ss=j s [ii ] ;  
 j f f=j f [ii ] ;  
 f or (  i=1 ; i<= nb;i ++){  
   if  ( no[ i ] >  0)  {  
     i f (( j s[i ] == jss ||  j f[i ] == jss ||  

            j s [i] ==  j ff | |  
         jf [ i] == j f f) && ( t qr[ i ] >  20. 0)) {  
       ll= l l+1 ;  
       lst [ l l ] =i;  
       no[ i ]= - no[i] ;  
       if  ( js[ i ] = = js s ) {  
       j ss= j f[i ] ;  
       }el se  i f ( j f[i ] == jss ) {  
       j ss= j s[i ] ;  
       }el se  i f ( j s[i ] == jff ) {  
        j f f=j f [i] ;  
       }el se{  
         j f f=j s [i] ;  
       }  
       i= - 1; con t inu e;// go_t o_1570;  
     }  
  }  
    }  
    i z=iz +1;  
 } whi le ( iz <= 3 ) ;//  go_t o_1530;  
 c rt 1=0. 0;  

Figure 17: Regrouped as do … while  loop (C++ code) 
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The flow chart in Figure 12 (p.24) presents a more complicated situation, 

since there is more than one GOTO statement that redirects the code back to a 

previous position. In this case, the GOTO statement structure is regrouped as 

another type of loop. We used an additional variable to control the loop. If the 

loop needs to be continued, set the variable to 1, otherwise set it to 0. The GOTO 

statements are replaced with a control variable set statement and a conti nue 

statement. 

Figure 14 (p.25) gives some sample code (from the function ccda t a) for 

this case. There are two GOTO 10  statements. The code is converted to a whi l e 

loop. A new i nt  variable (i 10) is introduced. This variable is set to 1 before 

entrance into the loop. After the loop begins, the variable is set to 0. The first 

GOTO 10 statement is replaced with i 10=1;  and co nt i nue;  the second is 

replaced with i10= 1; (see Figure 16, p.25). 

 

 
 

4.5 Use beak  or continu e Instead of GOTO Statements in a Loop 

 

Another common situation we encountered is where GOTO statements are 

in the middle of a loop to force the loop to end or to continue on the next iteration. 

We used conti nue  or br eak  statements at this situation, depending upon 

which was desired. 

Figure 18 is a flow chart where a GOTO statement forced the end of current 

iteration. Figure 19 (p.26) presents some sample code (from ch4eva  function) for 

this case where  we  used  conti nue   statements   instead  of  GOTO   statements.   

Figure 21 (p.27) is the corresponding C++ code after conversion. 
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Figure 12: Regrouped to whil e loop (Flow Chart)
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10       CAL L READIN (DA L,6, I STOP,0)  
         I F ( I STOP.EQ. 1) THEN 
            W RITE (8, 240)  
            W RITE (8, 250) (RO W(IE ) ,IE =1,8 0)  
            N STOP=5 
            R ETURN 
         ENDIF 
         I F ( MARKY.EQ. 0) WRIT E ( 6, 260 )  
         I F ( DAL( 15). LT.( - 1. E20) ) GO TO 10  
         I F ( NCOMTS.GT.NCOMT2) THEN 
            N COMT2=NCOMTS 
            GO TO 10  
         ENDIF  

Figure 14: Regroups to whil e loop (FORTRAN code) 

i 10=1;  
while ( i10 ) {  
    i 10=0;  
    r eadi n (d al,6 , ist op,0 ) ;  
    i f (i s top ==  1) {  
      ass ert( 0);  
      of8 <<st r 240 ;  
      of8 <<st r 250 ;  
      for ( ie= 1;ie <=80; ie+ +)of 8<<r ow[i e];  
      nst op=5;  
      ret urn;  
    }  
    i f (marky ==  0) c out <<st r 260 ;  
    i f (d al[1 5] <  ( - 1. e20 ) ){  
      i1 0=1;  
      con t inu e;  
    }  
    i f (n comts > ncomt 2) {  
      nco mt2= ncomt s;  
      i10 =1;  
    }  
}  

Figure 16: Regrouped to whil e loop (C++ code). 
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Figure 18: To be replaced by cont i nue  (Flow chart) 

 
      DO 40 I= 1, NB 
         I F (C H4V(I ) . GT. 0.0 ) GO T O 40 
         CH4V( I ) =CH4PA(I ) *L A( I )* O( I )  
         I F (C H4V(I ) . GT. 0.0 ) GO T O 40 
         M=0 
         N=0 
         DO 30 L =1, NJ 
            IF ( JS( I ) . EQ. JNO( L)) T HEN 
               CH4S=CH4C( L)  
               M=1 
            ENDI F 
            IF ( JF( I ) . EQ. JNO( L)) T HEN 
               CH4F=CH4C( L)  
               N=1 
            ENDI F 
            IF ( M+N. GT.1 ) THEN 
               I F ( CH4F. GT. CH4S. AND.Q ( I) . GT.0 . 0) THEN 
                  ………… 
               ENDI F 
               GO TO 4 0 
            ENDI F 
30       CONTI NUE 
40    CONTI NUE 

Figure 19: To be replaced by cont i nue  statement (FORTRAN code) 
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Figure 23 (p.28) is a flow chart of the other case that shows the GOTO 

statement forces the end of a loop. Figure 25 (p.28) presents some sample code 

(from arr  function) for the case where a break  statement is used. Figure 27 

(p.29) is the corresponding C++ code after conversion. 

  for (  i =1;i <=nb; i++ ) {  
    i f (c h4v[ i ] >  0.0 ) conti nue;  
    c h4v[ i ]=c h4pa [ i ] * la[ i ]*o [ i];  
    i f (c h4v[ i ] >  0.0 ) conti nue;  
    m =0;  
    n =0;  
    f or (  l=1 ; l<= nj;l ++){  
      if  ( js[ i ] = = jn o[l] ) {  
 ch4s= ch4c [ l];  
 m=1;  
      }  
      if  ( jf[ i ] = = jn o[l] ) {  
 ch4f= ch4c [ l];  
 n=1;  
      }  
      if  ( m+n >  1 ) {  
 i f (c h4f > ch 4s & & q[ i ] >  0 . 0) {  
   ………… 
 }  
 br eak ;  
      }  
    }  
  }  

Figure 21: Replaced with cont i nue  statement (C++ code) 
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Figure 23: Replaced with brea k  statement (Flow Chart) 

 

            D O 50 J=1 , NB 
               IF  (NC ENT( I ).E Q.NO( J)) THE N 
                  NWTYP(J ) =10 
                  GO TO 60  
               ENDIF  
50 CONTI NUE 
60      ………………… 

Figure 25: To be Replaced with brea k  statement (FORTRAN code) 
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4.6 GOTO Statements in Nested Loops 

 

If the GOTO statement jumps within a loop, it is the same as in the last 

subsection. Here we discuss two-layer nesting. We discuss the case that the inner 

loop ends and forces the outer loop to the next iteration. In this case, there are two 

different situations. There is or is not additional code between the end of the inner 

loop and the end of outer loop. If there is not, just replace the GOTO statement with 

a br eak  statement. If there is, we added an addition if  clause and a conti nue 

statement immediately after the inner loop. 

Figure 29 (p.30) is a flow chart in the case that the GOTO statement jumps 

the code from the inner loop to the outer loop and there is no code between the end 

of the inner loop the end of the outer loop. Figure 31 (p.31) presents some sample 

code (from arr  function) for the case. Figure 33 (p.31) is the C++ code after 

conversion one brea k  statement is used. 

Figure 35 (p.32) is the other situation where there is some code between 

end of the inner loop and the end of outer loop. Figure 37 (p.33) is the sample 

FORTRAN code in this case. Figure 39 (p.33) is the converted C++ code. In this 

case, the GOTO statement is replaced by a br eak  statement to exit the inner loop. 

Since there are some code after the inner loop, an if  clause is used after the end 

 f or ( j= 1;j< =nb; j ++)  
 i f (n cent [ i] == n o[j] ) {  
   nwt yp[j ] =10;  
   br eak ;  
 }  

Figure 27: Replaced with brea k  statement (C++ code) 
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of the inner loop. If the inner loop is ended abnormally, contin ue statement 

need to be executed to force the outer loop to the next iteration. 

 

 
 

 

 

Figure 29: Nested loops case I (Flow chart) 
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4.7 The Combinations of Situations 

 

In Mfi r e1. f or , there are several cases where exist multiple situations 

discussed above. In this case, we need to be very careful with the code conversion. 

We can easily make an error with complicated GOTO statement structures. We 

need to regroup GOTO statement into a new do … whi l e or whi l e loops, 

change GOTO statements to cont i nue or brea k  statements, and/or add 

additional if  clauses. Each different structure has a different solution.  

Figure 41 (p.34) presents a sample flow chart where GOTO statement is 

difficult to be regrouped. Figure 43 (p.35) presents some sample code from 

function i tr . There are many GOTO statements.  Figure 45 (p.36) is the 

         DO 6 0 I= 1,IN FLOW 
            D O 50 J=1 , NB 
               IF  ( NCENT( I). EQ.NO(J) ) THEN 
                  NWTYP(J ) =10 
                  GO TO 6 0 
               ENDIF  
50          C ONTI NUE 
60 CONTI NUE 

Figure 31: Nested loop case I (FORTRAN code) 

 f or ( i= 1;i< =inf l ow; i ++) {  
   fo r ( j =1; j <=nb;j+ +)  
 i f (n cent [ i] == n o[j] ) {  
   nwt yp[j ] =10;  
   bre ak;  
 }  
    }  

Figure 33: Nested loops case I (C++ code) 
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converted C++ code. We converted GOTO 5  and GOTO 10 into two loops using 

the technique described above. Other GOTO statements are converted to br eak  or 

co nt i nue statement. Since the structure is complicated, we spent a lot of time to 

get the correct code conversion. 

 

 

 

Figure 35: Nested loops Case II (Flow chart) 
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      DO 10 K =1,N B 
         I F ( NWTYP(K) . LT. 0) T HEN 
            I NU(NBU)= K 
            N BU=NBU- 1 
         ELSE IF  ( NWTYP(K) .EQ. 0.O R.NWTYP(K).E Q.10 ) THEN 
            R Q(K) =ABS( R(K) * Q( K))  
            N WTYP( K)= 2 
         ELSE 
            I F (N FNUM. GT.0) T HEN 
               DO 5  J =1,N FNUM 
                 I F( NOF(J ) .E Q. NO(K) . AND. NWTYP( K) . EQ. 1) GO TO 10 
5              CONTIN UE 
            E NDIF  
            I NU(NBL)= K 
            N BL=NBL+1 
         ENDIF 
10    CONTI NUE 

Figure 37: Nested loops Case II (FORTRAN code) 

 

  for (  k =1; k<=nb;k+ +){  
    i f (n wtyp [ k] < 0) {  
      inu [ nbu ] =k;  
      nbu =nbu- 1;  
    } else if  ( nwt yp[k ] == 0  | | nwt yp[ k ] = = 10) {  
      rq[ k ]=f abs( r[k ] *q[ k ]);  
      nwt yp[k ] =2;  
    } else {  
      if  ( nfn um > 0){  
 f or (  j=1 ; j<= nfnu m;j+ +)  
   if  ( nof [ j] == n o[k] &&  nwty p[k] ==  1) br eak ;  
   if( j <=nf num) con t inu e;  
      }  
      inu [ nbl ] =k;  
      nbl =nbl +1;  
    }  
  }  

Figure 39: Nested loops Case II (C++ code) 
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Figure 41:  Complicated GOTO structure. A sample flow chart 
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5     I T=0 
10    DQSUM=0.  
      MBEGW=1 
      DO 5 0 K =1, MNO      
         ……… 
         I F ( NWTYP( N) . EQ. ( - 1) ) T HEN 
            MBEGW=MENDW+1 
            GO T O 5 0 
         ENDI F 
         DO 3 0 J=MBEGW, MENDW 
            ……… 
            I F(NWTYP( N) . EQ. 1) THEN 
               I F ( NFNUM. GT. 0) THEN 
                  DO 20 L=1, NFNUM 
                     I F ( NFREG(L) . EQ. N) T HEN 
                        RQSUM=RQSUM- ( RGRAD( L) * 100000)  
                        GO T O 2 5 
                     ENDI F 
20                CONTI NUE 
               ENDI F 
25             I F ( I ABS( JS( N) ) . NE. JSB( N) ) F ACT=- FACT 
               DPSUM=DPSUM- FACT* R( N)  
            ELSE 
               ……… 
            ENDI F 
30       CONTI NUE 
         ……… 
         ……… 
50    CONTI NUE 
C 
      DO 1 00 K I= 1, NB 
         I F ( NWTYP( KI ) . EQ. 1. AND. NFNUM. GT. 0) TH EN 
            DO 90 J =1, NFNUM 
               I F ( NOF( J) . EQ. NO( KI ) ) T HEN 
                  ……… 
                  ELSE 
                     NABF=JS( KI )  
                     DO 7 0 L =1, NJ 
                        I F ( NABF. EQ. JNO( L) ) TH EN 
                           TABF=T( L)  
                           GO T O 8 0 
                        ENDI F 
70                   CONTI NUE 
                  ENDI F 
80               IF ( NEGQ( J) . EQ. 0) T HEN 
                     ……… 
                     GO T O 1 00 
                  ELSE 
                     ……… 
                  ENDI F 
               ENDI F 
90          CONTI NUE 
         ENDI F 
100   CONTI NUE 
……… 
         I F ( I T. LE. 1) T HEN 
            GO T O 1 0 
         ELSE IF ( ( DQSUM/ FLOAT( MNO) ) . LT. 10. ) THEN 
            RETURN 
         ELSE  
            ………… 
            GO T O 5  
         ENDI F 
      GO T O 1 0 
 

Figure 43: A complicated code conversion (FORTRAN). FORTRAN 
code from ITR SUBROUTINE. There are many 
complicated GOTO structures. For saving space, structure 
unrelated statements are omitted. 
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  i 5=1; whi l e( i 5) {  
    i t =0;  
    i 10=1; whi l e( i 10) {  
      ……… 
      f or ( k =1; k<=mno; k ++) {  
 ……… 
 i f ( nwt yp[ n] = = ( - 1) ) {  
   mbegw=mendw+1;  
   cont i nue;  
 }  
 f or ( j =mbegw; j< =mendw; j ++) {  
   ……… 
   i f ( nwt yp[ n] == 1 ) {  
     i f ( nf num > 0) {  
       f or ( l =1; l <=nf num; l ++)  
  i f ( nf r eg[ l ] = = n) {  
    r qsum=r qsum- ( r gr ad[ l ] * 100000) ;  
    br eak;  
  }  
     }  
     i f ( abs( j s [n ] ) ! = j sb[ n] ) f act =- f act ;  
     dpsum=dpsum- f act * r [ n] ;  
   } el se{  
     ……… 
   }  
 }  
 ………… 
      }  
      f or ( k i =1; ki <=nb; k i ++) {  
 i f ( nwt yp[ ki ] == 1 & & n f num > 0) {  
   f or ( j =1; j <=nf num; j ++) {  
     i f ( nof [ j ] = = n o[ ki ] ) {  
       ………… 
       } el se{  
  nabf =j s[ ki ] ;  
  f or ( l =1; l <=nj; l ++) {  
    i f ( nabf = = jn o[ l ] ) {  
      t abf =t [ l ] ;  
      br eak;  
    }  
  }  
       }  
       i f ( negq[j ] = = 0 ) {  
  ………… 
  br eak;  
       } el se{  
  ……… 
       }  
     }  
   }  
 }  
      }  
      i t =i t +1;  
      i t ct =i t c t+ 1;  
      i f ( i t > 1) {  
 cont i nue;  
      } el se  i f ( ( dqsum/ doubl e( mno) ) < 1 0. ) {  
 r et ur n;  
      } el se  i f ( i t ct > 5 00) {  
 ………… 
 br eak;  
      }  
    }  
  }  
 

Figure 45: A complicated code conversion (C++ code). C++ code from 
itr  function. There are many complicated GOTO structures. 
For saving space, structure unrelated statements are omitted. 

000000000      
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5. Debugging the Code 

 

Through the compilation process, most of the typos of the C++ code after 

conversion were picked out and fixed. We then were able to run the C++ code 

after compilation, and the result was not the same as the FORTRAN code. The 

differences were caused from additional typos and some logical errors. We spent 

approximately the same amount of time finding and fixing the errors as we spent 

on the code conversion.  

We wrote an additional function voi d prn t ()  and SUBROUTI NE 

PRNT to help locating errors. This function outputs all the global arrays. The 

output formats of C++ and FORTRAN version were done as close to the same as 

possible, and when this function is executed, the program exits.  

The debug process begins in the main function. The pr nt () function call is 

inserted immediately before a function call (the function i nput ). If the output 

values of the arrays of C++ code match that of the FORTRAN code, the code 

before the insertion point is correct. If not, we know something wrong with the 

code up to this part. Move the pr nt () function call backwards in order to locate 

the errors, then fix them. If the code before the insertion point is correct, move the 

pr nt () after the next function call. If the output values of the arrays of C++ code 

match that of the FORTRAN code, the code of that function is correct. If not, 

something must be wrong in that function. Insert pr nt () function call into the 

function to locate and fix errors in the function.  

For loops, we have experienced that the output of prnt () function matches 

when pr nt () in inserted at any place within the loop and does not match when 

pr nt () is inserted immediately after the loop. In this case, the first iteration of the 

loop is correct and something is wrong with a later iteration. To locate this kind of 

errors, we introduced an additional integer variable to count the iterations of the 
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loop and insert an if clause before pr nt () function call. Then, we could locate in 

which iteration the error happens and fix that error. 

Now you move the pr nt () function back to the main function and continue 

debugging. By applying Test dat a. dat  as input data, we fixed every error of 

our code. We applied other test data files to our code. Using the same technique, 

additional errors are detected and fixed. Our C++ code now works correctly for all 

the data files we have been given. The performance of our C++ code is exactly the 

same as the original FORTRAN code. 

 

 

6. Conclusions and Future Work 
 

6.1 Conclusions 

 

MFIRE is a large mine ventilation system. This system has been developed 

over dozens of years. It is a crystal from the wisdom of many engineers and 

professionals. Computer languages and techniques are developing very fast. The 

output of MFIRE is in the form of tables of numbers and need to be interpretated 

by professionals. Current computer techniques allow us to virtually display the 

result of MFIRE as a three-dimensional scene on an screen. The goal of our virtual 

reali ty project is to realize this possibili ty. MFIRE was written in FORTRAN code, 

a computer language that was developed in the early 1950s and lacks most of the 

good features (such as Object orientated Programming, OOP) of modern advanced 

languages, such as C++. The difference between FORTRAN and C++ is very big, 

we modified the structure of the code. My role in this project was to convert the 

FORTRAN code into C++ code and make sure the performances of the code are 

exactly the same. We have a function to output all the values of the global arrays. 

This is ready for three-dimension design. 
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6.2 Future Work 

 
This paper is the first part of our big project of virtual reality mine 

ventilation system. We are ready to do the following: 

1. Simulation modules 

Based on our C++ code, the values of arrays at each stage of calculation 

will be output as the input of VR interface. In our code conversion, we have a 

function ready for this purpose. 

2. VR interface design 

The VR interface consists two parts: the static mine system and the 

dynamic ventilation system. The static part would not change once the program 

begins, while the dynamic part changes according to the results of the ventilation 

calculation. The changes of the concentration of different type of gases will be 

indicated with different colors. The critical situation can then be displayed on the 

screen.  
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