

University of Nevada

Reno

Large Scale Software Transitions:

A Case Study of the First Half of MFIRE

A professional paper submitted in partial fulfill ment of the
requirements for the degree of Master of Science

with a major in Computer Science

by

Lingjiang Cheng

Dr. Frederick C. Harris, Jr., advisor

May 2000

i

Abstract

This paper presents a case study of large scale software transitions.

This is the first part our virtual reality of mine ventilation systems project.

This project is based on an existing software package called MFIRE.

“MFIRE is a computer simulation program that performs normal ventilation

network planning calculations and dynamic transient state simulation of

ventilation networks under a variety of conditions. The program is useful

for the analysis of ventilation networks under thermal and mechanical

influence. MFIRE simulates a mine's ventilation system and its response to

altered ventilation parameters: external influences such as temperatures,

and internal influences such as fires. “[16]

MFIRE was written in FORTRAN. Modern virtual reality software and

utilities are typically written in C++, an object orientated programming

language. Since communication between C++ and FORTRAN is difficult

and the ability to modify the code is vital, we needed to convert the existing

FORTRAN code to C++ with the exact same functionality.

This paper also discusses the transition methodology and the

debugging of the code.

ii

Acknowledgements

I would like to express deepest and sincerest gratitude to my advisor,

Dr. Fred Harris, for all his help, guidance and encourage throughout my

academic career in Computer Science at University of Nevada, Reno. His

excellent class of CS 308 data structures in C++ sparked my interest in

Computer Sciences and encouraged my final decision to pursue a

continuing education in Computer Science.

I also wish to thank Dr. George Bebis and Dr. Bruce Johnson for

being on my committee and their valuable time.

Finally, a special thank to my wife, Jiali, for her encouragement and

support.

iii

Contents

Abstract i

Acknowledgements ii

List of Figures iv

List of Tables v

1. Introduction 1

2. The Background of MFIRE 2
2.1 What is MFIRE ...2
2.2 The History Leading up to MFIRE Development...3

3. Differences between FORTRAN and C++ Code 9
3.1 Data Types ..9
3.2 Input and Output...9
3.3 SUBROUTINES and functions..10
3.4 Arithmetic Operators..11
3.5 Relational Operators..11
3.6 Flow of Control...12

4. The Code Transition 13
4.1 The SUBROUTINE structure ...14
4.2 Regrouping Code into a Function ...14
4.3 Modify the IF statements...19
4.4 Restructuring GOTO Statement into a Loop ..20
4.5 Use beak or continue Instead of GOTO Statements in a Loop23
4.6 GOTO Statements in Nested Loops ..29
4.7 The Combinations of Situations...31

5. Debugging the Code 37

6. Conclusions and Future Work 38
6.1 Conclusions...38
6.2 Future Work..39

References 39

iv

List of Figures

1 Flow control statements in MFIRE..12
2 Flow control statements in C++ ...13
3 Regroup to a new subroutine or function (Flow Chart)......................................16
4 FORTRAN code to be regrouped as new function...17
5 C++ code converted from FORTRAN code in Figure 4.18
6 To revise the i f statement (Flow chart) ..19
7 To be revised IF statement (FORTRAN) ...19
8 Revised IF statement (C++ code after conversion) ..20
9 Regroup as a new do … whi l e loop (Flow chart) ...20
10 FORTRAN code to be regrouped as do … whi l e loop.................................21
11 Regrouped as do … whi le loop (C++ code)...22
12 Regrouped to while loop (Flow Chart)..24
13 Regroups to while loop (FORTRAN code) ..25
14 Regrouped to while loop (C++ code). ...25
15 To be replaced by conti nue (Flow chart)..26
16 To be replaced by conti nue statement (FORTRAN code)26
17 Replaced with conti nue statement (C++ code)..27
18 Replaced with br eak statement (Flow Chart)...28
19 To be Replaced with br eak statement (FORTRAN code)28
20 Replaced with br eak statement (C++ code)..29
21 Nested loops case I (Flow chart) ..30
22 Nested loop case I (FORTRAN code) ..31
23 Nested loops case I (C++ code)..31
24 Nested loops Case II (Flow chart)..32
25 Nested loops Case II (FORTRAN code) ..33
26 Nested loops Case II (C++ code) ...33
27 Complicated GOTO structure. A sample flow chart..34
28 A complicate code conversion (FORTRAN)...35
29 A complicate code conversion (C++ code)..36

v

List of Tables

1 The relational operators in FORTRAN and C++..12
2 The subroutines and their relationship in Mf i re1 . f or15

1

1. Introduction

MFIRE is a computer simulation program that performs normal

ventilation network planning calculations, and dynamic transient state

simulation of ventilation networks under a variety of conditions. The

program is useful for the analysis of ventilation networks under thermal and

mechanical influence. MFIRE simulates a mine's ventilation system and its

response to altered ventilation parameters, external influences such as

temperatures, and internal influences such as fires. Extensive output

enables detailed quantitative analysis of the effects of the proposed

alteration to the ventilation system.

Network simulation using digital computers has become widespread

throughout the mining industry. However, as the sophistication of the

simulator increases (MFIRE, for example), the complexity of input data

requirements and interpretations of results requires more skil l and

knowledge from the users. Perhaps the most difficult part of using MFIRE

is to construct the data set describing the mine's physical layout and its

ventilation properties. The initial attempts to get the data set running often

reveal unknown or ignored aspects of the mine's ventilation[16].

MFIRE was written in Fortran 77. Our purpose is to use the output of

MFIRE and display the mine and its ventilation three-dimensionally on a

computer screen. This paper is the first part of the whole project. In Section 2 we

present a background on mine ventilation, software to do it, and the development

of MFIRE. Section 3 presents some of the differences between FORTRAN and

C++ that we had to deal with. Section 4 covers our code transition and debugging

of our code is presented in Section 5. Conclusion and Future work are discussed in

Section 6.

2

2. The Background of MFIRE

2.1 What is MFIRE

Mine ventilation control and mine fire detection and fighting are

inseparable. Mine fires produce gases and heat, which the ventilation systems

transport through the mines. These gases can be poisonous and/or

explosive[5,6,7]. The heat can cause ventilation disturbances, which take the gases

along unexpected routes or affect the formation of explosive methane mixtures.

The calculation of the airflow distribution in mine ventilation systems as a

result of fans, thermal forces, and flow resistances is a formidable mathematical

problem[3,4]. It comprises the solution of twice as many equations as there are

airways; half of these equations are quadratic equations[4]. This sort of problem

led to the design of special analog computers in the 1950's and 60's and, from the

early 1960's on, to the increasing use of electronic digital computers[11]. With the

rapidly increasing availabil ity and capacity of digital computers, airflow rate and

pressure loss distribution calculations, commonly called ventilation network

calculations, have become routine, and a great number of computer programs exist

for this purpose[13]. Practically all the programs are capable of performing the

required calculations, although differences exist in how the square equations are

linearized, the mass conservation law is introduced and observed, the fan

characteristics are simulated, and the thermal drafts are considered. All of the

early programs were based on steady-state conditions.

Of greatest concern in the past were the fire-generated ventilation

disturbances[8,9,10,11]. Ventilation engineers developed a large number of

methods, by manual calculation, to detect potentially unstable airways with

airflow reversals in case of a fire[5]. When the analog and digital computers

became available for ventilation planning, they were almost immediately applied

to this problem. The expected fire-generated ventilating pressures were manually

3

inserted into the network simulations, with their values usually obtained from

experience or from rough calculations. The mutual influence of fire intensities

and ventilation conditions were not taken into account. If gas concentrations were

calculated at all, they were only calculated for the cases where no recirculation

existed[12,13]. All calculations were, as in conventional network calculations,

based on steady-state conditions or based on the assumption that no changes with

time occur.

The U.S. Bureau of Mines and Michigan Technological University first

solved this problem with steady-state analysis, and the resulting program became

known as the MTU/BOM code. Because the mine fire process is dynamic in

nature, work on the transient-state modeling problem continued. The resulting

program, MFIRE[16], accommodates dynamic state modeling of the fire[14].

MFIRE version 2.20[16], which was finished in 1995, includes calculations

based on mass flow rates, natural ventilation, sp l i ne or least squares fan curve

fitting and boundary fixing, air reversal and r ecir culation calculations.

Condensation and evaporation in the mass flow and heat exchange calculations

was removed from MFIRE 2.20 but will hopefully be incorporated in a later

version. The program is useful for the analysis of ventilation networks under the

influence of natural ventilation, fans, fires, or any combination of these. MFIRE

simulates a mine's ventilation system and its response to altered ventilation

parameters such as the development of new mine workings or changes in

ventilation control structures, external influences, and internal influences.

Extensive output enables detailed, quantitative analysis that the alteration will

cause in the ventilation system.

2.2 The History Leading up to MFIRE Development

Ventilation network calculations have been performed for several

centuries[15]. Due to mathematical difficulties caused by diagonal airways, the

4

preferred method of practitioners was a trial and error approach in which junction

and mesh equations were made compatible. Since the beginning of this century,

airflow and pressure loss distributions in a large number of more frequently

occurring subnetworks were analytically and graphically determined. These were

the subjects of numerous publications and were of considerable help to

practitioners[3,4,5,6,8,9].

Trial and error methods, which can be surprisingly eff icient in one case, can

become frustratingly ineff icient in another. A large number of methods of

successive approximation were consequently developed. Atkinson's solution in

1854 for a single diagonal airway and Cross's method because of its general

applicability and simplicity became the widest known examples[3,4]. Some of

these methods were based on the linearization of the quadratic resistance equation

and used in electric analog computers. Practically all of the methods were tested

for their util ity with digital computers when these became available.

The forerunners of analog computers were fluid flow models. They were

used in several countries but never found wide application. The similarity

between node and mesh equations in ventilation networks with Kirchoff's laws of

electrical networks made the electrical models persuasive. The first patent for an

electric analog computer for water and gas networks was awarded in 1941 in

Germany. This computer used fi lament bulb resistance to model the second power

resistance function in the network calculations[8,9].

The idea was taken up or independently discovered in several countries, but

the limited working range of commercially-available filament bulbs made them

inflexible and the number installed remained small. Development of a specially-

constructed low voltage lamp in the United States overcame this obstacle and in

1954 a "network analyzer" was installed at the U.S. Bureau of Mines, after six

earlier installations had shown their usefulness with waterworks[14].

In 1951-52, the University of Nottingham (UK) pioneered the idea to

combine an electrical network simulation of the nodes and mesh equations of

5

ventilation networks with a manual approximation method for the resistance

equation. This led to the design of the commercially available "National Coal

Board Network Analyzer", which found a wide distribution[14]. Home-buil t

models and modifications, using different approximation methods for the

resistance equation, were used in almost all mining countries. At some places

ancil laries for adjustment steps without calculations were introduced.

An electromechanical analog computer, in which the approximation of the

resistance equation was automatically performed, was first developed in 1950 at a

German coal mine. It became commercially available in 1952. Thirteen of these

computers were installed in German coal mines and a larger number were installed

abroad and for gas and water companies. In 1959, electronic function generators

for the simulation of the resistance equation were introduced in Japan; in 1960 the

German manufacturer adopted this principle, also. In 1964, a British model

became commercially available and may be the only one stil l on the market. In

1962, the French coal mines buil t an electronic model which has been used for

several decades[11].

Fully automatic analog computers for ventilation network calculations are

excellent planning tools. Their handicap is that they are single purpose machines.

All-purpose digital computers became commercially available in the late 1950's

and predictably replaced the majority of the analog computers.

The literature reports that the first network calculations with digital

computers were performed for waterworks in the United States in 1957[10]. The

first digital ventilation network calculations were reported in Belgium in 1958 and

in Germany in 1959. Following the lead of gas and water companies, efforts to

replace the expensive analog computers with digital computers began in Germany

in 1958. The replacement progressed quite rapidly since many of the analog

computer users were cooperating with this effort. The literature reports that the

same coal company that had pioneered the use of electromechanical analog

computers performed almost all of their network calculations on digital computers

6

by the end of 1959. By the end of 1969 the majority of analog computer users,

representing 80 % of the German coal production, had switched to digital

computers[10,11].

Since the first attempts with the Cross method of balancing pressure losses

gave poor convergence most other known approximation methods were initially

attempted. These were dropped when it was found that you could overcome the

convergence problem by assembling meshes in such a way that airways with high

resistance factors (or even better, with high products of airflow rates and

resistance factors) occurred in as few meshes as possible. The mesh assembly was

done in a systematic way by arranging a tree in a sequence from tree tip to root,

which allows the computer to elect correct movements when assembling the

meshes[4,5].

From 1961 on, it became customary to include natural ventilation obtained

from information on temperatures and elevations in every mesh. Fixed quantity

airways had always been a feature of analog computers and were included in the

earliest applications of digital computers. Fan characteristics were treated in

different ways as storage allowed. A FORTRAN version of a type of standard

program became a part of the IBM program library in 1966; in 1967 it was

adopted by the British National Coal Board for ventilation planning purposes at its

divisional computer centers. It has been used for instructional purposes at

Michigan Technological University (MTU) since 1967. Although many

enhancements and attempts at improvements were made, it is basically still in its

original form and is the core of the MFIRE program[2,3].

As the availability of digital computers increased, the number of users

doing creative work in ventilation planning increased tremendously. Due to

personal, societal, or company restraints, much work went unreported. However,

by analyzing available published literature, it is clear that continental European

ventilation engineers cooperated closely. An advanced program capable of

performing high-speed calculations for large networks was in use in France in

7

1961. A storage saving program based on the Cross method of flow rate balancing

was introduced in 1967. In Japan network calculations with digital computers

started in 1961. Convergence-improving mesh assemblies were reported in 1969.

In Russia, first attempts with digital computers were made in 1963. In 1965 and

1967, reports on different approximation methods were published. In Great

Britain, the first network calculations with the meshes assembled manually were

reported in 1964. A program with automatic mesh assembly was described in

1965. In the United States, the first program to prove the usefulness of digital

computers was described in 1963; an improved version allowing the inclusion of

fan characteristics was reported in 1964. Both programs still required the manual

assembly of meshes[12,13].

In 1967, a much more sophisticated program with mesh assembly and

assignment of initial airflow rates performed by the computer was reported and in

1970 a new version of the program which accommodated fixed quantity airways

was described[9].

Over the past two decades efforts focused on: (1) replacing the Cross

method with more efficient approximation methods, (2) combining network

calculation for optimization purposes with operations research approaches, (3)

making the programs more user friendly in particular by using interactive graphics,

(4) combining network calculations with temperature and concentration

calculations, and (5) extending network calculations to transient state

conditions[2].

The first objective has been a continual goal since the first days of digital

computer use. So far, all results seem to confirm that the Cross method for

networks of ordinary size and complexity is as good or better than other methods.

The second objective is a very valid one since network calculations are only a

means to an end. The third objective is probably the most important one[8].

The non-steady-state behavior of ventilation systems has attracted research

in connection with control problems since the 1950's. Studies concentrated upon

8

the effects of explosions, gas outbursts, and other mechanical disturbances[10]. A

publication describing the use of digital computers for this purpose originated in

Poland in 1972[9] and another one using analog computers was published in

Yugoslavia in 1984[13].

Efforts to combine ventilation network calculations with the precalculation

of temperatures and humidity started in Japan in 1969. An early program that

included temperatures, humidity, methane and dust concentrations, plus a transient

state methane simulator originated at the University of Pittsburgh in 1972. In

1975, at the First International Mine Ventilation Congress, reports on four

programs from the United States and Great Britain for combined network,

temperatures and humidity calculations were given. At the Third Congress in

1984, a program for temperature, humidity, and radon concentrations was

introduced from Australia[13].

Litigation connected with the Sunshine mine fire in the mid-1970's showed

that existing programs could only partially simulate the interaction of mine fires

and ventilation systems. Although manual non-steady-state temperature

precalculations had become a common feature and steady-state fume

concentrations were easy to add as long as no recirculation occurred, manual

insertions of thermal draft, and throttling effects proved to be cumbersome and the

handling of recirculation to be impossible[2].

This led to the development of a new program at MTU in 1975 and 1976.

The goals of this program were to determine the equil ibrium between fires and

ventilation systems in steady- state conditions at any given time. The crucial heat

exchange between rock and air were calculated under non-steady-state conditions.

The program was based on mass flow rates and considered natural ventilation in

all meshes and throttling effects in all airways. Airflow reversal and fume

recirculation were also calculated. This program, sometimes referred to as the

MTU/BOM code, was the primary building block of MFIRE[16].

9

3. Differences between FORTRAN and C++ Code

3.1 Data Types

In FORTRAN, there are three basic data types, IN TEGER, REAL, and

CHARACTER. They are corresponding to the int , fl oat , and ch ar data types

in C++. The I NTEGER and REAL variables need not to be defined and can be

used directly. Any variable begins with letter I - N is an integer variable. Others

are REAL variables. In our code transition, we define all the variables begin with

I - N as int . Others are defined as doub l e.

FORTRAN and C++ both support arrays. The subscripts of FORTRAN

arrays begin at 1 while C++ arrays begin at 0. For simplification of our transition

and avoiding artificial errors, we define arrays in C++ one element larger than the

arrays in FORTRAN and do not use the element subscribed with 0. Thus the

subscripts are the same in FORTRAN and C++.

3.2 Input and Output

FORTRAN uses READ statements to input data from console and data file;

and uses WRI TE statements to output information to console and output fi le.

FORTRAN reserves unit 5 for console input and unit 6 for console output. Data

files and output files are opened with OPEN statements and are associated with a

unit number at the time of open. The opened files are good for input and output at

the same time. But you should be careful if you consider doing both input and

output operations against a same file.

FORTRAN inputs and outputs are formatted. Incorrect format of input data

will result in errors. List directed inputs and outputs are acceptable and should be

10

assigned at time of code design. List directed console input and output converts

data to ASCII or from ASCII automatically. File input and output in list directed

form are treated in binary code to save disc space and accelerate the computation

time. The binary form of data can be read only by FORTRAN code. OPEN,

REWI ND, BACKSPACE, ENDFI LE, and CLOSE statements are available for fi le

operations.

C++ generally uses i ost r eam instances to handle input and output

operations. Two instances ci n and cout are reserved for console input and

output. File input and output are handled by user-defined instances of if st r eam

and of str eam classes. C++ input and output are unformatted. Specific formats

are manipulated with i ost r eanm manipulators, such as set w(n),

se t pr eci si ons(n). By default, C++ io stre ams communicate with a file in

ASCII mode.

Since the data formats are different, it is diff icult to communicate between

C++ code and FORTRAN code thought the use of intermediate data fi le. Direct

function calls between C++ code and FORTRAN code are also difficult and

troublesome. And since we wanted to modify the code, it was necessary to convert

the existing FORTRAN code to C++.

3.3 SUBROUTI NES and functio ns

FORTRAN SUBROUTI NES and FUNCTIONS are corresponding to the

functions in C++. FORTRAN SUBROUTIN ES are functions that do not return

values and are corresponding voi d functions in C++. By default, the parameters

of FORTRAN SUBROUTI NES and FUNCTI ONS are passed by reference. If a

SUBROUTI NE or FUNCTI ON is called with (a) value parameter(s), the

parameter(s) is/are temporarily passed by value. By default, every variable that

11

appears in a FORTRAN SUBROUTI NE or FUNCTI ON is a local variable, and

every local variable is static. This means that the value of a local variable is

retained between SUBROUTI NE and/or FUNCTI ON calls. There are no “global”

variables in FORTRAN. FORTRAN uses COMMON statements to allow variables

in different FUNCTI ONS and SUBROUTI NES to share the same memory space.

Since COMMON variables in different SUBROUTI NES and FUNCTI ONS occupy

the same memory space, the variables can be considered as global variables.

In our code transition, we initially allowed all the parameters to be passed

by reference. Since in C++, a constant parameter can not be passed by reference,

we need to fix parameters that have to be passed by value. The situation was

picked out at compilation time. All variables declared in the COMMON statements

are declared as global variables. Others are declared as local variables. It is not

necessary to declare all the local variables to be st at i c . We had to fix a few of

the variable at debugging time. In our code conversion, we found only a few

variables that needed to be declared as stat i c variables.

3.4 Arithmetic Operators

In FORTRAN and C++, the arithmetic operators (+, - , * , /) are the same

and have the same precedence order. FORTRAN has an exponentiation operator

(**). C++ has no corresponding operator. We chose to use a standard function

pow(double, double) instead.

3.5 Relational Operators

The relational operators are different between FORTRAN and C++. There

12

is a simple correspondence, or mapping, from one language to the other and the

operators have the same precedence order. Table 1 gives the operators:

3.6 Flow of Control

The flow control statements of FORTRAN and C++ are quite different. The

basic flow control statements that appeared in MFIRE are given in Figure 1.

The I F() … and I F() THEN…ELSE…ENDI F statements are corresponding

to the i f …else… statements in C++. The DO…CONTI NUE statements are

equivalent to the f or loops. Code relating to these simple structures is easily

converted.

Table 1: The relational operators in FORTRAN and C++

FORTRAN C++
.EQ. ==
.NE. !=
.LT. <
.LE. <=
.GT. >
.GE. >=

.NOT. !
. OR. ||

.AND. &&

IF() …
IF() THEN … ELSE … ENDIF
DO … CONTINUE
GOTO statements

Figure 1: Flow control statements in MFIRE

13

We had a lot of trouble with the GOTO statements in FORTRAN. The

got o statement is also available in C++, but it is rarely seen in C++ programs

because the following features are available (Figure 2).

In our code transition, we use whi l e loops and do … whi l e loops and

combined them with the statements in Figure 2 to handle all the GOTO statements

in the FORTRAN code. We will discuss the transition of GOTO statements in next

section.

4. The Code Transition

MFIRE consists of three pieces of code, Mfire 0. f or , Mf ire 1. f or

and Mf i r e2. f or . This work is restricted in the first half of MFIRE, e.g. the

code conversion of Mfir e0.for and Mfir e1.for .

Mfi r e0. f or has just a few lines of code and has no complicated flow

control structures. The conversion of code for this part has been discussed in the

previous section. Mfi r e1. f or has over 5000 lines of code and there are many

SUBROUTI NES and GOTO statements. The following subsections will discuss the

conversion of the SUBROUTINES and GOTO statements.

ex it A function that causes immediate program termination.

r etu r n A statement that terminates the execution of a function.

br eak A statement that terminates execution of a loop or switch statement.

cont i nue A statement that causes an immediate branch to the loop test.

Figure 2: Flow control statements in C++

14

4.1 The SUBROUTI NE Structure

There are total 25 SUBROUTI NES in Mfi re1 . f or . They are called by

the main program and other SUBROUTI NES. The subroutine call relationship is

given in Table 2(p.15). There are only simple calls, no recursive calls.

In conversion, the SUBROUTI NES were converted to voi d functions in

C++. The main program was converted to the mai n function. The DATA B LOCK

was converted to a header fi le (va r . h) where all the global variables are declared

and initialized.

4.2 Regrouping Code into a Function

This section focuses on a common code structure we found in MFIRE. A

flow chart for this structure is shown in Figure 3 (p.16). In our conversion, one

function was broken down into two functions. Since the rear part of the function is

executed by every branch of the code, the rear part is regrouped as a function.

When the condition is true, the new function is called and returned.

Figure 5 (p.17) provides a sample piece of the FORTRAN code that was

extracted from Mfire1 . f or . In this code segment, there are many GOTO 300

statements. The label 300 is at the end of the program. We regrouped the code

between label 300 and label 350 as a new function.

The converted C++ code is listed in Figure 7 (p.18). The code between

label 300 and label 350 is regrouped as a new function. Every GOTO 300

statement is converted to a function call to this new function.

(m_go_to_300(marky, n s top, opt i on, md1 , j, kv)).

15

Table 2: The subroutines and their relationship in Mfir e1.for

main calls Subs They call
ARR ---
BASE ---

CCDATA READIN
CDCH READIN

CDENDS KALPHA
CDJUNC ---
CH4EVA ---
CHECK1 ---

LSFAN
CHSFIT

SPLINE
FWCT ---
INPUT READIN

ARR
BASE

LSFAN
MBLNC

ITR
MSLIST
NVP1
NVP2

SPLINE
MBLNC ---
MSLIST ---
NVP1 ---

SPLINE
OUTPUT

LSFAN
RECIRC CDJUNC
RGLT ---
PREP ---

TEVAL ---

16

Figure 3: Regroup to a new subroutine or function (Flow Chart)

17

………………
 CAL L IN PUT (1,N STOP, MARKY,MAXNO, KV)
 IF (NSTOP.GT.0) GO TO 300
 CAL L CHECK1 (NS TOP,MAXNO,KV)
 IF (NSTOP.GT.0) GO TO 300
 IF (NE TW.NE.1) THE N
 CALL INP UT (2,NSTOP,MARKY,MAXNO,KV)
 I F (NSTOP.GT. 0) GO TO 300
 ENDI F
………………………

 CAL L IN PUT (3,N STOP, MARKY,MAXNO, KV)
 IF (NSTOP.GT.0) GO TO 300
 CAL L CCDATA (MA RKY, NSTOP)
 IF (NSTOP.GT.0) GO TO 3 00
 IF (MARKY.E Q.1) THE N
 CALL CDCH (N STOP)
 I F (NSTOP.GT. 0) GO TO 300
 ENDI F
………………………
C
 IF (NETW.GE. 1.O R.NT EMP.GE.1) GO TO 300
 IF (OPTI ON.EQ.' CONTI NUE') G O TO 350
………………………
C
C
300 IF (MA RKY. LE.0) THEN
………………………

350 STOP

Figure 5: FORTRAN code to be regrouped as new function

18

………………
 inp ut (1,ns t op, mark y ,maxno, kv);
 if (nst op > 0)
 m_go_to_ 300(mark y ,ns t op, opti on,md1,j , kv) ;

 che ck1 (nst op,maxno , kv) ;
 if (nst op > 0)
 m_go_ t o_300(marky , nst op,o ptio n,md1,j, kv);
 ass ert(netw != 1);
 if (net w != 1) {
 i nput (2, nsto p,mar ky, maxn o,kv) ;
 i f (n s top > 0)
 m_go_to_ 300(mark y ,ns t op, opti on,md1,j , kv) ;
 }

………………
 inp ut (3,ns t op, mark y ,maxno, kv);
 if (nst op > 0)
 m_g o_to _300(marky,n s top , opt i on, md1, j ,kv) ;
 ccd ata (marky,n s top) ;
 if (nst op > 0)
 m_go_to_ 300(mark y ,ns t op, opti on,md1,j , kv) ;
 if (marky = = 1)
 c dch (nst op);
 if (nst op > 0)
 m_go_to_ 300(mark y ,ns t op, opti on,md1,j , kv) ;

………………………
 if (net w >= 1 | | n t emp >= 1)

m_go_ t o_300(marky , nst op,o ptio n,md1,j, kv);

………………………

void m_go_to_ 300(i nt &marky,i nt& nsto p,

 char * opt i on, char * md1,
 int &j, i nt& kv){
 int i=0 , nnb=0,n nj=0 , nnf num=0,k= 0,l= 0;
………………………

}

Figure 7: C++ code converted from FORTRAN code in Figure 5.

19

4.3 Modify the IF statements

There were several pieces of code made up with IF statements that were

structured in the flow chart shown in Figure 9, code2 is executed when the

condition is false. So, we reversed the if condition and include the code2 in the

new if block.

Figure 10 is a code segment from Mfi r e1.f or . Figure 12 (p.20) is the

corresponding C++ code after conversion.

Figure 9: To revise the if statement (Flow chart)

I F (MARKY. EQ.1) G O TO 100
NSTOP1=0

 CALL CHSFIT (NSTOP1)
100 I TCT=0
 IF (IO UT.L E.(- 1) .AND.MARKY. LE.0)

Figure 10: To be revised IF statement (FORTRAN)

20

4.4 Restructuring GOTO Statement into a Loop

There were several sections of code where there was a label before a block

of code and an I F statement after it. If the condition checked by the IF statement

was true, the GOTO statement would transfer control to the label before the block

of code. We restructured this as a do … whi le loop. The loop body is from the

label to the IF statement. The loop body is to be executed at least once. Figure 15

(p.21) provides some sample code (from the function out put) for this case.

Figure 17 (p.22) is the corresponding C++ code after conversion.

 if (marky ! = 1) {
 n s top 1=0;
 c hsfi t (n s top 1);
 }
 itc t =0;
 i f (i out <= (- 1) && mar ky <= 0)

Figure 12: Revised IF statement (C++ code after conversion)

Figure 9: Regroup as a new do … while loop (Flow chart)

21

 IZ =0
 LL=0
1530 II =0
 DO 1540 I =1, NB
 IF (NO (I) . GT. 0) THE N
 IF (TQR(I) . GT. TSR.O R.II . EQ. 0) TH EN
 TSR=TQR(I)
 I I= I
 ENDI F
 ENDIF
1540 CONTI NUE
 IF (I I .EQ. 0) GO TO 159 0
 IF (L L.GT . 0) TH EN
 KK=0
 DO 155 0 J=1, LL
 K=LST(J)
 IF (TQR(I I). GT.T QR(K)) KK= KK+1
1550 CONTIN UE
 I F (KK. GE. (LL- 2) . AND. TQR(I I) . GT.2 0. 0) GO TO 15 60
 GO TO 1590
 ENDIF
1560 LL=LL+1
 LST(LL) =II
 NO(II) =- NO(I I)
 JSS=JS(II)
 JFF=JF(II)
1570 DO 1580 I =1, NB
 IF (NO (I) . GT. 0) THE N
 I F((JS(I) . EQ. JSS. OR. JF(I) . EQ. JSS. OR. JS(I) . EQ.J FF. OR.

 . JF(I) . EQ. JFF). AND. (T QR(I). GT. 20. 0)) TH EN
 LL=LL+1
 LST(LL) =I
 NO(I)= - NO(I)
 I F (JS(I) . EQ.JSS) THEN
 JSS=JF(I)
 ELSE I F (JF(I) .E Q.J SS) THEN
 JSS=JS(I)
 ELSE I F (JS(I) .E Q.J FF) THEN
 JFF=JF(I)
 ELSE
 JFF=JS(I)
 ENDI F
 GO TO 1570
 ENDI F
 ENDIF
1580 CONTI NUE
 IZ =IZ +1
 IF (I Z.LE . 3) GO TO 1530
1590 CRT1=0.0

Figure 15: FORTRAN code to be regrouped as do … while loop

22

 do {
 i i =0;
 f or (i=1 ; i<= nb;i ++)
 if (no[i] > 0)
 i f (t qr[i] > t sr | | i i == 0) {
 tsr =tqr [i];
 ii= i ;
 }
 i f (i i ==0) br eak; / /go _to_ 1590 ;
 i f (l l > 0) {
 kk= 0;
 for (j =1;j <=ll ; j++) {
 k =lst [j];
 i f (t qr[i i] > tqr [k]) kk= kk+1 ;
 }
 if (kk < (l l - 2) || tqr [ii] < 2 0.0) bre ak;
 }
 l l =ll +1;
 l s t[l l]=i i ;
 no[ii] =- no[ii] ;
 j ss=j s [ii] ;
 j f f=j f [ii] ;
 f or (i=1 ; i<= nb;i ++){
 if (no[i] > 0) {
 i f ((j s[i] == jss || j f[i] == jss ||

 j s [i] == j ff | |
 jf [i] == j f f) && (t qr[i] > 20. 0)) {
 ll= l l+1 ;
 lst [l l] =i;
 no[i]= - no[i] ;
 if (js[i] = = js s) {
 j ss= j f[i] ;
 }el se i f (j f[i] == jss) {
 j ss= j s[i] ;
 }el se i f (j s[i] == jff) {
 j f f=j f [i] ;
 }el se{
 j f f=j s [i] ;
 }
 i= - 1; con t inu e;// go_t o_1570;
 }
 }
 }
 i z=iz +1;
 } whi le (iz <= 3) ;// go_t o_1530;
 c rt 1=0. 0;

Figure 17: Regrouped as do … while loop (C++ code)

23

The flow chart in Figure 12 (p.24) presents a more complicated situation,

since there is more than one GOTO statement that redirects the code back to a

previous position. In this case, the GOTO statement structure is regrouped as

another type of loop. We used an additional variable to control the loop. If the

loop needs to be continued, set the variable to 1, otherwise set it to 0. The GOTO

statements are replaced with a control variable set statement and a conti nue

statement.

Figure 14 (p.25) gives some sample code (from the function ccda t a) for

this case. There are two GOTO 10 statements. The code is converted to a whi l e

loop. A new i nt variable (i 10) is introduced. This variable is set to 1 before

entrance into the loop. After the loop begins, the variable is set to 0. The first

GOTO 10 statement is replaced with i 10=1; and co nt i nue; the second is

replaced with i10= 1; (see Figure 16, p.25).

4.5 Use beak or continu e Instead of GOTO Statements in a Loop

Another common situation we encountered is where GOTO statements are

in the middle of a loop to force the loop to end or to continue on the next iteration.

We used conti nue or br eak statements at this situation, depending upon

which was desired.

Figure 18 is a flow chart where a GOTO statement forced the end of current

iteration. Figure 19 (p.26) presents some sample code (from ch4eva function) for

this case where we used conti nue statements instead of GOTO statements.

Figure 21 (p.27) is the corresponding C++ code after conversion.

24

Figure 12: Regrouped to whil e loop (Flow Chart)

25

10 CAL L READIN (DA L,6, I STOP,0)
 I F (I STOP.EQ. 1) THEN
 W RITE (8, 240)
 W RITE (8, 250) (RO W(IE) ,IE =1,8 0)
 N STOP=5
 R ETURN
 ENDIF
 I F (MARKY.EQ. 0) WRIT E (6, 260)
 I F (DAL(15). LT.(- 1. E20)) GO TO 10
 I F (NCOMTS.GT.NCOMT2) THEN
 N COMT2=NCOMTS
 GO TO 10
 ENDIF

Figure 14: Regroups to whil e loop (FORTRAN code)

i 10=1;
while (i10) {
 i 10=0;
 r eadi n (d al,6 , ist op,0) ;
 i f (i s top == 1) {
 ass ert(0);
 of8 <<st r 240 ;
 of8 <<st r 250 ;
 for (ie= 1;ie <=80; ie+ +)of 8<<r ow[i e];
 nst op=5;
 ret urn;
 }
 i f (marky == 0) c out <<st r 260 ;
 i f (d al[1 5] < (- 1. e20)){
 i1 0=1;
 con t inu e;
 }
 i f (n comts > ncomt 2) {
 nco mt2= ncomt s;
 i10 =1;
 }
}

Figure 16: Regrouped to whil e loop (C++ code).

26

Figure 18: To be replaced by cont i nue (Flow chart)

 DO 40 I= 1, NB
 I F (C H4V(I) . GT. 0.0) GO T O 40
 CH4V(I) =CH4PA(I) *L A(I)* O(I)
 I F (C H4V(I) . GT. 0.0) GO T O 40
 M=0
 N=0
 DO 30 L =1, NJ
 IF (JS(I) . EQ. JNO(L)) T HEN
 CH4S=CH4C(L)
 M=1
 ENDI F
 IF (JF(I) . EQ. JNO(L)) T HEN
 CH4F=CH4C(L)
 N=1
 ENDI F
 IF (M+N. GT.1) THEN
 I F (CH4F. GT. CH4S. AND.Q (I) . GT.0 . 0) THEN
 …………
 ENDI F
 GO TO 4 0
 ENDI F
30 CONTI NUE
40 CONTI NUE

Figure 19: To be replaced by cont i nue statement (FORTRAN code)

27

Figure 23 (p.28) is a flow chart of the other case that shows the GOTO

statement forces the end of a loop. Figure 25 (p.28) presents some sample code

(from arr function) for the case where a break statement is used. Figure 27

(p.29) is the corresponding C++ code after conversion.

 for (i =1;i <=nb; i++) {
 i f (c h4v[i] > 0.0) conti nue;
 c h4v[i]=c h4pa [i] * la[i]*o [i];
 i f (c h4v[i] > 0.0) conti nue;
 m =0;
 n =0;
 f or (l=1 ; l<= nj;l ++){
 if (js[i] = = jn o[l]) {
 ch4s= ch4c [l];
 m=1;
 }
 if (jf[i] = = jn o[l]) {
 ch4f= ch4c [l];
 n=1;
 }
 if (m+n > 1) {
 i f (c h4f > ch 4s & & q[i] > 0 . 0) {
 …………
 }
 br eak ;
 }
 }
 }

Figure 21: Replaced with cont i nue statement (C++ code)

28

Figure 23: Replaced with brea k statement (Flow Chart)

 D O 50 J=1 , NB
 IF (NC ENT(I).E Q.NO(J)) THE N
 NWTYP(J) =10
 GO TO 60
 ENDIF
50 CONTI NUE
60 …………………

Figure 25: To be Replaced with brea k statement (FORTRAN code)

29

4.6 GOTO Statements in Nested Loops

If the GOTO statement jumps within a loop, it is the same as in the last

subsection. Here we discuss two-layer nesting. We discuss the case that the inner

loop ends and forces the outer loop to the next iteration. In this case, there are two

different situations. There is or is not additional code between the end of the inner

loop and the end of outer loop. If there is not, just replace the GOTO statement with

a br eak statement. If there is, we added an addition if clause and a conti nue

statement immediately after the inner loop.

Figure 29 (p.30) is a flow chart in the case that the GOTO statement jumps

the code from the inner loop to the outer loop and there is no code between the end

of the inner loop the end of the outer loop. Figure 31 (p.31) presents some sample

code (from arr function) for the case. Figure 33 (p.31) is the C++ code after

conversion one brea k statement is used.

Figure 35 (p.32) is the other situation where there is some code between

end of the inner loop and the end of outer loop. Figure 37 (p.33) is the sample

FORTRAN code in this case. Figure 39 (p.33) is the converted C++ code. In this

case, the GOTO statement is replaced by a br eak statement to exit the inner loop.

Since there are some code after the inner loop, an if clause is used after the end

 f or (j= 1;j< =nb; j ++)
 i f (n cent [i] == n o[j]) {
 nwt yp[j] =10;
 br eak ;
 }

Figure 27: Replaced with brea k statement (C++ code)

30

of the inner loop. If the inner loop is ended abnormally, contin ue statement

need to be executed to force the outer loop to the next iteration.

Figure 29: Nested loops case I (Flow chart)

31

4.7 The Combinations of Situations

In Mfi r e1. f or , there are several cases where exist multiple situations

discussed above. In this case, we need to be very careful with the code conversion.

We can easily make an error with complicated GOTO statement structures. We

need to regroup GOTO statement into a new do … whi l e or whi l e loops,

change GOTO statements to cont i nue or brea k statements, and/or add

additional if clauses. Each different structure has a different solution.

Figure 41 (p.34) presents a sample flow chart where GOTO statement is

difficult to be regrouped. Figure 43 (p.35) presents some sample code from

function i tr . There are many GOTO statements. Figure 45 (p.36) is the

 DO 6 0 I= 1,IN FLOW
 D O 50 J=1 , NB
 IF (NCENT(I). EQ.NO(J)) THEN
 NWTYP(J) =10
 GO TO 6 0
 ENDIF
50 C ONTI NUE
60 CONTI NUE

Figure 31: Nested loop case I (FORTRAN code)

 f or (i= 1;i< =inf l ow; i ++) {
 fo r (j =1; j <=nb;j+ +)
 i f (n cent [i] == n o[j]) {
 nwt yp[j] =10;
 bre ak;
 }
 }

Figure 33: Nested loops case I (C++ code)

32

converted C++ code. We converted GOTO 5 and GOTO 10 into two loops using

the technique described above. Other GOTO statements are converted to br eak or

co nt i nue statement. Since the structure is complicated, we spent a lot of time to

get the correct code conversion.

Figure 35: Nested loops Case II (Flow chart)

33

 DO 10 K =1,N B
 I F (NWTYP(K) . LT. 0) T HEN
 I NU(NBU)= K
 N BU=NBU- 1
 ELSE IF (NWTYP(K) .EQ. 0.O R.NWTYP(K).E Q.10) THEN
 R Q(K) =ABS(R(K) * Q(K))
 N WTYP(K)= 2
 ELSE
 I F (N FNUM. GT.0) T HEN
 DO 5 J =1,N FNUM
 I F(NOF(J) .E Q. NO(K) . AND. NWTYP(K) . EQ. 1) GO TO 10
5 CONTIN UE
 E NDIF
 I NU(NBL)= K
 N BL=NBL+1
 ENDIF
10 CONTI NUE

Figure 37: Nested loops Case II (FORTRAN code)

 for (k =1; k<=nb;k+ +){
 i f (n wtyp [k] < 0) {
 inu [nbu] =k;
 nbu =nbu- 1;
 } else if (nwt yp[k] == 0 | | nwt yp[k] = = 10) {
 rq[k]=f abs(r[k] *q[k]);
 nwt yp[k] =2;
 } else {
 if (nfn um > 0){
 f or (j=1 ; j<= nfnu m;j+ +)
 if (nof [j] == n o[k] && nwty p[k] == 1) br eak ;
 if(j <=nf num) con t inu e;
 }
 inu [nbl] =k;
 nbl =nbl +1;
 }
 }

Figure 39: Nested loops Case II (C++ code)

34

Figure 41: Complicated GOTO structure. A sample flow chart

35

5 I T=0
10 DQSUM=0.
 MBEGW=1
 DO 5 0 K =1, MNO
 ………
 I F (NWTYP(N) . EQ. (- 1)) T HEN
 MBEGW=MENDW+1
 GO T O 5 0
 ENDI F
 DO 3 0 J=MBEGW, MENDW
 ………
 I F(NWTYP(N) . EQ. 1) THEN
 I F (NFNUM. GT. 0) THEN
 DO 20 L=1, NFNUM
 I F (NFREG(L) . EQ. N) T HEN
 RQSUM=RQSUM- (RGRAD(L) * 100000)
 GO T O 2 5
 ENDI F
20 CONTI NUE
 ENDI F
25 I F (I ABS(JS(N)) . NE. JSB(N)) F ACT=- FACT
 DPSUM=DPSUM- FACT* R(N)
 ELSE
 ………
 ENDI F
30 CONTI NUE
 ………
 ………
50 CONTI NUE
C
 DO 1 00 K I= 1, NB
 I F (NWTYP(KI) . EQ. 1. AND. NFNUM. GT. 0) TH EN
 DO 90 J =1, NFNUM
 I F (NOF(J) . EQ. NO(KI)) T HEN
 ………
 ELSE
 NABF=JS(KI)
 DO 7 0 L =1, NJ
 I F (NABF. EQ. JNO(L)) TH EN
 TABF=T(L)
 GO T O 8 0
 ENDI F
70 CONTI NUE
 ENDI F
80 IF (NEGQ(J) . EQ. 0) T HEN
 ………
 GO T O 1 00
 ELSE
 ………
 ENDI F
 ENDI F
90 CONTI NUE
 ENDI F
100 CONTI NUE
………
 I F (I T. LE. 1) T HEN
 GO T O 1 0
 ELSE IF ((DQSUM/ FLOAT(MNO)) . LT. 10.) THEN
 RETURN
 ELSE
 …………
 GO T O 5
 ENDI F
 GO T O 1 0

Figure 43: A complicated code conversion (FORTRAN). FORTRAN
code from ITR SUBROUTINE. There are many
complicated GOTO structures. For saving space, structure
unrelated statements are omitted.

36

 i 5=1; whi l e(i 5) {
 i t =0;
 i 10=1; whi l e(i 10) {
 ………
 f or (k =1; k<=mno; k ++) {
 ………
 i f (nwt yp[n] = = (- 1)) {
 mbegw=mendw+1;
 cont i nue;
 }
 f or (j =mbegw; j< =mendw; j ++) {
 ………
 i f (nwt yp[n] == 1) {
 i f (nf num > 0) {
 f or (l =1; l <=nf num; l ++)
 i f (nf r eg[l] = = n) {
 r qsum=r qsum- (r gr ad[l] * 100000) ;
 br eak;
 }
 }
 i f (abs(j s [n]) ! = j sb[n]) f act =- f act ;
 dpsum=dpsum- f act * r [n] ;
 } el se{
 ………
 }
 }
 …………
 }
 f or (k i =1; ki <=nb; k i ++) {
 i f (nwt yp[ki] == 1 & & n f num > 0) {
 f or (j =1; j <=nf num; j ++) {
 i f (nof [j] = = n o[ki]) {
 …………
 } el se{
 nabf =j s[ki] ;
 f or (l =1; l <=nj; l ++) {
 i f (nabf = = jn o[l]) {
 t abf =t [l] ;
 br eak;
 }
 }
 }
 i f (negq[j] = = 0) {
 …………
 br eak;
 } el se{
 ………
 }
 }
 }
 }
 }
 i t =i t +1;
 i t ct =i t c t+ 1;
 i f (i t > 1) {
 cont i nue;
 } el se i f ((dqsum/ doubl e(mno)) < 1 0.) {
 r et ur n;
 } el se i f (i t ct > 5 00) {
 …………
 br eak;
 }
 }
 }

Figure 45: A complicated code conversion (C++ code). C++ code from
itr function. There are many complicated GOTO structures.
For saving space, structure unrelated statements are omitted.

000000000

37

5. Debugging the Code

Through the compilation process, most of the typos of the C++ code after

conversion were picked out and fixed. We then were able to run the C++ code

after compilation, and the result was not the same as the FORTRAN code. The

differences were caused from additional typos and some logical errors. We spent

approximately the same amount of time finding and fixing the errors as we spent

on the code conversion.

We wrote an additional function voi d prn t () and SUBROUTI NE

PRNT to help locating errors. This function outputs all the global arrays. The

output formats of C++ and FORTRAN version were done as close to the same as

possible, and when this function is executed, the program exits.

The debug process begins in the main function. The pr nt () function call is

inserted immediately before a function call (the function i nput). If the output

values of the arrays of C++ code match that of the FORTRAN code, the code

before the insertion point is correct. If not, we know something wrong with the

code up to this part. Move the pr nt () function call backwards in order to locate

the errors, then fix them. If the code before the insertion point is correct, move the

pr nt () after the next function call. If the output values of the arrays of C++ code

match that of the FORTRAN code, the code of that function is correct. If not,

something must be wrong in that function. Insert pr nt () function call into the

function to locate and fix errors in the function.

For loops, we have experienced that the output of prnt () function matches

when pr nt () in inserted at any place within the loop and does not match when

pr nt () is inserted immediately after the loop. In this case, the first iteration of the

loop is correct and something is wrong with a later iteration. To locate this kind of

errors, we introduced an additional integer variable to count the iterations of the

38

loop and insert an if clause before pr nt () function call. Then, we could locate in

which iteration the error happens and fix that error.

Now you move the pr nt () function back to the main function and continue

debugging. By applying Test dat a. dat as input data, we fixed every error of

our code. We applied other test data files to our code. Using the same technique,

additional errors are detected and fixed. Our C++ code now works correctly for all

the data files we have been given. The performance of our C++ code is exactly the

same as the original FORTRAN code.

6. Conclusions and Future Work

6.1 Conclusions

MFIRE is a large mine ventilation system. This system has been developed

over dozens of years. It is a crystal from the wisdom of many engineers and

professionals. Computer languages and techniques are developing very fast. The

output of MFIRE is in the form of tables of numbers and need to be interpretated

by professionals. Current computer techniques allow us to virtually display the

result of MFIRE as a three-dimensional scene on an screen. The goal of our virtual

reali ty project is to realize this possibili ty. MFIRE was written in FORTRAN code,

a computer language that was developed in the early 1950s and lacks most of the

good features (such as Object orientated Programming, OOP) of modern advanced

languages, such as C++. The difference between FORTRAN and C++ is very big,

we modified the structure of the code. My role in this project was to convert the

FORTRAN code into C++ code and make sure the performances of the code are

exactly the same. We have a function to output all the values of the global arrays.

This is ready for three-dimension design.

39

6.2 Future Work

This paper is the first part of our big project of virtual reality mine

ventilation system. We are ready to do the following:

1. Simulation modules

Based on our C++ code, the values of arrays at each stage of calculation

will be output as the input of VR interface. In our code conversion, we have a

function ready for this purpose.

2. VR interface design

The VR interface consists two parts: the static mine system and the

dynamic ventilation system. The static part would not change once the program

begins, while the dynamic part changes according to the results of the ventilation

calculation. The changes of the concentration of different type of gases will be

indicated with different colors. The critical situation can then be displayed on the

screen.

References

[1] Bastow, K.R., 1979, “Real-Time Simulation of Contaminant Flow Through Mine Ventilation
Networks Under the Influence of Mine Fires,” M.S. Thesis, MI Technol. Univ., Houghton, MI.

[2] Chang, X., 1987, “ Digital Simulation of Transient Mine Ventilation,” Ph.D. Thesis, MI
Technol. Univ., Houghton, MI.

[3] Chang, X., and Greuer, R.E., 1985, “Simplif ied Method To Calculate the Heat Transfer
Between Mine Air and Mine Rock,” Proceedings of the 2nd U.S. Mine Ventilation
Symposium, ed. by P. Mousset-Jones, A.A. Balkema, pp. 429-438.

[4] Chang, X., and Greuer R.E., 1987, “A Mathematical Model for Mine Fires,” Proceedings of
the 3rd U.S. Mine Ventilation Symposium. Soc. Min. Eng., AIME, Littleton, CO, pp. 453-462.

[5] Gangal, M.K., Dainty, E.D. & Kunchur, G., 1991, “CO2 as an Exhaust Emissions Surrogate
in Small Dieselized Mines,” Procs. 5th U.S. Mine Ventilation Symposium, West Virginia,
June 3-5, 1991, pp 280-287, AIME.

[6] Gangal, M.K. & Dainty, E.D., 1993, “Development of a Diesel Vehicle Operator CO2
Exposure Meter,” Procs. 6th U.S. Mine Ventilation Symposium, Salt Lake City, Utah, June

40

21-23, 1993, pp 65-69, AIME.

[7] Gangal, M.K. & Pathak, J., 1992, “ A Case for Conservation of Electrical Energy in Canadian
Underground Mines” , Procs. 11th West Virginia University (WVU) International Mining
Electrotechnology Conference, July 29-30, 1992, Morgantown, West Virginia, pp 87-91.

[8] Greuer, R.E., 1977, “ Study of Mine Fires and Mine Ventilation; Part I. Computer Simulation
of Ventilation Systems Under the Influence of Mine Fires,” (contract SO241032, MI Technol.
Univ.) BuMines OFR 115(1)-78, 165 pp.; NTIS PB 288 231.

[9] Greuer, R.E., 1981, “Real-Time Precalculation of the Distribution of Combustion Products
and Other Contaminants in the Ventilation System of Mines,” (Contract JO285002, MI
Technol. Univ.). BuMines OFR 22-82, 263 pp.; NTIS PB 82-183104.

[10] Greuer, R.E., 1983, “ A Study of Precalculation of Effect of Fires on Ventilation System of
Mines,” (contract JO285002, MI Technol. Univ.) BuMines OFR 19-84, 293 pp.; NTIS PB
84-159979.

[11] Greuer, R.E., 1979, “A New Computer Program for the Design of Ventilation Emergency
Plans,” Proceedings of 2nd. International Mine Ventilation Congress, Reno, NV, pp. 129-
134.

[12] Hardcastle, S.G., Gangal, M.K, Udd, E. J., Grenier, M.G. & Klinowski, G.W., 1995, “Mine
Ventilation and Optimization” , Procs. 26th Int. Conf. of Safety in Mines Research Institutes,
September 1995, Katowice, Poland, Vol.II, pp183-199.

[13] Hardcastle, S.G., 1995, “3D-CANVENT: An Interactive Mine Ventilation Simulator,” Procs.
7th U.S. Mine Ventilation Symposium, June 5-7, 1995, Lexington, Kentucky, AIME.

[14] McElroy, G.E., 1954, “A Network Analyzer for Solving Mine-Ventilation-Distribution
Problems,” BuMines IC 7704, 13 pp.

[15] Sheng, J., 1984, “Determination of the Cumulative Exhaust Effects of Diesel Powered
Equipment Underground,” M.S. Thesis, MI Technol. Univ., Houghton, MI.

[16] U.S. Bureau of Mines, 1995, “U.S. Bureau of Mines training workshop on the "MFIRE"
mine fire and ventilation simulator, MFIRE users manual version 2.20,” August 1995 U. S.
Bureau of Mines, Twin Cities Research Center, Minneapolis, MN

