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Abstract

This paper presents a case study of large scale software transitions.
This is the first part our virtual reality of mine ventilation systems project.
This project is based on an existing software package called MFIRE.
“MFIRE is a computer simulation program that performs normal ventilation
network planning calculations and dynamic transient state simulation of
ventilation networks under a variety of conditions. The program is useful
for the analysis of ventilation networks under thermal and mechanical
influence. MFIRE simulates a mine's ventilation system and its response to
altered ventilation parameters: external influences such as temperatures,
and internal influences such as fires. “[16]

MFIRE was written in FORTRAN. Modern virtual reality software and
utilities are typically written in C++, an object orientated programming
language. Since communication between C++ and FORTRAN is difficult
and the ability to modify the code is vital, we needed to convert the existing
FORTRAN code to C++ with the exact same functionality.

This paper also discusses the transition methodology and the
debugging of the code.
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1. Introduction

MFIRE is a computer simulation pogram that performs normal
ventilation network planning caculations, and dynamic transient state
simulation o ventilation networks under a variety of conditions. The
program is useful for the analysis of ventilation networks under thermal and
medhanical influence. MFIRE simulates a mine's ventilation system and its
response to altered ventilation parameters, external influences such as
temperatures, and internal influences such as fires. Extensive output
enables detailed quantitative analysis of the dfects of the proposed
alteration to the ventilation system.

Network simulation using digital computers has become widespread
throughou the mining industry. However, as the sophistication of the
simulator incresses (MFIRE, for example), the complexity of input data
requirements and interpretations of results requires more skill and
knowledge from the users. Perhaps the most difficult part of using MFIRE
Is to construct the data set describing the mine's physical layout and its
ventilation properties. The initial attempts to get the data set running often
reveal unknown or ignared aspeds of the mine's ventil ation[16].

MFIRE was written in Fortran 77. Our purpose is to use the output of
MFIRE and display the mine and its ventilation three-dimensionaly on a
computer screen. This paper is the first part of the whole project. In Section 2 we
present a background on mine ventilation, software to do it, and the development
of MFIRE. Section 3 presents ome of the differences between FORTRAN and
C++ that we had to deal with. Section 4 covers our code transition and debugging
of our code is presented in Section 5 Conclusion and Future work are discussd in
Section 6.



2. The Background of MFIRE

2.1 What isMFIRE

Mine ventilation control and mine fire detedion and fighting are
inseparable. Mine fires produce gases and heat, which the ventilation systems
transport through the mines.  These gases can be poisonous and/or
explosive[5,6,7]. The hea can cause ventilation disturbances, which take the gases
alongunexpeaed routes or affect the formation d explosive methane mixtures.

The cdculation d the arflow distribution in mine ventilation systems as a
result of fans, thermal forces, and flow resistances is a formidable mathematical
problem[3,4]. It comprises the solution of twice & many equations as there ae
airways; half of these equations are quadratic equations[4]. This sort of problem
led to the design of special analog computers in the 1950's and 60's and, from the
early 1960's on, to the increasing use of eledronic digital computers[11]. With the
rapidly increasing availability and capadty of digital computers, airflow rate and
pressure loss distribution cdculations, commonly called ventilation network
calculations, have beamme routine, and a great number of computer programs exist
for this purpose[13]. Pradicdly all the programs are capable of performing the
required calculations, although differences exist in how the square equations are
lineaized, the mass conservation law is introduced and observed, the fan
characteristics are simulated, and the thermal drafts are considered. All of the
early programs were based onsteady-state conditions.

Of greatest concern in the past were the fire-generated ventilation
disturbanceg8,9,10,11]. Ventilation enginees developed a large number of
methods, by manual cdculation, to deted potentially unstable airways with
airflow reversals in case of a firg[5]. When the analog and digital computers
became available for ventilation planning, they were almost immediately applied

to this problem. The expected fire-generated ventilating presaures were manually



inserted into the network simulations, with their values usually obtained from
experience or from rough calculations. The mutual influence of fire intensities
and ventilation conditions were not taken into account. If gas concentrations were
calculated at all, they were only calculated for the cases where no recirculation
existed[12,13]. All cdculations were, as in conventional network cdculations,
based on steady-state conditions or based on the assumption that no changes with
time occur.

The U.S. Bureau of Mines and Michigan Technologicd University first
solved this problem with steady-state analysis, and the resulting program became
known as the MTU/BOM code. Because the mine fire processis dynamic in
nature, work on the transient-state modeling problem continued. The resulting
program, MFIRE[16], accommodates dynamic state modeling of the fire[14].

MFIRE version 220[16], which was finished in 199%, includes cdculations
based on mass flow rates, natural ventilation, spl i ne or least squares fan curve
fitting and bourdary fixing, air reversal and recir culation calculations.
Condensation and evaporation in the mass flow and heda exchange calculations
was removed from MFIRE 2.20 but will hopefully be incorporated in a later
version. The program is useful for the analysis of ventilation networks under the
influence of natural ventilation, fans, fires, or any combination of these. MFIRE
simulates a mine's ventilation system and its response to altered ventilation
parameters such as the development of new mine workings or changes in
ventilation control structures, external influences, and internal influences.
Extensive output enables detailed, quantitative analysis that the alteration will

cause in the ventilation system.

2.2 TheHistory Leading up to MFIRE Development

Ventilation network cdculations have been performed for severd

centuries[15]. Due to mathematical difficulties caused by diagonal airways, the
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preferred method o practitioners was a trial and error approach in which junction
and mesh equations were made compatible. Since the beginning of this century,
airflow and pressure loss distributions in a large number of more frequently
occurring subnetworks were analytically and gaphicdly determined. These were
the subjects of numerous publicaions and were of considerable help to
praditioners[3,4,5,6,8,9].

Trial and error methods, which can be surprisingly efficient in one case, can
become frustratingly inefficient in another. A large number of methods of
successive gproximation were consequently developed. Atkinson's solution in
1854 for a single diagonal airway and Crosss method because of its general
applicability and simplicity became the widest known examples3,4]. Some of
these methods were based onthe linearization of the quadratic resistance equation
and wsed in electric analog computers. Pradically all of the methods were tested
for their utility with digital computers when these became avail able.

The forerunners of analog computers were fluid flow models. They were
used in several countries but never found wide applicaion. The similarity
between node and mesh equations in ventilation networks with Kirchoff's laws of
electricd networks made the dedrical models persuasive. The first patent for an
electric analog computer for water and gas networks was awarded in 1941 in
Germany. This computer used filament bulb resistance to model the second power
resistance function in the network cdculations[8,9].

The idea was taken up or independently discovered in several courtries, but
the limited working range of commercially-available filament bulbs made them
inflexible and the number installed remained small. Development of a spedally-
constructed low voltage lamp in the United States overcame this obstacle and in
1954 a "network analyzer" was installed at the U.S. Bureau of Mines, after six
earlier installations had shown their usefulness with waterworks[14].

In 19%61-52, the University of Nottingham (UK) pioneered the idea to

combine an eledrical network simulation d the nodes and mesh equations of
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ventilation networks with a manual approximation method for the resistance
equation. This led to the design of the commercially available "National Coal
Board Network Analyzer", which found a wide distribution[14]. Home-built
models and modifications, using different approximation methods for the
resistance equation, were used in almost all mining countries. At some places
ancillaries for adjustment steps without calculations were introduced.

An eledromechanical analog computer, in which the approximation of the
resistance equation was automatically performed, was first developed in 1950 at a
German coal mine. It became commercially available in 1952. Thirteen of these
computers were installed in German coal mines and a larger number were installed
abroad and for gas and water companies. In 1959, eledronic function generators
for the simulation of the resistance equation were introduced in Japan; in 1960 the
German manufacturer adopted this principle, also. In 1964, a British model
became commercially available and may be the only one still on the market. In
1962, the French coal mines built an electronic model which has been used for
several decades[11].

Fully automatic analog computers for ventilation rnetwork cdculations are
excellent planning tools. Their handicap is that they are single purpose machines.
All-purpose digital computers became commercially available in the late 1950's
and predictably replaced the majority of the analog computers.

The literature reports that the first network calculations with digital
computers were performed for waterworks in the United Statesin 1957[10]. The
first digital ventilation network calculations were reported in Belgium in 1958 and
in Germany in 1959, Following the lead of gas and water companies, efforts to
replace the expensive analog computers with digital computers began in Germany
in 1968. The replacement progressed quite rapidly since many of the analog
computer users were cooperating with this effort. The literature reports that the
same @al company that had pioneeed the use of electromechanicd analog

computers performed almost all of their network caculations on digital computers
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by the end of 1959. By the end of 1969 the majority of analog computer users,
representing 80 % of the German coa production, had switched to digital
computers[10,11].

Since the first attempts with the Cross method of balancing pressure losses
gave poor convergence most other known approximation methods were initially
attempted. These were dropped when it was found that you could overcome the
convergence problem by asembling meshes in such a way that airways with high
resistance factors (or even better, with high products of airflow rates and
resistance fadors) occurred in as few meshes as passble. The mesh assembly was
done in a systematic way by arranging a tree in a sequence from tree tip to root,
which allows the computer to elect corred movements when assembling the
meshes[4,5].

From 1961 on, it became customary to include natural ventilation obtained
from information ontemperatures and elevations in every mesh. Fixed quantity
airways had always been a feature of analog computers and were included in the
earliest applicaions of digital computers. Fan characteristics were treated in
different ways as dorage allowed. A FORTRAN version o a type of standard
program became a part of the IBM program library in 1966; in 1967 it was
adopted by the British National Coal Board for ventilation planning puposes at its
divisional computer centers. It has been used for instructional purposes at
Michigan Technological University (MTU) since 1967.  Although many
enhancements and attempts at improvements were made, it is basicdly still in its
original form and is the core of the MFIRE program([2,3].

As the availability of digital computers increased, the number of users
doing creative work in ventilation ganning increased tremendously. Due to
personal, societal, or company restraints, much work went unreported. However,
by analyzing avail able published literature, it is clea that continental European
ventilation engineers cooperated closely. An advanced program capable of

performing high-spead calculations for large networks was in use in France in
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1961. A storage saving program based on the Cross method d flow rate balancing
was introduced in 1967. In Japan network calculations with digital computers
started in 1961. Convergence-improving mesh assemblies were reported in 1969.
In Russia, first attempts with digital computers were made in 1963. In 1965 and
1967, reports on different approximation methods were published. In Great
Britain, the first network calculations with the meshes asseembled manually were
reported in 1964. A program with automatic mesh assembly was described in
1965. In the United States, the first program to prove the usefulness of digital
computers was described in 1963; an improved version allowing the inclusion of
fan charaderistics was reported in 1964. Both programs 4ill required the manual
assembly of meshes[12,13].

In 1967, a much more sophisticated program with mesh assembly and
assgnment of initial airflow rates performed by the computer was reported and in
1970 a new version of the program which accommodated fixed quantity airways
was described[9].

Over the past two decades efforts focused on: (1) repladng the Cross
method with more efficient approximation methods, (2) combining network
calculation for optimization purposes with operations reseach approaches, (3)
making the programs more user friendly in particular by using interactive graphics,
(4) combining nretwork calculations with temperature and concentration
calculations, and (5) extending network calculations to transient state
conditiong[2].

The first objedive has been a continual goal since the first days of digital
computer use. So far, all results seem to confirm that the Cross method for
networks of ordinary size and complexity is as goad or better than ather methods.
The second objective is a very valid one since network calculations are only a
means to an end. The third oljediveis probably the most important one[8].

The non-steady-state behavior of ventilation systems has attracted reseach

In connection with control problems gnce the 1950's. Studies concentrated upon
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the dfects of explosions, gas outbursts, and other mechanical disturbances[10]. A
publication describing the use of digital computers for this purpose originated in
Poland in 1972[9] and another one using analog computers was published in
Yugoslaviain 1984[13].

Efforts to combine ventilation network calculations with the precdculation
of temperatures and humidity started in Japan in 1969. An early program that
included temperatures, humidity, methane and dust concentrations, plus a transient
state methane simulator originated at the University of Pittsburgh in 1972. In
1975, at the First International Mine Ventilation Congress, reports on four
programs from the United States and Great Britain for combined network,
temperatures and humidity calculations were given. At the Third Congress in
1984, a program for temperature, humidity, and radon concentrations was
introduced from Australia[13].

Litigation connected with the Sunshine mine fire in the mid-1970's shrowed
that existing programs could only partially simulate the interaction of mine fires
and ventilation systems.  Although manual non-steady-state temperature
precdculations had become a common feaure and steady-state fume
concentrations were easy to add as long as no recirculation accurred, manual
insertions of thermal draft, and throttling effects proved to be cumbersome and the
handling of recirculation to be impossble[2].

This led to the development of a new program at MTU in 1975 and 1976.
The goals of this program were to determine the equilibrium between fires and
ventilation systems in steady- state conditions at any given time. The aucial heat
exchange between rock and air were calculated under non-steady-state conditions.
The program was based on mass flow rates and considered natural ventilation in
all meshes and throttling effects in all airways. Airflow reversa and fume
recirculation were dso calculated. This program, sometimes referred to as the
MTU/BOM code, was the primary building block of MFIRE[16].



3. Differences between FORTRAN and C++ Code

3.1 Data Types

In FORTRAN, there ae three basic data types, IN TEGER REAL, and
CHARACTER They are corresponding to the int , fl oat, and char data types
in C++. The | NTEGER and REAL variables need na to be defined and can be
used dredly. Any variable begins with letter | - N is an integer variable. Others
are REAL variables. In ou code transition, we define dl the variables begin with
| - Nasint .Othersaredefined asdoubl e.

FORTRAN and C++ both support arrays. The subscripts of FORTRAN
arrays begin at 1 while C++ arrays begin at 0. For simplification of our transition
and avoiding artificial errors, we define arays in C++ one dement larger than the
arrays in FORTRAN and do not use the element subscribed with 0. Thus the
subscripts are the same in FORTRAN and C++.

3.2 Input and Output

FORTRAN uses READ statements to input data from console and data file;
and uses WRI TE statements to output information to console and output file.
FORTRAN reserves unit 5 for console input and unt 6 for console output. Data
files and oupuit files are opened with OPEN statements and are asociated with a
unit number at the time of open. The opened files are good for input and output at
the same time. But you should be careful if you consider doing both input and
output operations against a same file.

FORTRAN inputs and outputs are formatted. Incorrect format of input data

will result in errors. List directed inputs and outputs are acceptable and should be



assgned at time of code design. List directed console input and output converts
data to ASCII or from ASCII automatically. File input and output in list directed
form are treated in binary code to save disc space and accelerate the computation
time. The binary form of data can be read only by FORTRAN code. OPEN
RBEW ND, BACKSPACE, ENDFI LE, and CLOSE statements are avail able for file
operations.

C++ generally uses i ost r eam instances to handle input and output
operations. Two instances ci n and cout are reserved for console input and
output. File input and output are handled by user-defined instances of if st ream
and of str eamclasses. C++ input and output are unformatted. Specific formats
are manipulated with iostreanm manipulators, such as setwh),
set preci si ons(n). By default, C++ io stre ams communicate with afilein
ASCII mode.

Since the data formats are different, it is difficult to communicate between
C++ code and FORTRAN code thought the use of intermediate data file. Diread
function cdls between C++ code and FORTRAN code are dso difficult and
troublesome. And since we wanted to modify the code, it was necessary to convert
the existing FORTRAN code to C++.

3.3SUBROUINESand functio ns

FORTRAN SUBROUI NES and FUNCTIONS are corresponding to the
functions in C++. FORTRAN SUBRQ@ITIN ES are functions that do not return
values and are corresponding voi d functions in C++. By default, the parameters
of FORTRAN SUBRQ@TI NES and FUNCTI ONSare passed by reference If a
SWBROQUTI NE or FUNCT ON is caled with (a) value parameter(s), the
parameter(s) islare temporarily passed by value. By default, every variable that
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appears in a FORTRAN SUBRQ@ITI NE or FUNCTI ON is a locd variable, and
every local variable is static. This means that the value of a local variable is
retained between SUBRQJTI NE and/or FUNCTI ONcalls. There are no “global”
variables in FORTRAN. FORTRAN uses COMVON statements to allow variables
in different FUNCT ONS and SUBROUTI NES to share the same memory space.
Since COVMON variables in dfferent SUBROUTI NES and FUNCTI ONS occupy
the same memory space, the variables can be considered as global variables.

In our code transition, we initially allowed all the parameters to be passed
by reference. Since in C++, a constant parameter can not be passed by reference,
we need to fix parameters that have to be passed by value. The situation was
picked ou at compilation time. All variables dedared in the COMMO Ntatements
are declared as global variables. Others are declared as local variables. It is not
necessary to dedare dl the local variables to be st at i ¢. We had to fix a few of
the variable at debugging time. In our code conversion, we found only a few
variables that needed to be dedared asstat i c variables.

3.4 Arithmetic Operators

In FORTRAN and C++, the aithmetic operators (+, - , *, /) are the same
and have the same precedence order. FORTRAN has an exponentiation operator
(**). C++ has no corresponding operator. We chose to use astandard function
pow(double, double) instead.

3.5 Relational Operators

The relational operators are different between FORTRAN and C++. There

11



Is a simple correspondence, or mapping, from one language to the other and the

operators have the same precedence order. Table 1 gives the operators:

3.6 Flow of Control

Table 1: Therelational operatorsin FORTRAN and C++

FORTRAN C++
.EQ. ==
.NE. I=
.LT. <
.LE. <=
.GT. >
.GE. >=
.NOT. !

. OR. I
AND. &&

The flow control statements of FORTRAN and C++ are quite different. The
basic flow control statements that appeared in MFIRE are given in Figure 1.

IFQ ...
IF() THEN ... ELSE ... ENDIF

DO ... CONTINUE
GOTGatements

Figure 1: Flow control statementsin MFIRE

Thel F() ...and | F() THEN..ELSE..ENDI F statements are corresponding
to the if...else... statements in C++. The DO...CHTI NUE statements are
equivalent to the f or loops. Code relating to these simple structures is easily

converted.
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We had a lot of trouble with the GOTO statements in FORTRAN. The
got o statement is also available in C++, but it is rarely seen in C++ programs

because the following features are avail able (Figure 2).

exit A function that causes immediate program termination.

return A statement that terminates the execution o afunction.

br eak A statement that terminates execution of aloop or switch statement.
conti nue A statement that causes an immediate branch to the loop test.

Figure 2: Flow control statementsin C++

In our code transition, we use whi | e loops and do ... whi | e loops and
combined them with the statements in Figure 2 to handle dl the GOT O statements
in the FORTRAN code. We will discuss the transition of GOTO statements in next

section.

4. The Code Transition

MFIRE consists of three pieces of code, Mfire 0. for, Mire 1.for
and Mire2. for. This work is restricted in the first half of MFIRE, e.g. the
code mnversion d Mfir eO.for and Mfir el.for

Mfi r e0. f or has just a few lines of code and hes no complicated flow
control structures. The conversion of code for this part has been discussed in the
previous section. Mfi r el. f or has over 5000 lines of code and there ae many
SUWBROUTI NES and GOT O statements. The following subsedions will discussthe
conversion d the SUBROUTINES and GOT Gstatements.
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4.1 The SUBROUINE Structure

There are total 25 SUBRQJTI NES in Mfi rel . f or. They are cdled by
the main program and other SUBRQUJTI NES. The subroutine call relationship is
givenin Table 2(p.15). There ae only simple cdls, no recursive cdls.

In conversion, the SUBRQUTI NES were converted to voi d functions in
C++. The main program was converted to the ma n function. The DATA B LOCK
was converted to a header file (var . h) where all the global variables are declared
and initialized.

4.2 Regrouping Code into a Function

This sedion focuses on a common code structure we found in MFIRE. A
flow chart for this dructure is shown in Figure 3 (p.16). In our conversion, one
function was broken down into two functions. Since the rear part of the function is
exeauted by every branch of the code, the rea part is regrouped as a function.
When the mnditionistrue, the new functionis called and returned.

Figure 5 (p.17) provides a sample piea of the FORTRAN code that was
extracted from Mfirel . f or. In this code segment, there ae many GOTO300
statements. The label 300 is at the end d the program. We regrouped the wmde
between label 300 and label 350 asanew function.

The converted C++ code is listed in Figure 7 (p.18). The code between
label 300 and label 350 is regrouped as a new function. Every GOTO 300
statement is converted to a function cdl to this new function.

(m_go to _300( marky,n stop,opt ion,mdl , j kv) ).

14



Table 2: The subroutines and their relationship in Mfir e1.for

main cdls Subs They call
ARR
BASE
CCDATA READIN
CDCH READIN
CDENDS KALPHA
CDJUNC
CH4EVA
CHECK1
LSFAN
CHSAT SPLINE
FWCT
INPUT READIN
ARR
BASE
LSFAN
MBLNC
TR MSLIST
NVP1
NVP2
SPLINE
MBLNC
MSLIST
NVP1
SPLINE
OUTPUT L SFAN
RECIRC CDJUNC
RGLT
PREP
TEVAL
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~Gonationt Y25 ~Gondiiont=>=—Y* > New Sub |

No No

Code Code

= Conditionz = Y& > ~Gondionz= Y= »{_New Sub

No No

Code Code
No No

Code Code
|

-

Code Code

End End

Figure 3: Regroup to a new subroutine or function (Flow Chart )
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CALL INPUT (1,N STOR MAKY,MAXNQ KV)

IF (NSTOP.GT.0) GO TO 300

CALL CHECK1 (NS TOP,MAXNDOKV)

IF (NSTOP.GT.0) GO TO 300

IF (NE TW.NE.1) THE N
CALL INP UT ( 2,NSTOP,MARKY,MAXNO,KV)
| F( NSTCGP.GT. 0) GO TO 300

ENDI F

CALL INPUT (3,N STOP MAKY,MAXNQ KV)
IF (NSTOP.GT.0) GO TO 300
CALL CMATA (MARKY, NSTCP)
IF (NSTOP.GT.0) GO TO 300
IF (MAKY.EQ1) THE N
CALL CDCH (NSTOP
| F( NSTCP.GT. 0) GO TO 300

ENDI F

C
IF (NETWGE. 1.0RNTEMP.GE.1) GO TO 300
IF  (OPT ON.EQ." CONTNUE )G O TO 350

C

C

300 IF (MARKY.LE.O) THEN

350 STOP

Figure5: FORTRAN code to be regrouped as new function
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inp ut( 1,ns top, mark y,maxno, kv);
if (nstop> 0)
m go_to_ 300( mark y,ns t op, opti on,md1l,j , kv) ;
che ckl (nst op,maxno, kv) ;
if (nstop> 0)
m go_t o _300(marky , nst op,0 ptio n,md1,, kv);
ass ert( netw!= 1),
if (netw!=1) {
i nput(2, nsto p,marky, maxno,kv );
i f (nstop> 0)
m go_to_ 300( mark y,ns t op, opti on,md1l,j , kv) ;

inp ut( 3,ns top, mark y,maxno, kv);
if (nstop> 0)
m_go_to 300( marky,n stop , option, ndl, j kv );
ccd ata (marky,n stop ) ;
if (nstop> 0)
m go_to  300( mark y,ns t op, opti on,md1l,j , kv) ;
if (marky== 1)
¢ dch (nst op);
if (nstop> 0)
m go_to_ 300( mark y,ns t op, opti on,md1l,j , kv) ;

|f(netw>: L lin temps= 1)
m go_t o _300(marky , nst op,0 ptio n,md1,, kv);

void mgo to 300(int &marky, nt& nsto p,
char *opt i on, char * mdl,
int &, i nt&kv){
int i=0 , hnb=0,n nj=0 , nnf num=0,k= 0,I= O;

Figure 7: C++ code converted from FORTRAN code in Figure 5.
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4.3 Modify thelF statements

There were several pieces of code made up with IF statements that were
structured in the flow chart shown in Figure 9, code2 is executed when the
condition is false. So, we reversed the if condition and include the code2 in the

new if block.

Code1
No
Code2

\/
Figure9: Torevisetheif statement (Flow chart)

Figure 10 is a code segment from Mfi r el.f or . Figure 12 (p.20) is the

correspondng C++ code dter conversion.

IF (MARKY. EQ.1) G O TO 100
NSTOPL=0
CALL CHSFIT (NSTOP1)
100 I TCT=0
IF (10 UT.L E( -1) .ANDMARKY.LE.O)

Figure 10: To berevised IF statement (FORTRAN)
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if (marky! = 1){
n stop 1=0;
c hsfi t (nstop 1);
}
itc t=0;
if (i out<= (-1) & & marky <=0)

Figure 12: Revised IF statement (C++ code dter conversion)

4.4 Restructuring GOTO Statement into a L oop

There were several sections of code where there was a label before ablock
of code and an | F statement after it. If the condition checked by the IF statement
was true, the GOTO statement would transfer control to the label before the block
of code. We restructured thisasado ... whi le loop. The loopbaody is from the
label to the IF statement. The loop body isto be executed at least once. Figure 15
(p.21) provides some sample ade (from the function out put) for this case.

Figure 17 (p.22) isthe corresponding C++ code dter conversion.

Code
No
Code

i

Figure9: Regroup asanew do ... while loop (Flow chart)
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1530

1540

1550

1560

1570

1580

1590

1Z =0
LL=0
Il =0
DO 15401 =1, NB
IF (NO (1) . GT. 0) THE N
IF (TQR(I) .GT. TSRORIl .EQO0)TH EN
TSRETQR(I )
L= |
END F
ENDIF
CONTI NUE
IF( 1.EQ.0)GOTO 159 0
IF(L L.GT.0)TH EN

KK=0
DO 1550 J=1, LL

K=LST(J)

IF (TQR(I 1). GT.T QR(K)) KK= KK+1
CONTIN UE

| F( KK GE (LL-2).AND TQR(I1) . GT.20.0) GO TO 1560
GO TO 1590

ENDIF
LL=LL+1
LST(LL) =l

NQ I ) =- NI 1)
JSS=JS(l )
JEF=JF(I )

DO 15801 =1, NB

IF (NO (1) .GT. 0) THE N
IF((JS(1).EQ JSS OR JF(1).EQ JSS. OR JS(1). EQJ FF. OR.

JFE(I) . EQ JFF). AND. (T QR(I). GT.20.0)) TH EN

LL=LL+1
LST(LL) =I
NO(I )= - NO(I )
I F (JS(1) . EQ.JSS) THEN
JSS=JF(I)
ELSE IF (JF( ).EQJ SS) THEN
JSS=JS(1)
ELSE I F (JS(I ).EQJ FF) THEN
JEF=JF( 1)
ELSE
JEF=JS( 1)
END F
GO TO 1570
END F
ENDIF
CONTI NUE
1Z =1Z +1
IF( Z.LE.3) GO TO 1530
CRT1=0.0

Figure 15: FORTRAN code to beregrouped as do ... while loop
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do{
ii=0;
for( =1 ;i<=nbji ++)
if (no[i]> 0)

i f (tqri ] >tsr ||]i i ==0) {
tsr =tgr [1];
i= i
}
if (i i==0) break;//go _to_1590;
if (11 >0){
kk= 0;
for( j =1 <=l ;j++){
k =Ist []];
i f (@qrli i]> tgr [K]) kk= Kkk+1;

}
if (kk < (1-2) [J[tgr [ii]j< 20.0)bre ak;
}
1=l +1;
Istll 1]=i i;
nolii ]=-nofii ];
jss=josfii ]
jtf=s fi 1
for( =1 ;i<=nb;i ++){
if (no[i]> 0) {

i f((jsli 1 ==jss|| jfli 1 ==jss||
joslil==jff ||
if [ ==j ff) &&(tqf i]> 20. 0) {
l= | 1+1 ;
Ist [11]=i;

no[ i]=-noli] ;

it (sl i]1= = jss){
jss=ifli 1;

el se if( jA[i ==jss ) {
jss=jsfi ];

lel se if( js[i ] ==jff ) {

jff= £
tel sef
j T s(i]
i= -1;continu e;// go to 1570;
}
}
b
1 z=iz +1;
} while (iz <=3);// go_to_1530;
crt 1=0. 0;

Figure 17: Regrouped asdo ... while loop (C++ code)
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The flow chart in Figure 12 (p.24) presents a more complicated situation,
since there is more than one GO'O statement that redirects the code badk to a
previous position. In this case, the GOTO statement structure is regrouped as
another type of loop. We used an additional variable to control the loop. If the
loop needs to be continued, set the variable to 1, otherwise set it to 0. The GOTO
statements are replaced with a control variable set statement and a conti nue
statement.

Figure 14 (p.25) gives some sample code (from the function ccdat a) for
this case. There aetwo GO'O 10 statements. The code is converted to awhi | e
loop. A new i nt variable (i 10) is introduced. This variable is st to 1 kefore
entrance into the loop. After the loop begins, the variable is set to 0. The first
GAO 10 statement is replaced with i 10=1; and conti nue; the second is
replaced withi10= 1; (see Figure 16, p.25).

4.5 Usebeak or continu e Instead of GOTCstatementsin a Loop

Ancther common situation we encountered is where GOTO statements are
in the middle of aloop to forcethe loopto end or to continue on the next iteration.
We used conti nue or break statements at this situation, depending upon
which was desired.

Figure 18 is a flow chart where aGOTO statement forced the end of current
iteration. Figure 19 (p.26) presents osme sample code (from ch4eva function) for
this case where we used conti nue statements instead of GOTO statements.

Figure 21 (p.27) isthe corresponding C++ code dter conversion.
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Code

Code

o
w

No
Code
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Figure 12: Regrouped to whil e loop (Flow Chart)
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10

CALL READIN (DA L,6, 1STCP,0)
| F( | STCP.EQ. 1) THEN
W RITE (8, 240)
W RITE (8, 250) (RO WIE ) ,IE =1,8 0)
N STOP=5
R ETURN
ENDIF
| F( MARKY.EQ. 0) WRITE (6, 260)
| F( DAL(15). LT.( -1. E20)) GO TO 10
| F( NCOMS.GT.NCOMT2 THEN
N COMR=NCOMTS
GO TO 10
ENDIF

Figur e 14: Regroups to whil e loop (FORTRAN code)

while
[
r
[

i 10=1;

(110 ) {

10=0;

eadin (dal6 ,ist op,0);

f (i stop==1){

ass ert( 0);

of8 <<st r 240;

of8 <<st r 250;

for (ie= l;ie <=80; ie+ +)of 8<<r ow]i €];

nst op=5;

ret urn;

f (marky== 0)c out <<str260;
f (dal[l 5]< (-1.e20))

i1 0=1;

con tinu e;

f (ncomts > ncomt2) {
nco nt2= ncomt s;
i10 =1;

Figure 16: Regrouped to whil e loop (C++ code).
25




Start Loop

Code
g -

No

Code

\ End Loop

Figure 18: To bereplaced by cont i nue (Flow chart)

DO 40 1= 1, NB
I F(C H4V(l ).GT.0.0) GOTO 40
CHAV(1)=CHIPA( ) *L A(1)* O(1)
| F(C HAV(I ).GT.0.0) GOTO 40
M0
N=0
DO30L =1, NJ
IF( JS(I1).EQJINO(L) T HEN
CHAS=CHAC( L)
Me1
ENDI F
IF( JF(1).EQJINO(L) T HEN
CHAF=CHAC( L)
N=1
ENDI F
IF( M¢N. GT.1) THEN
| F (CH4F. GT. CH4S. AND.Q() . GT.0.0) THEN

30 CONTI NUE
40 CONI'l NUE

Figure19: To bereplaced by cont i nue statement (FORTRAN code)
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for( i =1;i <=nb;i++){
i f (ch4v[i]> 0.0 ) conti nue;
c hdv[i]=c hdpali]*la[ i]*o [I];
f (chd4v[i]> 0.0 ) conti nue;
0;
0;
f or( I=1 ;Il<=njl ++){
it (js[ i]==jnof] ) {
ch4s=ch4c[I];
m=1;

}

it (ff i1==jnofl ) {
chaf=ch4c[ I];

n=1,

}

if (m+n>1) {

if (ch4f > ch4s& & q[i]> 0.0){

br eak;

}

[
m
n

Figure 21: Replaced with cont i nue statement (C++ code)

Figure 23 (p.28) is a flow chart of the other case that shows the GOTO
statement forces the end o a loop. Figure 25 (p.28) presents some sample code
(from arr function) for the case where abreak statement is used. Figure 27

(p.29) isthe aorresponding C++ code dter conversion.

27



Start Loop

Code
g -

No

Code

\ End Loop

Figure 23: Replaced with brea k statement (Flow Chart)

D O 50J=1 , NB
IF (NC ENT(I ).E QNO(J)) THE N
NWTYP(J ) =10
GO TO 60
ENDIF

50 CONTINUE

Figure 25: To be Replaced with brea k statement (FORTRAN code)
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for ( j=1;j< =nb;j ++)
if (ncent[i] ==no[] ){
nwt yp[j ]=10;
br eak;
}

Figure 27: Replaced with brea k statement (C++ code)

4.6 GOTCotatementsin Nested L oops

If the GOTO statement jumps within a loop, it is the same & in the last
subseaion. Here we discuss two-layer nesting. We discussthe case that the inner
loop ends and forces the outer loop to the next iteration. In this case, there ae two
different situations. There is or is not additional code between the end of the inner
loop and the end o outer loop. If there is not, just replace the GOTO statement with
abr eak statement. If there is, we added an addition if clause and aconti nue
statement immediately after the inner loop.

Figure 29 (p.30) is a flow chart in the case that the GAO'O statement jumps
the code from the inner loop to the outer loop and there is no code between the end
of the inner loop the end of the outer loop. Figure 31 (p.31) presents some sample
code (from arr function) for the ase. Figure 33 (p.31) is the C++ code dter
conversion anebrea k statement is used.

Figure 35 (p.32) is the other situation where there is some code between
end of the inner loop and the end of outer loop. Figure 37 (p.33) is the sample
FORTRAN code in this case. Figure 39 (p.33) is the monverted C++ code. In this
case, the GOTO statement is replaced by a br eak statement to exit the inner loop.

Since there ae some code after the inner loop, an if clause is used after the end
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of the inner loop. If the inner loop is ended abnormally, contin ue statement

need to be executed to forcethe outer loop to the next iteration.

| Start Loop1

A

3

Start Loop
Code
oman
No
Code

End Loop2

i
<«

\ End Loop1)

Figure 29: Nested loops case | (Flow chart)
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DO60 I=1,IN FLOW
D O 50J=1 , NB
IF ( NCENT(I). EQ.NOJ) ) THEN
NWTYP(J ) =10
GO TO60
ENDIF
50 C ONTINUE
60 CONTI NUE

Figure 31: Nested loop case | (FORTRAN code)

for ( i=1;i< =inf |l ow;i++){
fo r (j=1;] <=nbjj+ +)
if (ncent[i] ==no[] ){
nwt yp[j ] =10;
bre ak;

}

Figur e 33: Nested loops case | (C++ code)

4.7 The Combinations of Situations

In Mfi rel. f or, there ae several cases where exist multiple situations
discussed above. In this case, we ned to be very careful with the code conversion.
We @n easily make an error with complicaed GO'O statement structures. We
need to regroup GOTO statement into a new do ... whil e or whil e loops,
change GOTO statements to conti nue or brea k statements, and/or add
additional if clauses. Each different structure has a different solution.

Figure 41 (p.34) presents a sample flow chart where GOTO statement is
difficult to be regrouped. Figure 43 (p.35) presents Kme sample code from
function itr . There ae many GOTOstatements. Figure 45 (p.36) is the
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converted C++ code. We @nverted GOTO 5 and GOTO 10 into two loops using
the technique described above. Other GOT O statements are converted to br eak or
cont i nue statement. Since the structure is complicated, we spent a lot of time to

get the @rrect code wnversion.

Start Loop1

A

A
Start Loop2

Code

Code

End Loop1

Figur e 35: Nested loops Case Il (Flow chart)
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DO 10K =1,NB
| F( NWTYP(K) . LT. 0) T HEN
I NUNBU)=K
N BU=NBU- 1
ELSEIF (NWTWP(K) .EQ. 0.0 RNWTYP(K).E Q10 ) THEN
R QK) =ABY R(K) * QK))
N WIYP( K)= 2
ELSE
| F (NFNUMGT.0) T HEN
DO 5 J =1,N FNUM
| F(NOF(J ) .E Q NO(K) . AND. N\WTYP(K) . EQ 1) GO TO 10
5 CONTIN UE
E NDIF
| NU(NBL)= K
N BL=NBL+1
ENDIF
10 CONTI NUE

Figure 37: Nested loops Case || (FORTRAN code)

for ( k =1; k<=nb;k+ +){
i f (nwtyp [K] < 0){
inu [ nbu] =k;
nbu =nbu- 1;
} elseif (nwtyplk ] ==0 | | nwtyp[ k]= = 10) {
rq[ k]=f abs(rk ]*a[ k]);
nwt yplk ] =2;
} else {
if (nfnum> 0){
for( j=1 ;j<=nfnu mj+ +)
if (nof[j] ==nolk] && nwtyp[k]== 1) break;
if( j <=nfnum)continu e;

}
inu [ nbl ] =k;
nbl =nbl +1;

Figure 39: Nested loops Case Il (C++ code)
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Start Loop1

Start Loop2

Code

No
Code

End Loop2

Figure41: Complicated GOTO structure. A sample flow chart



5 I7=0
10 DQSUMEO.
VBEGWEL
DO 50K =1, MNO
IF( NWWVP(N). EQ (-1)) T HEN
MBEGA:MENDW-1
G TO50
ENDI F
DO 30 J=MBEGW MENDW
I F(NWTYP(N) . EQ 1) THEN
I F( NFNUM GT. 0) THEN
DO 20 L=1, NFNUM
I F( NFREG(L). EQ N) T HEN
RQSUMERQSUM ( RGRAD( L) * 100000)
& TO25
ENDI F
20 CONTI NUE
ENDI F
25 I'F (1ABS(JS(N)). NE JSB(N)) F ACT=- FACT
DPSUM=DPSUM FACT* R( N)
ELSE
ENDIF
30 CONTI NLE
50 CONTI NUE
c
DO 100K I= 1, NB
I F( NWTP(KI ). EQ 1. AND NFNUM GT. 0) TH EN
DO 90 J =1, NFNUM
I'F( NOF(J).EQ NQKI)) T HEN
ELSE
NABF=JS( K )
DO70L =1, NJ
I F( NABF. EQ JNQ(L)) TH EN
TABF=T( L)
G TO80
ENDI F
70 CONTI NUE
ENDI F
80 IF( NEGQJ).EQ0)T HEN
GO TO 100
ELSE
ENDI F
ENDI F
90 CONTI NUE
ENDI F
100  CONTI NUE
IF(IT.LE 1) T HEN
G TO10
ELSE IF ( (DQSUM FLOAT(MNO)).LT. 10.) THEN
RETURN
ELSE
®TO5
ENDI F
G TO10

Figure 43: A complicaed code conversion (FORTRAN). FORTRAN

code from ITR SUBROUTINE. There are many
complicated GOT O structures. For saving space, structure
unrelated statements are omitted.
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i5=1; while(ib){
it=0;
i 10=1; whi |l e(i 10) {
for(k =1;k<=mo;k ++){
if( nwyp[n]= = (-1)){
mbegw=mendw+1;
conti nue;

for(j =nbegw j<=nendw j++){
if(nwyp[n]==1 ){
if( nfnum> 0){
for(l =1;1<=nfnuml ++)
if( nfreg[l]l= = n){
rgsunvrgsum (rgrad[l]*100000);

br eak;
}
}
if( abs(js[n])! =j sb[n]) fact=-fact;
dpsunrdpsum fact*r[n];
tel sef

}
for(k i=1;ki<=nb;ki++){
if( nwtyp[ki]==1& &nfnum> 0){
for(j =1;j<=nfnumj++){
if( nof[j]l= =no[ki]) {
tel sef
nabf =j s[ ki ];
for(l =1;1<=nj | ++){
if( nabf= =jn o[l]){
tabf=t[1];
br eak;

}
}
if( negall = =0){

it=it+1;

itct=itct+ 1;

if(it> 1){

conti nue;

telse if ((dgsum double(mmo))<1 0.){
return;

telse if (itct>5 00)({

Figure 45: A complicated code conversion (C++ code). C++ code from
itr ~ function. There ae many complicaed GOTO structures.
For saving space, structure unrelated statements are omitted.

36



5. Debugging the Code

Through the compilation process, most of the typos of the C++ code dter
conversion were picked out and fixed. We then were able to run the C++ code
after compilation, and the result was not the same as the FORTRAN code. The
differences were caused from additional typos and some logical errors. We spent
approximately the same anount of time finding and fixing the erors as we spent
on the amde mnversion.

We wrote an additional function void prnt() and SUBRQJTI NE
PRNT to help locating errors. This function outputs all the global arrays. The
output formats of C++ and FORTRAN version were done as close to the same as
possble, and when this function is executed, the program exits.

The debug processbegins in the main function. The pr nt () functioncdl is
inserted immediately before afunction cal (the function i nput ). If the output
values of the arrays of C++ code match that of the FORTRAN code, the ade
before the insertion point is correct. If not, we know something wrong with the
code up to this part. Move the pr nt () function cdl backwards in order to locate
the arors, then fix them. If the code before the insertion point is correct, move the
pr nt () after the next function cdl. If the output values of the arays of C++ code
match that of the FORTRAN code, the code of that function is corred. If not,
something must be wrong in that function. Insert pr nt () function call into the
functionto locate andfix errorsin the function.

For loops, we have experienced that the output of prnt () function matches
when prnt () in inserted at any place within the loop and does not match when
pr nt () isinserted immediately after the loop. In this case, the first iteration of the
loop is corred and something is wrong with a later iteration. To locae this kind of

errors, we introduced an additional integer variable to count the iterations of the
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loop and insert an if clause before pr nt () function cal. Then, we could locate in
which iteration the aror happens and fix that error.

Now you move the pr nt () function back to the main function and continue
debugging. By applying Test dat a. dat as input data, we fixed every error of
our code. We applied ather test data files to our code. Using the same tedhnique,
additional errors are deteded and fixed. Our C++ code now works correctly for all
the data files we have been given. The performance of our C++ code is exactly the
same & the original FORTRAN code.

6. Conclusions and Future Work

6.1 Conclusions

MFIRE is a large mine ventilation system. This s/stem has been developed
over dozens of yeas. It is a aystal from the wisdom of many engineers and
professionals. Computer languages and techniques are developing very fast. The
output of MFIRE is in the form of tables of numbers and need to be interpretated
by professionals. Current computer techniques allow us to virtually display the
result of MFIRE as a three-dimensional scene on an screen. The goal of our virtual
reality project is to redize this possibility. MFIRE was written in FORTRAN code,
a computer language that was developed in the early 1950s and lacks most of the
good features (such as Object orientated Programming, OOP) of modern advanced
languages, such as C++. The difference between FORTRAN and C++ is very big,
we modified the structure of the mde. My role in this project was to convert the
FORTRAN code into C++ code and make sure the performances of the code are
exactly the same. We have afunction to output all the values of the global arrays.

Thisisready for three-dimension design.
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6.2 Future Work

This paper is the first part of our big projed of virtual reality mine
ventilation system. We ae realy to dothe following:

1. Simulation modules

Based on our C++ code, the values of arrays at each stage of cdculation
will be output as the input of VR interface In our code mnversion, we have a
function ready for this purpose.

2. VRinterface design

The VR interface @nsists two parts: the static mine system and the
dynamic ventilation system. The static part would na change once the program
begins, while the dynamic part changes according to the results of the ventilation
calculation. The changes of the concentration of different type of gases will be
indicated with different colors. The aiticd situation can then be displayed onthe

screen.
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