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Abstract

In this thesis a new collision detection algorithm is presented that solves the all-
pairs collision detection problem using parallel processing. The design of the algo-
rithm is based on a linear octree and runs in parallel with a theoretical performance
of O((n log n)/k) run time. The algorithm has been implemented as a collision detec-
tion system using object-oriented design techniques and a client-server architecture.
The architecture of the collision detection system is designed to use the parallel capa-
bilities of both shared-memory, multi-processor computers and clusters of networked
computers. Additionally, the modularity of the collision detection system gives ap-
plication developers the flexibility to choose the level at which the collision detection
system is integrated into an application. Using the collision detection system, exper-
imental results have been generated that demonstrate how the algorithm performs

according to the calculated theoretical performance.
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Chapter 1

Introduction

Interactive 3D graphical applications are a class of application which continuously
query a user for input and provide output by means of three-dimensional graphics.
Techniques used to implement these types of applications are enabling technologies
which make other types application areas possible, for example Virtual Reality. Vir-
tual reality applications that simulate visual environments are examples of interactive
3D graphical applications. In [5] and [25], two applications are described that apply
virtual reality to workplace training in the surface mining industry. In the first appli-
cation, virtual reality is used to train off-highway vehicle operators on how to inspect
a vehicle before operation in an open pit mine. In this application, a user is presented
with a simulated vehicle to inspect. The purpose of the application is to train ve-
hicle operators on how to identify indications of problems that may compromise the
safety of a vehicle. The second application uses virtual reality to simulate operating
a vehicle. In this application, the user drives a simulated truck in an open pit mine
to practice safe driving practices unique to open pit mine operations. The applica-
tions described in these two papers illustrate the necessary qualities of a successful
interactive 3D graphical application.

In order for an interactive 3D graphical application to be successful, it must present



the user with a visually believable environment. The believability of a simulated
environment can be broken down into three main factors. First, the models used
in the simulation must be recognizable. Second, the user must be able to interact
with the simulated environment at a rate comparable to a real-world experience.
Third, objects in the simulation must behave in a manner similar to their real-world
counterparts. In interactive 3D graphical application, these three factors are mutually
dependent. In general, the more detailed a model is, the slower the model is to render
to a display. When models in a simulation are slow to render, the slower the simulation
is at responding to user input. When the application is slow at responding to user
input, the period of time with which realistic object behavior can be implemented is
decreased.

In summary, in order for an interactive 3D graphical application to be successful,
all calculations performed by the application must be completed in a timely manner
before the graphical display can be updated. When an application fails to update
the display rapidly, a time lag will exist between when the user inputs a command
or action and when the graphical display is updated. When users experience lag,
they often re-input a command expecting the application to respond faster. When
the application eventually does respond, the graphical display is updated according
to input from a prior point in time or using the cumulative sum of all input collected
from the last display update. The display generated is usually much different than
what the user expects and causes a great deal of confusion. For example, if turning
the steering wheel of a driving simulation is not reflected by the graphical display for
several seconds after the wheel it turned, the user will have difficultly judging what
effect steering actually has in the simulation.

One of the most costly operations performed in interactive 3D graphics applications



is collision detection. Collision detection is a key technology used for implementing
realistic object behavior in interactive 3D graphics applications. Specifically, collision
detection is used to determine when objects in a simulated environment are intersect-
ing with one another. This information allows the simulation to prevent solid objects
from passing through one another. Collision detection is a nontrivial problem and is
actively researched in many fields of study besides interactive 3D graphics including
robotics, physically based simulation, and computational geometry.

In this thesis, the collision detection problem is explored in Chapter 2 by presenting
the challenges imposed by interactive 3D graphics on collision detection algorithms
and discussing several previously developed methods for solving collision detection
problems. A new collision detection algorithm is then presented in Chapter 3 which
solves one aspect of the general collision detection problem using parallel computing.
A description of software that implements the proposed algorithm is described in
Chapter 4 followed by performance results in Chapter 5. This thesis concludes in
Chapter 6 with final remarks concerning what the project has accomplished and a

discussion of future work.



Chapter 2

Introduction to the Collision
Detection Problem

For the purpose of this discussion, the collision detection problem will be limited to
its applicability in 3D interactive graphics applications. However, the concepts, ideas,
and algorithms presented have been drawn from many areas of research concerned
with collision detection including robotics [10, 23, 24], computational geometry, and
physical simulation [6, 26, 27].

This chapter is organized as follows: the collision detection problem is presented
in context by describing how it applies to three-dimensional interactive graphics ap-
plications; a discussion of common types of collision detection algorithms is presented
along with an explanation of a collision detection pipeline; and examples of popular

collision detection algorithms and data structures are explained.

2.1 Collision Detection and Interactive Graphics

The purpose of collision detection is to determine if, and in what manner, objects
are colliding at a moment in time. To illustrate this purpose, one might simulate
dropping a ball onto a flat level floor. In this simulation, collision detection is used to

determine when the ball hits the floor. The obvious solution is to calculate the time of



impact using the initial height of the ball and a gravitational constant. Unfortunately,
this solution doesn’t constitute collision detection, but rather collision prediction. By
calculating the time of impact, the assumption is made that the path of the ball
remains unimpeded for the duration of the simulation. However, if unpredictable
changes in the simulation occur, the prediction may be incorrect. This is the case
imposed by interactive 3D graphics on collision detection algorithms.

In an interactive 3D graphics application, the flow of control runs in a continuous
loop, sampling time at discrete intervals. This flow control is illustrated in Figure 2.1.
At the end of each interval of time, the state of the simulated objects is updated to
reflect changes that occur during the interval. For example, an object moving along
a path is translated to a new position according to its velocity vector. Interactive 3D
graphics applications create the illusion of smooth, animated motion by redrawing

the screen at the end of each interval of time, as shown in Figure 2.2.

I—D- User i nput ﬁ
Transl ate Objects

Update state !
Redraw Di spl ay of 4 i

si mul ati on - <
4~|\ Col l'i sion Detection

A !

Figure 2.1: Control flow of an interactive 3D graphics application.

Along with updating the state of simulated objects, collision detection is also
performed to determine whether the new position of an object causes it to interfere
with the positions of other objects. It is important to note that collision response is
an application-dependent issue and is not addressed by collision detection algorithms.

The mechanics of the simulation impose restrictions on collision detection algo-

rithms. By sampling time at discrete intervals, only a fraction of the total elapsed
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Figure 2.2: Position of object is updated as a function of time to create smooth ani-
mation.

time is accounted for in the simulation. As a result, it is possible for important events
to be overlooked.

For example, consider the simulation under the conditions shown in Figure 2.3. At
time interval ¢,, the ball is positioned just above the floor. Then, at t,,;, the ball’s
position is calculated to be just below the floor. If the floor is represented as a plane
and collision detection is done using an intersection test, then the simulation would
have incorrectly determined that no collision occurred.

A common solution to correct the problem of objects “jumping through” other
objects is to increase the sample rate of the simulation timeline which will increase
the probability of all collision being detected. Using this solution, one must determine
the sample rate to be employed. If the rate is too high, application performance
suffers. If the rate is too low, collisions might be missed.

One might consider expanding the simulation’s capabilities to allow multiple balls
to collide with the floor and with each other. Under the previous conditions, intersec-

tion between the ball and the floor could be tested rapidly at the end of each interval
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Figure 2.3: Ball “jumping through” floor as a result of too long of a time interval.

of time. However, with the new conditions, collision must be detected between all

N

2), and between each ball and the floor. The naive approach to solv-

pairs of balls, (
ing this problem tests all pairs of balls and each ball with the floor for collision. This
approach runs in O(n?) time.

The situation is further complicated when objects that are more complex than
spheres are introduced into the simulation. Testing for collision between two spheres
or between a sphere and plane can be performed in a few operations. Due to the
symmetry of a sphere, both tests reduce to a distance calculation using the center of
the sphere. Detecting a collision between spheres runs in constant time.

This is not the case for general polyhedra. As show in [23], testing the intersection
between two convex polyhedra can be done in O(n) time in the worst case where
n is the combined number of vertices of two polyhedra. Convex polyhedra are a
special case of general polyhedra and are easier to test for intersection. For this
reason, general polyhedra are often decomposed into convex entities. As a result of

the running time of testing polyhedra for intersection, the number of polyhedra that

can be tested for collision in a given period of time is much smaller than the number of



spheres that could be tested in that period of time. As shown in Figure 2.4, complex
objects may collide in many different ways making testing for collision a more complex
and time consuming process than testing spheres for collision.

Testing for collision between multiple moving objects and testing for collision be-
tween complex objects are some of the cases effective collision detection algorithms
must address. The manner in which an algorithm handles these situations determines
the problem domain for which an algorithm is suitable. Issues of object representa-
tion, resource utilization, and acceptable performance characteristics also constrain
applicability of an algorithm from one problem domain to another. Consequently, the
breadth of highly specialized collision detection algorithms is great.

Although collision detection algorithms are specialized, many processes, concepts,
and structures they employ are common throughout collision detection research. This
is particularly true for algorithms that use similar data structures and geometric
principles as a basis for their design and for hybrid algorithms that use multiple
existing algorithms in conjunction with one another.

Many surveys and comparative overviews of collision detection algorithms are avail-
able in [13, 17, 34]. These sources discuss application domains, useful geometric prin-
cipals, and solving strategies for collision detection problems are available. Rather
than exploring all aspects of collision detection algorithms, the remainder of this
chapter will discuss the components of general collision detection solutions followed

by examples of collision detection algorithms.

2.2 The Collision Detection Pipeline

General solutions to collision detection problems in interactive 3D graphics appli-

cations are multifaceted. For example, detecting collisions between many objects and
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Figure 2.4: Ezamples of complex objects colliding [22].
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detecting collision between two complex objects are separate problems with separate
solutions. These two problems are commonly referred to as the all-pairs problem and
the exact-object problem. Another facet of the collision detection problem is con-
cerned with exactly how the geometric features of two objects intersect. Geometric
features, or simply features, refer to a region or part of an object comprised of one or
more polygons. This problem is commonly called the exact-feature problem. Software
that implements a general solution to collision detection typically uses a collection of
algorithms to address each facet.

Despite the disparate nature of each sub-problem, the algorithms for solving facets
of the collision detection problem have well-defined relationships. These relationships
have been studied in [34]. In this article, the relationship among aspects of collision
detection algorithms is described as a pipeline of successive filters. Filters correspond
to algorithms that address aspects of the collision detection problem, and the pipeline
describes the order in which filters are applied to data. Input to the pipeline is a set of
objects, and output is a pairwise description of collisions between objects. Internally,
data flows from one filter to the next and is successively refined at each stage.

The relationship among various aspects of the collision detection problem has also
been described as a multi-phase [8, 14, 30] and a multi-stage [15] process. In this
description, the broad phase and the narrow phase are respectively analogous to the
first stages and the last stages of pipeline filters.

Although these descriptions of the relationships among facets of the collision de-
tection problem express the same idea, the pipeline paradigm is preferable because
it emphasizes the composition of solutions to the general collision detection prob-
lem. Because each pipeline filter has a well-defined role, filters can be implemented

as reusable components. Using the pipeline as a framework, specialized application-
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specific collision detection systems can then be assembled from filter components.
Another quality of the pipeline paradigm is that it remains conceptually flexible,

allowing for modification without breaking existing conventions. As new collision

detection algorithms are developed, pipeline filters can be inserted or replaced as a

natural and expected process.

2.3 Algorithms for Solving the All-Pairs Problem

Stated formally, the all-pairs problem is to determine all pairs of n objects that are
colliding. Algorithms that solve the all-pairs problem are positioned at the beginning
of the collision detection pipeline and are designed to reduce the number of exact-
object tests performed in the latter stages of the pipeline.

The naive solution to the all-pairs problem is to test “all pairs” of objects for
collision. This solution is considered naive because it is a brute force approach and
runs in O(n?) time. To solve the all-pairs problem efficiently, a strategy must be
devised that can quickly differentiate between those objects that might collide from
those that definitely will not.

Many algorithms have been developed to address the all-pairs problem. A common
feature among them is their use of bounding volumes. The bounding volume of an
object is another object that completely encloses the original object. Bounding vol-
umes are designed to have a simple representation compared to the object they bind.
Common choices for bounding volumes include cubes, boxes, and spheres. Algorithms
that solve the all-pairs problem using bounding volumes instead of the original ob-
jects for collision detection are more efficient because testing for intersection between
bounding volumes is, by design, much faster than testing for intersection using the

actual objects.
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2.3.1 Sweep and Prune Algorithm

One of the earliest algorithms developed to address the all-pairs problem is the
sweep and prune algorithm [28]. The basic idea behind sweep and prune is to sweep
a plane across a volume of space, testing pairs of objects for collisions that are si-
multaneously intersecting the plane. Pairs of objects that are not simultaneously
intersecting the plane cannot collide and are eliminated from further collision tests.

In practice, implementations of sweep and prune operate by projecting all objects
onto a coordinate axis, which results in intervals along the axis line. Overlapping
intervals indicate possible collisions between objects. This is demonstrated in Fig-

ure 2.5. Determining overlapping intervals is a two-step process:

1. Sort the list of intervals in ascending order using the minima of the intervals.

2. Traverse the list in ascending order, testing intervals against the successive
intervals to determine overlap. If the end-point of one interval is greater than
or equal to the beginning-point of a subsequent interval, then the intervals

overlap.

Sweep and prune is also called dimension reduction because it reduces the number
of dimensions in which objects are compared.

A variation on sweep and prune is implemented in the I-Collide collision detection
library [4]. In I-Collide, the sweep and prune algorithm projects objects onto three
coordinate axes. Pairs of objects are considered for further collision tests only when
their intervals overlap in all three dimensions. Costs associated with this algorithm
include sorting three lists of intervals and testing for interval overlap on all three inter-

vals. In the general case, sorting the lists runs in O(n log n) and testing for overlap
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=

£ |

Figure 2.5: Ezample of Dimension Reduction: Objects are projected onto the x-axis.
Qverlapping intervals along the azis indicate possible colliding objects.

runs in O(n?) in the worse case. However, as cited in [4], when objects maintain

temporal and geometric coherence, performance of this algorithm is improved.

Temporal coherence is the property that application state does not change
significantly between time steps or frames. The objects move only slightly
from frame to frame. The slight movements of the objects translates
into geometric coherence because their geometry, defined by the vertex

coordinates, changes minimally between frames [4].

Moreover, if the interval of time between object updates is small, objects can be
expected to move relatively little between time steps. This makes the next position
of an object predictably close to its previous position.

The sweep and prune algorithm described in I-Collide takes advantage of coherence
by keeping the three lists of intervals between time steps. As a result of coherence, if
the sample rate is high, the lists of intervals will remain in an approximately sorted

order. This reduces the problem of sorting the lists of intervals to that of resorting
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partially sorted lists from the previous time step. In the I-Collide collision detection
library, the lists are resorted by first updating the endpoints of the intervals and then
using an insertion sort. When coherence is maintained, resorting the list using an
insertion sort runs on average in O(n) time.

An additional cost incurred by this algorithm is in maintaining a data structure
that stores the overlap status of objects. Again, if coherence is maintained, updating
the overlap status of an object runs in O(n) time. Total running time of this algorithm
is O(n + s) [4] where n is the number of objects and s is the number of overlapping

intervals.
2.3.2 Octree Data Structures and Algorithms

Octree data structures belong to a class of structures that represent a volume
space as a hierarchy of discrete units. Octree algorithms use a divide and conquer
approach to navigating and searching a volume of space and have many uses in the
fields of collision detection and interactive 3D graphics.

As the name implies, an octree data structure is a tree structure in which each node
has eight child nodes. To represent a volume of space, the root node of an octree is
associated with a cubic region within which the octree structure is contained. Below
the root, each of the eight node children are associated with an even subdivision of
the space enclosed by the root, as shown in Figure 2.6. The relationship between
the root and its eight children can be recursively expanded to any number of levels,
creating further subdivisions of the original cube associated with the root.

When discussing octrees, several terms are used for describing their components.
The term octant is used to describe a cube that is one of eight even subdivisions of

a larger cube. In the octree data structure, as with other tree data structures, nodes
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Figure 2.6: A three-level octree and the corresponding tree data structure that repre-
sents it.

that terminate a branch are called leaves. Octants that correspond to leaves in an
octree are called voxels. A voxel describes the smallest unit of space that can be
addressed in a discretized three-dimensional volume.

Octree data structures are commonly implemented as pointer-based tree data
structures because pointer-based trees allow for a high degree of flexibility and sim-
plicity in tree construction and traversal. As a feature of pointer-based trees, octants
can be added and removed from the octree as needed. Internal to the octant data
structure, parent octants store pointers to child octants which are used for navigat-
ing the octree data structure. In addition to pointers for navigation, octants store
a record of data or a pointer to data that is associated with the octant. A good
description of pointer-based octree can be found in [33].

Because of the manner in which octrees subdivide and index volumes of space, they

are well suited to representing three-dimensional data volumetrically. To represent
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data as a volume of space in an octree, the data is associated with an octant. The
position and size of the octant indicate the volume and location of the data. When
data is stored in an octant that is not a leaf, it is implied that the data occupies all
octants below the octant within which it is contained. These relationships between

octants and data are shown in Figures 2.7 and 2.8.

Root Node O Level O

7 \V/ \l/ \V/
o \V/ ¢’ \V, ‘E’ w Level 1
\V/

OO GO Level 2
{Sphere bject}

Figure 2.7: Octree data structure storing the location of the sphere in the nodes of the
tree. Note: not all octants that intersect the sphere are represented in the diagram.

A typical strategy for inserting data into an octree is to perform a recursive traver-
sal beginning with the root of the octree and searching for octants within which to
store data. Beginning at the root, data is checked for intersection with each of the
root’s eight children. The traversal is continued within each child the data intersected.
Depending on the needs of the algorithm, traversal of the octree can be terminated
at a suitable time. Generally, most octree traversal algorithms run in O(log n) time
with n being the depth of the tree as a result of a divide and conquer approach to

navigating the octree.
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Figure 2.8: On the left is an octree drawn with all octants that intersect a sphere. On
the right only the octants binding the sphere are drawn.

Octree data structures have been used in several collision detection algorithms
(8, 12, 19, 30], the most successful of which operate in a similar manner. After a
pointer-based octree is constructed and populated with objects, objects are moved
in and out of octants as they move through space. To test for collision, the octree
structure is searched to determine which objects share octants. Only objects that
share octants are considered for further collision tests.

The differences among algorithms that use octrees are the way in which objects are
moved between octants and how the octree data structure is searched. Two examples
of collision detection algorithms that use octrees are [19] and [30]. In both examples,
an octree is constructed so that it contains paths to only non-empty octants. This
guarantees that every search path in the octree yields objects that need to be tested
for collision. Also, both of these algorithms use an indexing scheme which allows
the octants an object occupies to be calculated as a function of the center of the

object. The algorithm in [30] uses coherence when moving an object from one octant



18

to another and is able to maintain the octree in O(n) time. To move objects between
octants, the algorithm in [19] builds additional search trees to manage collision events.
This operation takes O(n log n) time.

In [8], a collision detection algorithm based on an octree uses coherence to achieve
O(n) when moving objects between octants. However, unlike [30], [8] uses an auxiliary
data structure to determine when an object is moving between octants. In [8], three
lists are used to store the z, 4, and z endpoints of intervals defined by the axis aligned
bounding boxes of the objects. After sorting the lists, the indices of the intervals that
straddle the leaf octant boundaries are recorded. The recorded indices define the
boundaries of buckets within the lists. By using an insertion sort, the order of the
intervals in the buckets can be maintained in linear time as long as the positions or
lengths of the intervals do not change significantly between sorts. This algorithm
reduces the number of times that objects are checked for movement between octants
by limiting its search to the objects that move between buckets.

Besides being suitable for solving the all-pairs problem in collision detection al-
gorithms, octrees have been successfully applied in other fields relating to computer
graphics such as Constructive Solid Geometry (CSG) [3]. Constructive Solid Geom-
etry is concerned with performing high-level, logical operations between objects to
construct new objects. This is illustrated in Figure 2.9. The motivation for this
type of representation is to facilitate an interactive mode for solid modeling [32]. An
example of a logical operation between two objects is to Boolean OR their volumes
together to produce a new object.

Octree data structures are well suited for CSG applications because of the way in

which volumetric regions are represented in octrees. In CSG applications, an octree
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Figure 2.9: Boolean operations between solids in CSG modeling: (a) union, (b) sub-
traction, and (c) intersection [32].

is used to encode the volume of an object to a high degree of detail. This is done
by finding the intersections between the surface of the object and the octants in a
high resolution octree. A high resolution octree has exceedingly high number of leaf
octants. The resulting octree is a hierarchical voxelization of the object’s volume that
captures the details of the shape of the object.

Logical operations between objects are performed using their octree representa-
tions. For example, subtracting one object from another is done by combining the
octree data structures of two objects and deleting the common leaf octants.

In addition to octrees, other hierarchical and space-indexing data structures ex-
ist. These include BSP/k-d tree [13] and k-dop trees [21], which have been used

extensively in collision detection algorithms.
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2.4 Exact-Object Algorithms

In interactive 3D graphic applications, it is important to present users with a visual
display of believable objects. One way to accomplish this is by representing objects
with detailed models. Typically, these models are constructed using polygons posi-
tioned in 3D space. Polygons positioned in 3D space are preferable because they are
convenient for constructing continuous surfaces that simulate the features and con-
tours of real-world objects. Unfortunately, detecting collisions between these types of
models is substantially more difficult than between simple objects. In interactive 3D
graphic applications, algorithms that perform exact-object collision detection are de-
signed to address the complexities of testing for collision between objects constructed
from polygonal surfaces.

In much the same way that algorithms for solving the all-pairs problem prune the
number of objects passed to exact-object collision detection algorithms, exact-object
algorithms prune the number of features between two objects passed to exact-feature
collision detection algorithms.

Many methods have been developed for analyzing the geometry of two objects in
order to decide which features to test for collision. Of those methods, the most widely
used are Bounding Volume Hierarchy (BVH) algorithms.

A BVH is a set of bounding volumes that recursively encloses the geometric features
of an object. The resulting volumes form a hierarchy of enclosed spaces where levels
of the hierarchy represent the resolution of enclosure around a geometric feature.
Moreover, bounding volumes at lower levels of the hierarchy have tighter fits around

their corresponding geometric features. This is shown in Figure 2.10.
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Figure 2.10: Ezample of a Bounding Volume Hierarchy: bounding boxes recursively
bound polygons [11].

BVHs are designed to isolate quickly geometric features that are participating in
collisions. This is done using an object’s BVH as a guide to search for geometric
features using a divide and conquer strategy.

BVHs are typically implemented as tree data structures. Tree nodes are used to
store the volume bounding a geometric feature, and the relationship between parent
and child nodes is such that the bounding volume of the parent encloses the bounding
volume of the child. An octree data structure can be used as a BVH.

Algorithms that use BVHs to the find colliding features between two objects follow
the same fundamental steps. Beginning at the root of each BVH tree, bounding
volumes are tested for intersection with each other. When intersections are detected,
the corresponding branches in each tree are descended. The differences among BVH
implementations lie in the type of volumes used, how intersections between volumes
are tested, and the algorithms used to build volume hierarchies for objects.

An example of an algorithm that uses a BVH in a parallel collision detection
algorithm is presented in [20]. In [20], an octree BVH is built around the faces of two

objects that may be colliding. When the octrees of two objects are compared with
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one another and voxels from the objects are found to overlap, the faces within the
voxels are distributed to another processor where exact-feature tests are performed.

Another example of a algorithm that uses a BVH in a parallel collision detection
algorithm is presented in [31]. In [31] a bounding volume hierarchy is constructed
from bounding boxes and bounding spheres to obtain tight fits around the features of
an object. Internal to the bounding volumes, balanced binary trees are used to store
polygons enclosed by the bounding volume. This algorithm implements parallelism
by spawning threads to perform searches between the branches of the BVH.

Other examples of BVH implementations include Oriented Bounding Box trees
(OBB) [11], Axis-Aligned Bounding Box trees [1], Brep-Index trees [18], Binary Space

Partitioning trees [2, 29], Sphere Trees [14], and octrees [28].

2.5 Exact-Feature Testing

The final stage of the collision detection pipeline concludes with an exact-feature
test. Exact-feature tests are used to determine if the geometric features from two
objects are, in fact, intersecting. Algorithms for these tests are based on mathemat-
ical solutions to geometry problems. When objects are constructed from polyhedral
surfaces, this problem reduces to detecting if the edge of one surface pierces the face
of another. For a discussion of efficient techniques used to solve this problem, refer

to [17] and [32].
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Chapter 3

Linear Octree-based Parallel
Collision Detection Algorithm

3.1 Introduction

As presented in Chapter 2, collision detection is a multi-faceted problem requiring
individual solutions to subsets of the collision detection problem. Current collision
detection algorithms use a collection of algorithms to solve subset problems. The
relationships among subsets of collision detection algorithms and how they can be
used in conjunction with one another is best described as a pipeline. By optimizing
each algorithm used in a collision detection pipeline, fast solutions to the general
collision detection problem can be devised.

This chapter describes the data structures and algorithms explored in the develop-
ment of a parallel collision detection algorithm designed to solve the all-pairs problem.
This chapter is organized into four sections. In Sections 3.2 and 3.3, two octree-based
data structures considered for use in a parallel collision detection algorithm are de-
scribed. In Section 3.4, a new parallel collision detection algorithm for solving the
all-pairs problem is presented and an algorithmic analysis of the new algorithm is

discussed.
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3.2 Distributed Octree Data Structure

In the process of designing a parallel collision detection algorithm, two strategies
were explored, the first of which involved pursuing a distributed octree implementa-
tion that would facilitate parallel processing for collision detection.

A distributed octree is an octree data structure in which the octants and the objects
they contain, are assigned to separate processors. In this configuration, objects can
be operated on concurrently by the processors that manage the octants within which
the data are contained. See Figure 3.1 for an example of a distributed octree data

structure.

Manages Cctant ¢——
Ceneral i zed Cctant —p
Poi nt er

Figure 3.1: Distributed Octree: 4-level octree data structure distributed over 4 proces-
sors.

A distributed octree data structure has several qualities that make it appropriate
for implementing a parallel collision detection algorithm. The five major qualities

are:

1. Decomposition of an octree hierarchy for distribution is easy to understand and

implement as a modified pointer-based tree. As stated in the description of
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pointer-based octrees in Chapter 2, an octree node stores pointers to its child
nodes. To facilitate the distribution of octant nodes to multiple processors,
pointers used for referencing child octants are generalized, enabling them to
reference a processor that manages octants. From a distributed octree imple-
mentor’s perspective, the generalized pointer can be viewed as addresses used

for communicating with processors that manage octants.

. Distributing an octree across a cluster of networked computers is conceptually
the same as distributing an octree across the processors of a shared-memory,
multi-processor computer. As a function of the structure of an octree, clearly
defined boundaries between regions of space are created. As a result of the
logical structure of an octree, octree data structures have clearly defined regions
by which data are segregated. In an octree, these boundaries are defined by the
volume of an octant, but in an octree data structure, the boundaries are defined
by the tree nodes in which data are stored. This feature allows tree nodes to be
separated physically without compromising the logical structure of the octree.
To distribute an octree data structure over a cluster of networked computers,
pointers to octants are allowed to be computer network addresses where child

octants are located.

. When an octree is distributed across a cluster of computers, the aggregate size
of the octree data structure can exceed the largest octree that can be stored on a
single computer. This allows for a larger octrees to be constructed. On a single
computer, the maximum size of an octree data structure that can be stored
is limited to the amount of available random access memory. By distributing

octants to several computers, the memory from each computer contributes to
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the total space available for storing the data structure. It is important to note
that although an octree data structure can be stored on disk, accessing the data

structure is prohibitively slow as a result disk access speeds.

4. Distribution of data processing is a function of storing data in octants. As
objects are placed in octants that bind their position and volume, they are

accordingly distributed among the processors that manage octants.

5. The complexity of distributing an octree across multiple processors does not
grow as a function of the number of processors over which it is distributed. As
a result of the structure of an octree, once a program has been written to handle
a single distributed octant, the same program should scale to any number of

distributed octants.

In our first attempt to develop a parallel collision detection algorithm, a distributed
octree was used to partition and manage objects among multiple processors and mem-
ories. Each processor would then perform collision detection between objects stored
locally. However, after studying distributed octree implementations, we determined
that distributed octrees are unsuitable for use in a parallel collision detection algo-
rithm because they require load balancing to remain efficient, and, in some cases, must
duplicate an object on multiple processors in order to build a tight-fitting bounding

volume for the object.
3.2.1 The Load Balancing Problem

When objects become concentrated in small regions of space, their representa-
tions become concentrated in the octants of the octree representing that space. In

the case of distributed octrees, processors managing octants where concentrations of
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objects exist have a disproportionately high workload. As a result of an unevenly
distributed workload, performance of the distributed octree gained through paral-
lelism is decreased. To solve this problem, load balancing can be used to redistribute
work among the processors. Redistribution of workload is accomplished using three
operations: dynamic octant splitting, octant migration, and octant consolidation.

Dynamic octant splitting is the process of subdividing octants at runtime to create
additional levels in an octree. Dynamic octant splitting is performed by subdividing
the volume of an octant into eight new child octants and then inserting objects con-
tained in the original octant into the newly created children. The goal of dynamic
octant splitting is to create additional subdivisions of a volume to further segregate
objects. If dynamically splitting an octant fails to adequately partition a concentra-
tion of objects, the procedure is repeated until the objects are sufficiently segregated.
Octants containing high concentrations of objects are candidates for dynamic octant
splitting.

Octant migration is the process of moving octants from one processor to another.
To move an octant between processors, the definition of an octant and the data
the octant contains are reassigned to another processor. After an octant has been
reassigned, all pointers that reference the octant are updated to reflect the change
of management. Depending on the architecture of the parallel computer for which a
distributed octree is implemented, octant migration can involve as little as reassigning
octant pointers, as is the case for a multi-processor, shared-memory computer, or as
much as transporting octant definitions and data across a network connection when
an octree is implemented for a networked cluster of computers.

Combined, dynamic octant splitting and octant migration can be used to distribute

data and processing evenly throughout a distributed octree. However, as a result
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of these operations, the structure of a distributed octree becomes fragmented over
processors and memory. Fragmentation reduces the performance of octree operations
and consumes excessive amounts of memory as branches of the octree become unused
and the paths through the octree span an excessive number of processors. To repair
a fragmented octree, octant consolidation is used to remove unnecessary octants and
decrease the number of processors spanned by paths through the octree. Octant
consolidation is the opposite operation of dynamic octant splitting. Octants are
consolidated based on the number of objects contained in a branch of an octree. If
the children of an octant, combined, contain a small number of objects, the objects
are moved into the parent and the children are deleted. This process reduces the
amount of memory consumed by the data structure, decreases the number of levels
in the octree, and decreases the separation distance between the root and leaves of
the octree on a parallel computer.

An example of a distributed octree is described in [7]. Although not designed
specifically for collision detection, the distributed octree implementation discussed in
this article can also be used for parallel collision detection. A distributed octree is used
for storing and manipulating scientific data sets for visualization. By distributing a
data set across multiple processors, operations on data can be performed in parallel.
Due to the large amounts of data, a distributed octree is well suited for this type of

application.
3.2.2 The Object-Octant Membership Problem

Object-octant membership is a term that will be used to describe which octants an
object intersects. The other factor which makes distributed octrees unsuitable for use

in a parallel collision detection algorithm is the manner in which object-octant mem-
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bership must be managed. The fundamental purpose of using an octree is to segregate
objects based on their position. Octrees do this by creating a spatial relationship be-
tween objects based on which octants objects occupy. A spatial relationship exists
between two objects that occupy a common octant. Several methods have been de-
veloped to determine the object-octant membership of an object. In this discussion,
a search method will be used to illustrate problems with distributed octrees.

As discussed in Chapter 2, a typical strategy for inserting data into an octree
is to recursively search for octants that intersect the object. Depending on how an
algorithm terminates recursive descents into the tree, upon completion of an insertion
operation, a reference to the object will have been stored with octree data structure
nodes that correspond to the location and volume of the object. Octree nodes that
store references to an object define the object-octant membership of the object.

As seen in Figure 3.2 and Figure 3.3, when the volume of an object straddles
octants managed by different processors, the object must be stored by each processor

that manage octants that intersect the object.

Figure 3.2: A perspective and orthogonal view of a sphere located in the center of an
3-level octree.
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Figure 3.3: A distributed octree data structure storing the sphere from Figure 3.2.

Storing objects on multiple processors is problematic for distributed octrees be-
cause maintaining the state of an object requires coordinating the processors which
store the object.

Although the difficulties surrounding distributed octrees can be overcome, the cost
of load balancing in terms of performance outweigh the benefits of using it for parallel
collision detection. For this reason, distributed octrees are not suitable for use in a

parallel collision detection algorithm.

3.3 Linear Octree

The second data structure we considered for use in a parallel collision detection
algorithm was a linear octree. A linear octree is not a tree-like data structure. It is
an encoding scheme derived from the structure of an octree. Codes generated using
a linear octree encoding scheme uniquely identify voxels positioned within an octree.
These codes are used for describing three-dimensional objects volumetrically based
on the voxels an object intersects. The set of codes that describe the volume of an

object are called a linear octree. A linear octree is stored in a list data structure.
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The basic unit of a linear octree is an octal code, also called octnode code. An
octal code is a sequence of numbers that, when read from left to right, describe a
path from the root of an octree to an octant. The numbers used in the sequence of
an octal code correspond to the indices of octants. The position of a number in the
sequence of an octal code corresponds to a level in the octree. For example, the octal
code {3, 1, 4} refers to an octant located on the third level of an octree and can
be found by recursively descending into octant 3, followed by octant 1, and finally
octant 4.

The sequence of numbers in an octal code can be stored conveniently in an unsigned
integer by using the digit positions to store the octal code sequence. For example,
the sequence {3, 1, 4} can be represented by the integer {314}.

Several variations of the linear encoding scheme have been developed. [28] provides
a comprehensive overview of these variations as well as a description of their origins.
[16] also provides a thorough description of linear encoding schemes as well as discusses
set operations between linear octrees. [9] briefly describes a linear encoding scheme
and then describes how to use linear octrees for ray tracing.

Linear octrees have several qualities that make them useful for parallel computing
environments. The most useful quality is that a linear octree preserves the hierarchi-
cal nature of the data it represents, while avoiding the need to retain a pointer-based
tree. Furthermore, the data representation of a linear octree is convenient for trans-
portation by means of interprocess communications.

Another useful quality of linear octrees is a unique property that octal codes ex-
hibit. By sorting in ascending order a list of octal codes represented as integers, the
resulting sequence is the pre-order traversal of an octree [28]. As show in Figure 3.4,

by visiting octants from a list of octal codes that has been sorted in ascending order,



32

Cctree Root Node o

1 2 v

£ 7 ' 9y X % 4
L} 1 L} L} L} L} L}
'

WV 3 WV \V/ \V/ WV 8 WV \V/ \V/
] X~ ] ] N\ ] ] ]
'

4 /X \ 5 & S
' ' '
X 6 ¥ Ve WV Y 7 X A

Cctal Codes: 1000, 2000, 2200, 2210, 2230, 2542, 2546, 2600, 5000
Visit Order: 1, 2, 3, 4, 5, 6, 7, 8, 9

Figure 3.4: Octal codes sorted in ascending order and the order octree nodes are
visited.

nodes in the tree are visited in order on lower to higher numbered branches and from
top to bottom. This property of octal codes is useful because it provides a method
for merging disparate linear octrees into a single octree. Given a set of octal codes, a
pre-order traversal of an octree that only contains octants that intersect objects can
be found by simply sorting the list of octants. This property is the cornerstone of the

new algorithm presented in the next section.

3.4 A Parallel Linear Octree Collision Detection
Algorithm

In this section, a new collision detection algorithm is proposed that uses a lin-
ear octree for solving the all-pairs collision detection problem. The algorithm has

O((n log n)/k) performance, where n is the number of objects and & is the number
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of processors.

The strategy behind the proposed algorithm is to construct the linear octrees of
n objects in parallel using k processors and then merge the resulting octrees into a
single linear octree on a single processor. In the description of this algorithm, the

following assumptions are made:

1. All objects are cubes.
2. The parallel program consists of one master process and & slave processes.

3. Each slave process either shares a single octree, or all processes have an exact

copy of the same octree.

4. The number of objects is an even multiple of the number of processes.

3.4.1 Algorithm Outline

The following is an outline of the steps performed by the algorithm to generate a

linear octree of a set of objects and test the objects for collision.

1. The master process divides a list of n objects by k processes and distributes a
list of n/k objects to each process. The master process then waits for all slaves

to complete processing before execution is resumed.

2. Each slave waits to receive a list of objects from the master. When the list
of objects is received, each slave builds a linear octree for each object. The
resulting octal codes are paired with an index of corresponding objects from
the main list of objects. All resulting octal-code/object-index pairs are stored

in a single list.
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Each slave process sorts in ascending order its list of octal-code/object-index

pairs by the integer representation of the octal codes.

Each slave sends its list of octal-code/object-index pairs back to the master

process. The slave process is complete.

The master process receives k list of octal-code/object-index pairs from the

slave processes.

The master process merges k lists of octal-code/object-index pairs into a single

list.

. The master process iterates in ascending order through the list of octal-code/object-

index and finds all pairs of octal codes that share octants. The indices of objects

that correspond to octant-codes that share octants are stored in a list.

3.4.2 Algorithm Pseudo Code

The algorithm can be summarized in two pseudo code programs, one for the master

process and one for the slave processes.

Master Process()

Begin
integer k := number of slaves
address slave[ O to k ] := locations of slave processes
cube object_list[ 0 to n ] := list of n objects
Pair<octalcode,integer> slave_lists[0 to k][] := NIL
Pair<octalcode,integer> master_list[] := NIL
Pair<integer,integer> colliding_pair_list[] := NIL
octalcode smallest_octalcode := NIL

// Step 1
sublist_size := sizeof (object_list[]) / k
index := 0
For each x := from 0 to k
{

}

Send( slave[x], object_list[ index to (index + sublist_size) ] )
index := index + sublist_size



// Step 5

num_octal_codes := NIL
For each x := from O to k
{

Wait (slavel[x])
Receive(slave[x], slave_list[x])

}
// Step 6
master_list[] := MergeSortedLists(slave_lists[])
// Step 7
index := 0
For( objectl := 0 ... sizeof(master_list[]) - 1 )
{
For( object2 := objectl ... sizeof (master_list) )
if ( CommonPath( master_list[object1], master_list[object2] ) == true )
{
colliding_pair[index] := objectl,object2
index := index + 1
}
else
break from inner for-loop
}
End

Slave Process()

Begin
cube object_list[] := NIL
octalcode linear_octree[] := NIL
Pair<octalcode,integer> slave_list[] := NIL
address master := address of master process
// Step 2

Wait( master )
Receive( master, object_list )

For each x := object_list[]
{
linear_octree[] := SearchOctree(object_list[x])
For each y := linear_octree[]
{
slave_list[] append pair(linear_octree[y],x)
}
¥

// Step 3

Sort( slave_list[] )
// Step 4

Send( master, slave_list )
End
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Subroutine Send( address, data )

{
Send "data" to a process at "address"
3
Subroutine Wait( address )
{
Wait for communications from the process at "address"
}
Subroutine Receive( address, data )
{
Receive "data" from the process located at "address"
X

array Subroutine MergeSortedLists( "list of sorted lists" )
{
Merges a "list of sorted lists" into a single "list"
return "list"

}

Boolean CommonPath( octalcodel, octalcode?2 )

{
Determines if the octal codes share an octant.
Two octal codes share an octant if both codes define
octants on the same path through the octree.

Return true if two octants are shared, otherwise return
false.

}

array SearchOctree( cube )

{
Determine the object-octant membership of an object return
the octal codes of the octants this object intersects.

}
Sort( octant[] )
{
Sorts a list of octants in ascending order
}

Bounding Cube Representations

Like other algorithms for solving the all-pairs collision detection problem, this
algorithm uses bounding representations of objects to gain performance. In this

algorithm, bounding cubes are used. Bounding cubes are used for two reasons. First,
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testing for intersection between two cubes is efficient. This is important because
the octree search algorithm makes extensive use of cube intersection tests. Second,
cubes can be stored efficiently in memory. Storage efficiency is important because it
reduces the overall memory requirements of the collision detection algorithm and can

be quickly transported over a network connection.

Octree Search

To build a linear octree for an object, the slave processes search an octree for a set
of octants that. When combined, these octants form a cube that binds the bounding

cube representation of the object.

Octal Code Comparisons

The CommonPath subroutine is used to determine if two objects are colliding by
determining if they share octants. The CommonPath subroutine is so named because
octal codes that define similar paths through an octree have overlapping octants. The
general algorithm for comparing two octal codes is a piecewise equivalence test be-
tween the sequences of numbers stored as octal codes. If any of the numbers between
the sequences differ, then the octal codes identify disparate regions of space. Oth-
erwise, the octal codes identify overlapping regions of space, and the corresponding
objects are considered for further collision testing.

It is possible for two octal codes to define paths of different lengths. When this
occurs, the octant indices are compared up to the maximum length of the shorter
octal code. For example, consider the two octal codes {1, 2, 3, 4, 5} and {1,
2, 6, 0, 0}. In this case, because the second octal code defines a shorter path than

the first octal code, only the first three numbers in the code would be compared.
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In practice, the implementation of the general algorithm exploits the integer repre-
sentation of octal codes. When two octal codes differ in length, the longer of the two
is truncated using a modulus and a subtraction operation. The octal codes can then
be tested for equivalence using an integer comparison. Using the previous example of
octal codes in integer form, octal code 12345 would be transformed to 12300 so that

it can be compared to octal code 12600 using an integer comparison.

Pre-order Traversal of a Linear Octree

The feature of linear octrees that makes the proposed algorithm efficient is the
property of octal codes that, when sorted in ascending order, result in a list that
defines a pre-order traversal of an octree [28]. This feature is used to merge the linear
octree representations of multiple objects into a single space by concatenating the
linear octree representations of multiple objects and sorting the resulting list of octal
codes.

The sorted list of octal codes is used to determine all colliding pairs of objects
using the CommonPath function. This is done by testing each octal code for a common
path with subsequent octal codes from the list until an octal code representing a
non-overlapping region of space is tested. At this point, no additional octal codes
need to be tested for a common path because the region of space represented by the
octal code does not overlap any additional regions of space represented in the list of
octal codes.

To understand why this works, recall that within an octree each octant is a fully
enclosed subdivision of a higher level octant. Therefore, only parent and child octants
that lie on the same path along a branch of the octree overlap. Because octal codes

represent paths along octree branches, octal codes that represent different paths indi-
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cate non-overlapping regions of space. As a result of sorting octal codes in ascending
order, octal codes representing overlapping regions of space appear contiguously and
in order within the list such that higher level octants intersecting lower level oc-
tants appear first. For example, in the sequence of octal codes {1200, 1210, 1214,
1330, ...}, 1200 identifies the parent of both 1210 and 1214 and overlaps both of
their spaces. Octal code 1210 is the parent of 1214 and overlaps its space. Octal code
1330 defines a region of space that doesn’t overlap any of the previous spaces and in-
dicates that the previous spaces do not overlap any other regions of space represented
in the list of octal codes. This property allows the search for overlapping octants to be
performed in the fewest number of steps. As a result of the ordering, once two octal
codes identifying non-overlapping regions of space have been tested, no further com-
parisons with subsequent octal codes will reveal any additional overlapping regions

of space.
3.4.3 Analysis of the Algorithm

On the master processor, steps 1 and 5 of the algorithm run in linear time as a
function of the data distributed to, and collected from, the slave processes. Because
every object is passed to the search subroutine in step 2 to build the linear octree for
each object, each search time becomes a constant factor. Therefore, searching for n
objects runs in linear time as a function of the number of objects. In Step 3, each
slave sorts n resultant octal codes which takes O((n log n)) time in the worst case.
In step 6, merging k lists of sorted octal codes is done in linear time. Finally, step
7 runs in O(n?) time in the worst case, but, if objects are not allowed to remain in
an intersecting state, then the running time is O(n) on average as a result of the

pre-order traversal ordering of the list.
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Based on the individual run times of each step, the runtime performance of this
algorithm will be bound by the sort performed in Step 3 by each slave processor.

Therefore, the expected runtime of this algorithm is O((n log n)/k).
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Chapter 4

Parallel Collision Detection System
Implementation

This chapter discusses the implementation of a collision detection system that uses
the new algorithm proposed in the previous chapter. In this chapter, the architectural
approach and design used in the implementation will be described along with the

components that constitute the collision detection system.

4.1 Client-Server Architecture, Object-Oriented
Design, Modular Implementation

The structure of the collision detection system is a client-server architecture. The
application serves as the client, and the collision detection system acts as the server.
A client-server approach is used to separate logically and physically the application
from the collision detection.

Logical separation of the collision detection system and the application is achieved
by using object-oriented design techniques to encapsulate the data and functionality
of the collision detection system in a collection of reusable components. A feature
of this design is that it allows the collision detection system to be used by client

applications with varying degrees of integration.
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As part of the design of the collision detection system, parallel aspects of the
underlying algorithm are implemented as separate processes. This feature requires
the collision detection system to be separated physically from the client application
and was made possible by the underlying object-oriented design. Additionally, the
physical separation of the collision detection system from the application allows the
collision detection system to take advantage of both shared-memory, multi-processor

computers and a cluster of networked computers.

4.2 Operating Environment

The collision detection system has been implemented for use on Unix operating sys-
tems using the C++ programming language. Interprocess communication between
components of the collision detection system on a single computer is implemented
with System V semaphores and shared memory. Berkeley sockets are used for com-

municating over a network connection.

4.3 Integrating Collision Detection into an
Application

As part of the object-oriented design of the collision detection system, application
developers may choose from three levels of integration. This choice is made by select-
ing certain components of the collision detection system to build into an application.

When the highest level of integration is used, the entire collision detection system
is run in a process owned by the client application. In this configuration, the client
application has the highest degree of control over initializing data structures internal
to the collision detection system. The drawback to fully integrating the collision

detection system is that the client application cannot take advantage of the parallel
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features of the collision detection system.

A lower level of integration removes the task of building linear octrees from a
client-application-owned process and performs this task in processes owned by the
collision detection system. The task of merging linear octrees is still performed by a
client- application-owned process using components from the collision detection sys-
tem. Components from the collision detection system that run in a client-application-
owned process communicate with processes owned by the collision detection system
using shared memory and semaphores. When this configuration is used, an appli-
cation can begin to take advantage of the parallel features of the collision detection
system.

By using the lowest level of integration, all tasks performed by the collision de-
tection system are removed from client-application-owned processes. In this configu-
ration, an application can take full advantage of the parallel features of the collision
detection system as well as communicate asynchronously with the collision detec-
tion system. Asynchronous communication with the collision detection system allows
a client application to submit a job to the collision detection system and continue
processing. At a later time, the client application can query the collision detection
system to see if a previously submitted job is complete.

There are two reasons for running the collision detection system as part of a client-

application-owned process:

1. The target platform is a single-processor computer.

In the collision detection system, multiple processes are used to facilitate con-
current execution in parallel computing environments. If the client application

is not run on a parallel computer, then no performance advantage will be gained
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by using the parallel features of the collision detection system.

2. The number of objects the client application manages is small.

The parallel features of the collision detection system are designed to enable
client applications to exceed the number of objects other collision detection
systems can handle. When the number of objects is small, there is no benefit

to using the parallel features of this collision detection system.

4.4 Class Objects

The following subsections describe the core components of the collision detection

system and their role in performing collision detection.
4.4.1 The Octree class

The Octree class is used to encapsulate an octree data structure and its associated
algorithms. Important issues this class addresses are the storage of an octree data

structure in shared memory and octree search algorithms.

Shared-Memory Octree Data Structure

On multi-processor, shared-memory computers, the parallel implementation of the
collision detection system uses several processes to concurrently build linear octrees.
Because the octree data structure is used as a static reference frame for positioning
objects within a volume of space, it is not necessary for each processor to share
the same octree data structure in memory. Searching identical octrees for the same
object always produces identical results. However, because the size of an octree grows
exponentially with its depth, it is advantageous for all processes on the same machine

to share a single octree data structure in memory. The Octree class addresses this
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issue by storing its internal octree data structure in shared memory.

The main technical issue of sharing an octree between multiple processes is how
to represent the octree data structure in shared memory. As described in Chapter
2, octree data structures are typically implemented as pointer-based trees. However,
a pointer-based tree does not lend itself to being stored in shared memory because
dynamically allocated nodes are used to construct the tree and are referenced using
pointers. Typically, the memory sharing facilities that come with Unix operating
systems are designed to map a small number of memory regions into address spaces of
multiple processes, not to share many small blocks of dynamically allocated memory.

To overcome this limitation, the octree data structure is constructed from an array
of octants that is stored in a single region of shared memory. An array-based octree
can be conveniently shared among many processes.

In an array-based octree, the hierarchical relationship between octants is estab-
lished by storing array indices with each octant. Array indices are used by octants
to locate the position of their parent and child octants in the array. In array-based
octrees, array indices are analogous to pointers in pointer-based trees. An example
of an array-based octree is depicted in Figure 4.1. The NamedVector class, which

is described in section 4.5.4, is used to store an array of octants in shared memory.

Octant class

The Octant class implements the node data structure used in an octree data
structure. An instance of this class corresponds to an octant in an octree. Internally,
this class stores a Cube class to represent the volume of an octant and array indices

that identify the location of parent and child octants in an array-based octree.
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Array position 0 —> 14044 14630 —> 28087 30428
child 1 1 14045 14631 28088 30429

child 2 4682 14630 14704 28673 30502

child 3] 9363 15215 14777 29258 30575

Contents of Child 4] 14044 p— 15800 14850 29843 30648
array cel| child 5] 18725 16385 14923 30428 30721
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par ent 0 0 14044 0 28087

Gctal Code | goop 4000 4200 7000 7500

Figure 4.1: Portions from an array-based octree demonstrating how to traverse from
parent to child octant using the array indices stored in each array cell.

Octree::iterator class

To traverse an array-based octree, indices stored with octants are used to navigate
the array to parent and child octants according to the structure of the octree. The
Octree::iterator class simplifies the process of traversing an array-based octree by
encapsulating the mechanics of inspecting and storing array indices. This class is
based on a container-iterator design pattern and is designed to work like the iterator
class in the C++ Standard Template Library. Readers unfamiliar with iterators can
think of them as intelligent pointers used for navigating data containers. In this
case, the container is an array, and the data are Octant class instances. Because
the natural structure of an octree is not a linear array, the iterator class is used to
abstract client code from the array storage container and make it appear more like

an octree. The Octree::iterator class simplifies writing octree algorithms.
Octree::ResolveObject()
The Octree::ResolveObject() function implements a recursive search of the oc-

tree that finds the octants which bind an object. This function is used to build the lin-

ear octree representation of an object. The parameters of the Octree::ResolveObject()
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function are a Cube class, a maximum search depth, and a list of OctalCode classes.
The Octree::ResolveObject() function searches the octree data structure stored in
the Octree class instance for octants that intersect a cube. The resulting octal codes
are stored in the OctalCode list parameter. These octal codes are the linear oc-
tree representation of the Cube. The OctalCode list parameter is a value-result

argument and is used to pass the linear octree out of this function.
4.4.2 OctreeMaster Class

The OctreeMaster class is the intermediate interface between client applications
and processes that perform octree searches. The primary responsibilities of the Oc-
treeMaster class include assigning objects to slaves, signaling slaves to begin octree
searches, and merging search results. Moreover, this class acts as the interface to

processes that build linear octree representations of objects.

Asynchronous Communication with Client Application

One of the features implemented by the OctreeMaster class is an asynchronous
communication method for client applications. Using this feature, client applications
are able to submit jobs to the collision detection system and continue running while
the job is being processed. Clients can then verify that the job has been completed
through the OctreeMaster class. Alternatively, the client application can wait for

the job to complete. While waiting, execution of the client application is suspended.
Object transfer and storage
Object data are transfered to and from an OctreeMaster class instance using

shared memory. In most cases, the NamedVector class is used for this purpose.

To transfer data to an instance of an OctreeMaster class, a process constructs
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a NamedVector class that attaches to the shared memory of a NamedVector
class owned by an OctreeMaster class. The process and the OctreeMaster can
read and write the same region of shared memory using their respective instances
of a NamedVector class. Reading and writing operations are synchronized using a

NamedSemaphore class.
4.4.3 OctreeClient Class

The OctreeClient class is the interface used by client applications to communicate
with the collision detection system. The OctreeClient class provides an interface
for clients to send and receive signals and data with the collision detection system.

This class provides three functions to communicate with the collision detection

system.

e OctreeClient::ResolveObjects(): The ResolveObjects() function is used
to transmit objects to the collision detection system and signal the OctreeMas-

ter to begin octree searches. This function returns immediately.

e OctreeClient::Finished(): The Finished() function is used to determine if

a job submitted using the ResolveObjects() function has been completed.

e OctreeClient::Wait(): The Wait() function is used to wait for a job that
was submitted using the ResolveObjects() function. This function blocks the
process that invokes it until the requested job has been completed and data is

ready to be delivered to the client application.

Internally, this class uses Named Vector and NamedSemaphore classes to trans-

port data and communicate with the collision detection system.
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4.4.4 NamedVector Class

The NamedVector class is a template class data structure designed to facilitate
sharing memory between processes. This class is implemented as part of the class
library for the collision detection system. The interface of the Named Vector class is
designed to simulate the C++ Standard Template Library vector class. Data is stored
internally in a shared-memory region. When a NamedVector class is constructed,
the class creates or attaches itself to a shared memory region. Upon construction, if
the shared memory region the class instance should use exists, then the class instance
attaches to the memory, otherwise the memory is allocated. The NamedVector

class uses a mnemonic to identify the shared-memory region with which to associate.
4.4.5 NamedSemaphore Class

Throughout the collision detection system, processes and shared memory must
be synchronized. To facilitate synchronization operations, the NamedSemaphore
class is implemented as part of the class library of the collision detection system. The
NamedSemaphore class encapsulates operations on System V semaphores. Like
the NamedVector class, upon initialization, the NamedSemaphore class uses a

mnemonic to determine with which semaphore to identify.

4.5 Service Components

To implement the previously described classes as components running in separate
processes, harness programs are used to instantiate classes and initialize communica-
tion facilities. The resulting programs function as service components in the collision

detection system.
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The collision detection system consists of four services excluding the the client ap-

plication: octree_master, octree_slave, octree_netclient, and octree_netserver.
4.5.1 Octree_master Service

The octree_master service is the harness for the OctreeMaster class. This
service interfaces with an instance of the OctreeClient class to forward data and
signals to an instance of the OctreeMaster class. The octree_master service then
drives the OctreeMaster class by invoking its functions to communicate with the

octree_slave Service.
4.5.2 Octree_slave Service

The octree_slave service is the harness for the Octree class. The octree_slave
service receives signals and data from an instance of the OctreeMaster class and,
in turn, drives the Octree class to perform octree searches. The OctreeMaster
class is capable of interfacing with multiple octree_slave service processes. Multiple
octree_slave service processes running on the same computer are used to achieve

parallelism on a multi-processor computer.
4.5.3 Class-service Relationships

The relationship between the OctreeClient class, octree_master service, Oc-
treeMaster class, octree_slave, and Octree class is depicted in Figure 4.2. Because
the roles of the service components and the classes with which they communicate are
isolated from one another, application developers have the option of choosing the
level in which the collision detection system is integrated into the client applica-
tion. As show in Figure 4.2, the OctreeClient class, OctreeMaster class, and

Octree class all expose an interface called ResolveObject(). Functionally, the Re-
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Figure 4.2: Instance diagram of the collision detection system.

solveObject() interface works approximately the same between all three classes that
implement it. This allows the client application to be attached to the collision detec-
tion system using any one of the three ResolveObject() interfaces. By choosing the
ResolveObject() interface to attach to, the application developer chooses the level

in which the collision detection system is integrated into the client application.
4.5.4 Octree_netclient and Octree_netserver Services

The octree_netclient and octree_netserver services are the glue that enables
the collision detection system to distribute the task of building linear octrees over a
network of computers. These services mimic the behavior of octree_slave and client
applications. They operate by intercepting data and signals from client applications
and octree_slave services and forward information across network connections.

The octree_netclient service implements the communication interface that the

octree_slave service component uses to communicate with an instance of the Oc-
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treeMaster class. This allows the octree_netclient to receive signals and data
from an OctreeMaster class. When an OctreeMaster initiates a search, an oc-
tree_netclient service receives the request and sends it across a network connection
to a corresponding octree_netserver.

When an octree_netserver service receives a request from an octree_netclient
service, the octree_netserver simulates the behavior of a client application and sub-
mits the search request to an octree_master service running on the same computer.
The process is reversed to send results back to the octree_master service that orig-
inally requested the octree searches to be performed. The configuration of a collision

detection system for parallel processing is shown in Figure 4.3.

Client Conputer Server Conputer

Client Application octree_master octree_netclient ||
service

Figure 4.3: Collision detection system utilizing network connections for distribution.

4.5.5 Bandwidth Utilization

Both the octree_netclient and octree_netserver services have the ability to bind
themselves to a specific network connection. This feature gives the collision detection
system the ability to take full advantage of all available network bandwidth for moving
data to and from networked computers. This feature is particularly useful when
computers are multi-homed on a network. For each network interface, a corresponding
octree netclient/octree netserver can be installed, allowing data transportation

to be distributed over the interfaces.
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Using octree_netclient and octree_netserver services in combination with the
collision detection system services allows for a variety of configurations to be con-
structed that take full advantage of all available resources.

Examples of how the collision detection can be configured for maximum utilization

of resources are shown in Figure 4.4.

Client Application ac
se

Figure 4.4: Sample configurations of the collision detection system using both shared-
memory and networked computers.
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Chapter 5

Results

This chapter presents results from our implementation of the collision detection
algorithm. In the first section, empirical results obtained from running the collision
detection system are described through a series of figures. In the second section, the
actual performance of the algorithm is described using speedup and efficiency metrics.
Finally, the last section presents an explanation of the performance of the algorithm
by analyzing the figures presented in the first section of this chapter and describing

the actual runtime of several components of the collision detection system.

5.1 Empirical Results

Results presented in this section were obtained by running the collision detection
system on variable size data sets and recording the time taken to complete a collision
detection operation. Two parallel computers where used to run the collision detection
system. The first parallel computer consists of six dual processor AMD Athlon MP
1.2GHz computers networked together using a 100baseT network. Data in Figure 5.6
was obtained by running the collision detection system on the second parallel com-
puter. This computer consists of twenty-one dual processor Intel 1GHz Pentium III

computers interconnected with a high bandwidth, low latency network.
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In each test, a five level octree measuring one thousand units across is used to
perform collision detection on spherical objects, each with a radius of 0.5 units. The
spheres are randomly positioned within the volume enclosed by the octree. The
number of objects used in each test is indicated in the figure.

Figure 5.1 shows the results of running the collision detection system on a dual-
processor computer using one and two processors. As shown by this figure, performing
collision detection using two processors completes in approximately half the time of

the same operation performed using a single processor.
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Figure 5.1: Collision detection: local, 1 and 2 processors.

In Figure 5.2, collision detection performed using a single processor located in the
same computer and a remote computer are compared. In this figure, the distance
between the line profiles represent the time needed to transport data to and from
the remote computer. Figure 5.3 shows the same comparison but adds the use of a

second Processor.
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Figure 5.2: Collision detection: local and remote, 1 processor.
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Figure 5.3: Collision detection: local and remote, 2 processors.
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Figure 5.4 shows the scalability of the collision detection system by comparing the
time needed to perform the same collision detection operation using one to five remote
computers. Each computer uses only a single processor. Figure 5.5 shows the results

of the same test performed in Figure 5.4 when each computer uses two processors.
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Figure 5.4: Collision detection: remote, 1 processor per machine, 1 to 5 machines.

Figure 5.6 shows the performance of the collision detection system by comparing
execution times for 100,000 to 2,000,000 objects using one to forty processors. These
computers are interconnected with a high bandwidth, low latency network. This
network allows large amounts of data to be moved between computers at speeds in
upward of eight times faster than a 100baseT Ethernet network. Besides helping show
how scalable the collision detection algorithm is, the primary purpose of this graph is
to provide supporting evidence to the claim that the collision detection algorithm runs
in O((n log n)/k) time. Unfortunately, these graphs appear linear. An explanation

of this phenomenon is presented in the last section of this chapter.
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Figure 5.5: Collision detection: remote, 2 processors per machine, 1 to 5 machines.
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Figure 5.6: Collision detection: remote, 2 processors per machine, 1 to 20 machines.
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5.2 Analysis of Empirical Results

The tables in this section describe the performance of the collision detection sys-
tem using actual runtime data. Each table contains the speedup and efficiency of the
collision detection system for a variable number of processors and data set sizes. In
each case, speedup is calculated by dividing the runtime of the serial algorithm by
the parallel runtime of the algorithm. Speedup indicates how many time faster the
collision detection system performs using multiple processors compared to the serial
implementation of the algorithm. Efficiency is calculated by dividing the speedup of
the algorithm by the number of processors used to attain the speedup value. The effi-
ciency of an algorithm is a percentage that indicates how much of the total processing
capabilities of the parallel computer an algorithm can use to while executing.

In Table 5.1 and Table 5.2 speedup and efficiency are calculated for the collision
detection system running on a dual processor computer with two different size data
sets. As show in these tables, a larger data set causes the collision detection algorithm

to perform more efficiently.

Processor | Execution time (usec.) | Speedup | Efficiency
1 1,460,885 NA NA
2 761,157 1.919 95.95%

Table 5.1: Collision detection: Local computer, 100,000 objects.

Processor | Execution time (usec.) | Speedup | Efficiency
1 2,921,999 NA NA
2 1,471,116 1.986 99.31%

Table 5.2: Collision detection: Local computer, 199,000 objects.
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In Table 5.3, 5.4, 5.5, and 5.6, speedup and efficiency of the collision detection
system are calculated using a variable number of processors. These tables demonstrate
that the collision detection system is capable of scaling as the number of processors

increases and still achieve speedup. However, as the number of processors increases,

efficiency of the system decreases.

Processor | Execution time (usec.) | Speedup | Efficiency
1 1,708,203 NA NA
2 965,051 1.77 88.5%
3 685,805 2.49 83.0%
4 571,763 2.99 74.8%
) 502,234 3.40 68.0%

Table 5.3: Collision detection: 1 processor per computer, 100,000 objects.

Processor | Execution time (usec.) | Speedup | Efficiency
1 3,379,940 NA NA
2 1,908,001 1.77 88.5%
3 1,395,906 2.42 80.7%
4 1,140,158 2.96 74.1%
5 986,878 3.42 68.5%

Table 5.4: Collision detection: 1 processor per computer, 199,000 objects.

Processors | Execution time (usec.) | Speedup | Efficiency
1 3,379,940 NA NA
2 1,953,981 1.71 85.5%
4 1,212,657 2.79 69.8%
6 928,884 3.69 61.5%
8 828,263 4.30 53.7%
10 713,694 4.64 46.4%

Table 5.5: Collision detection: 2 processors per computer, 100,000 objects.




Processor | Execution time (usec.) | Speedup | Efficiency
1 3,379,940 NA NA
2 1,053,081 1.73 86.5%
i 1,212,657 2.79 69.7%
6 928,884 3.64 60.6%
8 828,263 4.08 51.0%
10 713,694 4.74 47.4%

Table 5.6: Collision detection: 2 processors per computer, 199,000 objects.

Tables 5.7 and 5.8 shows that as the number of processors increases the system

can retain efficiency if the amount of work (the number of objects) is increased.

Processor | Execution time (usec.) | Speedup | Efficiency
1 29,537,415 NA NA
2 15,596,299 1.89 94.7%
10 3,615,147 8.17 81.7%
20 2,177,746 13.56 67.8%
30 1,682,112 17.56 58.5%
40 1,480,608 19.95 49.9%

Table 5.7: Collision detection: 2 processors per computer, 1,000,000 objects.

Processors | Execution time (usec.) | Speedup | Efficiency
1 99,706,876 NA NA
2 31,332,310 1.01 95.3%
10 7.215.860 8.27 82.7%
20 4,298,207 13.80 | 69.5%
30 3,331,193 17.92 59.7%
40 2,889,864 20.66 51.7%

Table 5.8: Collision detection: 2 processors per computer, 2,000,000 objects.
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5.3 Analysis of Algorithm Runtime

One of the goals of obtaining empirical data of the runtime of this algorithm was
to provide supporting evidence to the claim that it performs in O(n log n)/k time.
Figure 5.6 was intended to do this by producing data that when graphed, resulted in
a curve similar to an n log n curve. Unfortunately, none of the plotted lines in Figure
5.6 are curved. In fact, these lines appear linear.

To understand why these lines do not fit a characteristic n log n curve, individ-
ual components that contribute to the runtime of the algorithm where timed and
compared. Based on our findings, all operations performed internal to the collision
detection system are performing as expected, except for the ResolveObject() rou-
tine, which is responsible for generating the octal codes for each object.

The following list of functions and times are the primary contributing factors that

make up the runtime of the collision detection system.

Slave computer: gsort() 88,953 u sec.

Slave computer: ResolveObject() 1,307,631 u sec.

Networked slave computer: MergeSlaveResults() 38,622 u sec.

Master computer: MergeSlaveResults() 791,490 p sec.

Obviously, the major contributing factor to the runtime of the collision detection
algorithm is the ResolveObject() function. The runtime of the ResolveObject()
function grows linearly with the number of objects it operates on and, because the
runtime of the ResolveObject() function is an order of magnitude greater than the

other runtimes, the effects other contributing components have on the overall runtime
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of the collision detection algorithm are diminished. This explains why the lines in
Figure 5.6 appear so linear.

The second largest contributing factor in the list is the MergeSlaveResults()
function performed by the master process. Although in this example, the runtime for
the MergeSlaveResults() function appears large compared to the gsort() runtime,
this is actually the effect of the number of processors being used in the collision
detection system. In this example, forty slave processors are being used. If & was
smaller, or n was sufficiently larger, then the runtime of the gsort() routine would
dominate all other contributing factors and make the curves in Figure 5.6 appear

more n log n.
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Chapter 6

Conclusions and Future Work

In this thesis we presented a new collision detection algorithm that solves the
all-pairs collision detection problem using parallel processing. The design of the algo-
rithm is based on a linear octree and runs in parallel with a theoretical performance
of O((n log n)/k) runtime. The algorithm has been implemented as a collision detec-
tion system using object-oriented design techniques and a client-server architecture.
The architecture of the collision detection system is designed to use the parallel capa-
bilities of both shared-memory, multi-processor computers and clusters of networked
computers. Additionally, the modularity of the collision detection system gives ap-
plication developers the flexibility to choose the level at which the collision detection
system is integrated into an application. Using the collision detection system, exper-
imental results have been generated that demonstrate how the algorithm performs

according to the calculated theoretical performance.

6.1 Conclusions

Distributed octree data structures are well suited for collision detection when
the data storage requirements of an application exceed the memory capacity of a

single computer. In this case, a distributed octree data structure used in conjunction
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with a cluster of networked computers is an effective solution that will enable an
application to meet the requirements of a memory-intensive application. However,
distributed octree data structures are ill suited for implementing parallel collision
detection algorithms that compete with the performance of existing collision detection
algorithms. Issues of load balancing and object representation in the data structure
prevent algorithms that use the distributed octree data structures from performing
efficiently. Linear octrees are an efficient and robust method for representing objects

in a collision detection algorithm.

6.2 Future Work

Many aspects of the algorithm and collision detection system developed in this
thesis are the result of an evolutionary process in which experimental designs were
explored. Successful ideas and techniques from these experiments became part of the
final algorithm and collision detection system. A prime example of an evolutionary
change the collision detection system underwent is the transition from a distributed
octree to a linear octree used in the parallel collision detection algorithm. In the
same way that the algorithm and collision detection system evolved into the current
implementation, it can continue to evolve with further development. The following

list outlines areas where the algorithm and collision detection system can be improved.

1. Faster octree searches

In the collision detection system the algorithm used for finding the set of octants
that enclose an object is a recursive search of an octree. The running time of
the search is O(log n). An alternative algorithm could be used that directly

calculates the octal code of the octant in which the center of an object resides.
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The search for octants that enclose the object can then be restricted to the
octants adjacent to the octant containing the center of the object. The formula
for calculating the octal code of a three-dimensional coordinate is well known
and runs in O(1) time. A description of this formula can be found in [30]. As a
result of restricting the search to a constant number of octants, the algorithm

for performing an octree search will run in O(1) time.

This search was not used because the original search algorithm developed for
this project was designed for a distributed octree. At the stage of the project
when the transition was made from using a distributed octree to a linear octree,
the algorithm for performing an octree search was already well developed and
debugged. This search works equally well for building linear octrees and insert-
ing objects into a distributed octree. Another reason for not implementing the
new algorithm when the transition was made was that it would not improve
the algorithmic performance of the system as a whole. Because a linear octree
is built for each object every time the collision detection system is invoked, the
search routine that builds the linear octree becomes a constant factor in the
collision detection algorithm. However, implementing this feature will improve

the speed of the collision detection system.

. Improved network performance

When the collision detection system is run on a cluster of networked computers,
performance is limited by the speed at which data can be transferred between
computers. Two methods should be explored to reduce the amount of net-
work traffic generated by the collision detection system in order to increase the

throughput of network operations:
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e Data compression By compressing data that is transferred across the
network, the total number of bytes transferred is decreased. The choice of
which compression scheme to use should be based on the total amount of

time needed to compress, transfer, and decompress.

e UDP transport protocol Currently, the TCP protocol is used to move
data across network connections reliably. In order to deliver data reliably,
the TCP protocol incurs overhead which results in extra network traffic.
Schemes have been developed to deliver data reliably using UDP, an un-
reliable protocol, and should be explored to determine if they are suitable

for use in the collision detection system.

3. Parallel Merge Operation

In Step 6 of the collision detection algorithm, the octal codes generated by the
slave processes are sent to the master process to be merged. When four or
more processors are being used and the number of objects is large, this step can

possibly benefit from a parallel merge operation.

To perform the merge in parallel, the data between pairs of processors can be
merged until only one pair of processors with data remains. At this point, the
two remaining processors send their data to the master processor where the final
merge is performed. To demonstrate how this algorithm works consider eight
processors, each with a list of octal codes, and one master processor. In the
first stage of merging, process 1 sends its list to processor 2, processor 3 sends
its list to processor 4, processor 5 sends to 6, and 7 sends to 8. Processors 2, 4,
6, and 8 then merge the lists they are storing. In the second stage of the merge

operation, processor 2 sends its list to processor 4 and processor 6 sends its list
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to processor 8. Processors 4 and 8 then merge their lists, and the results are sent
to the master processor for the final merge. This algorithm can be expanded to

additional levels as well as work with an uneven number of processors.

This algorithm incurs a logarithmic increase in the amount of time spent per-
forming communication operations as opposed to all slaves sending their data
to the master processor in one step. However, the benefit of performing merges
in parallel is that the actual time spent merging ordered lists on the master

process will be decreased.

. Exploit spatial and temporal coherence

The possibility of exploiting coherence to improve the algorithmic performance
from O(n log n) to O(n) may exist. As a result of coherence, if objects move
a sufficiently small distance between invocations of the collision detection algo-
rithm, the number of objects that change position in the octree between time
steps will be small. Therefore, octal codes in the linear octree and the sorted
order of the octal codes will remain approximately constant between time steps.
This situation can be exploited in step 3 of the algorithm when each slave sorts

its list of octal codes.

Because the collision detection algorithm partitions and distributes the list of
objects to slave processes in the same order on each invocation of the algorithm,
the list of objects a slave receives and the order of the octal codes the slave gen-
erates will remain approximately constant as a result of coherence. Therefore,
if the slave process caches the order of the octal codes it generates between
invocations, the slave will be able to construct a nearly sorted list of octal codes

upon each invocation. The list of octal codes can then be sorted completely
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using an insertion sort which, when run on a nearly sorted list, runs in O(n)

time on average.

In the current implementation of the collision detection system, the algorithmic
performance is bound to the runtime of the sort performed by the slave pro-
cesses, which run in O(n log n) time. If this modification to the algorithm does
in fact work, then the performance of the collision detection algorithm will be

improved to O(n/k).
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