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Abstract

This thesis describes a robust method for estimating face pose from a video se-
quence featuring views of a human head under variable lighting and facial expression
conditions. Wavelet transform is used to decompose the image into multiresolution
face images containing both spatial and spatial-frequency information. Principal com-
ponent analysis (PCA) is used to project a mid-frequency, low-resolution sub-band
face pose onto a pose eigenspace where the first three eigencoefficients are most sen-
sitive to pose and follow a trajectory as the pose changes. Any unknown pose can
then be estimated finding the Euclidean distance of the first three eigencoefficients
of the query image from the estimated trajectory. Wavelet transform reduces the
computational load on the PCA and makes the algorithm robust against illumination
changes and facial expression. An efficiency of 84% was observed for test images

under different environmental conditions not included during training.
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Chapter 1

Introduction

The problem of recognizing human body parts and detecting their pose in 3D
space is well-known. Determining human head pose is just one of many aspects of
this problem. Head pose provides good cues about the general focus of attention of
a person. The estimation of head pose is necessary for head gesture recognition. For
face and facial expression recognition, it is necessary to estimate head motion in order
to track a head continuously [27].

A real-time pose estimator can be used to drive graphical models for applications
such as virtual teleconferencing. It can also be used to index a more detailed view-
specific representation for identity recognition and expression analysis. In addition,
pose prediction is useful for overcoming display lags in real-time interactive and visual
communication applications. An automatic video-conferencing system has used head
pose classification to decide which camera is best suited to capture the scene [36].
Head pose estimation could also be used instead of typed manual commands to guide
a mobile robot. Another application could be to classify the focus of attention of a
car driver as straight-ahead, toward the rear-view mirror, toward the dashboard, etc.
In some approaches, an approximate pose is estimated, but other approaches attempt

to be precise so that they can be used for gaze detection such as in [14].



A human head rotating in depth (out of the image plane) induces nonlinear trans-
formations in the projected image of the face. Facial features become occluded, and
the outline of the face alters its shape, causing interference with the background. The
appearance of the face is also affected by other parameters such as identity change,
distance from the camera, facial expression, noise, illumination changes, and occlu-
sion. Another major problem in automatic pose classification is that of knowing
where the face is located in the current image prior to pose classification. Because
most face detection algorithms assume that the face is frontal, they must work in-
dependent of the face pose. Alignment of the faces is equally important. For these
reasons and more, pose classification is a difficult task. This thesis proposes a fast,
low-cost method for determining head pose position.

The rest of this thesis is structured as follows: Chapter 2 gives a literature review
of the techniques which have been used for pose discrimination. Chapter 3 describes
the motivation behind our approach. Chapter 4 provides a detailed description of the
experimental setup and the algorithm used to discriminate pose. Chapter 5 discusses
results of the all the experiments performed to test the robustness of the system.
Chapter 6 concludes the thesis by highlighting the limitations of the algorithm and

presenting possible future work.



Chapter 2

Literature Review

There are a variety of approaches for face representation of poses, and they can be
classified into three general categories: appearance-based, feature-based, and model-

based.

2.1 Feature-based Approaches

In a feature-based approach, estimation based on the relationship between human
facial features [6, 14] relies heavily on the accuracy of the facial feature detection
schemes. Detection of facial features is not accurate and often fails because of the
changes of the shape of facial features during changes in illumination conditions and
facial expressions.

Baluja [2] used probabilistic modeling methods to solve the problem of discrim-
inating between five facial orientations (left profile, left semi-profile, frontal, right
semi-profile, and right profile) with very little labeled data. Azarbayejani et al. [1]
used an extended Kalman filter to recover head pose from between ten and twenty
tracked feature points. However, the estimation accuracy was found to degrade as
the rotation angle increased.

Kruger et al. [20] used computationally intensive elastic graph matching to locate



and estimate the pose of faces. The graphs consisted of connected nodes of Gabor
filter jets. Different graph models were needed for different poses, leading to a poorly
integrated and computationally expensive approach.

Borovikov [5] described a method that relies on the idea that the orientation of a
human head in 3D space can be recovered from an image by locating a set of crucial
facial features within the head silhouette boundaries. He experimented on a series
of 320x240 true color images, each displaying a single individual in quasi-frontal
view. It was shown that the method could reliably estimate a person’s head pose,
provided that the head silhouette was pre-segmented correctly and that the crucial
facial features were not obscured by anything. The method spends a lot of time

locating the head silhouette and then locating the facial features within it.

2.2 Appearance-based Approaches

Appearance-based approaches attempt to capture and define the face as a whole.
This approach has received lot of attention because of the limitations of feature-based
approach. We can further classify this approach according to the type of classifier

selected.

2.2.1 Templates

In one technique, templates representing facial feature are used in determining
head position and orientation. The image is compared with various templates to de-
termine which template most closely matches the image. An example of a template
matching system is illustrated in [26] by S. Niyogi and W. Freeman. The signifi-
cant differences in images resulting from different lighting conditions and different

appearances makes matching with templates difficult. The most attractive advan-



tage of template matching is its simplicity; however, it suffers from large memory

requirements and an inefficient matching algorithm, which makes it very slow.
2.2.2 Neural Networks

Rae et al.[28] describe a neural-network-based system to estimate the pan and
tilt of a person’s head. In another technique as described by V. Kruger et al. [19],
Gabor wavelet networks were developed combining the rotation-invariant properties
of radial basis function networks with the feature extraction of Gabor filters. However,
neural networks cannot work well for previously unseen changes. Each neural net,
once trained, can do only what it has learned to do. Neural net learning algorithms
involve a large number of training examples and long training periods compared to

their symbolic counterparts.
2.2.3 Support Vector Machines

Support vector machines (SVM) have also been used for pose discrimination as
illustrated by J. Huang et al. in [18]. SVMs are currently considered slower at run

time than other techniques with similar generalization performance.
2.2.4 Principal Component Analysis

In another appearance-based approach, principal component analysis (PCA) rep-
resents a face as a linear combination of weighted eigenvectors, known as eigenfaces.
Faces rotating across views form continuous manifolds in a pose eigenspace (PES) [15].
There are essentially two ways of approaching the problem of pose estimation in an
eigenspace framework: view-based and parametric.

Pentland et al. and Darrell et al. [10] have suggested a view-based PCA approach

to face recognition under varying pose and face pose estimation. In this approach, a



separate set of eigenfaces is computed for each possible pose. The pose is identified
by computing the eigenspace projection of the input image onto each eigenspace
and selecting the one with the lowest residual error. View-based representations of
human faces using sets of 2D views, rather than explicit 3D models, are becoming
increasingly attractive for computer vision. Their popularity is partly due to the
fact that computation can be simplified by avoiding the need to build 3D models
or to perform explicit 3D reconstruction. In addition, view-based representations
do not directly encode prior knowledge of 3D shape. An important consequence
of this representation is that it can be learned directly from a (possibly labeled)
set of images. However, the resulting surface is a highly complex and non-separable
manifold because the appearance of the face is the combined effect of its shape, sensor
parameters, pose in the scene, and illumination conditions.

With the parametric eigenspace approach, given N individuals under M different
poses, one can perform recognition and pose estimation in a universal eigenspace
computed from the combination of N xM images. In this way a single parametric
eigenspace will encode both identity and pose. Such an approach has recently been
used by Murase and Nayar [25] for general 3D object recognition and pose estimation.
J. Sherrah et al. [30] used orientation-selective Gabor filters to enhance differences in

pose before projecting the faces on the pose eigenspace.

2.3 Model-based Approaches

Model-based approaches map the face to a 3D model to estimate pose of the
head. Some model-based methods [16, 17, 21] estimate the 3D pose from the 2D
pose by detecting features and matching model features with them. Horprasert et

al. [17] presented an approach for computation of head orientation by employing face



symmetry and statistical analysis of face structure from anthropometry. Detection
of facial features in this manner is not robust and is difficult. 3D model-based head
pose estimation based on color of the entire face has also been used [3].

In [8], a method is outlined to estimate the 3D pose of human heads in a single
image. It uses color information and fuzzy theory to extract the skin region and the
hair region and to detect faces in images. Geometrical properties such as the area,
center, and axis of least inertia of the skin region and the hair region are calculated
and then used to estimate the 3D pose of the head. However, color models are

sensitive to background and illumination.

2.4 Other Approaches

In another technique, optical flow is used to determine positions of features. An
example of the optical flow technique is shown in [23]. In the optical flow technique,
the sequence of images is used to follow features and determine a change in position
from one image to the next. This technique requires fast processing so that the head
movements between images are small. It also requires significant processing power in
order to meet these processing speed requirements.

A Harvard University project [36] used the hairline contour within the hair region
for pose estimation. This contour is generated by clustering brightness color and
connectivity into hair blobs. The hairline is horizontally segmented into six regions
and a six-point feature vector is formed. The orientation of the head is estimated using
a Bayesian classifier for optimal mapping from the feature vector to the orientation
angle.

In [4], a representation technique for 3D objects is presented unifying both the

viewer-centered and model-centered object representation approaches. This approach,



called volumetric frequency representation (VFR) that encapsulates both the spatial
structure and a continuum of the 2D discrete Fourier transform views of the model
in the same data structure. Pose estimation is carried out using a VFR model con-
structed from the range data of a person and gray level images to index into the
model. The pose of a given face image is determined by correlating the intensity
image signature with the VFR in the 4D pose space. The pose estimation errors are
quite low at about 4.05 degrees in azimuth, 5.63 degrees in elevation, and 2.68 degrees
in rotation. However, this approach is not very practical and cannot be used for real
time application because it is slow and uses laser range scanners.

In spite of all the advances in head pose recognition, a need exists for a head pose
determining system that is robust even in an uncontrolled environment and, at the
same time, has real-time capability. It should be low in cost and not use laser range

scanners or require high-speed processors or special hardware.



Chapter 3

Motivation

Human motion capture is the process of recording human or other movement in
physical space and transforming that information in a computer-usable form. With
few exceptions (e.g., finger manipulation), human body motion has many constraints.
Some of the constraints come from the laws of physics; for example, the head cannot
turn 360 degrees without moving the rest of the body. Gaits are another example of
highly constrained motion. Some physical constraints induce a rhythmic and repeti-
tive pattern of motion. By recognizing the presence of these constraints it is possible
to recognize the motion and pose of the head. We investigate the methods used for
human motion capture to influence the design of our algorithm.

Recently, comprehensive surveys of vision-based human motion capture have been
published [13, 24]. The method suggested by Campbell and Bobick [7] is impressive.
They developed techniques for representation of body movements based on space
curves in subspaces of a phase space. Phase space is a Euclidean space with axes
for each of the independent variables of a system and their time derivatives. Each
point in phase space represents a state of the system, and, as the system evolves
over time, the point moves along a phase path. If the parameters of the system do

not change with time, then only one phase path passes through each point in the
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space. Thus two coincident phase paths represent the same motion. Each different
categorical movement embodies a different set of constraints on the motion of the
body parts. These constraints are most easily observed in a phase space that relates
the independent, variables of the body motion.

Motivated by the success of using phase space to learn classical ballet steps, we
choose to identify the properties for an efficient face subspace representation and to
build face pose distribution curves. Marr and Nishara [22] consider representations
of 3D shapes for object recognition and present five criteria: accessibility, scope,
uniqueness, stability, and sensitivity. Accessibility refers to the ease in computing
the representation from image data; scope is the class of movements for which the
representation is designed; uniqueness corresponds to the property that a particu-
lar movement should always result in the same unique description; stability allows
additions of images even after the representation is built; and sensitivity refers to
discrimination between instances with respect to minor changes in the head move-
ment (perturbation theory). Any representation will need to allow a compromise
between stability and sensitivity. There are other questions to be considered. Be-
cause two different people will not transverse identical paths, questions remain about
the uniqueness of the representation: Can two motions judged to be the same by a
human observer also be placed in the same category by a system using this repre-
sentation? In other words, is there a way to represent both the commonality and
the differences between movements? Does the degree of similarity in the represen-
tation reflect similarity in the motions? Can subtle differences be expressed in the
representation? Is the representation robust in the presence of missing data?

Principal component analysis (PCA), linear discriminant analysis (LDA), or inde-

pendent component analysis (ICA) could be used as face representations. PCA is a
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widely used representation model for faces and has also been used to model poses.
LDA is useful when we would expect clusters in the representation. Because we ex-
pect the face pose distribution curve to be smooth, LDA may not be the optimal
representation for our purposes. ICA is generally useful for blind source separation
and is a generalization of PCA and is not a popular face representation. We thus use
PCA as our face representation model.

We were inspired by the work proposed by Nayar et al. [25] who used PCA to
project face poses on a pose eigenspace for pose estimation. This thesis proposes
the use of wavelet transform as a pre-processor to enhance technique and improve
performance. In the past, Englehart [11] has used a wavelet packet-based feature set
in conjunction with PCA to improve myoelectric signal classification. We explore the
application of wavelet transform combined with PCA to improve the performance of

pose estimation.
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Chapter 4

Review of PCA and Wavelets

4.1 Principal Component Analysis

4.1.1 An Overview of PCA

Principal component analysis (PCA) [34] involves a mathematical procedure that
transforms a number of (possibly) correlated variables into a smaller number of un-
correlated variables called principal components. The principal components are the
eigenvectors of the covariance matrix. The first principal component accounts for
as much of the variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible. The second principal
component is constrained to lie in the subspace perpendicular to the first principal
component. Within that subspace, it points in the direction of the maximum vari-
ance. Then, the third principal component points in the maximum variance direction
in the subspace perpendicular to the first two, and so on. The eigenvector associated
with the largest eigenvalue has the same direction as the first principal component.
The eigenvector associated with the second largest eigenvalue determines the direc-
tion of the second principal component. The sum of the eigenvalues equals the trace
of the square matrix, and the maximum number of eigenvectors equals the number

of rows (or columns) of this matrix. There can be as many principal components as
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there are variables.

Let the training set of face images be I'1,['s, '3, ..., ['y;. The average face of the
set is defined by ¥ = ﬁ > M T,. Each face differs from the average by the vector
o, =I;,— V0.

The covariance matrix is C = & Yol ,81 = AAT where A=[®; @5 ... Py |.
The covariance matrix for a set of faces is highly non-diagonal. The goal is to construct
a face space, where each component is not correlated with any other component. This
means that the covariance matrix of the new components should be diagonal. This
diagonal form of the covariance matrix implies that the variance of a variable with
itself will be maximized and the covariance of a variable with any other variable will
be zero. The variables will no longer be correlated. Thus this construction finds those
directions which maximize the variance.

The amount of information that the #, principal component carries is given by its
eigenvalue, \;. The basic approach is to compute the eigenvectors of the covariance
matrix and to approximate the original data by a linear combination of the eigenvec-
tors. Let A\, n=1,...,D, denote the eigenvectors, and let k£ be the D x D matrix whose
columns are the vectors Ai,...,Ap . In many applications, the eigenvectors in k are

sorted in descending order according to the eigenvalues.
4.1.2 Limitations of PCA

Standard PCA-based methods suffer from two limitations: proper alignment of
faces and large computational load. PCA assumes that all the faces are properly
aligned. The faces are typically normalized by aligning the eyes of the training images.
However, this is a tedious job and requires a manual operator to align the faces. Exact

alignment is even more difficult for profile views of the head.
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The second problem in the PCA-based method is the high computational load in
finding the eigenvectors. The computational cost for finding eigenvectors from the
covariance matrix C' is cubic in complexity, i.e., O(D?). The typical image resolution
is 128 x 128, i.e., D = 320 x 240.

If the number of training images, M, is smaller than the value of D, the computa-
tional complexity will be reduced to O(M?). If M increases, the computational load
will be increased in cubic order. The computation complexity can be expressed as
O(r?®), where r = min(M,D).

Discrete wavelet, transform (DWT) used as a preprocessor can help reduce the above
limitations and increase the performance. Applying DWT on all the training images
and selecting a low resolution sub-band allows further dimensionality reduction. The
computational load on PCA is significantly reduced if DWT is used as a preprocessor.
PCA achieves reduction in dimensionality by using statistical features of the training
data in comparison with DW'T, which uses low resolution to achieve dimensionality
reduction.

DWT also provides immunity against exact alignment of faces. Englehart [11]
showed that using DWT prior to PCA gives better noise immunity and shift invari-
ance. This thesis investigates the use of DW'T in conjunction with PCA to provide a

robust framework for PCA.

4.2 Wavelet Transform

4.2.1 Why Wavelets?

Discrete wavelet transform has been a popular tool for image analysis in the past
ten years. The advantages of DW'T, such as speed and frequency localizations, have

been discussed in many research articles. By decomposing an image using DW'T, the
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resolutions of the sub-band images are reduced. In turn, the computational complex-
ity will be reduced dramatically by working on a lower resolution image. Wavelet
decomposition provides local information in both space domain and frequency do-

main.
4.2.2 What Are Wavelets?

Wavelets are functions that satisfy certain mathematical requirements and are used
in representing data or other functions. This idea is not new. Approximation using
superimposition of functions has existed since the early 1800s, when Joseph Fourier
discovered that he could superimpose sines and cosines to represent other functions.
The wavelet, analysis procedure involves adopting a wavelet prototype function, called
an analyzing wavelet or mother wavelet. Temporal analysis is performed with a
contracted, high-frequency version of the prototype wavelet, and frequency analysis is
performed with a dilated, low-frequency version of the prototype wavelet. Because the
original signal or function can be represented in terms of a wavelet expansion (using
coefficients in a linear combination of the wavelet functions), data operations can be
performed using just the corresponding wavelet coefficients. Instead of decomposing
a signal using sines and cosines of different frequencies, we use dilates and shifts of
the wavelet and the scaling function (implemented in the form of digital filter banks).

The wavelet function extracts information about differences between adjacent po-
sitions within the data. Figure 4.1 shows the shape of a 2D wavelet. A companion
function which retains information about the averages between adjacent points is the
scaling function. In the multi-resolution analysis framework, the orthogonal wavelet
transform is based on the scaling function. The scaling function is a continuous and,

in general, real-valued function on the set of real numbers. The scaling function is
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Figure 4.1: 2D plot of wavelet function.

different from the wavelet. It does not satisfy the wavelet admissibility condition.
The scaling function plays the role of the average function. The correlation between
the scaling function and a continuous function produces the averaged approximation
of the function.

The orthogonal wavelet bases are generated from the scaling functions bases. The
wavelet basis is orthogonal to the scaling basis within the same scale. These two series
of coefficients are each half as long as the original data set. The smoothed data series
corresponds to the coefficients generated from inner products with the scale function.
The detail of the data series corresponds to the coefficients generated from the inner
products with the wavelet function. Therefore, an original data set of 512 values will
be decomposed into two series of 256 values. When the results are saved to a file,

the smoothed data is saved first, followed by the detail of the data. This transform
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will be called a first-level transform, and it applies the wavelet function at only the
smallest scale. If the above analysis is done along with an analysis using the function

expanded by a factor of two, the result will be called a second-level transform.
4.2.3 Lifting Scheme

The lifting scheme [31, 32] is a new flexible tool for constructing wavelets and
wavelet transforms that does not rely on the Fourier transform. Lifting can be used
to construct second generation wavelets, 7.e., wavelets which are not necessarily trans-
lates and dilates of one function. The latter we refer to as first-generation wavelets.
In the case of first-generation wavelets, the lifting scheme will never produce wavelets
that could not be found by the Cohen-Daubechies-Feauveau machinery. Nevertheless,

it has the following advantages:

1. It allows a faster implementation of the wavelet transform. Traditionally, the
fast wavelet transform is calculated with a two-band sub-band transform scheme.
In each step, the signal is split into a high-pass and a low-pass band and is then
subsampled. Recursion occurs on the low-pass band. The lifting scheme makes
optimal use of similarities between the high-pass and the low-pass filters to
speed up the calculation. The number of operations can be reduced by a factor

of two.

2. The lifting scheme allows a fully in-place calculation of the wavelet transform.
In other words, no auxiliary memory is needed, and the original signal image

can be replaced with its wavelet transform.

3. In the classical case, it is not immediately clear that the inverse wavelet trans-

form actually is the inverse of the forward transform. Only with the Fourier
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transform can one be certain of the perfect reconstruction property. With the
lifting scheme, the inverse wavelet transform can be found immediately by un-
doing the operations of the forward transform. In practice, this comes down to

simply changing each plus into a minus sign.
4.2.4 2D Wavelet Transform

The implementation of DWT is carried out by applying one dimensional transform
to the rows of the original image data and to the columns of the row transformed
data. Wavelet decomposition provides local information in both space domain and
frequency domain. For simplicity, we borrow the notation from the filtering litera-
ture [35]. The letter L stands for low frequency, and the letter H stands for high
frequency. The left upper band is called LL band because it contains low frequency
information in both the row and column directions. The LL band is a coarser overall
information about the whole image because it is essentially a downsampled version of
the original image. The LH sub-band is the result of applying the filter bank column
wise, and it extracts the facial features. The HL sub-band, which is the result of ap-
plying the filter bank row wise, extracts the outline of the face boundary. Although
the HH band shows the high frequency component of the image in non-horizontal
and non-vertical directions, it was not considered to contain significant information
about the face. The first-level decomposition of an image is shown in Figure 4.2.
Further decomposition is conducted on the LL sub-band. Despite the equal sub-band
sizes, different sub-bands carry different amounts of information. This observation

was made at all resolutions of the image [12].



Figure 4.2: Wavelet transform of an image.
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Chapter 5

Algorithm

The system as outlined in Figure 5.1 consists mainly of two stages: the training

stage and the classification stage.

Training ]
Tmaoes | Wavelet Transform— PCA — Manifold Plot
ages
__________________ TraningStege . [ ______
Test _ Estimated Pose
Tmage Wavelet Transform—| PCA — Eigenspace L e

Projection

Estimation Stage

Figure 5.1: System block diagram.

Wavelet transform and PCA are the common blocks in the training and test stage.
Both training and test images are preprocessed using wavelet transform. Wavelet
transform uses the same wavelet function and level for training and test images. PCA
then projects these low resolution subbands onto the Pose eigenspace. The following

subsections explain the individual blocks in the block diagram in more detail.
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The Training Stage

5.1 Acquisition of Training Data

The training stage of the algorithm can be either in online or offline mode. In the
offline mode, an MPEG video clip of a person in various poses is captured using a
Logitech QuickCam Express webcamera. After the video clip is finished recording,
the MPEG video is then decompressed into frames. A typical decompressed video
clip of a person moving his head from left to right would be composed of 600 to
800 frames. However, the training data typically consists of 63 gray scale images
of size 240x352. If a smaller number of learning poses is used, classification tends
to be unreliable when the test images correspond to poses that lie inbetween the
learning poses. If the pose increments used in the learning stage are small, we obtain
a larger number of learning samples and a larger number of points on the parametric
manifold. If the person slows down the motion of the head in a particular pose, more
closely spaced points are obtained in that region on the manifold. We manually select
images from the decompressed sequence and evenly distribute the images among nine
classes: extreme left, left, mid-left, center-left, center, center-right, mid-right, right,
and extreme right. Similar classes are defined for up-down sequences of the head,
although up-down head motion has less degree of rotation than left-right motion.
Manual selection of images introduces human error in assigning classes to the training
images. Vector quantization would be more appropriate in assigning the training
images to the classes. Although using all the decompressed images instead of sampling
the images increases the computational load on training, the percentage increase in
performance is interesting to observe. To achieve real-time performance, we selected

63 images for training to obtain 63 three-dimensional data points on the manifold.
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In the online mode, training images are stored in an image buffer, and no decom-
pression is required. Microsoft Vision SDK was used to acquire images in real time
from the USB camera for the online mode.

The image sequence is captured with a relatively plain static background because
background changes in the query image affect the performance of the algorithm.
Instead of segmenting the face using face detection techniques, we use the whole
image to make the algorithm independent of the performance of the face detection

routines.

5.2 Discrete Wavelet Transform

5.2.1 Introduction

Discrete wavelet transform is applied to all the images in the training set. In
most wavelet transform applications, the original signal must be synthesized from
the wavelet coefficients. This condition is referred to as perfect reconstruction. In
some cases, however, such as pattern recognition, this requirement can be relaxed.
In general, the goal of most modern wavelet research is to create a mother wavelet
function that will give an informative, efficient, and useful description of the signal of
interest. It is not easy to design a uniform procedure for developing the best mother
wavelet or wavelet transform for a given class of signals. Thus there does not exist
a unique wavelet that can be used for constructing representations of all poses in
the database so that these representations are different enough to classify the poses
with a desired dissimilarity margin between them. Choosing a wavelet for face pose
estimation thus depends heavily on trial and error.

A lifting scheme [32] is used to implement a CDF (2,2) bi-orthogonal wavelet. This

wavelet filter is an finite impulse response (FIR) filter with compact support. The
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lifting scheme is preferred over the conventional convolution approach because of its
advantages [31]. Gabor wavelets seem to be the most probable candidate for feature
extraction, but they suffer from certain limitations. They cannot be implemented
using the lifting scheme, and they form a non-orthogonal set, making the computation
of wavelet coefficients difficult and expensive. Special hardware such as DataCube
MaxRevolution is required to make the algorithm work in real time. Also, automatic
selection of the resolution level with Gabor wavelets is not easy. Images with an
aspect ratio other than 1:1 are considered, carefully taking into account the boundary

conditions using reflection at the edges.
5.2.2 Selection of Sub-band and Resolution Level

The computational complexity of a traditional PCA-based method is in the cubic
order of image resolution or number of training images, depending on which value
is smaller. To minimize the computational complexity, we prefer to work with low
resolution sub-bands which have sufficient information for pose estimation. In turn,
working on a lower resolution image will reduce dramatically the computational com-
plexity. We compute the energy in the sub-bands to measure the information content
in the sub-bands. It is well known that the magnitudes of wavelet coefficients of a
signal at each resolution level are proportional to the distributed energy of the signal
at the associated frequency band. Because our representation is constructed based
on these coefficients, its magnitudes at each level are also related to the distributed
energy. If sufficient information is not preserved in the down-sampled images, the
PCA block will not function properly because there is insufficient information. The
energy in the sub-bands represents the amount of information, which includes primar-

ily information about pose. Ideally, we have to preserve information which represents
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only pose. If we preserve the whole information (image without wavelet transform),
we also include information about illumination and other parameters. We wish to
exclude this information while keeping sufficient information about the pose in the
image. The information in a sub-band cannot be neglected if it is comparable to the
information in other sub-bands. Figure 5.2 shows the distribution of energy in the
LL sub-band at different levels of the wavelet transform. Because most of the energy
is stored in the LL sub-band, we choose to project the LL sub-band onto the Pose
eigenspace.

600 —
500
400 —
300 —
200 —

100 —

7

Figure 5.2: Distribution of energy of the image in the LL sub-band.

Figure 5.3 shows the distribution of energy among the LH, HL., and HH sub-bands
at different levels of the wavelet transform. From Figure 5.3 we observe that the

information in sub-band LH is comparable to the information in the LL sub-band
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Figure 5.3: Energy concentration in wavelet sub-bands.

at a wavelet transform level greater than five. Thus we cannot select the LL sub-
band at a level greater than five because a part of the information is also stored in
other sub-bands. The LL sub-band is not shown in the Figure 5.3 since most of the
energy is stored in the LL sub-band, and the information then seems negligible in the
LH, HL, and HH sub-bands. In the case of face images, the LH sub-band contains
information about the facial features, and the HL sub-band contains information
about the facial contour, which cannot be neglected for pose classification. Thus
the optimum choice of sub-band is the sub-band with a sufficient amount of energy
that is the most predominant sub-band at that level of the DWT. The LL sub-
band at level four seems to be the optimum choice. However, it was observed that,
although the performance of the algorithm was the same for levels three and four,

the algorithm performed poorly in certain difficult cases. Thus we conclude that the
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energy preserved at level four was not sufficient for pose classification. Going back to
level three gave the optimum performance. It was observed that the combined energy
in the LH, HL, HH sub-bands was 30% of the energy in the LL sub-band at level
three of the wavelet transform. Previously low-resolution information has been used

for face pose estimation [26], recognition [9], and gender classification [33].

5.3 Principal Component Analysis

In the second stage of training, PCA [34] is applied on the low-frequency LL sub-
band of resolution 30x44 instead of on the original image resolution of 320x240. The
output of this step will be a set of eigenvectors and eigenvalues. These eigenvectors

constitute the dimensions of the eigenspace.

5.4 Manifold Plot

By arranging the eigenvalues in descending order, we select three eigenvectors
with the largest eigenvalues. The first three eigenvectors encode information about
the pose. The rest of the eigenvectors encode information about facial expression
and other details. The performance declines when more than three eigenvectors are
used. Thus all images in the training set are represented by a linear combination of
three representational bases by projecting then into the pose eigenspace. All training
images are projected on the eigenspace to obtain a set of points in a 3D eigenspace.
These points lie on a manifold that is parameterized by pose. Figure 5.4 shows the
pose distribution curves of the training and the query images. Each point on the

curve represents an image projected on the pose eigenspace.
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Figure 5.4: Face pose distribution curve for a 45-frame sequence.

The Classification Stage

In the estimation or the classification stage, we find the wavelet transform of the
image to classify the pose of the query image, and we project the LL sub-band of
resolution 30x4 onto the pose eigenspace using the first three eigenfaces. We use the
L2 distance to find the distance between the first three eigencoefficients of the query
image from the manifold points in the 3D space. The L2 or Manhattan distance is
used to keep the computations to a minimum without compromising the performance.
This is the simplest distance to calculate and is more robust to outliers. When a test
image is discriminated to the closest image in the database, a simple mapping is done
to assign a class to the test image. Because the face pose distribution curve is a

smooth curve, clustering is not required for assigning the class.
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Chapter 6

Performance

Because face pose estimation is so new, there are no standard face sequences yet
available for comparison. A number of experiments were done to test the robustness of
the algorithm and to increase the classification accuracy. Selecting low-resolution sub-
bands makes the intensity image insensitive to changes in facial expression, lighting,
occlusion, and distance from the camera.

Two sets of experiments were done on all the images. In the first set, the faces were
projected on the pose eigenspace without any preprocessing. Figure 6.1 shows the
pose distribution curve when PCA was used without any preprocessing. The query
image was captured under different illumination.

In the second set of experiments, wavelet transform was applied to all the images
and a low-resolution subband was projected onto the pose eigenspace. Ideal results
would be obtained if the query manifold coincides with the training distribution curve.
The closer and more similar in shape the query curve is to the training manifold,
the more accurate the discrimination. Figure 6.2 shows the manifold for training
images which were preprocessed using wavelet transform and projected onto the pose
eigenspace.

Figure 6.3 shows the pose distribution curve for a person wearing glasses in the
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Figure 6.1: Manifold curve: PCA only.

query images. The training set of images didn’t have the subject wearing glasses.
100% accurate results were obtained in the case of query images with such minor
changes.

In Figure 6.4 the query manifold and the pose distribution curve vary widely,
suggesting that the system is not robust against identity changes. In most of the
cases, the query image returned the pose class as looking straight ahead.

Experiments were done to test the performance of the system at different levels of
the wavelet transform. Figure 6.5 shows the pose distribution curve when the training
and the query images were preprocessed using DW'T of level 4 instead of level 3.

In an uncontrolled environment, the distance between the subject and the camera
frequently changes. An experiment was done in which the subject kept moving away

from the camera, and query images were sampled at varying distance from the camera.
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Figure 6.5: Manifold curve: different illumination using DW'T level 4.
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The manifold of these query images is shown in Figure 6.6.
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Figure 6.6: Manifold curve: changing distance from the camera.

In the above experiment, the procedure was repeated and performance was evalu-
ated with normalized PCA coefficients as shown in Figure 6.7.

In Figure 6.8 we discriminate face pose with different facial expressions and illumi-
nations and show the closest match. The results clearly show the robustness of the
system.

A confusion matrix as shown in Table 6.1 was used to test the performance of
classification. The confusion matrix is a 9x9 matrix because there are 9 classes. The
algorithm performed fairly well with an accuracy of 84% for images under different
environment conditions than those included while training. An accuracy of 100%
was observed for poses taken from the same video sequence and not included in

the training data set. PCA performed poorly, giving an accuracy of 68%. We also
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Figure 6.7: Manifold curve: changing distance using normalized PCA coefficients.

tested the system on people who were not in the training set. The identity of the
closest matched head constantly changed, but the pose of the best match generally
matched well with the pose of the input image. When the distance between the
camera changed, the algorithm performed poorly if an LH, HL, or HH sub-band was
used. The LL sub-band gave the optimum performance. The results are not perfect,
but they are reasonable. The results were tested with four training sequences and

used a combination of 159 test images.
6.1 Timing Analysis

The system we proposed and implemented requires 17.26 seconds for training of 63
images compared to the traditional PCA method requirement of 337.6 seconds. This
system is clearly more computationally efficient than the traditional PCA method.

All experiments were performed on an Ultra 360 MHz Sun Workstation.



Figure 6.8: Test images on the left. Closest match is shown on the right.
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Table 6.1: Confusion Matrix.
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6.2 Discussion on Experiments and Results

The algorithm failed (as expected) when the LH, HL, HH sub-bands were projected
on the pose eigenspace. Because PCA exploits the second-order correlation among
the data samples, there was no strong correlation among the wavelet coefficients in
these sub-bands. There has not been any published study yet that shows exactly how
wavelet coefficients are related to the coefficients in their neighborhoods, to other
coefficients within the same sub-band, or to coefficients located at the same scale in
other sub-bands at the same level of the transform. Embedded Zero Tree Wavelet [29]
exploits the relationships among wavelet coefficients in the same sub-band at different
levels of the transform but doesn’t take into account the relation among coefficients
with respect to other wavelet coefficients at the same level of transform. Exploiting
the relation among wavelet coefficients could take the step of data compression further
and provide a technique to better exploit information in other sub-bands.

Wavelet transform is used to obtain a low-resolution sub-band, which reduces the
computational load on PCA. However, it appears that using local averaging tech-
niques to obtain a low-resolution sub-band might suffice because we are not using
information in other sub-bands obtained using wavelet transform. Local averaging
would work, too, if the size of the image is always fixed. However, we have provided
a framework based on the energy of wavelet coefficients to compute the most efficient
resolution required for pose discrimination, and there are other advantages if DWT
is used instead of local averaging. Englehart [11] has shown how wavelet combined
with PCA helps in filtering noise from ECG signals. A similar advantage is achieved
in the case of pose discrimination. Wavelet transform relaxes the restriction of exact

alignment of faces, which is otherwise a required condition for using PCA.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has outlined a wavelet sub-band approach using PCA for face pose clas-
sification. Wavelet transform is adopted to decompose an image into multi-resolution
sub-bands. A low-frequency sub-band is selected for PCA representation. Results
show that the proposed method gives better accuracy and class separability in clas-
sifying the head poses than applying PCA on the whole original image containing
all frequency components. Another significant advantage is the increase in computa-
tional speed. Our system is robust even in an uncontrolled environment and, at the
same time, has real-time capability. No specialized hardware is required, providing a

low cost solution to the face pose discrimination problem.

7.2 Limitations

Although this thesis considers robustness against changes in environment, no at-
tempt was made to evaluate the performance of the system in the case of partial
occlusion of the face. The algorithm is not extremely robust against identity changes.
If two persons of different races are considered, the algorithm fails because of the

difference in face outline. To overcome this limitation, we propose using an ellipse to
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fit the faces at low resolutions in the LL sub-bands. The inclination of the ellipse will
give an indication of the pose and will not be dependant on face outliers.

If the change in distance from the camera is substantial, the point on the manifold
always tends to be in the middle of the manifold, indicating central pose. This effect
could be studied more once we use face detection instead of a static background. The

multi-resolution capability of the algorithm will fix this problem.

7.3 Future Work

Wavelets combined with PCA provide a robust framework for PCA. Although
discrete wavelet transform (DWT) is a powerful tool for signal and image processing,
it has some limitations. Future work involves overcoming these limitations. Other

issues for future consideration include:

e DWT is shift sensitive because input-signal shifts generate unpredictable changes
in DWT coefficients. Undecimated wavelet transform could further improve the
performance of the algorithm because of the shift invariance property. Using
undecimated wavelet transform as a pre-processor for PCA can give immunity

against noise and an allow for minor misalignment of faces.

e DWT suffers from poor directionality because DW'T coefficients reveal only
three spatial orientations. In its present form, we are using discrete wavelet
transform to filter the effects of other distortions. Wavelets are not used like
Gabor filters for feature extraction because the wavelet does not specifically
enhance the pose. The choice of wavelet didn’t seem to affect the performance
much. Thus it is suggested that multi-wavelets be tried for better feature ex-

traction along with the filtering of other data. Banana wavelets, and complex
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wavelets could also be investigated for pose discrimination.

Instead of using just the LI sub-band, a combination of LH, HL, and HH
sub-bands at different scales and resolutions could be projected on the pose
eigenspace to improve performance. Instead of computing the eigenvectors of
the covariance matrix of wavelet coefficients in these sub-bands, a different

statistical measure needs to be computed.

This thesis relies totally on the visual inspection of the manifold curves and
achieved results to justify the use of wavelets as a pre-processing block. A

rigorous mathematical analysis could further validate our conclusions.

It would be interesting to combine the underlying principles of wavelets and
PCA to form a new framework. Instead of computing the eigenvectors of the
covariance matrix of the wavelet coefficients in the LH, HL, and HH sub-bands,
the new framework would compute the eigenvectors of a matrix that best defines

the relationships of the wavelet coefficients among themselves.

Faster search methods using k-trees should be used for searching for the shortest

distance of the query point from the manifold.

Other metrics such as entropy should also be used to select the resolution level.

Genetic algorithms could be used to search for the most expressive features in

the wavelet sub-bands for pose estimation.

The same algorithm could be extended to object poses instead of faces poses.
However, the manifold will no longer be 3D because more eigenvectors would

be required to encode the object pose.
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It also would be interesting to combine simultaneous detection of face along

with pose.

The ultimate test of the capability of the system would be a graphic model

mimicking the poses of a human face in real time.

Hidden Markov models (HMM) have been used to classify body poses. They

can also be used to model the face poses as states of the HMM.

Vector quantization could be used for classifying the poses rather than manually
assigning the classes. Thus, instead of sampling the images, all the images in

the image sequence can be used in the training data set.
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