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Abstract

This thesis introduces an efficient parallel algorithm for computing the inverse
of a polynomial matrix based on Buslowicz’s algorithm. An overview of different
methods proposed in the last several decades for the inversion of polynomial and
rational matrices is presented. A detailed description of Bustowicz’s algorithm and its
sequential implementation is followed by the presentation of a new parallel algorithm.
The distributed and shared memory versions of this parallel algorithm are discussed,

and the resulting computation times are analyzed and compared.
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Chapter 1

Introduction

The problem of inverting polynomial matrices (or, more generally, rational ma-
trices) has been under investigation for over half of a century. This research is well
motivated because the computation of such inverses is needed in many fields. For
instance, in multivariable control systems, a system is often described by a matrix of
rational transfer functions. The problem of finding the inverse of a rational matrix
arises in analysis and design using the inverse Nyquist array method [25, 32, 34], in
parameterization design of linear decoupling controllers [15, 23, 31], in robust stabil-
ity analysis [12], and in design using the QFT method [16, 21, 25]. The inversion
of polynomial matrices is also required in various fields of control system synthe-
sis [18, 37, 38]. Furthermore, the inversion of rational matrices is required in the
analysis and synthesis of passive and active RLC networks for inversion of admit-
tance or impedance matrices [19] and in the analysis of power systems using the
method of diakoptics [1]. When a rational matrix is expressed as a ratio of a nu-
merator polynomial matrix and a denominator scalar polynomial, the computation
of the inverse essentially reduces to the computation of the inverse of a polynomial
matrix [24]. Thus, in many cases, the problem of finding the inverse of a rational

matrix can be solved by inverting the corresponding polynomial matrix.



This thesis provides an overview of different methods for computing the inverse of
polynomial matrices proposed in the last several decades and then concentrates on the
Bustowicz’s algorithm [2], which we consider to be one of the best existing methods.
This thesis gives the detailed description of the Bustowicz’s algorithm and presents
our parallel algorithm which is based on Bustowicz’s. Both sequential and parallel
implementations of the algorithm are discussed and the resulting computation times
are analyzed and compared.

The rest of this thesis is outlined as follows: Chapter 2 introduces definitions and
notations and provides the overview of other existing inversion methods along with
their advantages and disadvantages. It also introduces Bustowicz’s algorithm and out-
lines reasons for selecting this algorithm as the basis for a parallel implementation.
Chapter 3 describes the details of the sequential implementation of the algorithm as
well as the changes necessary to parallelize it. The shared memory and distributed
memory parallel implementations complete this section. Chapter 4 presents and an-
alyzes the results of the sequential and parallel versions of the program. Conclusions

and directions for future work are provided in Chapter 5.



Chapter 2

Definitions, Literature, and
Buslowicz’s Algorithm

This chapter presents the problem of inverting a polynomial matrix. Section 2.1
introduces the notation and defines some of the terms commonly used in this area of
research. Section 2.2 provides an overview of different methods and algorithms for
inversion of rational and polynomial matrices appearing in the literature. Section 2.3
focuses on Bustowicz’s algorithm [2] and gives its detailed description. We concentrate
on this algorithm because it is the basis for our parallel implementation discussed in

the next chapter.

2.1 Introduction to Notation

This section introduces the notation and some of the definitions that will be used
throughout this thesis.
A polynomial matrix is a matrix which has polynomials in all of its entries. Consider

a polynomial matrix H(s) of degree n
H(s) = H,s" + H,_15" ' + H, »s" > + ...+ H,,

where H; are r X r constant square matrices, 7 = 0, ...,n. An example of such a matrix
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s+2 s24+3s2+s
H(S):ls3 s2+1 ]

In this case, the degree of the polynomial matrix is n = 3, and the size of the matrix

H,; is r = 2. For this example,

2 0 11 0 3 01
N P E R

H(s) is considered column proper if its highest degree coefficient matrix H, is
non-singular [38]. H(s) is row proper if its transpose, H” (s), is column proper.

The notation used to denote the inverse of a matrix is H~!(s). Only unimodular
matrices (i.e., polynomial matrices with a non-zero determinant that is independent
of s) have inverses that are themselves polynomial matrices [26].

Rational matrices are matrices whose entries are rational functions in s, which are
non-singular at s = 0. A rational function can be expressed as Hd !, where H is
a polynomial matrix and d is a scalar polynomial. Thus the problem of inverting a

rational matrix can be reduced to inverting a polynomial matrix.

2.2 Literature Review

This section provides an overview of the methods proposed in the last several
decades for the inversion of polynomial or rational matrices. We consider some of the
advantages and disadvantages of each approach.

We begin with a review of the special case of inverting the resolvent matrix
[sI, — H], where I is the unit matrix and H is an 7 X r matrix of constants. A process

for finding [sI, — H] " is well documented and is known as Leverrier’s algorithm [22].



Leverrier’s algorithm as well as multiple extensions of this method (i.e., Leverrier-
Faddeev algorithm [13], Souriau-Frame-Faddeev algorithm [33, 36|, etc.) serve as a
basis for several matrix inversion techniques that follow.

A number of different approaches for the inversion of polynomial matrices have
been proposed over the past years. The assumptions made by different authors vary,
and the results do not always have the same form. One of the first papers on this
topic by Kosut [20] gives a direct algorithm based on a generalization of the Leverrier
method. His method contains many polynomial operations and is not very general.

Munro and Zakian [26] used the approach suggested by Kosut for the inversion of
rational polynomial matrices by the Souriau-Frame-Faddeev algorithm. They con-
sidered two distinct methods in their paper: one based on the Gaussian elimination
algorithm and the other one based on the Faddeev algorithm. Both methods involve
performing direct computation of the adjoint matrix obtained by polynomial oper-
ations. However, their methods have downfalls in that such operations are lengthy,
require a “large degree of involved bookkeeping” [26], and are known to cause nu-
merical problems. In addition, operations in the field of rational functions utilized in
both methods are not suitable for computer programming.

Downs [4, 5, 6, 7] presented another approach, based on exact Gaussian elimination
for matrices with integer coefficients. His method still contained many polynomial
operations. Almost at the same time, Emre et al. [11] proposed a method of inversion
of rational matrices based on Cramer’s rule. The primary motivation for introducing
this new method was to avoid polynomial arithmetic and to establish an algorithm
systematically dealing with constant matrices. This approach required only simple

arithmetic. Their method originally required restrictive assumptions that the polyno-



mial matrix H(s) is non-singular at s = 0 and that the determinant is known at the
outset. The problem of polynomial cancellation was not taken into account by Emre
et al. Downs was the one to point out the many restrictions and problems of their
approach. In a series of papers that followed [8, 9, 10], most of these problems were
resolved. Another point worth mentioning is that the inversion presented by Emre et
al. was carried out by computing the determinants recursively. This inversion method
requires that the determinants of (n + 1)r constant matrices be evaluated in order to
compute the determinant of a polynomial matrix H(s) of order r whose degree is n.
Computation time for this method is large for large r and n.

Inouye [17] approached the problem of inverting polynomial matrices by general-
izing Fadeev’s recursive formula. His method is an extension of the Souriau-Frame-
Faddeev algorithm. It does not require prerequisite determinants and requires opera-
tions with only constant matrices. It simultaneously determines the adjoint matrices
and the coefficients of the determinants. The author showed that his algorithm is
“faster than the existing ones.” One of the disadvantages of his method is that it
works only for row- or column-proper polynomial matrices. It also gives the inverse
in the minimal degree form only if the polynomial matrix to be inverted is not a spe-
cial form, but it cannot ensure that the denominator and inversion numerator matrix
obtained will be irreducible for a general case.

Num [28], and much later Schuter and Hippe [35], proposed finding the inverse by
generalizing known polynomial interpolation approaches. Both techniques require a
careful choice of base points in order to avoid ill-conditioned equations. Both methods
require complex computations. Another problem with interpolation methods is that

only upper bounds for the degrees of the determinant and the adjoint are usually



available. The interpolation thus involves redundant equations and polynomials with
unnecessarily high degrees.

In 1980 Bustowicz [2] published a paper with a method that is similar to the
method proposed by Inouye [17] but more general in that it works for any non-singular
polynomial matrix (as opposed to only row- or column-proper matrices). Buslowicz’s
recursive algorithm computes the inverse by Cramer’s rule, explicitly calculating the
adjoint matrix and the determinant starting from the coefficient matrices. It requires
operations with only constant matrices. The drawback of Bustowicz’'s algorithm is
that the irreducible form cannot be ensured in general.

Still another approach was developed independently by Zhang [39] and Chang et
al. [3]. They both used a division algorithm for polynomial matrices to compute the
inverse in irreducible form; however, their algorithms had increased computational
complexity.

Fragulis et al. [14] proposed an algorithm that is a generalization of the Leverrier-
type algorithm. The inverse is calculated using the recursive formula. Their approach
does not seem to be significantly different from the one proposed by Bustowicz and

does not provide any clear advantage over it.

2.3 Buslowicz’s Algorithm

In this section we explain our reasons for choosing the algorithm developed by
Bustowicz [2] for finding the inverse of a polynomial matrix. We also describe the

algorithm itself.



2.3.1 Why did we choose it?

“This algorithm is ... elegant”

A.Schustre and P.Hippe

As mentioned in Section 2.2, Bustowicz based his approach for finding the in-
verse of a polynomial matrix on a generalization of Fadeev’s recursive formula. A
similar method was proposed by Inouye [17] in 1979, and it was the fastest and most
general method at that time. Bustowicz’s algorithm is even more general, does not
require knowledge of the determinant at the outset, and works for any non-singular
polynomial matrix. The only operations required are those on constant matrices.

There were several reasons for choosing this method for implementation. First,
methods proposed before Bustowicz published his paper were obviously less general.
Second, we wanted to implement an exact method, thus eliminating available algo-
rithms that use approximations or interpolations such as [28], [35] and [24]. Two
other newer methods [3, 39|, provide only slight improvement of the results in that
they yield the inverse in the already irreducible form. However, both authors agree
that their algorithms require additional “complex computations”. Finally, Bustowicz
claimed that his algorithm was suitable for computer programming [2]. We agreed
with this assessment and also saw a potential for great speedup in the parallel imple-

mentation.
2.3.2 The Algorithm

One of the general ways to compute the inverse of a matrix H(s) is to evaluate the

expression given by

_adjH(s)

H(s) = det H(s)’

(2.1)



where adj H(s) denotes the adjacent matrix H(s), which is found as

n(r—1)
adjH(s)= > Qs", Qn€ R™" (2.2)
k=0
and
det H(s) = > axs", a € R. (2.3)
k=0

The problem of finding the inverse of a polynomial matrix comes down to finding an
efficient method for calculating matrices Q, k = 0,1, ...,n(r — 1), and the coefficients
ag, k =0,1,...,rn, from the given matrices H;, 1 = 0,1, ..., n.

Bustowicz showed in his paper that the matrices Qi of adj H(s) can be computed

as
Qr=(=1)""R, 14, k=0,1,...,n(r—1), (2.4)

and the coefficients ay of det H(s) can be found using the formula

(-

ap = trGrp, k=0,1,...,nr (2.5)

r
where tr denotes the trace of a matrix.
The matrices R,_;1; and G, appearing in the above expressions are computed

from the following iterative formulae:

Gix = HoRi1p+HiRi 1p1+...+HyRi 15 n, (2.6)
1 )
Qi = ——,tI‘Gi’k, 1= 1,2, ey Ty and (27)
7
Rz’,k = Gi,k + Irai,k, 1=1,2,...,r—1and k=0,1,...,in, (28)
where

Ry =

)

{ I, for k=0 (2.9)

Ro,k:O fOl"k?éO
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and
Riy=0for j<0ork<0ork>jn. (2.10)
In addition,
R.y=Grp+1La =0, k=0,1,..7mn. (2.11)

The algorithm proposed by Bustowicz for inversion of the polynomial matrices then

consists of the following steps:

1. Using formulae (2.6)-(2.10), calculate G;, a;x and R;j for ¢ = 1,2,...,7r — 1
and k = 0,1, ...,in, and calculate from formula (2.4) the matrices Qy for k =

0,1,...,n(r—1).
2. Using formulae (2.4) and (2.2), calculate the matrix adjH (s).

3. Calculate the matrices G, for kK = 0,1, ...,rn from the formulae (2.6)-(2.8) and

the coefficients a; j, of the polynomial det H(s) from formula (2.5).
4. From formula (2.3) calculate the polynomial det H(s).
5. Calculate the matrix H™'(s) from formula (2.1).

6. The computations could be checked using the following equation:

Grp+ (—1)"arl, =0, k=0,1,...,rn.

Note: In the case where the polynomial matrix has no inverse, the coefficients

ag, k =0,1,...,rn, calculated by formula (2.5) will be equal to zero.

The reader should also refer to the discussion in Chapter 3 regarding the inconsis-

tencies found in [2] when implementing this algorithm.
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Chapter 3

Sequential and Parallel Algorithms

This Chapter provides the overview of the implementation of Bustowicz’s algo-
rithm [2] for inverting polynomial matrices. Section 1 discusses the sequential imple-
mentation and the inconsistencies that we found in his paper when implementing the

algorithm. Section 2 then covers the parallel version of this algorithm.

3.1 Sequential Algorithm

As was mentioned at the end of the previous chapter, we would like to note that
although the article written by Bustowicz described the algorithm in detail, there were
several inconsistencies in the range of indices that made it challenging to implement.
There were also parts of the algorithm that were not very clear. These details were
not obvious until we had a complete understanding of the algorithm and what it was
accomplishing.

For instance, the formula (29) in the original paper states that for a;; index 7 runs
from 1 to r. However, stepl in the algorithm for computation of polynomial matrix
inversion on page 982 has the same index ¢ for a;; going from 1 to r — 1. It can be
shown that the latter is the correct range for 7. In addition, the algorithm breaks up

calculations of G, into 4 =1,2,...,7 — 1 (stepl) and ¢ = r (step3), which makes the
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algorithm more complicated and confusing than necessary.

e Each H; is an r X r matrix. n+ 1 of them form the matrix H(s), the inverse of
which is to be computed (see the first formula in 2.1). Each H; is represented
by a 3-dimensional array H[i|[z][y], where ¢ = 0,1,...,n, x = 0,1,....,7 — 1 and
y=0,1,...,r —1.

e Bach G, is an 7 X r matrix (see formula (6) in 2.3.2), that is represented
by a 4-dimensional array G[i][k][z][y], where i = 0,2,....7, k = 0,1,...,7n,
r=0,1,..,mr—1landy=0,1,...,7r — 1.

e Each R;; is an r x r matrix (see formulae (8)-(11)), that is represented by
a 4-dimensional array R[i][k][z]|[y], where i = 0,2,....,7, k = 0,1,...,rn, z =
0,1,...,r—land y=0,1,...,7 — 1.

e Each a; is a coefficient (see formula (7)), that is represented by a 2-dimensional
array ali][k], where i =0,1,...,7 and k =0, 1, ..., rn.

e Each a; is a coefficient of detH (s) (see formula (3)), that is represented by a
1-dimensional array alphalk], where k = 0,1, ..., rn.

e Each @y is one of 7 x r matrices that compose adjH(s) (see formula (2.2)).
They are represented by a 3-dimensional array Q[k|[z][y], where i = 0,1, ..., n,
xr=0,1,...,r—land y=0,1,...,7 — 1.

e Ident[z][y] is an r X r unit matrix.

Figure 3.2 presents the final steps of the algorithm along with the condition that
checks for the correctness of the computations (formula (11)). At this point, checking
the value of a; can be used to verify if a given polynomial matrix is nonsingular
(nonzero determinant). The coefficients ay for £ = 0,1, ....,rn will be equal to zero if

the matrix is singular.
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for (k=0;k<n+1;k++)
{
for(x=0;x<r;x++)
for(y=0;y<r;y++)
Gk [x][y]l=Hk][x][y];
tr=0;
for(1=0; 1<r;14++)
tr+=G1][K] [T][1;
afl][k] =-tr;
for(x=0;x<r;x++)
for(y=0;y<r;y++)
} R[] [k][x][y]=G[1][k][x][y] + a[1][k]*Ident[x][y];
for(i=2;i<r+1; i++) //depends on i-1
for(k=0;k<n*i+1;k++) //independent
{
min=k;
if(k>n)
min=n;
for (11=0;ll<min+1;11++)
{
kr=k-11;
if(kr<=(i-1)*n)
for(x=0;x<r;x++)
for(y=0;y<r;y++)

Gi][K][x][y]=0;
for(1=0;1<r;14++)

Gi][k][x] [y]+=H[][x][] * R[-1][kr][1][y];

}
tr=0;
for(1=0; l<r;14++)

tr-+=G[K][1][1]);
al[i][k]=-tr/i;
for(x=0;x<r;x++)

for(y=0;y<r;y++)

Ri][k] [x][y]=Gi][k][x][y] +ali][k]*Ident[x][y];

Figure 3.1: The sequential algorithm.
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Several changes had to be made to the algorithm outlined in Buslowicz’s paper.
First of all, step 1 of the algorithm (see Section 2.3.2) specifies the calculation of G,
a;rand R;, fori =1,2,...,r—1and k =0, 1, ...,2n. However, our algorithm separates
this step into two steps because different approaches are required for calculating the
variables for 4 = 1 and ¢ > 1. Thus, the algorithm first calculates G, a;, and R
for 2 =1 and £k = 0,1,...4n and then continues with the rest of the calculations for
1 > 1. Second, as mentioned above, steps 1 and 3 of the algorithm are combined.
Computations of (), are delayed until everything else in steps 1 and 3 is calculated.

Hence, step 2 is also performed later in the program (see Figure 3.2).

1 for (k=0;k<n+1;k++)

2

3 tr=0;

4 for(1=0;1<r;14++)

5 tr=tr+G]r] [k][1][1];

6 alpha[k]=pow(-1,r+1)*tr/r;
(A

8 for(k=0;k<n*(r-1)+1;k++)

9 for(x=0;x<r;x++)

10 for(y=0;y<r;y++)

1 QI [yl=pow(-Lr+1)*Rix- [y

12 // Check calculations
13 for(k=0;k<r*n+1;k++)

14 for(x=0;x<r; x++)

15 for(y=0;y<r;y++)

16

17 if((G[k][k][x][y]+pow(-1,r)*alpha[k]|*Ident[x] [y])!=0)
18 fprintf(stderr,” Error in calculations!!!”);

19 }

Figure 3.2: Calculate and check the coefficients of the inverse matrix.
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3.2 Parallel Algorithm

Armed with a working sequential version of Bustowicz’s algorithm, we began an-
alyzing program dependencies in order to decide on parallelization techniques. This
section presents the details of the parallel implementation of Bustowicz’s algorithm
and outlines the changes made and challenges encountered in the process of paral-
lelizing the sequential version of the program.

The parallel algorithm is given in Figure 3.3. Two new variables appear in this
parallel code segment: NUMPRQC is the number of processors used for calculations,
and p is the distinct number associated with each processor p=0,..., NUMPROC-1.
Because a SPMD (single program multiple data) programming structure was used,
each processor executed the code shown on its portion of data. This algorithm was
implemented for both distributed memory and shared memory machines.

Implementing the program in a shared memory environment allowed the creation
of variables that could be accessed directly by every process. In the shared memory
environment, the shared memory segments are created using the shmget() system
calls. Because there is a limit on the number of shared memory segments that can be
created, 2-, 3- and 4-dimensional matrices are represented as 1-dimensional arrays.
Shared memory segments are attached to the data segments of the calling process
before performing calculations using shmat() and then are detached after the compu-
tations are completed. In a distributed memory environment, variables computed by
one process that are required by another have to be passed explicitly by the program.
MPI (Message Passing Interface) [30] was chosen to provide the functionality required
for programming in a distributed memory environment.

Because most parallelism occurs in the loops, a first attempt to parallelize any
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for (k=p;k<n+1;k+=NUMPROC)
{
for(x=0;x<r;x++)
for(y=0;y<r;y++)
Gk [x][y]=H[k][x][y];
tr=0;
for(1=0; 1<r;14++)
tr+=G[1]K][1]{1};
[l =tx
for(x=0;x<r;x++)
for(y=0;y<r;y++)
} ROJK]X][y]=G[1][K][x][y] + a[1][k]*Ident[x][y];
barrier(barrierl, NUMPROC);
for(i=2;i<r+1; i++)
{
for(k=p;k<n*i+1;k+=NUMPROC)
{
min=k;
if(k>n).
for (llr:Il(l)I;lll_<Il£nin+1;ll++)
{
kr=k-1l;
if(kr<=(i-1)*n)
for(x=0;x<r;x++)
for(y=0;y<r;y+-+)
{
GIi] [k][x][y]=0;
for(1=0;1<r;1++)
Gi] (k][] [y]+=H[I] [x]*R[i-1] [kr] 1) [y];

}
tr=0;
for(1=0; 1<r;14++)
tr+=GHIK):
afi][k]=-tr/i;
for(x=0;x<r;x++)
for(y=0;y<r;y++)
} R{[K] [x][y]=Gi][k][x][y] +al[i][k]*Ident[x][y];

SYNCHRONIZATION // wait for all processes here since i loop is not independent

Figure 3.3: The parallel algorithm.
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code typically requires looking for independent loops that can be split across multiple
processors. Independent loops can be executed in any order without affecting the
semantics of the program. There are several for loops in the sequential program,
but, unfortunately, not all are independent. Clearly, the large outer i-loop (line 14
in Figure 3.1) is not independent. Calculations in the ™ iteration depend on the
results of the previous (i — 1) iteration because the *" iteration involves operations
on R;_1y (line 29 in Figure 3.1). However, the k-loops (lines 1 and 15 in Figure 3.1)
are independent and can be parallelized (lines 1 and 17 in Figure 3.3). This paral-
lelization was accomplished by performing striped partitioning of the matrices across
the processors.

The presence of the dependent loops in the program created another challenge:
synchronization of the processes and data. Looking at lines 14 and 15 in Figure 3.1,
one can notice that there are two nested loops, with an independent loop inside
the dependent one. To make matters worse, the number of inner iterations (//-loop
on line 20 in Figure 3.1) varies. The dependence on k can be seen in lines 17-20
in Figure 3.1. Thus there are so-called partially parallel loops, i.e., loops whose
parallelization requires synchronization to ensure that iterations are executed in the
correct order and produce the correct output. Specifically, no process can go on with
execution of the i iteration until every other process had completed its (7 — 1)%
iteration. In a shared memory environment, this synchronization is accomplished by
placing a barrier before starting the next iteration of the i-loop (line 42 in Figure 3.3).
Another barrier is placed on line 14 (Figure 3.3) to synchronize the processes, making
sure that Ry is calculated for all values of k£ before continuing with calculations for
1 > 1. In a distributed memory environment, synchronization is as important, but

the data calculated by the processes must also be explicitly exchanged so it can be
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used in the next iteration by other processors. This explicit exchange using MPI
communication calls implicitly accomplishes the process synchronization required.

The rest of the program is left unchanged from the sequential version.
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Chapter 4

Results

This chapter presents the numerical results that illustrate the performance of the
parallelized Bustowicz’s algorithm. This algorithm was implemented on two shared
memory platforms and four distributed memory platforms.

The distributed memory code using MPI was tested on four different platforms.
The first was a network of SGI O2 workstations. These machines have 180MHz
MIPS R5000 processors with 320MB ram. The second platform was a network of
Pentium IV workstations, each with a 1.8 GHz processor and 256MB ram. Both of
these first two platforms have a standard 100 megabit network. The third platform is
a cluster of Pentium III processors at 1 GHz, with 2GB of ram. The fourth platform
is a cluster of Pentium IV Zeon processors, each at 2.2 GHz with 2GB of ram. The
communication network for the last two platforms is Myrinet 2000 [27].

The shared memory code was tested on two different platforms. The first platform
was an SGI Power Challenge 10000. This machine is a shared memory multiprocessor,
consisting of 8 MIPS R10000 and 1 GB of ram. The second platform was an SGI
Origin 2000. This machine is a shared memory multiprocessor, consisting of 16 MIPS
R12000 300MHz processors and 2 GB of ram.

The complexity of the implemented sequential algorithm is O(n?r®). Thus the



20

run times increase rapidly as the problem size increases. The problem size can be
increased either by scaling the degree of the polynomial matrix n, the size of the
matrix r, or both. We considered only real-life cases in the field of control theory,
where neither the size of the matrix nor the degree of the polynomial typically exceeds
25. The figures in this section illustrate the computation times of a sequential program
under various conditions as well as computation times obtained on the distributed
and shared memory platforms with various numbers of processors. For comparison

of the platforms, the sequential run times for the largest problem size are provided in

Table 4.1.

Platform Sequential Time (sec)

SGI 02 NOW 2645.30

P IV NOW 22.94

P III Cluster 26.10

P IV Cluster 18.75

SGI Power Challenge 913.99

SGI Origin 2000 552.95

Table 4.1: Sequential run times (n = 25, r = 25).

The measure of relative performance between a multiprocessor system and a single
processor system is the parallel speedup factor. Speedup S(p) gives the increase in

speed using a multiprocessor, and is defined as

where , is the execution time using one processor and ¢, is the execution time using
p processors [Wilkinson|. Linear speedup (S(p) = p) is the maximum speedup that
can be obtained with p processors without taking into account the case of superlinear

speedup.
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Another important factor that is used in evaluating the performance of the parallel
algorithm is parallel efficiency. Efficiency measures the average processor utilization
and gives the fraction of time that the processors are being used on computation. It

1s calculated as

E(p) = % x 100%,

where S(p) is the speedup and p is the number of processors. The maximum efficiency

that a parallel program can achieve without a superlinear speedup is 100%.

4.1 Distributed Memory Implementation

The results obtained on the distributed memory platforms were not as good as
expected. On the first two platforms, the algorithm provided some speedup on two
processors for all problem sizes. However, when more processors were added, speedup
was obtained only on the larger problem sizes, and the efficiency decreased drastically.
On the third and fourth platforms we obtained speedup across all processors, but the
efficiency was poor. The efficiency and speedup of the parallel algorithm on these

distributed memory platforms are shown in Table 4.2, Figure 4.1, and Figure 4.2.

Processors 2 4 6 8 10 12
P III Cluster | 89.7% | 76.5% | 61.3% | 58.5% | 45.6% | 42.7%
P IV Cluster | 88.3% | 68.2% | 49.8% | 46.9% | 33.1% | 30.7%

Processors 14 16 18 20 22 24
P IIT Cluster | 42.0% | 40.1% | 29.6% | 28.1% | 26.8% | 25.0%
P IV Cluster | 27.9% | 26.1% | 19.1% | 17.3% | 15.8% | 15.5%

Table 4.2: Efficiency (n = 25, r = 25).

The differences in the efficiency between the Pentium IIT and the Pentium IV

clusters can be attributed to the ratios between the speed of the processor and the
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network speed. For the same problem size, faster processors finish the computations
in a shorter time and spend more time waiting for the network. Thus, the difference
in processor speed and the same network on both clusters leads to a decrease in
efficiency for the Pentium IV cluster.

The stair-step pattern in the speedup figures can be explained by the the hardware
construction of the clusters’ interconnect networks. The Pentium III cluster and the
Pentium IV cluster are both connected with a Myrinet network [27]. The machines
in these clusters are attached to cards in the Myrinet switch that have 8 ports per
card. Therefore, when the number of processors increases, requiring connections to

machines on a different card the performance drops.

4.2 Shared Memory Implementation

The results obtained on both shared memory platforms were outstanding. Fig-
ure 4.3 represents the average computation time (in seconds) on the first shared
memory platform for the case when the degree of the polynomial matrix was fixed
(n = 10) and the matrix size was varied from r = 2 to r = 25.

Figure 4.4 shows run times for the same platform for the case when the size of the
matrix was fixed at 7 = 20 and the degree of the polynomial was varied from n =5
to n = 25. Figure 4.5 shows run times for the same problems on the second shared
memory platform.

As we saw earlier, the algorithm is O(n?r®). Figure 4.6 shows how the changes
of problem size (n and r) on 8 processors of the first shared memory platform cause
the computation time to increase drastically. Figure 4.7 shows the run-time surface
resulting when the number of processors and the matrix size (r) were varied on the

first shared memory platform, and Figure 4.8 shows this surface for the second shared
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Figure 4.7: Run times on the Power Challenge, n = 25, varied » and number of
Processors.

memory platform.

The results of our parallel implementation on the shared memory platforms were
impressive. Figures 4.9 and 4.10 show speedup-associated curves of the algorithm for
the various number of processors on both shared memory platforms. In both cases,
the size of the matrix was set at 7 = 25, and the degree of the polynomial was n = 25.

Along with the speedup, another issue to be considered in realistic parallel pro-
gramming is scalability. Scalability is the ability to maintain the speedup linearly
proportional to the number of processors. As can be seen from Figures 4.9 and 4.10,
our implementation is highly scalable.

Table 4.3 represents the average efficiency of our algorithm for n = 25 and r = 25
on both shared memory platforms. Parallel efficiencies over 80% on a multiprocessor

are considered to be good results. Therefore, with no efficiency results less than 93%,

these results are excellent.
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Processors 2 3 4 5
SGI Power Challenge | 99.7% | 98.4% | 98.2% | 98.2%
SGI Origin 2000 99.9% | 101.0% | 98.7% | 100.5%
Processors 6 7 8 16
SGI Power Challenge | 97.9% | 97.9% | 95.8% | n/a
SGI Origin 2000 99.0% | 98.7% | 98.2% | 93.8%

Table 4.3: Efficiency (n = 25, r = 25).

28
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Chapter 5

Conclusions and Future Work

The results obtained reflect the major difference between shared and distributed mem-
ory environments. Excellent performance in the shared memory environment shows
that an efficient parallel algorithm can be designed for the highly data intensive
problem of polynomial matrix inversion. These excellent results are due to the fact
that communication and exchange of data were handled in the hardware in the fast
shared memory implementation on the SGIs. In the case of a distributed memory
environment, however, the dependencies of the original algorithm required transfer of
large amounts of data between processors after each iteration, thus emphasizing the
weaknesses of that environment and leading to a minimal speedup.

In the distributed memory environment, four platforms were used. The first had
slow CPUs and a slow network interface. The second had fast CPUs and the same
slow network interface. The third and the fourth platforms had the same super-
fast network. The third platform had medium-fast CPUs and the fourth platform
had the fastest CPUs. Even with faster CPUs and faster networks, the efficiency
did not improve much, as can be seen in Table 4.2. These results were due to the
fact that the communication costs far outweighed the performance gain of multiple

processors. Because the problem sizes were limited to real-life applications, data sets
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of much larger sizes were not considered. However, if they were, performance would
be expected to increase. So when the need for such problems arises, this distributed
memory implementation may be more appropriate.

In the shared memory environment, near linear speedup was achieved on both
platforms as can be seen in Table 4.3. This speedup means that the algorithm can take
full advantage of the distributed computing power in the shared memory environment
as the size of the problem increases. This great speedup can be attributed to the high
degree of parallelism we were able to extract from the original algorithm as well as to
the elimination of the need for the program to perform the communication explicitly.
The efficiency over 100% on the Origin 2000 can be attributed to the architecture
design where the processors are 2 CPUs to a card and the cache is 8 MB per CPU.
This design allows the cache for each CPU to be used by either processor on the card,
and allows one CPU to use the cache of both when the other CPU is idle. The NUMA
memory architecture, which is tightly coupled to the CPU cards, also contributes to
this behavior.

Overall, we have presented a parallel algorithm for computing the inverses of poly-
nomial matrices. We have performed an exhaustive search of all available algorithms
for polynomial matrix inversion and based our parallel algorithm on the method pro-
posed in [2]. We have implemented the sequential version as well as two parallel
versions. Based on the shared memory implementation results, we conclude that
this new parallel algorithm is very efficient but should not be used on a distributed
memory environment for small problem sizes.

We see this work continuing in a variety of different ways. First, there is an algo-
rithm for inverting multivariable polynomial matrices [29] that has never been paral-

lelized. Second, we anticipate evaluating the distributed memory implementation in



31

order to minimize message passing, thus improving performance. Third, larger prob-
lem sizes may also be considered in the distributed memory environment in order to

determine when the computation time overtakes the communication overhead.
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