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Abstract 

Robots need to act in the real world, but they are constrained by weight, power, and 

computation capability. Artificial intelligence (AI) techniques try to mimic the clever 

processing of living creatures, but they lack embodiment and a realistic environment. 

This thesis introduces a novel robotic architecture that provides slender robots with 

massive processing and parallel computation potential. This platform allows the 

investigation and development of AI models (the brain) in interaction with its body and 

environment. Our robotic system distributes the processing on three biologically 

correlated layers: the Body, Brainstem, and Cortex; on board the robot, on a local PC, 

and on a remote parallel supercomputer, respectively. On each layer we have 

implemented a series of intelligent functions with different computational complexity, 

including a binaural sound localization technique, a bimodal speech recognition approach 

using artificial neural networks, and the simulation of biologically realistic spiking neural 

networks for bimodal speech perception. 
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Chapter 1 

Introduction 

 This chapter is to give an overview of the thesis. First we present the problem 

background, next we provide a glance of our proposal, and finally describe the thesis 

organization. 

 
1.1 Problem Background 

The creation of intelligence is the intersection and ultimate goal of two popular 

science fields: artificial intelligence (AI) and computational neuroscience. The first field 

tries to achieve it via computational and mathematical techniques, and the second one 

through biologically realistic neuronal models. Even though they use different 

approaches to mimic the functioning of the brain of living creatures, both of them need 

also to imitate the way living creatures interact with their environments. In real life, every 

brain has a body and every body is placed in an environment. We share the assertion of 

Chiel and Beer [5], that intelligent models will arise only when these three elements, 

brain-body-environment, act together. 

Although computational intelligent systems combined with robotic platforms are a 

good way to deal with the brain-body-environment concern, many drawbacks constrain 



2 

its success. The main problem of these intelligent robotic systems is the limited 

computational power of the robot brain, which consists of a simple CPU. In these 

configurations it is not possible to perform investigations that require massive and 

parallel computation such as evolutionary algorithms and spiking neural networks (SNN). 

Another problem with stand-alone robotic systems is their lack of versatility. In order to 

upgrade the robot brain, physical contact is required (e.g., the removal and installation of 

hardware and/or software). Such upgrades are not possible if the robot is unreachable or 

is performing long and non-stoppable experiments. Another disadvantage of stand-alone 

robotic systems is the inability to monitor in real time the robot metrics, the environment 

data, and the development of AI techniques in study.  

 
1.2 Proposal Approach 

Considering that the main purpose of robotic systems is to interact intelligently and 

effectively with the environment and that the main purpose of AI systems is to provide 

intelligence to real life entities like robots, we propose a robotic model that meets these 

goals, successfully dealing with the robot-intelligence-environment or body-brain-

environment problems of current stand-alone robots. Our proposal is a remote-brained 

robot with hierarchical processing distribution. 

Our remote-brained approach is demonstrated with a high-precision, miniature, 

autonomous robot (dubbed CARL), whose processing capability was distributed on three 

layers: (1) on-board the robot, (2) on a local PC or laptop, and (3) on a remote computer 

cluster. We refer to these three layers as the Body, Brainstem, and Cortex, respectively. 

In this processing layout, the robot is provided with two main features: (1) a slender and 
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dynamic body that interacts effectively with its environment and (2) the ability to process 

high-level AI techniques that usually require massive computation.  Figure 1.1 depicts 

this idea. 

 

 

 

 

 

In addition to the processing distribution, we propose a robotic functionality with a 

biological correlation. In this approach reactive processing, which requires minimum 

computation, is executed on the Body; instinctive processing, which requires medium 

computation, is performed on Brainstem; and cognitive processing, which requires 

massive computation, is executed on Cortex. These features will make CARL an 

excellent prototype for robotics and AI experimentation. To that end, we developed a 

variety of intelligent functions on each layer (e.g., obstacle avoidance, sound localization, 

speech perception, and speech recognition) by using sophisticated AI techniques such as 

audio and image processing, artificial neural networks, and spiking neural networks. 

 
1.3 Thesis Structure 

This thesis is organized as follows. In Chapter 2 the rationale of the three-layer 

system (Body-Brainstem-Cortex) is presented, followed by the implementation of the 

communication backbone. Chapter 3, Chapter 4, and Chapter 5 detail the architecture and 

functions of the Body, Brainstem, and Cortex, respectively. The following three chapters 

Control signal 

Audio-video-metricsEnvironment stimulus 

Response to environment

Remote Brain

 

World Robot

C 
A 
R 
L

Figure 1.1: Robotic proposal depiction showing its remote processing 
capability and its practical interaction with the environment. 
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detail novel AI applications to be used by the hierarchical system. In Chapter 6 we 

present our methodology and implementation for binaural sound localization. Chapter 7 

portrays the implementation of a novel bimodal speech recognition system using artificial 

neural networks. In Chapter 8 we present an approach to design and train spiking neural 

networks for bimodal speech perception. The evaluation of the complete system is 

provided in Chapter 9, and in Chapter 10 we present our conclusions and future work. 
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Chapter 2 

The Hierarchical Robotic System 

The ultimate goal of any robotic system is to interact with the natural world as natural 

as living creatures do by means of artificial intelligence techniques. This chapter 

describes the backbone of a novel robotic control system that would make this goal 

attainable. Section 2.1 discusses the current limitations of robotic systems, Section 2.2 

describes the novel proposal, and Section 2.3 presents the implementation of the system 

infrastructure. 

 
2.1 Limitations of Robotic Systems in the Real World 

Two main issues constrain current robotic systems from fruitful interaction with the 

real world. The first issue is the lack of versatility for experimentation on different 

environments, and the second issue is the lack of computing power when massive 

processing is required. These limitations are discussed below. 

2.1.1 Brain, Body, and Environment 

Artificial Intelligence (AI) is a research field that tries to understand and model the 

intelligence of humans and living creatures. The creation of intelligence is the utmost 

goal of all AI techniques and algorithms, such as artificial life, machine learning, 
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artificial neural networks, and genetic algorithms. However, any AI investigation and 

simulation will not resemble the objective (i.e., the brain function) unless it also mimics 

the body’s interaction with the environment. Any serious AI investigation would require 

successful interaction between the brain, the body, and the environment (i.e., processor, 

robot body, and the real world) [5]. 

Although this triplet, brain-body-environment, offers the best test bed for AI research, 

its realization is constrained by many factors. From the computational perspective, 

intensive processing is the principal issue that restrains robotic interaction with its 

environment. At present, many relevant artificial intelligent tasks, such as computer 

vision or experiential learning, require complex techniques and algorithms. In order to 

meet timing demands, these algorithms must be executed using parallel programming 

techniques on multiprocessor systems. Therefore, standalone mobile robots will be 

restrained by computation capability. On the other hand, because of weight and size 

issues, robots with onboard multiprocessing potential will be constrained in 

environmental interaction. 

2.1.2 Remote-brained Robots 

Remote-brained robotics is a solution for this dilemma. This approach, originally 

proposed by Inaba et al. [15], consists of dividing the functions of a robotic system into a 

brain and a body separated physically from each other. The resulting framework would 

be a slender robot body that easily interacts with the environment and a powerful brain 

that is executed on a co-located multiprocessor system, both of them radio frequency 

(RF) linked. 
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Even though the approach of Inaba and colleagues could provide maximum 

processing power, its weakness is that it restricts the robot to a specific environment. The 

brain and body are separated and RF linked, but they must be co-located, for instance in 

the same building, because RF technology provides reliable data transmission over only 

short distances. This co-located model is illustrated in Figure 2.1. 

 

 

 

 

With recent advances in data communication technology, the location attachment 

problem can be alleviated. At present, the Internet, wireless networking, and high-speed 

data transfer techniques allow placing the robot body and brain in different environments, 

as depicted in Figure 2.2. Within this framework, a robotic system can take advantage of 

interacting with different environmental settings, such as AI laboratories or simulation 

fields, while preserving its computation power. 

 

 

 

 

 
2.2 The Hierarchical Control System Approach 

Although a remote-brained architecture is powerful for AI investigation, this thesis 

proposes a better approach: a three-layer hierarchical robotic control system. In this 

Co-located environment                    
                              
 
            

RF 
Robot-body Brain

Figure 2.1: Remote-brained system with shared environment. 

Environment A 
 
 
 

Environment B 
 
 

 
 

TCP / IP 
Robot-body Brain

Figure 2.2: Remote-brained system with independent environments. 
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approach, processing and control are distributed on three layers. These layers will be 

referred to as Body, Brainstem, and Cortex, and their biological analogy will be explained 

later. The first layer, the Body, has small processing capability but great potential for data 

capture and transmission. The second layer, Brainstem, has higher computation power. It 

is a local PC or laptop linked to the Body via RF. The third layer, Cortex, is a remote 

computer cluster, which is connected to Brainstem over the Internet and is intended for 

massive parallel processing. This configuration is depicted in Figure 2.3.  

 

 

 

 
 
 

2.2.1 The Biologic Correlation: Reactive, Instinctive, and Cognitive Control 

We chose to call the layers of the robotic system with biologically significant names 

because we intended to correlate our approach with the control and processing strategy of 

living creatures. The cortex, brainstem, and body each play a unique role when living 

creatures interact with their environment [27]. In biology, the cerebral cortex is largely 

responsible for higher brain functions, including sensation, voluntary muscle movement, 

thought, reasoning, and memory. The brainstem is part of the brain system located 

between the cerebrum and the spinal column. The brainstem relays information between 

the peripheral nerves and spinal cord to the upper parts of the brain. The main functions 

of the brainstem include alertness, breathing, and other autonomic functions. The body is 

the entire material or physical structure of a living creature that interacts with the 

Co-located  
Environment                                           
 
                       

RF 

Body Brainstem

Remote 
Environment 
 

Cortex  

Figure 2.3: The hierarchical robotic system concept. 

TCP / IP 
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environment by sending and receiving signals. The body captures stimuli data; the 

brainstem pre-processes this data; and the cortex post-processes the brainstem output to 

make an intelligent decision. 

Our three-layer robotic system tries to separate and mimic the functions of the body, 

the brainstem and the cerebral cortex. The biological correlation helps to define the 

functionality and purpose of each layer. The robotic data processing is distributed as 

follows: Data processing for reactive control is computed by microcontrollers on the 

Body, data processing that involves instinctive control is executed on Brainstem, and data 

processing for cognitive control is performed on Cortex. This distribution of tasks is 

depicted in Figure 2.4. At present, Cortex is a research platform for biologically realistic 

neural network modeling at the Brain Computation Laboratory at the University of 

Nevada, Reno. 

 

 

 

 
2.2.2 System Characteristics 

Processing for reactive, instinctive, and cognitive control requires different 

computation complexity and power. For this reason we distribute our system on three 

computational levels of differing capacities. Task execution distributed according to its 

complexity is the foundation and innovation of our system. A comparison of the 

computational power at each level is presented in Table 2.1. Here S(n) is the speed up of 

the computer cluster when working in parallel as a function of n, the number of nodes 

Brainstem

PC-Laptop 
- Stimuli encoder 
- Instinctive control

Computer Cluster 
- Neural Network 
- Cognitive control 

 Cortex Body 

The Robot 
- Stimuli capture 
- Reactive control RF TCP/IP 

Figure 2.4: Processing and control distribution with biological correlates. 
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Table 2.1: Hardware comparison between the robotic system layers. 

Layer Processor Processor Speed Execution Rate Memory 

Robot body Parallax 
BS2-IC 

20 MHz ~4000 inst./s  2 K EEPROM 
64 B RAM 

Brainstem Pentium 4 2.2 GHz R 512 MB RAM 

 Cortex Xeon 2.2  
128 nodes 

2.2 GHz  
per node 

R . S(n) 2 GB RAM 
per node 

 
used. Brainstem and one node of Cortex have approximately the same execution rate (R), 

however n nodes of Cortex working in parallel would have an execution rate of R .S(n). 

Theoretically this novel architecture will surpass remote-brained models in speed and 

practicability for two reasons: (1) onboard processing will be concentrated on 

maximizing data capture and transmission, and (2) Brainstem will allow the processing of 

medium-level tasks locally rather than remotely, thus eliminating Internet transmission 

latency. Table 2.2 shows the transmission speed between layers. As we can see in this 

table, row data such as audio or video is massive and requires high speed when 

transmitting from the Body to Brainstem. Data between Brainstem and Cortex will be 

preprocessed and requires slower transmission speed. 

Table 2.2: Data transmission speed comparison between layers. 

Link Transmission Speed 
Robot body – I/O (serial) 50 kbps 
Robot body – Brainstem (RF) Audio – Video (USB): 12 Mbps - 2.4 GHz RF 

Metrics (serial): 9.6 kbps - 315 MHz RF 
Brainstem – Cortex (TCP/IP - DSL) 500 kbps 
Between Cortex nodes (ETH) 2 Gbps 

 

In summary, our hierarchical robotic system configuration will provide the following 

advantages: 

• Provides maximum processing capability. 
• Massive parallel processing potential. 
• Limber body: light weight and small volume. 
• Less power consumption onboard. 
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• Dynamic interaction to the environment. 
• Maximize onboard data capture and communication. 
• Flexibility to experiment on different environments. 
• Feasibility to monitor the body locally and remotely. 
 
2.2.3 System Functions 

In order to provide the robotic system the ability to interact with the environment we 

developed a series of intelligent applications. These functions were distributed on the 

three-layer system according to their complexity, as Table 2.3 shows, and the most 

important ones are detailed in this thesis. First, a system to control the robot locomotion 

over the Internet was implemented. This served as the communication backbone of the 

robotic system and is described in Section 2.3. Next, we built a system for sound 

localization and robot navigation. This is covered in Chapter 6. Our third development 

was a bimodal speech recognition system using ANN and sequential programming. This 

is described in Chapter 7. Finally, a bimodal speech perception approach using SNN and 

parallel programming was tested. This is covered in Chapter 8.  

Table 2.3: Distribution of functions over the three-layer system. 

Application Body Brainstem Cortex 
Obstacle avoidance & navigation routines X   
Binaural sound localization X X  
Navigation to sound target X X  
Robotic control over the Internet X X X 
Bimodal speech recognition (ANN) X X X 
Bimodal speech perception (SNN) X X X 

 
 
2.3 The Hierarchical Communication Backbone 

To verify the viability of the three-layer model, we assembled the communication 

backbone of the hierarchical robotic system and tested it by controlling the robot 

locomotion over the Internet. This communication infrastructure is depicted in Figure 2.5. 
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Two communication links were necessary: near and distant. The near communication 

system was implemented using proprietary protocols via RF transceivers, linking the 

robot body and Brainstem. The distance communication system was implemented using 

TCP/IP protocols over the Internet, linking Brainstem and Cortex.  

 

 

 

 

 

 

 

 

 

 
2.3.1 Body – Brainstem Link 

To provide a wireless link, the robot was integrated with a module for radio 

frequency communication: Parallax RF-433. This module consists of two transceivers: 

one is linked to the robot main processor (BS2-IC), and the other is linked to the PC (i.e., 

Brainstem). Figure 2.6 depicts our RF link architecture. 

 

 

 

 

Brainstem

RF

Body

 
 

Main processor 

Transceiver 

BS2 Appl. 

Serial link 

 
 
Personal Comp.

Transceiver

Serial link

C++ Appl.

Figure 2.6: Communication architecture between the Body and Brainstem. 

TCP/IP 

RF 

Brainstem 

 

 Server Appl. 

C++ Appl. BS2-IC 

Parallax BS2 
Application PIC16C71

Body

Motors 
Sensors 
Outputs 

 
 

Parallel 
Computing 

System 

Client Appl. 

Cortex

Figure 2.5: Communication architecture of the three-layer system. 
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Both transceivers communicate via a serial port. This hardware configuration 

provides a bi-directional communication up to 250 feet. Each transceiver sends and 

receives serial data at 9600 baud (N, 8, 1) with logic levels between 0 and +5 volts [28]. 

Sensory metrics are sent from the robot to Brainstem, and control commands are sent 

from Brainstem to the robot. 

RF application on robot body 

On board the robot, an RF program was implemented using proprietary language: 

Parallax Basic Stamp 2 (BS2). BS2 provides built-in commands for the serial 

communication between the transceiver and the main microprocessor (see Figure 2.6). 

SERIN and SEROUT are the BS2 commands for serial transmission. The communication 

protocol at the application level consists of the following commands: 

T: Transmit data packet 
R: Request data packet 
E: Request (and reset) error count 
I:  Initialize PIC 
V: Request PIC firmware version 

The serial command to transmit data from the robot to Brainstem has the following 

format: First the port of communication to the transceiver is included (13\12, 32768), 

followed by the command of transmission: “T”. Afterwards a number representing the 

data size to transmit is included (maximum data length is 10 bytes), followed by the data 

bytes to transmit. For example, to send two sensor variables of one-byte size, the serial 

command would be: 

SEROUT 13\12, 32768, ["T", 2, SENSOR1_TO_BRAINSTEM, SENSOR2_TO_BRAINSTEM] 

The received data packet is requested with the R command. The data format is as 

follows:  the first byte is a number representing the number of data bytes (byte_count); 
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next are the data bytes (CMD_FROM_BRAINSTEM), followed by the error count (errors).  If 

a data packet is requested with the R command and there is no data in the receive buffer, 

a zero will be returned as the byte count, and the error count will follow as usual. The 

following commands are used to receive a data packet: 

rx: 
SEROUT 13\12, 32768, ["R"] 
SERIN 13\12, 32768, 100, rx, [byte_count, (CMD_FROM_BRAINSTEM), errors] 

The 100 and rx are for the SERIN timeout.  If the SERIN command has to wait more 

than 100 ms for a data byte, the program flow redirects to the ‘rx:’ tag. 

In summary, our onboard RF application is a program that repeatedly reads 

instructions from Brainstem and writes sensor metrics to Brainstem. Capturing sensor 

information and executing locomotion commands are also functions of this program. 

RF application on Brainstem  

On Brainstem, an RF program was implemented in C++. We used communication 

protocols at the transmission level, writing and reading data directly to and from the 

serial port of the local PC where the transceiver was attached (see Figure 2.6). This 

communication protocol is described below. 

The Parallax RF-233 transceivers communicate between themselves in a packet-type 

format. These transceivers are designed for a master-slave relationship in a bi-directional 

fashion and can send, receive, verify, and re-send data if necessary. All data transmitted 

between transceivers are formatted into a variable length data packet as depicted in 

Figure 2.7. 

 

                                                       

 

 

Figure 2.7: Data packet format for transceiver’s communication. 

Byte 1 Byte 2 Byte n+1 Byte n+2 Byte n+3

Data Value n Checksum 1 Checksum 2Data 
Count 

Packet  
# 

 
 

Data Value 1
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In this communication protocol, Byte 1 consists of two pieces of data, the packet 

number and the data count. The packet number is a value from 1 to 15 (0 is an illegal 

value). The packet number is the ID of the packet relative to the previously transmitted 

packet and is used to verify that no duplicate packets are mistaken for new data. The data 

count is a value from 0 to 15 representing the number of data values in this packet. 

Packets can contain from 1 to 16 bytes of data values (at least 1 data value is required). 

Thus, the number of data values is actually the data count + 1. Bytes 2 through n+1 are 

the actual data values where n = data count + 1. Bytes n+2 and n+3 marks the end of the 

packet and consist of checksum values. Two different methods can be used: XOR 

algorithm (90% efficient) or Cyclic-Redundancy-Check algorithm (99% efficient). 

In summary, this RF application is a program that interacts with a user to request 

metrics and send locomotion commands to and from the robot. If the user is in a remote 

location, an extra Internet application is required. This is described below. 

2.3.2 Brainstem – Cortex link 

In order to control the robot over the Internet, a client-server application was 

implemented in C using sockets (winsock32 library). The server application will run on 

the local PC (Brainstem) and the client will run on a head node at the computer cluster 

(Cortex).  

The server application will interact with both the RF application on Brainstem and the 

client application on Cortex (see Figure 2.5). In summary, this program waits for a 

remote connection over the Internet, receives commands and requests from the client, and 

forwards them to the RF application on the same PC. Commands would be for 
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locomotion control and requests for sensor status retrieval. The server also will send 

acknowledged information to the client. This process is illustrated in Figure 2.8. 

 

 

 

 

 

 

 

 

 

The functions of the client program are to initiate connection with the server, interact 

with the user through the keyboard, send user requests to the server, and read feedbacks 

from the server. To synchronize the client-server application, the server must run first, 

listening on a specific port number:  

ServerAppl <Port_Number> 

Then the client application must be executed specifying the IP address and the port 

number of the server application:  

ClientAppl <Server_IP_Address> <Port_Number> 

      We tested the whole system by controlling the robot from Cortex using a PC 

keyboard. Five locomotion commands were used: forward, backward, left, right, and 

stop. We were also able to retrieve sensory information. The time responses of the 
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Figure 2.8: Communication dynamics between Brainstem and Cortex applications. 
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experiments, from keystroke to robot locomotion response, were satisfactory (registered 

between 0.001 to 0.02 seconds approximately). 

 
2.4 Chapter Summary 

In this chapter we presented our hierarchical robotic approach. We discussed a 

technique that allows robots to be used for massive computation, while being 

environment independent. This approach, which mirrors the strategy of living creatures, 

distributes the processing work according to its complexity on three layers: reactive 

processing, on the Body; instinctive processing, on Brainstem; and cognitive processing, 

on Cortex. We will discuss the architecture and functions of the Body, Brainstem and 

Cortex in Chapter 3, 4, and 5 respectively. 
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Chapter 3 

The Body: Architecture and Functions 

The robot body is the first layer of the hierarchical robotic system and is the one that 

interacts with the environment. To put in practice our control model, we acquired a 

weightless, factory-made mobile robot, which we dubbed CARL, and incorporated with 

an auditory-vision system and wireless link.  This chapter describes CARL’s electronics 

in Section 3.1 and its onboard functions in Section 3.2. 

 
 3.1 Hardware Architecture  

CARL is a high-precision, miniature, programmable, autonomous robot. It is a wheeled 

robot based on a dual-processor architecture inspired by the biology of the nervous 

system [7]. The secondary processor, or I/O processor, is a PIC16C71 – RISC, factory 

programmed to control speed and heading. This processor communicates I/O and position 

information to the primary processor on board, a Parallax BS2-IC microcontroller, which 

allows sensor capture and navigation. CARL’s design offers high navigation accuracy, 

responsiveness, and ease of command.  

CARL features four true 8-bit A/D conversion ports, a speaker, four CdS light 

sensors, and a thermistor to perceive temperature variations. Four ultra-bright LEDs 
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permit object proximity detection and status indication. Highly responsive bumper 

sensors detect objects around the entire front and sides of the robot. CARL has an 

efficient drive system that operates in near silence. Programmable PWM-controlled 

motors can deliver speeds from a crawl to more than 2 ft/s. IR encoders monitor the 

motion of each wheel. The robot is approximately 7 inches in diameter and 4.5 inches 

tall. The assemblage of CARL’s drive and sensory system is presented in Figure 3.1, and 

its hardware schematics are given in Appendix 1. 

 

 

 

 

 

 

 

CARL's drive system is elegant in its simplicity. Flat belts drive the wheels directly 

from each motor shaft, eliminating gears, pulleys, and servo hardware and minimizing 

expense. This unique direct belt drive is extremely reliable, and even during complex 

movements CARL operates in near silence. In addition, CARL’s reversible DC motors 

are a low RPM, high-torque design delivering tremendous response. They are accurately 

positioned on the robot's frame by areas routed directly into the printed circuit board and 

positively locked in place with nylon ties. The motors are controlled by a feedback circuit 

Figure 3.1: CARL robot before assembling audio-video system and RF 
transceiver. 
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served by infrared photo interrupters reading indexes placed directly on the inside of each 

wheel. The photo interrupters are carefully located under the robot where they are best 

protected from ambient light. 

To provide auditory and vision capability, CARL was integrated with a color video 

camera and stereophonic microphones [4]. Audio and video are captured through separate 

channels and fed to our audio/video sender device. The sender device is an X10-VT32A, 

which is linked to Brainstem via radio frequency as depicted in Figure 3.2. This wireless 

technique allows us to capture audio-video data within a 100 meters distance [1]. The 

methodology for capturing audio and video from the PC via software is explained in 

Section 6.2.1 and Section 7.2 respectively. 

 

 

 

 

 

 

 

 

To provide the wireless link, CARL was integrated with a radio frequency transceiver 

device, a Parallax RF-433 [28]. This device allows bi-directional data transmission and is 

used to send sensory information to and receive locomotion commands from Brainstem. 

Brainstem contains another transceiver that can be separated up to 100 meters for reliable 

 

 

 

 

 

 

 

Figure 3.2:  Wireless audio-video hardware configuration. 
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data interchange. Details of the transceiver communication protocol were discussed in 

Section 2.3. 

 
3.2 Onboard Functions 

CARL has two principal goals: to interact efficiently with the environment and to 

perform processing for reactive control. Interaction with the environment is divided in 

two parts. The first part consists of capturing auditory and visual information and sending 

it via wireless link to Brainstem. The audio-video system is totally independent of the 

robot’s main processor. This setup allows real-time streaming to the local computer. The 

second part requires the use of the main processor and consists of capturing sensory 

metrics and commanding the locomotion of CARL. 

The role of the main processor when interacting with the environment is summarized 

schematically in Figure 3.3. Locomotion commands are received through the transceiver 

and are delivered to the I/O processor for execution after simple evaluation. Metric 

requests from Brainstem are also received through the transceiver and then forwarded to 

the I/O processor. Subsequently, metrics are transmitted in opposite directions in 

succession. 

 

 

 

 

 

 Figure 3.3: Role of CARL’s processors when interacting with the environment 
and Brainstem. 
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The main processor uses the proprietary language Parallax Basic Stamp 2 (BS2) [2] 

to communicate to both the RF transceiver device and the I/O processor via the serial 

port. The protocols and examples of communication between the main processor and the 

RF transceiver were presented in Section 2.3.1. Here we describe the protocol of 

communication between the main processor and the I/O processor. 

The main processor communicates with the I/O processor in serial data format at 50 

kbps. Port 15 is used for communication, and port 14 is used for flow control (see the 

hardware schematic in Appendix 1). The I/O processor requires about 80 ms to startup, so 

a pause command should be included at the beginning of each program. SEROUT is the 

BS2 command to send locomotion directives to the I/O processor. For example, to make 

CARL go forward 100 encoder counts, the program should read: 

SEROUT 15\14, 0, ["F", 100] 
 

To receive serial data from the I/O processor, a SEROUT request must be sent, 

followed immediately by a SERIN command. For example, to request and receive the 

distance traveled in encoder counts of the left wheel, the program should read as follows: 

DISTANCE VAR WORD 
DL VAR DISTANCE.LOWBYTE 
DH VAR DISTANCE.HIGHBYTE 
SEROUT 15\14, 0, ["["] 
SERIN 15\14, 0, [DL, DH] 

In this code, ‘[’ is a reserved character in BS2 to request the left wheel distance 

traveled, and DL and DH are 8-bit variables. More information regarding this 

communication protocol is available in [7]. The effective interaction between the main 

processor and the I/O processor provides CARL with the following basic onboard 

functions: 
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Motion - The user program can specify a direction and percentage of power for each of 

the left and right gear motors, giving the user complete direct control. Complex motor 

commands can also be sent such as ‘F 2000’. At this command, CARL will start moving 

forward at the current cruise speed (set with the ‘S’ command) while constantly 

monitoring its wheel photo interrupters to keep the robot on the correct heading and also 

to slow down and stop once the distance count of 2000 has been reached. All motor 

functions, including an automatic ramp-up of the motor voltage if a stalled wheel is 

detected, are performed entirely in the background. During this time, the user program 

can continue to communicate with the I/O processor, requesting A/D port conversions on 

the external re-configurable sensors, distance traveled, or current heading values. The 

user program can even give the I/O processor a new heading in the middle of a running 

mode. 

Navigation - The current robot heading and distances traveled by each of the wheels are 

constantly monitored by the I/O processor. These values can be individually read and 

reset by the user program. The main processor’s built-in trigonometric functions give 

user programs the ability to calculate complex movements and position reckoning. The 

light sensors can be used to line up on a beacon and synchronize the I/O processor's 

internal heading with the environment. 

Sensor input - Four true 8-bit, analog-to-digital conversion ports are provided along the 

edges of CARL. These ports have been carefully positioned and duplicated to allow 

various and useful orientations of the flexible sensors. The I/O processor performs fast 

conversions on any or all of the ports and returns the value to the user program when 

requested. Readings on all four A/D ports can be obtained in a fraction of the time 
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required for a single RCTIME conversion by the main processor. These sensor readings 

are returned as values between 0 and 255, representing the voltage level at the port during 

the conversion. When CdS cells are plugged into any or all of the ports, the value will 

represent the light level striking the face of the sensor at that time. These readings are 

useful for many purposes such as motion detection, line following, light-seeking, and 

non-contact obstacle avoidance. Any combination of these resistive sensors may be 

plugged into the four A/D ports. 

Reactive control - Finally, CARL is equipped with a set of onboard programs intended 

for the reactive control of the robot. These are functions designed to interact quickly with 

the environment when low-level processing is required. These functions are small BS2 

programs that make effective use of the I/O components of the robot body. Examples of 

these applications are: obstacle avoidance, light tracking or avoidance, navigation 

routines, and heat tracking or avoidance. 

 
3.3 Chapter Summary 

This chapter demonstrated the feasibility of transforming a standard robot into a 

wireless controlled robot, which becomes the Body of our three-layer model. We also 

described CARL’s rich functionality, which make realizable its primary onboard goal of 

processing for reactive control. The reliable bi-directional capture and transmission of 

data (audio, video, commands, requests, and metrics) makes possible a successful 

interaction with both the environment and Brainstem. Brainstem is the second layer of the 

system and is presented in detail in Chapter 4. 
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Chapter 4 

Brainstem: Architecture and Functions 

Brainstem is the second layer in the hierarchical robotic system, and we use the 

term to refer to both the hardware and software that is co-located and RF linked with 

CARL. Brainstem provides the novelty to the robotic control approach and is the 

cornerstone of the system. This chapter presents the hardware components of Brainstem 

and the functions supported by the system. 

 
4.1 Hardware Architecture 

The major hardware components of Brainstem comprise a personal computer, a RF 

transceiver device, and a wireless audio-video receiver. The personal computer used for 

our experiments has an Intel Pentium 4 processor with a speed of 2.8-GHz, 533-MHz of 

system bus, 512 MB of RAM, and a 100 GB hard drive. The radio frequency transceiver 

is a Parallax RF-433 connected over a serial port to the PC, whose protocol of 

communication was discussed in Section 2.3.1. The audio-video receiver on Brainstem is 

an X10 VR30A. This receiver has two audio output channels, which are connected to the 

PC through the line-in on the stereo soundcard. Video output from the receiver feeds an 

analog-to-digital converter, an ATI TV-Wonder device [33], which delivers digital video 
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data to the PC via USB. The audio-video system on Brainstem is depicted in Figure 3.2. 

In addition to these components, the PC was equipped with a 10BaseTX/100BaseTX 

Ethernet for network connection on campus, and with a DSL modem for Internet 

connection off campus. 

 
4.2 Brainstem Functions 

Brainstem is the novelty of the hierarchical system, and its rich functionality makes 

this system more efficient when compared with common remote-brained robots. This 

section details those functions. 

Data communication manager 

The system was implemented such that all information transmitted between CARL 

and Cortex must pass through Brainstem. As Figure 4.1 depicts, Brainstem is the data 

communication manager of the hierarchical system. As such, Brainstem will be 

responsible for the following tasks: (1) controlling CARL’s navigation by sending 

locomotion commands, which would be Cortex or Brainstem outputs, (2) receiving 

audio-video data from CARL, used for auditory and visual processing, (3) accessing 

metrics from CARL and Cortex, used for monitoring purposes and for 

instinctive/cognitive processing assessment, and (4) injecting preprocessed data to 

Cortex, such as feature vectors for a neural network simulation.  

 

 

 

 

 
 
 
 
 

Figure 4.1: Brainstem managing the data communication of the system. 

Brainstem 
Monitoring 

CARL & Cortex
CARL Cortex 

Audio-video-metrics 

Neural network output 

Feature vectors - stimuli data 

Control command 



27 

Monitoring CARL and Cortex 

An important feature of Brainstem is that it provides the feasibility to monitor both 

CARL and Cortex. This is a useful and unique feature of the system. Monitoring CARL’s 

metrics allows humans to supervise the performance of CARL in real time and to assist 

the robot if necessary. Monitoring Cortex’s metrics consist of screening the progress of 

remote massive computation, such as spiking neural network simulations, and would be 

especially valuable when experimenting with new AI models or when old AI models 

encounter new challenges. The supervision of the complete system at work and in real-

time will be essential when experimenting with new technologies and novel AI methods. 

Instinctive processing 

In addition to serving as the communication controller between CARL and Cortex, 

Brainstem is also responsible for processing computational tasks of medium level 

complexity. We call this processing for instinctive control. At present, Brainstem is 

equipped with two intelligent processes: sound localization and navigation to target. The 

sound localization system is part of the auditory system in development, which allows the 

robot to determine the direction of any sound originated in the environment. Once the 

direction of sound is determined, the navigation-to-target system steers the mobile robot 

to the sound source. Periodic sound measurements and reactive movements are the basis 

of this technique. Chapter 6 details both techniques. 

Building data for cognitive processing 

At present, Cortex can simulate two neural network models –one using conventional 

artificial neurons and the other using biologically realistic spiking neurons. The first 

model was implemented for bimodal speech recognition and is detailed in Chapter 7. The 
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second model is an example of bimodal speech perception and is described in Chapter 8. 

Both Cortex’s simulators require pre-processed inputs. In general, researching on new 

neural network models requires training and simulation, and both of these steps use pre-

processed data. However, when running the network model on robotic systems, pre-

processing the data input must be synchronized with other systems and in real time, 

which is not required when training the model. This requirement is provided by 

Brainstem using two applications –a feature vector generator program for artificial neural 

network simulation and a stimuli generator program for spiking neural network 

simulation, as depicted in Figure 4.2. 

 

 

 

 

 

 

Transforming heavy data into light data before sending it to Cortex will speed up the 

data transmission and improve the system performance, which otherwise would be the 

bottleneck of the system. 

 
4.3 Chapter Summary 

The rich functionality that Brainstem provides makes this system an invaluable 

aid to the hierarchical system. In summary, Brainstem provides data communication, 

monitoring aid, local processing, and data transformation. None of these functions require 

Figure 4.2: Brainstem transforms raw data for high-level processing in Cortex.
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parallel computing, and therefore Brainstem can be co-located with the robot body in a 

portable PC or laptop. Functions that require massive processing will be executed on 

Cortex as discussed in Chapter 5. 
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Chapter 5 

Cortex: Architecture and Functions 

Cortex is a powerful cluster of computers linked to the Brainstem system via TCP/IP 

protocol. The goal of Cortex is to deal with CARL’s high-level decisions and control 

tasks that require intensive computation, such as bimodal (audio-video) or multimodal 

(i.e., multisensory) processing.  This chapter describes the hardware configuration and 

functions of Cortex. 

 
5.1 Hardware Architecture 

Cortex is a supercomputer system constructed in the summer 2001 and managed by 

researchers of the Brain Computation Laboratory at the University of Nevada, Reno. 

Cortex is a parallel computer system whose main purpose is to be the simulation platform 

for biologically realistic spiking neural networks. This is described in the next section. 

Currently, the computer cluster has a total of 128 processors with 256GB of RAM and 

more than a terabyte of disk. Cortex initially consisted of 30 dual Pentium III 1-GHz 

processor nodes with 4GB of RAM per node and was upgraded in the summer of 2002 

with 34 dual Xeon 2.2 GHz processor nodes with 4GB of RAM per node. 
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Myrinet 2000 [26] handles the intensity of communication that occurs in the fine-

grain parallel model. This high-bandwidth/low-latency interconnection network gives a 

much higher level of connectivity than would have been otherwise possible and is the key 

factor to running large-scale NCS models. In addition to the Myrinet 2000 

interconnection network, the cluster is also connected with an HP 4108 Ethernet switch. 

The original 30 nodes have 100TX ports, and the new 34 nodes have 1000TX ports [13].  

The management of Cortex’s cluster is performed by Rocks [30], a Linux distribution 

based on Red Hat Linux that has been specifically designed and created for the 

installation, administration, and use of Linux clusters. Rocks was developed by the 

Cluster Development Group at the San Diego Supercomputing Center. 

 
5.2 Cortex Functions 

Spiking neural network simulator 

Here we describe a spiking neural network simulator, dubbed NCS –Neocortical 

Simulator, implemented in the Brain Computation Laboratory at the University of 

Nevada, Reno. NCS is part of a research project that focuses on understanding the 

principles of mammalian neocortical processing using large-scale computer simulations. 

The primary objective of this project is to create the first large-scale, synaptically realistic 

cortical computational model under the hypothesis that the brain encodes and decodes 

information through timing of action potential pulses rather than through average spiking 

rates. This approach, which includes channels and biological accuracy on column 

connectivity, is discussed in more detail in [36, 37, 38]. 
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NCS was designed using object-oriented design principles and coded in C++. In this 

design, a “brain" (an executing instance of NCS) consists of objects, such as cells, 

compartments, channels, and the like, which model the corresponding cortical entities. 

The cells, in turn, communicate via messages passed through synapse objects. Input 

parameters allow the user to create many variations of the basic objects in order to model 

measured or hypothesized biological properties. 

The operation and reporting of NCS is based on parameters specified in a text input 

file. In this way, a user can rapidly model multiple brain regions merely by changing 

input parameters. The user specifies the design using biological entities: a brain consists 

of one or more columns, each column contains one or more layers, each layer contains 

cells of specified types, and so on. By changing only the input file, this simulator can 

model large numbers of cells and various connection strengths, which affect the number 

of synapse objects and the amount of communication. The design also allows the 

modeling of very large numbers of channels and external stimuli. 

Artificial neural networks on parallel computers 

Although Cortex was created to be a platform for NCS, it is also an excellent test bed 

for experimenting with artificial neural networks. At present, Cortex is equipped with a 

sequential ANN simulator supported by Matlab [24], however this can be extended to a 

parallel fashion. This approach would be the ultimate solution to ANNs that require 

massive computation with time related problems. Although this function is not 

implemented in Cortex, we mention it in this chapter for completeness and because it is a 

consideration for future work. A combination of the neural network toolbox and the MPI 
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toolbox both under Matlab would be the practical solution for the parallel computing 

approach. 

Bimodal speech perception using SNN 

This section describes a particular high-level decision process performed on Cortex 

by NCS. For this work, NCS was trained in advance to recognize a number of phrases, 

some of which were classified as threatening and some as neutral. Bimodal perception 

was chosen in order to support and link a related research project exploring the potential 

for increased phrase recognition accuracy when combining lip position information with 

sound information into a bimodal neocortical speech recognition strategy. Details of this 

learning algorithm are available in a technical report from our lab [20], and a summary is 

described in Chapter 8. 

Bimodal speech recognition using ANN 

A speech recognition system that uses both audio and video clues was implemented 

using an ANN. This system is not a parallel programming application neither requires 

massive computation. It is a sequential program implemented using ANN toolbox under 

Matlab, which we run on Cortex in order to test the performance of the hierarchical 

system; and also to parallel results with the SNN counterpart. The methodology of the 

speech recognition system is based on image processing the speech spectrogram, and lips 

reading the video information. This is detailed in Chapter 7. 

 
5.3 Chapter Summary 

It is believed that NCS research could lead to a major revolution in our understanding 

of the cortical dynamics of perception and learning [38]. Currently NCS supports 
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simulations with more than 6 million synapses per node. The hardware configuration of 

Cortex is crucial, considering that connectivity between cells drives everything from 

memory and CPU usage to latency in internodal communication. This chapter concludes 

the study of the three-layer robotic system. The next three chapters detail the AI methods 

used in our experimentations. 
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Chapter 6  

Binaural Sound Localization 

Localizing the direction of a sound is a basic feature of many living creatures. It is an 

ability that allows creatures to navigate, find prey, or avoid danger. The importance of 

this biological feature motivated us to implement a sound localization system for our 

hierarchical robotic platform. The sound is captured by CARL, and the processing is 

executed on Brainstem. This chapter presents the principles, implementation, and 

experimentation of this functionality.  

 
6.1 Principles of Sound Localization 

The way humans localize a sound source is primarily by using cues derived from 

differences between the inputs received by the two ears.  Two of such cues are known as 

interaural time difference (ITD) and interaural intensity difference (IID) [9].  In the 

human brain, the IID function is performed by a brainstem structure called the lateral 

superior olive, and the ITD function is performed by a brainstem structure called the 

medial superior olive [27].  In this paper we implement correlates of these functions in 

conventional software (i.e., in an algorithmic programming language) on our Brainstem 

computer. 
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John Strutt, in his work on what he called the Duplex Theory [8], presents two 

consistent approaches that use the ITD and IID cues for finding the azimuth angle (θ) of 

the origin of a sound. The first method uses the IID cue. It is based on the head-shadow 

effect [8] and the significant signal level difference between the two ears. The down side 

of this method is that it is highly frequency dependent. At low frequencies, where the 

wavelength of the sound is long relative to the head diameter, there is hardly any 

difference in sound pressure at the two ears. However, at high frequencies, where the 

wavelength is short, the difference would be about 20 dB or greater. With this method, 

the azimuth angle can be estimated from the ratio of right-ear to left-ear spectral 

amplitudes, weighted by the spectral energy. 

The second method uses the ITD cue. It is based on the speed of sound and the time 

difference that the sound takes to arrive at each ear (or microphone), as Figure 6.1 

depicts.  

 

 

 

 

 

 

 

From Figure 6.1 we can deduce an equation to find the azimuth angle (θ) if the ITD were 

known. 

 

c : sound speed 

Figure 6.1: Sound direction localization by ITD. 

ITD =  ( a / c ) . ( θ + sin θ ),  -90° ≤ θ ≤ +90°  Equation 1 
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According to [3], one way to compute ITD is to perform a cross correlation between 

the signals received at each ear. The cross-correlation function is defined as follows: 

 

where Sc and Si are the signals received at the contra-lateral and ipsi-lateral ears, 

respectively. Ideally, the lag-location of the peak of the cross-correlation function would 

correspond to the ITD. 

 
6.2 Sound Localization Implementation 

Based on this theory, we have implemented a sound localization system for the 

robotic infrastructure. This consists of two procedures: stereo data acquisition and 

binaural processing. 

6.2.1 Stereo data acquisition 

This procedure consists of capturing stereo audio information in digital format from 

the sound card of the Brainstem computer. Capturing reliable audio information requires 

the following steps: system setup, calibration, and trails. System setup refers to installing 

the adequate software and hardware and attaching the microphones. In our case, the 

stereo microphones are on CARL, and the software and hardware are on Brainstem. The 

calibration step consists of adjusting the microphones so that noise is avoided, and both 

audio channels capture audio data at the same intensity level, under similar 

circumstances. This adjustment can be made via software or hardware. The purpose of 

trails is to ensure that audio data are not saturated, to filter any residual noise, and to 

verify that audio data is ready for intelligent processing. Trails are performed via 

software. 

C( τ ) = ∫ Sc( t ) . Si( t-τ )dt     Equation 2
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 Aided by the Data Acquisition Toolbox of Matlab [23], we were able to proceed 

successfully with all these steps of sound capture. The Matlab key code for the 

acquisition of stereo audio data from a sound card is as follows: 

1. Create a device object - Create the analog input object ‘ai’ for a sound card.  

ai = analoginput( 'winsound' ); 

2. Add channels - Add left and right channels to ‘ai’ (stereo). 

chan = addchannel( ai, 1:2 ); 

3. Set property values - Each trigger will last 0.02 sec. with a rate of 16000 samples/s. 

duration = 0.02; 
set( ai,'SampleRate',16000 ); 
ActualRate = get( ai,'SampleRate' ); 
set( ai,'SamplesPerTrigger',duration*ActualRate ); 

4. Define trigger condition - Sound is captured when the loudness is above 0.4 Volt. 

set( ai, 'TriggerConditionValue', 0.4 ); 
set( ai, 'TriggerChannel', ai.channel(1) ); 

5. Define trigger delay - Sound data starts 0.25 sec. before the trigger condition event. 

set( ai, 'TriggerDelay', -0.25 ); 
set( ai, 'TriggerDelayUnits', 'seconds' ); 
set( ai, 'TimeOut', 3600 ); 

6. Acquire data - Start the audio stereo acquisition. The ‘ai’ stops automatically. 

start( ai ); 
[data ,time] = getdata( ai ); 
leftchannel =  data( :,1 ); 
rightchannel = data( :,2 ); 

7. Clean up - When ‘ai’ is no longer needed, remove it from memory. 

delete( ai ); 
clear ( ai ); 

6.2.2 Binaural processing  

We developed applications that compare both left and right signals and determine the 

direction of sound. We experimented with both IID and ITD methods independently. 
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Two equivalents approaches were used for the IID method. The first approach works in 

the time domain and consists of comparing the interaural energy of left and right 

channels. This energy comparison is depicted in Figure 6.2. The top row of this figure 

shows the left and right waveform of the original data. From this data is not possible to 

determine which microphone is closer to the sound source. The bottom row shows the 

left and right energy plots calculated from the original data (V2), where the total energy 

received at each microphone can be estimated by calculating the area under each energy 

plot. This output tells us that the right microphone is closest to the sound source. 

 

 

 

 

 

 

 

 

 

 
 

The second IID approach works in the frequency domain, and consists of comparing 

the interaural energy received by the left and right microphones. This is illustrated in 

Figure 6.3 for the same audio data. The top row of this figure shows the left and right 

spectrogram of the original data. In the spectrograms we can visualize the energy level at 

different frequencies during the period of the sound. The energy of each channel can be 

Figure 6.2: Interaural energy comparison in the time domain. 
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calculated from the spectrogram by adding all the energy components per frequency. This 

energy plot is presented in the bottom row of Figure 6.3. Another faster method would be 

calculating the fast Fourier transform of the signal and multiplying it by its complex 

conjugate [25]. The total energy received at each microphone can be estimated by 

calculating the area under each energy plot. Whichever microphone has higher total 

energy would be closest to the sound source, in this case the right microphone. 

 

 

 

 

 

 

 

  
 

 

 
Although IID methods are simple and straightforward for calculating the direction of 

sound, they are not reliable under real-life conditions. This drawback is discussed in the 

next section. The other method in consideration is the ITD, which after experimentation 

was found to be more resilient. This method requires cross correlation between the left 

and right signals. We implemented the cross correlation application using Equation 1 and 

the algorithm provided by [3] in C. This was tested using the signals captured by CARL 

and digitized by the acquisition system on Brainstem. Our technique allows comparing 

Figure 6.3: Interaural energy comparison in the frequency domain. 
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two similar signals recorded at different phases. As a result, the phase or time difference 

between both signals can be determined. Figure 6.4 shows the cross correlation output 

plotted in the time domain. When both signals are closely correlated, the plot looks 

symmetric, and a ‘peak’ close to x = 0 should be present. The time difference between 

both signals will be ABS(xpeak). The sign of xpeak will indicate if the signal is coming from 

the left or right side, and the value of the time difference will help to calculate the 

azimuth using Equation 2. 

 

 

 

 

 

 

 

 

 

 
 
 
6.3 Experimentation 

This section describes the experimentation and evaluation of the sound localization 

applications developed for the robotic system. We consider this processing, which is 

executed on Brainstem, an instinctive feature of the hierarchical system. Through this 

feature CARL will be able to move toward the origin of sound. Considering this 

Figure 6.4:  Sound localization methodology by cross correlation 
of binaural information.

Time tick - x 
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objective, we set up our experimenting conditions as follows: The experiments took place 

in our laboratory, a common office subject to background noise and echo. The sound 

source was a desktop PC speaker located 80 cm from CARL’s stereo microphones. The 

type of sound used was speech, which was previously recorded and played by a PC in 

loop. The sound output was calibrated between -0.5 and + 0.5 volt of intensity.  

Under these conditions, 300 sound localizations experiments were executed with each 

technique. Each experiment consisted of capturing 0.5 second of stream data at 8000 Hz 

and determining the general sound origin: the LEFT, CENTER or RIGHT side of CARL. 

We executed 100 trails for each direction. Figure 6.5 and Figure 6.6 present our results 

for ITD by cross correlation and IID by energy comparison in the frequency domain, 

respectively. IID in the time domain showed similar results to the frequency domain, and 

these results are not presented in this thesis. 

 

 

 

 

 

 

 

 

 
As we can see in these results, the ITD method was more efficient than the IID 

method. The IID technique was sensitive to frequency variations, microphone calibration, 

Figure 6.5:  Localization accuracy using IID technique. 
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background noise, and echo. However, the ITD method demonstrated high resiliency to 

these conditions and reported 91% of efficiency on average. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.4 Chapter Summary 

We found and implemented a robust sound localization technique, which using the 

ITD as its primary cue provides 91% of efficacy under natural conditions. Through this 

application, the robotic system is able to determine if a sound in the environment is 

coming from the left, center, or right side of CARL. This feature is used as an aid for the 

navigation of the robot and is evaluated in Chapter 9. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6:  Localization accuracy using ITD technique. 
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Chapter 7 

Bimodal Speech Recognition Using ANN  

In this chapter we present the development of a speech recognition system that is 

integrated with our robotic system. This is a bimodal system that would train an ANN 

with auditory and visual clues in order to control the locomotion of CARL. Section 7.1 

presents the auditory recognition approach, Section 7.2 describes the visual recognition 

model, and Section 7.3 summarizes our findings. 

 
7.1 Speech Recognition by Image Processing its Spectrogram 

This section introduces a novel speech recognition technique, which is based on 

processing a visual representation of speech. Section 7.1.1 impart the theory that supports 

our approach, Section 7.1.2 details our methodology and implementation, and Section 

7.1.3 provides the evaluation of the approach. 

7.1.1 Founding Principles 

Speech is voice modulated by the throat, tongue, lips, etc. This modulation is 

accomplished by changing the form of the cavity of the mouth and nose through the 

action of muscles that move their walls [11]. Physically, speech consists of air pressure 

variations produced in the vocal tract. Recording speech and synthesizing it is well 
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understood for phoneticians; however, reverse mapping speech signals is not an easy 

task. In order to understand speech and capture some aspects of it on paper or on a 

computer screen, researchers have developed instrumental analysis of speech. This 

instrumentation includes X-ray photography, air-flow tubes, electromyography, 

spectrographs, mingographs, laryngographs, etc. [10]. The ultimate goal for these 

researchers was to visualize the speech in some way so that they could capture phonetic 

clues.  

At present, great phonetic insights have been achieved with the aid of these visual 

tools. For instance, an experienced spectrogram reader has no trouble identifying the 

word "compute" from the visually salient patterns in the image representation. Here rests 

the foundation and novelty of our speech recognition system. If humans extract phonetic 

cues by the use of their visual system, we reasoned that it would be possible to extract 

similar cues by the use of image processing and computer vision techniques. This chapter 

implements a speech recognition system based on speech visualization data. There are 

many ways to visualize speech on computer systems, and all of them are closely related. 

Understanding these visualization techniques is the key of the success of our approach. 

We consider these techniques in the remainder of this section. 

Speech waveform (oscillogram) 

Physically, the speech signal (actually, all sound) is a series of pressure changes that 

occurs between the sound source and the listener. The most common representation of the 

speech signal is the oscillogram, often called the waveform (see Figure 7.1).  The 

oscillogram is the temporal domain depiction of speech and represents the fluctuations in 
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air pressure over time. The major time domain parameters of interest are duration and 

amplitude.  

 

 

 

 
 

Fundamental frequency (pitch F0) 

Another representation of the speech signal is the one produced by pitch analysis. 

Pitch analysis tries to capture the fundamental frequency of the sound source by 

analyzing the final speech utterance. A graph of fundamental frequency is depicted in 

Figure 7.2. 

 

 

 

 

 

 
Speech is normally looked upon as a physical process consisting of two parts: a 

product of a sound source (the vocal chords) and filtering (by the tongue, lips, teeth, etc.). 

The fundamental frequency is the dominating frequency of the sound produced by the 

vocal chords. It is the strongest correlate to how the listener perceives the speaker’s 

intonation and stress. 

Figure 7.1: Visual representation of speech in the time domain: 
the waveform. y: amplitude; x: time. 

Figure 7.2: Speech fundamental frequency. The dominating frequency 
of the sound produced by the vocal chords. 
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Speech spectrum 

According to general theories, each periodical waveform may be described as the sum 

of simple sine waves, each with a particular amplitude, frequency, and phase [22]. The 

spectrum depicts the distribution of frequency and amplitude at a moment in time. In this 

representation, the horizontal axis represents frequency, and the vertical axis represents 

amplitude. If we want to plot the spectrum as a function of time, we need a way of 

representing a three-dimensional diagram. One such representation is the spectrogram. 

By the use of Fourier techniques, it is possible to totalize the amplitudes for every 

frequency component within a period of time. This would be the representation of speech 

in the time domain, or the spectrum of the speech. A speech spectrum is depicted in 

Figure 7.3. 

 
 
 
 
 
 
 
 
 

 
Speech spectrogram 

In a spectrogram, the time axis is the horizontal axis, and frequency is the vertical 

axis. The third dimension, amplitude, is represented by shades of darkness. The 

spectrogram can be considered as a number of spectrums in a row, looked upon "from 

above", where the highs in the spectra are represented with dark spots in the spectrogram. 

Figure 7.4 is an example.  

Figure 7.3: Two-dimensional representation of speech in the frequency 
domain: the spectrum. y: amplitude; x: frequency. 
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The spectrogram allows the visual analysis of phonetic cues. In the unvoiced fricative 

sounds, the energy is concentrated high up in the frequency band, and quite disorganized 

(noise-like) in its appearance. In other unvoiced sounds (e.g., the plosives) much of the 

speech sound actually consists of silence until strong energy appears at many frequency 

bands, as an "explosion". The voiced sounds appear more organized. The spectrum highs 

(dark spots) form horizontal bands across the spectrogram. These bands represent 

frequencies where the shape of the mouth gives resonance to sounds. The bands are 

called formants and are numbered from the bottom up as F1, F2, F3, etc. The positions of 

the formants are different for different sounds, and they can often be predicted for each 

phoneme. 

 

 

 

 

 

 
Speech waterfall spectrogram 

The waterfall spectrogram is another way of viewing the three-dimensional plot of 

time, frequency, and amplitude. Figure 7.5 is an example of this representation. This 

picture is looked upon diagonally with time and frequency along the bottom axes. The 

amplitude is visible for each spectrum. The formants can be seen as sequential high 

points in each spectrum. 

 

Figure 7.4: Three-dimensional representation of speech: the spectrogram. 
y: frequency; x: time; darkness: amplitude. 
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7.1.2 Speech Recognition Implementation  

 In this subsection we describe the implementation of a novel single speaker speech 

recognition system. First, we explain how and when we capture our speech samples for 

real time operation. Then, we present our methodology for processing the speech signal 

and extracting the feature vectors. Finally, we detail our neural network design and how 

we trained it. 

Speech data acquisition 

Acquiring data for speech recognition systems consists of recording speech samples 

in digital format so that it can be processed via software. Our speech recognition system 

captures speech data from CARL’s microphones, which is transmitted to Brainstem. In 

addition, considering that our speech recognition application is integrated with our 

robotic system, real time factors need to be considered. The main concerns here are to 

define when to start the capture of speech data, and when to stop the capture. We solve 

the first issue by defining a minimum level of loudness via software, so that when the 

audio input is above this limit, the system starts capturing data. In addition, to avoid the 

Figure 7.5: Three-dimensional representation of speech: the waterfall 
spectrogram. x: time; y: frequency; z: amplitude. Source: [10]. 
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loss of data in those words that start with amplitude below the limit, a delay feature is 

included. In our case the delay is -0.3 second. We solve the second issue by setting a 

constant length of speech capture. In our case the time is 0.75 second. The data 

acquisition application was implemented in Matlab. Figure 7.6 shows the data acquisition 

output for three different speech inputs. These are the speech waveforms and will be used 

to demonstrate our methodology. 

 

 

 

 

 

 

Speech processing 

Speech visualization is the basis of our speech recognition methodology. The 

hypothesis is that if humans can read phonetic cues by visually inspecting a speech 

representation and accordingly classify them, then computer systems could do a similar 

job by the use of computer vision techniques and by image processing the representation. 

The speech spectrogram is the representation that includes all the features of speech. 

Although there exist many types of spectrograms such as RASTA and PLP [17], we 

decided to develop our experiment using standard spectrograms. The first processing step 

is to extract the spectrograms from the speech signals captured. Figure 7.7 shows the 

spectrograms of three different speech samples. These are single words, and we chose a 

variety of words to demonstrate that our approach is word-independent. Before extracting 

Figure 7.6: Waveform of three different speech samples. Trigger value: 0.4 
volt; trigger delay: -0.3 sec.; data length: 0.75 sec. 
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the spectrogram, we found two important speech data requirements: speech capture must 

be sampled at high frequency (this is for high spectrogram resolution, we use 22000 Hz), 

and all speech samples must be standardized at the same limits of amplitude. 

 

 

 

 

 

Matlab creates speech spectrograms using Fourier analysis windowed across the time 

domain, so that all spectrogram row data consists of complex numbers. Therefore in 

order to image process the spectrogram it is necessary to convert the spectrogram into an 

image. We achieved this by converting the complex numbers into absolute numbers. 

Next, we image process the spectrogram so that every noise is removed and speech 

formants and other cues are stressed, as depicted in Figure 7.8. The image processing of 

the spectrogram consisted of very-low-pass filtering, low-pass filtering, and complete 

threshold. As a result, the speech shape is preserved and presented at the same amplitude 

across the time and frequency. Identical words presented similar visual cues, and 

different words showed different visual cues. 

 

 

 

 

Figure 7.7: Spectrograms extraction of three different, and standardized 
words using Matlab: specgram(speech_data, 256, sample_rate). 

Figure 7.8: Image processed spectrogram results of the three different 
words. Noise is removed and important cues are stressed. 
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Feature vector extraction 

The output of the speech-processing step is a simplified visual representation of 

speech, where similar speech samples can be recognized and dissimilar speech samples 

can be differentiated. This differentiation is a primary and practical condition before 

building feature vectors for artificial neural networks. Our first attempt to extract the 

feature vectors from the image-processed spectrogram was in the frequency domain. We 

totalized in a vector all the amplitudes values across the time for every frequency 

component. Next, to reduce data redundancy, we down-sampled the vector. Feature 

vector results are presented in Figure 7.9. 

 

 

 

 

 

 

Although this feature vector is valid, it does not give us the complete signature of the 

image processed spectrogram because cues in the time domain are missing. Another 

feature vector can be extracted similarly in the time domain. The sequential integration of 

both vectors will be our final feature vector used to train our neural network. The 

composed feature vector has a length of 210, 120 belong to frequency cues and 90 to time 

cues. These final vectors are depicted in Figure 7.10. We also found similarities when 

plotting feature vector samples of the same speech. 

Figure 7.9: Feature vectors extracted from the image-processed 
spectrograms in the frequency domain. 
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Our feature vector set for neural network training consists of five words of robot 

locomotion control: GO, BACK, STOP, LEFT and RIGHT. We created twenty feature 

vectors for each word. 

Neural network design 

Although there are many neural network alternatives, we decide to use the multi-layer 

feed-forward network model trained using the back-propagation algorithm. We chose this 

model and algorithm because they are practical, effective, and supported by Matlab. The 

feed-forward model consists of layers of nodes (see Figure 7.11). Inputs are applied to the 

first layer, and outputs are retrieved from the nodes at the output layer. Between adjacent 

layers, nodes are fully interconnected, but within the same layer there is no connection. 

 

 

 

 

 

 

Figure 7.10: Final feature vectors composed by cues in the 
frequency and time domain. 

Figure 7.11: A single-layer feed-forward network. R: number of elements in 
input vector; S: number of neurons in layer; a  = f (W.p + b). Source: [24]. 
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We created our neural network model using the toolbox of Matlab [24]. In Matlab the 

function newff creates a feed-forward network. It requires four inputs and returns the 

network object. We used the following script to create our network model: 

net=newff(min_max,[25,1],{'tansig','purelin'},'trainrx'); 

The first input (min_max) is an R by 2 matrix of minimum and maximum values for 

each of the R elements of the input vector. The second input ( [25,1] ) is an array 

containing the sizes of each layer. We use two layers: the first one has 25 neurons and the 

second one has one neuron. The third input ( {'tansig','purelin'} ) is a cell array containing 

the names of the transfer functions to be used in each layer. The final input is the name of 

the algorithm function to train the network. We use a derivation of the back-propagation 

method: trainrx. 

Neural network training 

The back-propagation algorithm consists of error-back propagation that allows 

supervised training of multi-layers of nodes [29]. This method is a gradient-search 

technique that minimizes a cost function between the desired outputs and those generated 

by the net. The aim is to establish a functional relationship for a given problem by 

adjusting the weights between neurons. After selecting some initial values for the weights 

and internal thresholds, input/output patterns are presented to the network repeatedly and, 

on each presentation, the states of all nodes are computed starting from the bottom layer 

and moving upward until the states of the nodes in the output layer are determined. At 

this level, an error is estimated by computing the difference between the outputs of the 

nodes and the desired outputs. The variables of the net are then adjusted by propagating 

the error backwards from the top layer to the first layer. 
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With standard back-propagation, the learning rate is held constant throughout 

training. The performance of the algorithm is very sensitive to the proper setting of the 

learning rate [6]. If the learning rate is set too high, the algorithm may oscillate and 

become unstable. If the learning rate is too small, the algorithm will take too long to 

converge. However this sensitivity can be improved if we allow the learning rate to 

change during the training process. An adaptive learning rate will attempt to keep the 

learning step size as large as possible while keeping learning stable. The learning rate is 

responsive to the complexity of the local error surface. Another method that will provide 

a faster convergence is back-propagation with momentum. This method allows a network 

to respond not only to the local gradient but also to recent trends in the error surface. 

Acting like a low-pass filter, momentum allows the network to ignore small features in 

the error surface. Without momentum, a network may get stuck in a shallow local 

minimum. With momentum, a network can slide through such a minimum.  

We train our neural network with an algorithm that combines both approaches above 

mentioned: the back-propagation with momentum and the adaptive learning rate. This is 

provided by Matlab as the trainrx training function. The Matlab script to train the feed-

forward network consists of: 

%define initial learning rate 
net.trainParam.lr = 0.001; 
 
%define goal performance 
net.trainParam.goal = 1e-4; 
 
%define momentum, to ignore small features in the error surface 
net.trainParam.mc = 0.9; 
 
%define variable learning rate 
net.trainParam.lr_inc = 1.02; 
 



56 

%define number of epochs of training 
net.trainParam.epochs = 20000; 
 
%start training the neural network 
[ tr_net ]=train( net, fv_all, tgt ); 

The last script starts the neural network training for speech recognition of robot 

control words. It uses the train function with three inputs. The first input is the feed-

forward network (net). The second input (fv_alls) is a matrix that encloses all the speech 

feature vectors: GO, BACK, STOP, LEFT and RIGHT, 20 samples of each of them. Each 

column of fv_all is one feature vector. The third input (tgt) is the target of the network. It 

is an array of 100 columns, where each element is a number that identifies the target 

word. 

7.1.3 Approach Evaluation 

In this section we evaluate our speech recognition approach by analyzing the quality 

of the generated feature vectors and by monitoring the ANN training process. Figure 7.12 

presents a plot of 20 feature vectors for the keyword “STOP”, captured and processed in 

real time.  

 

 

 

 

 

 

 
As we can devise in this figure, despite the fact that the speech samples were captured 

at different conditions, i.e. voice intonation, voice level, distance from the microphone, 

Figure 7.12: Plot of 20 feature vectors for the keyword “STOP”. Same speaker. 
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and random noise, we were able to extract a consistent pattern. Having a similar pattern 

for the same keyword, but dissimilar to other keywords is a guarantee for a successful 

ANN training. From the plot, we can also notice that although the vectors have similar 

pattern, they have different phase. This was expected and it is because the triggering of 

the capture is different for every sample. We expect this to be alleviated by the neural 

network model. 

We trained our neural network model for the recognition of the five keywords using 

20 speech samples of each one from the same speaker. As Figure 7.13 depicts, the 

training process was favorable along the epochs, and after 20000 epochs the average error 

between the outputs and targets was reduced from 1100 to 0.00091. Although the goal 

was 0.00010, we cannot predict the system performance unless we test the recognition 

system in real work. The training process took about 3 minutes on a Cortex node. 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 7.13: Training progress of the feedforward network using 
backpropagation algorithm with momentum and variable learning rate.  
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7.2 Mouth-video Processing for Speech Recognition Support 

In this section we describe a supplementary technique to enhance the performance of 

the speech recognition system presented in Section 7.1. This technique processes video 

frames of the speaker’s mouth to extract cues that characterize a particular spoken word. 

These cues would become the feature vectors for the training of an artificial neural 

network. Our approach assumes the face and mouth localization of the target speaker. 

Therefore we focus on the image processing of the mouth frames and on the extraction of 

feature vectors. 

Our method is motivated by the fact that humans can decipher words by visually 

analyzing the mouth of a speaker. Although our analysis could be more complex, we 

simplify it by considering the mouth as one ellipse whose diameters change in time. 

Therefore, the image-processing job consists of extracting the lips from every mouth 

frame. We performed real-time experiments with the aid of Matlab toolboxes along with 

VFM (vision for Matlab) software [34]. The result for each speech sample consisted of 7 

or 8 frames showing lip contours in black and white. From each set of frames we created 

one feature vector that would be the signature of the speech sample. From each processed 

frame we extracted the diameters in the x and y directions of the imaginary ellipse. The 

sequential variation of these two parameters across the 8 frames shaped our feature 

vector. We created feature vectors for neural network training from videos of the same 

speech samples used for the speech recognition system of Section 7.1. 
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7.3 Chapter Summary 

Through this chapter we demonstrated the feasibility to image-process the speech 

spectrogram and extract simple and consistent patterns for speech recognition using 

ANN. Another important finding is our self-activated technique to capture speech data in 

real time. The performance of these finding are evaluated in Chapter 9 when they are 

integrated with the hierarchical system for robotic control by speech commanding. 

Finally, through our mouth-video processing approach we expect to strengthen the 

recognition system. We were able to extract unique visual cues, but its integration with 

the auditory module is still under research. 
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Chapter 8 

Bimodal Speech Perception Using SNN 

This chapter presents a spiking neural network example applied to bimodal speech 

perception. This is a research project in development by the Brain Computation 

Laboratory and has been used to test our hierarchical robotic system [19,20]. This 

approach consists of customizing NCS, which resides on Cortex, with biologically 

realistic parameters to recognize auditory and visual speech cues. 

 
8.1 Data Acquisition and Spike Encoding 

Audio-video-interleave (.avi) movies were recorded from ten volunteers speaking the 

following three sentences: “Attack with gas bombs,” “He is a loyal citizen,” and “I’m not 

entirely sure.” Each .avi was recorded at 25 frames per second with audio digitization of 

11 KHz. Recordings were truncated to 1.6 seconds of audio and 40 frames of video to 

keep the sentences the same length. Auditory signals were processed using a short-time 

Fourier transform (STFT). A STFT decomposes the auditory signal into 129 frequency 

bands and provides the power of each frequency as a function of time (Figure 8.1).  

By moving a narrow window (2.5ms) independently for each frequency across time, a 

probability of spiking is computed from the power within each window (normalized to 
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the maximum power across all windows of all frequencies). The tonotopic representation 

of the cochlea is closer to a logarithmic scale, and the Fourier transform is a linear 

manipulation. In order to minimize the difference between cochlear processing and the 

STFT, a larger proportion of cells were encoded at lower frequencies than higher 

frequencies. Our auditory cortex included three columns. The first column received the 

first 20 frequency bands, the second column received the next 40 frequency bands, and 

the final column received the remaining 69 frequency bands. 

 

 

 

 

 

 

Visual signals were first whitened and then processed using Gabor analysis. The 

receptive field properties of primary visual cortex (VI) simple cells resemble Gabor-like 

properties [35], minimizing the tradeoff between frequency information and spatial 

information. Figure 8.2 shows two frames of an .avi movie before and after Gabor-

filtering using horizontally oriented high- and low-band-pass filters. Frames a & d, before 

filtering. Frames b & e, after filtering with high-band-pass filter. Frames c & f, after 

filtering with low-band-pass filter. Frame g is the high-band-pass filter used (30x30). 

Frame h, is the low-band-pass filter used (30x30). In order to preserve the retinotopic 

mapping, the filtered image was broken down into 5x5 subregions. The average intensity 

Figure 8.1: Spectrogram of the spoken sentence, “Attack with gas bombs”. 
Vertical axis-auditory frequency (0-5.5 KHz in 129 bands). Horizontal axis–
time in seconds (1.6 s). Pseudocolor legend–signal power in dB [-120, 25]. 
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within a subregion was used as the probability of spiking for a group of cells encoding 

that position. 

 

 

 

 

 

 

 
 
 
 

8.2 Network Design 

Our network was made up of ten columns (6 visual, 3 auditory and 1 association). 

Each primary sensory column comprised two layers: an input layer (IV) and an output 

layer (II/III). Layer IV included 300 excitatory cells. Layer II/III included 300 excitatory 

and 75 inhibitory cells. Layer IV excitatory cells connected to layer II/III excitatory cells 

with a 10% probability. Layer II/III excitatory cells connected with each other and to 

inhibitory cells with a 10% probability. Inhibitory cells connected to excitatory cells 

within layer II/III with a 5% probability. The association column was made up of one 

input layer (IV) similar to the output layers of the primary sensory columns. The 

excitatory cells of layer II/III for the six visual and three auditory columns each 

connected with layer IV of the association column using a 1% probability.  Simulations 

Figure 8.2: Two frames (240x240) from an .avi movie before and 
after horizontal Gabor-filtering. Source: [19, 20]. 
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typically took approximately three to five minutes to process a three-second recording. 

Details of cell design and channel design are presented in [19, 20]. 

 
8.3 Network Training 

Learning and training were designed to take advantage of the synaptic properties 

observed in neocortical tissue.  Both short-term transient and long-term Hebbian-like 

synaptic changes were modeled.  In order to mimic the feedback projections of the frontal 

cortex, training was accomplished by selectively injecting a unique subset of cells with 

current for each sentence presented to the network.   

Our synapse model included reversal potential, conductance, A (absolute strength, 

or product of quantal size and number of release sites), U (mean probability of release), D 

and F (the time constants to recover from depression and facilitation, respectively). 

Details of parametric equations are completely characterized in [32] and [21]. F1 

synapses predominately facilitate (F:D, 9.04 ± 1.85), F2 synapses depress (D:F, 40.6 ± 

4.6), and F3 synapses are mixed (2.82 ± 4.6); further details can be found in [12]. 

 
8.4 Results 

Spike-coded visual and auditory representations in primary sensory cortices 

demonstrated unique patterns for the three sentences. When output layers of these 

primary cortices interacted in multimodal association cortex, there was again preservation 

of unique spiking patterns.  

Figure 8.3 shows the change in synaptic strength (USE) after successive sentence 

presentations for the rewarded vs. nonrewarded neurons.  Rewarded neurons where given 
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direct current injection during sentence presentation to bring their membrane potential 

closer to threshold.  Further analysis of these results is available in [19, 20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.5 Chapter Summary 

In this chapter we presented an approach to design and train spiking neural networks 

for bimodal speech perception. When the network was tested using the three spoken 

sentences, it showed unique spike-coded patterns of the visual and auditory 

representations in primary sensory cortices. When output layers of these primary cortices 

interacted in multimodal association cortex, there was again preservation of unique 

spiking patterns. We use this trained network in real experimentation for robotic threat 

identification in Chapter 9. 

 
 
 
 
 
 
 
 
 

Figure 8.3: Utilization of synaptic efficacy. Mean USE (± 1 std) after 7 
presentations of spoken sentence "Attack with gas bombs" among excitatory 
neurons in multimodal association cortex. Source: [19, 20]. 
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Chapter 9 

Project Evaluation 

In this section we evaluate the entire hierarchical robotic system by performing two 

integrated experiments that use the AI functions provided at each layer. The main 

experiment is a robotic search and threat identification. This uses all three layers and 

SNN for high-level decisions. The other experiment is a robotic locomotion control by 

speech commanding. This also uses all three layers of the system and ANN for high-level 

processing. 

 
9.1 Robotic Search and Threat Identification 

By experimenting the complete hierarchical system we intend to demonstrate its 

effectiveness to dynamically interact with the environment and its ability to perform tasks 

of different levels of complexity. Robotic search and threat identification is an 

experiment that consists of CARL looking for a threat in the environment. This integrated 

experiment comprises many AI tasks sequenced as illustrated in Figure 9.1 and 

distributed in the three-layer system as depicted in Table 9.1. Initially CARL navigates 

on its environment by making use of its onboard reactive features such as random 

navigation and object avoidance.   
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When a sound from the environment is above a threshold, the robotic system captures 

the signal and tries to localize its origin. This is performed by the instinctive functionality 

of Brainstem. When the sound source is defined, CARL starts navigating towards the 

target until a touching sensor is activated, which indicates its encounter. The target is an 

animated human speaking mouth played on a LCD screen. At this point, CARL starts 

capturing speech and mouth frames from the target for threat identification, and delivers 

them to Brainstem. On this layer, these auditory and visual data are spike encoded, and 

delivered to Cortex. Here, NCS is executed using the bimodal perception model for threat 

identification. Finally, the cognitive function of Cortex outputs a signal that characterizes 

the target as: friend, foe, or unknown. According to this CARL gives a response to the 

environment. 

Table 9.1: Distribution of tasks of the integrated experiment. 
 

 Body Brainstem Cortex 

Functions performed 
at this control level 

Random navigation, 
object avoidance, 
data-metrics capture.

Sound localization, 
preparing spike codes 
from audio and video 
data for input to 
neocortex simulation. 

Neocortical simulator 
software (NCS). 
Speech perception 
using audio and video 
(lip reading). 

Location of this 
control function in 
the robotic system 

On board the mobile 
robot, called CARL.

On nearby desktop class 
computer, called 
“Brainstem", connected 
to robot via wireless 
RF. 

On remote large-scale 
parallel computer, 
called "Cortex", 
connected to Brainstem 
via the Internet. 

 

Sound 
localization 

Navigation to 
target 

Sound sensing 
and capture  

Speech and 
video capture 

Spike encodingBimodal 
perception 

Response to 
environment 

Random 
navigation 

Figure 9.1: Task sequence of the integrated experiment. 
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Our experiments took place in the Brain Computation Laboratory facilities under 

office conditions of noise and echo; where CARL, Brainstem, and the target (the 

speaking LCD mouth) were co-located. The configuration of the arena of 

experimentation is illustrated in Figure 9.2. Short video clips demonstrating CARL’s 

ability to localize sound, navigate to target and capture speech and mouth frames are 

available online at http://www.cs.unr.edu/~macera/threatID.html. 

 

 

 

 

 

 

 

 

 
Sound localization and navigation to target 

Ten trials of navigation to target were performed from each starting location (left and 

right), and for each of the four orientations (see Figure 9.2), making a total of 80 trials. A 

trial consisted of interleaved events of sound localization and robot locomotion. Although 

ITD and IID are generally complementary techniques for estimating a sound direction, 

we found ITD to be considerably more robust and less subject to calibration errors and 

errors due to noise or echoes.  For these reason our experiments were conducted using 

ITD alone.  

 

Figure 9.2: Robotic search and threat identification experiment. 
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Each trial comprised multiple individual left/right/center ITD computations, resulting 

in an incremental rotation, or movement toward the target if the ITD orientation remained 

unchanged. A trial was considered successful if CARL's front bumper made contact with 

the target and the middle 80% of the imaged lip was visible from CARL's onboard 

camera. CARL successfully navigated toward and contacted the target mouth region in 

75 of 80 trials, as depicted in Table 9.2 (χ2=20.3, P<0.0001, based on the number of 

possible endings along the edge of a meter square table surface). Each navigation 

experiment took between 25 to 30 seconds. 

Table 9.2: Results of 80 experiments of navigation to target. 
 

LEFT - CARL Orientation RIGHT - CARL Orientation 
  L1 L2 L3 L4 R1 R2 R3 R4 

1 OK OK OK OK OK OK OK OK 

2 OK OK OK OK OK OK FAIL OK 

3 OK FAIL OK OK OK OK OK OK 

4 OK OK OK OK OK OK OK OK 

5 OK OK OK OK OK OK OK OK 

6 OK OK FAIL OK OK OK OK OK 

7 OK OK OK OK OK FAIL OK OK 

8 OK OK OK OK OK OK OK OK 

9 OK OK OK FAIL OK OK OK OK 

Exp. # 

10 OK OK OK OK OK OK OK OK 

 
 
Threat assessment using bimodal speech perception 

After a successful localization of target, 1.6 seconds of audio and 23 frames of video 

are captured by CARL. Three sentences that respectively would typify a friend, foe or 

unknown are used: “He is a loyal citizen”, “Attack with gas bombs” and “I am not 

entirely sure”.  These data are sent to Brainstem for spike encoding generation, which 

takes out 3.5 seconds during simulation. Figure 9.3 shows samples of audio-video capture 

after successful target localization. 
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When the stimuli data is ready, Brainstem establishes a TCP/IP connection with 

Cortex and streams the data towards it. Then the NCS program is invoked and injected 

with both the auditory-visual data and the ‘input file’. The input file defines the network 

specifically for bimodal speech perception and initializes the neo-cortical model 

according to the state of the network previously trained using the approach described in 

Chapter 8. 

 Figure 9.4 shows result examples of the bimodal perception of three spoken sentences 

obtained from NCS. The first column shows three sentences modified from the TIMIT 

corpus. Columns two and three show the spiking response of neurons driven from the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.3: Left: Mouth frame sample capture by CARL. Center:  Same 
frame after Gabor analysis. Right: STFT output of the speech captured. 

Figure 9.4: Bimodal speech perception results executed by NCS on Cortex. 
Pseudocolor windowed spike rate plots in response to spoken sentences. 
Length: 1.6 seconds; y: windowed spike frequency; x: time. Source: [19, 20]. 
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visual and auditory transformations. The fourth column is the response of associative 

multimodal cortex during reward depolarization of selected neurons for each sentence. 

As we can see in this figure, spike-coded visual and auditory representations in 

primary sensory cortices demonstrated unique patterns for the three sentences. When 

output layers of these primary cortices interacted in multimodal association cortex, there 

was again preservation of unique spiking patterns (Figure 9.4, fourth column). 

Response to environment 

After the neocortical simulation, an interpretation of the resulting spike code will 

determine accordingly if the target is a friend, foe, or unknown. At present the threat 

assessment is determined in terms of neuronal perception, further research is in progress 

at the Brain Computation Laboratory for speech threat identification. When a threat is 

pseudo-identified, a command will be passed back to Brainstem to take action on CARL. 

If the target is recognized as friend, the robot repositions and resumes searching. If the 

target is identified as foe, CARL rapidly backs away to escape. If the target is identified 

as unknown, the robot reposition and continue monitoring the target. Video clips of 

CARL’s responses are available online at http://www.cs.unr.edu/~macera/threatID.html. 

 
9.2 Robot Locomotion Control by Speech Commanding 

This integrated experiment consists of controlling the CARL’s locomotion through 

speech commands using our speech recognition system described in Chapter 7.1. There 

are two methods to achieve this. The first method is using the three robotic layers. CARL 

would capture the speech command and sent it to Brainstem. Brainstem would generate 

the feature vectors and sent it to Cortex. Finally, Cortex would simulate the ANN in 
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sequential mode and sent back the recognized command for robot movement. The second 

method is using two robotic layers, CARL and Brainstem. In this case the ANN 

simulation would be performed in Brainstem. Considering that speech recognition is a 

high level cognitive function, we decided to perform our experiments using the first 

method. Under this configuration, we tested in real time the locomotion control of CARL 

using speech commands from approximately 1 meter of distance in the Brain Lab 

environment. Our system responded in average with 94% of effectiveness for five 

speaker dependent words commands (GO, BACK, STOP, LEFT and RIGHT – 20 trials 

each). Figure 9.5 shows an example of the efficacy in capturing and generating the 

feature vectors of the BACK command. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.3 Chapter Summary 
 

In this chapter we integrated the three-layers of the robotic system Body, Brainstem 

and Cortex and put it at work in a common task: the intelligent control of CARL robot. 

The integration of three dissimilar computing systems, with reliable linkage and 

synchronization, is the main achievement of this project. In addition, we were able to 

distribute AI functions across the robotic layers according to their complexity and 

Figure 9.5: Feature vectors plot of  “BACK” showing capture 
precision and pattern consistency of four real time trails. 
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perform them effectively. We were able to capture auditory and visual signals efficiently, 

localize the sound origin, identify threat targets, recognize speech commands, and 

perform CARL navigation effectively. 
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Chapter 10 

Conclusions 

In this chapter we summarize our work, then we describe the contribution of this 

project, and finally we recommend some future work. 

 
10.1 Project Summary 

We have implemented a novel robotic architecture that helps to develop and test 

artificial intelligence models in the real world. This robotic architecture distributes the 

computational task on three layers that are remotely located but wireless linked: the Body 

(on board the robot), Brainstem (on a local PC), and Cortex (on a parallel computer 

cluster). Initially, in order to prove the feasibility of the proposal, we implemented the 

communication backbone of the system and tested it by controlling CARL, the robot, 

over the Internet from a remote location. The locomotion of CARL was successfully 

controlled in time, and precision from Cortex and the metrics of the robot were accurately 

monitored on Brainstem. Next, CARL was equipped with stereo auditory and visual 

capability by hardware integration and software implementation. The robotic platform 

was then used for a series of artificial intelligent functions, implemented on each layer 

with different computation complexity. On the Body, we implemented a simple 
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navigation and object avoidance system. On Brainstem, we constructed a binaural sound 

localization and navigation-to-target system. On Cortex, we implemented a speech 

recognition system using ANN and we tested a bimodal speech perception approach 

using biologically realistic spiking neural networks. Finally, we evaluated the entire 

robotic system with two integrated experiments: (1) robotic search and threat 

identification and (2) robotic locomotion control by speech commanding. 

 
10.2 Project Contribution 

The first contribution of this project is the provision of a novel and effective platform 

for AI investigation. Through our biologically correlated robotic system, we successfully 

mimic two strategic operations of intelligent living creatures: (1) the effective interaction 

with the real world by modeling the brain, body, and environment conjunctively, and (2) 

the distribution of processes according to their complexity: reactive processing on the 

Body, instinctive processing on Brainstem, and cognitive processing on Cortex. Although 

the concept of remote-brained robotics has been explored previously by Inaba and 

colleagues in [15], in that work the brain and body were separated, both conceptually and 

physically, our system is novel in that it incorporates three-level hierarchical processing 

intended to model the efficiency of human neurological perceptual processing and 

decision making. In this configuration, task selection and allocation are relevant and 

contribute to effective robot responsiveness. 

The hierarchical robotic system has been a valuable platform for our own AI research. 

With this platform we quickly and effectively implemented a sound localization and 

navigation-to-target system. Although we did not focus on the precise localization of 
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sound such as [16], this function provides CARL with auditory perception and an 

effective way to track mobile sound targets, resembling again an important feature of 

biological entities. Another important achievement is our novel and practical speech 

recognition algorithm using an ANN. Some speech recognition algorithms focus on 

developing new mathematical models to represent the speech spectrogram, such as 

Perceptual Linear Predictive (PLP) analysis and RelAtive SpecTraAl (RASTA) 

processing [17], and others focus on the estimation of the short-term spectral envelope, 

such as filter banks, cepstral processing, and linear predictive coding (LPC) [11]. Our 

approach simply image processes standard spectrograms in order to stress the visually 

perceptible formants of the speech. Our experiment using speech to control the 

locomotion of CARL demonstrated a 94% effectiveness for speaker-dependent trails. 

From a cognitive-science perspective, our remote-brained robotic system’s massive 

parallel processing and its embodiment of perceptual decisions make our system a 

valuable platform for investigating new types of artificial intelligence such as applied 

neurocomputing [14] and evolutionary agents [31], where the active and strong 

relationship between the brain, body, and environment is fundamental for neural model 

development [5]. From a general perspective, our system is also notable for its ability to 

map many-to-many robots and “cortices” via a distributed communication network (here, 

the Internet). Each CARL could potentially communicate with many Cortex-like clusters 

globally distributed. In turn, each Cortex could simultaneously control (hence coordinate) 

many CARL robots. This approach would yield not only flexible distribution of the 

computational load across a dynamic problem-solving environment, but also redundancy 

that could sustain the system in the event of focal destructive events. 
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10.3 Future Work 

Our robotic platform, along with the neo-cortical simulator, provides a great avenue 

for future investigation on biologically realistic neuronal modeling [18]. Certainly, 

complex brain functions such as cognition and memory will be harder to model unless we 

have a better understanding of neuron dynamics at both a micro level and a macro level, 

and unless we conceptualize the basic building blocks (structures) that make the neural 

system behave reasonably. While current techniques try to solve the neural puzzle by 

analyzing a huge search space, a challenging and promising future work is to analyze 

small spiking neural structures that evolve over time to bigger and complex structures 

with biological significance. This could be accomplished by means of evolutionary 

techniques applied to neural systems that interact with the body and the environment. 

Tracing the neural network during its evolution would lead us to identify hypothetic 

building blocks of neural systems. Our robotic platform provides the elements and 

computational power to accomplish this proposal. 

To take advantage of the computational power of the robotic system, it would be 

valuable to provide Cortex with parallel implementations of ANN and genetic algorithms. 

These features would speed up the development of AI utilities for the robotic system and 

would help to brainstorm and experiment with AI models that combine ANN and genetic 

algorithms, a field little explored. 

At present Brainstem monitors the vision, auditory, and metrics of CARL; however, 

Brainstem’s functionality should be extended to monitor the processing of Cortex. The 

future work related to the mouth-video processing presented on Section 7.2 for the 
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support of the speech recognition approach presented on Section 7.1 is to experiment 

combinations of ANN and feature vectors from both approaches in order to find a 

bimodal speech recognition technique of higher performance. Finally, with respect to the 

Body, we suggest to upgrade the onboard processor and memory in order to enrich the 

reactive functions and to take advantage of emergent wireless Ethernet technologies. 
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Appendix 1 
 
Schematics of CARL’s sensor, drive and processing system. Source: [7]. 
 
 


