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Abstract

Large groups of networked workstations, commonly referred to as Beowulf
clusters, require a systematic approach b load balancing. Many applications require
extensive message passing and synchronization to take full advantage of the available
processing power. We have endeavored to ssimplify this task by developing a generic
gueuing system that can be adapted to different applications. This system is particularly
suited to graph theory problems, many of which require a high ratio of cmputation to
message passing. We have used the queuing system to solve a common graph theory

problem, finding the Minimum Crossing Number of a complete graph.
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Chapter 1 Introduction

The difficulty in parallelizing most agorithms lies in properly and efficiently
dividing the work to ensure maximum concurrency and simultaneous termination.
Work queues have proven to be an efficient means of ensuring load balancing. Work
gueues often require large amounts of message passing as slave processes request
work from the queue. These messages make proper synchronization of the utmost
importance, but they also make it difficult to achieve. By developing a generic work
gueuing system for medium to large Beowulf clusters we attempt to smplify this
problem

The agorithm Harris and Harris presented in [1] uses an exhaustive search to
find the Minimum Crossing Number (MCN) of a graph. As problem size grows,
exhaustive searches can become computationally intensive—taking months or even
years to complete on a single processor. Using a medium to large Beowulf cluster
and aparallel queuing system that can be optimized for problem granularity, we have
solved the MCN of a complete graph for a number of vertices less than nine. The
MCN of complete graphs with vertices numbering less than 10 was conjectured by
Guy in [2] and has been provenin [10], alowing us to verify our results. The MCN
for larger vertex sets has not been proven, but by harnessing the power of large
computer clusters, this problem may finaly be solved. Our queuing system has been

designed to aid in solving this and other large, computationally intensive problems.



The remainder of this paper is laid out in the following manner: Chapter 2
describes background information concerning parallel load balancing, work queues,
and introductory graph theory concepts. It describes the Minimum Crossing Number
of a complete graph and a generic work queuing system. Chapter 2 also includes
descriptions of branch and bound algorithms, breadth first and depth first searches
and a brief introduction to Beowulf clusters. Chapter 3 relates the proposed
implementation of our queuing system. Chapter 4 describes the “job” used to solve
the Minimum Crossing Number Problem and the Traveling Salesman Problemin our
gueuing system and lists the results obtained, and Chapter 5 finishes the paper with

our conclusions and future work.



Chapter 2 Background and Literature Review

Problems such as the Minimum Crossing Number of a complete graph are
computationally intensive and virtually impossible to solve using a conventiona
single processor machine. Fortunately, these problems can often be easily broken
down into smaller problems. The size, or granularity, of these smaller problems can
vary greatly, but the concept of each processor tackling only a portion of the overall
problem applies regardless of size. In this chapter we will begin with a look at work
gueues in Section 2.1, paralel queues in Section 2.2, branch and bound algorithms,
breadth-first and depthfirst searches in Section 2.3, graphs and the Minimum

Crossing Number of agraphin Section 2.4 and Beowulf clustersin Section 2.5.

2.1 Work Queues

A work queue is one method of ensuring a balanced work load that is evenly
distributed across many processors or machines. This load balancing can be either
centralized, residing with a master process, or decentralized, controlled by each slave.
A combination of these two systems may also be used. The work queue is especially
useful in load balarcing with irregular data structures such as an unbalanced search
tree[3].

In centralized load balancing, the tasks to be performed are held by the master
and meted out to the daves as they finish other tasks and become idle. This process
minimizes the time each dlave is idle, thereby maximizing efficiency. A variation of

this strategy involves the distribution of non-homogenous tasks. These tasks are



usually arranged in descending order of size and/or complexity. This approach
allows some slaves to work on smaller tasks (deeper in the queue) while waiting for
the early larger tasks to complete. The wisdom in thisordering is readily apparent: if
a large or time consuming task is left for last, processes could sit idle while the last
task is computing. One disadvantage of centralized load balancing is the possibility
of abottleneck while the master distributes tasks—many slaves may request tasks,
but the master can only issue one at atime.

In decentralized load balancing, local processes keep their own work pools.
This strategy has the benefit of avoiding the bottleneck mentioned above.
Decentralized load balancing is similar to static partitioning and has the same
attendant problems. In more complex systems, the slaves may request work from
each other or from a centralized master queue.

The difficulty in parallelizing most agorithms lies in dividing the work to
ensure maximum concurrency and synchronizing the processes to achieve
simultaneous termination. There exist several ways to implement dynamic load
balancing in a multi-processor system. One of the most common methods is the work
pool or processor farm. These constructs are referred to as a queue and have the
First-1n, First-Out characteristic common to all types of queues. These queues often
require large amounts of message passing as dave processes request jobs from the
queue, making the difficult task of proper synchronization very importart. Our

generic work gueuing system is an attempt to simplify the problem stated above.



2.2 Parallel Work Queue

It is often advantageous to use a divide and conquer strategy when dealing
with difficult and/or lengthy problems. These problems may have data sets that are
completely defined prior to runtime and are often divided among the processors,
each computing its own results from that data set. This is referred to as static
partitioning. If one processor finishes working it must wait idle while the other
processors “catch up.” When a processor is idle, the benefits of concurrent execution
are not realized to their entirety. In addition, heterogeneous processor clusters can
make effective partitioning \ery difficult. Static partitioning is effective when data
sets are known prior to runtime and the execution time of the data can be easily
determined. This is seldom the case, however. One solution is dynamic load

balancing.

2.2.1 Eager Task Creation

A central work queue is an effective tool in load balancing during distributed,
concurrent execution. When each process becomes idle, it can query a master process
and remove the next job from the queue. This approach isreferred to in [4] asaform
of eager task creation (ETC). But, by using a central work queue there exists the
likelihood of a bottleneck when removing jobs from the queue. Additionally, if two
Or more processes attempt to access the queue simultaneously, data may be corrupted
and the possibility of a resultant race condition or deadlock may require additional
overhead to ensure mutual exclusion (e.g., a semaphore). By using local work queues

in addition to a central one, these problems are largely avoided.



2.2.2 Lazy Task Creation

A task with too fine a grain can create a suboptimum work distribution when
utilizing eager task creation. One solution presented by Mohr, et al. in [5] is referred
to as lazy task creation (LTC). Initial work in [5] focuses on a mechanism they call
breadth-first until saturation, then depth-first (BUSD). BUSD uses an initial breadth
first task creation until all processors are busy and then a depth-first execution and
further task creation. This method can aso utilize a run-time construct called task
stealing. When one task is idle it may “stea” a task from another processor, thus

helping to balance the workload.

2.3 Depth-first Search, Breadth-first Search and Branch and Bound

In many cases, a search space may be mapped to atree structure. In such a
tree, nodes further from the root represent a more complete possible solution. Each
leaf node signifies a complete solution. Two methods used to search trees for
solutions are depth-first search (DFS) and breadth-first search (BFS).

In adepthfirst search, the search traverses the tree until a complete solution, a
leaf node, or a dead-end (i.e., no solution) is reached. The search then returns to the
node closest to the root that has an alternate path and again moves down the tree
toward a solution.

In abreadth-first search, the search will visit every node adjacent to the root
and then move to the next level and visit every node adjacent to every node at that
level. All possible solutions are visited when the search completes searching al leaf

nodes.



Branch and bound refers to the process of using a known solution to prune
branches from the search tree. Once one solution is found, that value becomes the
bound, the yardstick by which all other solutions are measured. It isaso possible to
use a predetermined good solution. If, during a search, the partial solution has
exceeded the bound, that branch of the search tree is abandoned. Thistechniqueis
particularly effective in an exhaustive search when the initial search space is very
large. By eiminating branches as close to the root as possible, this method can

significantly reduce the actual number nodes searched.

2.4 Graphs

A graphisan ordered pair G = (V, E), where V is a finite, non-empty set of
objects called vertices, and E is a (possibly empty) set of unordered pairs of distinct
vertices (i.e., 2-subsets of V) called edges. The set V [or V (G) to emphasize that it
belongs to the graph G] is caled the vertex set of G, and E [or E(G) to emphasize as
above] is called the edge set of G. These sets must conform to the following rules as
givenin [6]:

no edge contains a vertex other than its endpoints

no two adjacent edges share a point other than their common endpoint
two nonadjacent edges share at most one point at which they cross
transversally

and no three edges cross at the same point

If e={u, v} I E(G), we say that vertices u and v are adjacent in G and that e
joins u and v. We also say that u and v are the ends of e. The edge e is said to be
incident with u (and v), and vice versa. We write uv (or vu) to denote the edge {u,v}
with the understanding that no order is implied [6]. Note that in Figure 2.1 the graph

G hassatsV and E as follows:



V={aDb,cd e

E ={ab, bc, cd, de, ec, bd, ac}

Figure2.1: Graph G

2.4.1 Complete graphs

A complete graph (denoted K ) is a graph with n vertices in which each vertex
is connected to each of the others (with one edge between each pair of vertices).
Thus in a complete graph all vertices have an edge incident to every other vertex
The graph in Figure 2.1 is not a complete graph because it is missing the edges (ad)

and (eb). Figure 2.2 isacomplete graph on five vertices (Ks).



Figure 2.2: Complete Graph (Ks)

2.4.2 Planar graphs

A graph is considered planar if it can be drawn an a plane and the edges
intersect only at their ends. A drawing of a graph on a plane is called a planar
embedding of that graph. A planar embedding divides a graph into connected
regions. It is important to note that one of the regions lies outside al edges and is
infinite [6]. Figure 2.2 represents a non-planar embedding of Ks. It is worth noting

that Ks is not a planar graph.

2.4.3 Bipartite graphs

A graph is bipartite if its vertices can be partitioned into two digoint subsets U
and V such that each edge connects a vertex from U to one from V. A bipartite graph

is a complete bipartite graph if every vertex in U is connected to every vertex in V.
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Figure 2.3 shows a complete bipartite graph with 3 vertices in set U and 3 in set V.

This graph is denoted K3 3.

Figure 2.3: Complete Bipartite graph (K3 3)

2.4.4 Crossing Number

The crossing number of a graph refers to the number of times its edges cross.
It has been conjectured by Guy in [7] that the following formula holds true for the

minimum crossing number of a complete bipartite graph.

_an (e - 10eandeam- 10
Cr(n,m)—gE—.g v R
ecee 2 gL 2

where [r] denotes the integer part of r

Figure 2.4 shows a complete bipartite graph (K3 3) with the minimum number of
crossings.



11

Figure 2.4: (K33) with Minimum Number of Crossings

2.4.5 Minimum Crossing Number Problem

Paul Turan was the first to recognize the minimum crossing number problem

for what it istoday. The following anecdote from [ 8] relates his discovery:

In July 1944 the danger of deportation was real in Budapest, and a
reality outside Budapest. We worked near Budapest, in a brick factory.
There were some kilns where the bricks were made and some open
storage yards where the bricks were stored. All the kilns were
connected by rail with all the storage yards. The bricks were carried on
small wheeled trucks to the storage yards. All we had to do was to put
the bricks on the trucks at the kilns, push the trucks to the storage
yards, and unload them there. We had a reasonable piece rate for the
trucks, and the work itself was not difficult; the trouble was only at the
crossings. The trucks generaly jumped the rails there, and the bricks
fell out of them; in short this caused a lot of trouble and loss of time
which was rather precious to all of us (for reasons not to be discussed
here). We were all sweating and cursing at such occasions, | too; but
nolens-volens the idea occurred to me that this loss of time could have
been minimized if the number of crossings of the rails had been
minimized. But what is the minimum number of crossings?

As a result, this problem has become informaly known as “Turan's Brickyard

Problem.”
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Cadculating the MCN of a complete graph is a problem with the following

characteristics:

every vertex must have an edge incident to every other vertex
the graph must be planar

no edge crosses itself

no pair of adjacent edges cross

two edges cross at most once

no more than two edges cross at one point

This problem was proved to be NP-complete by Garey and Johnson in [10].
Guy and Erdos presented a survey of the minimum crossing number of several
families of graph including K, in [9]. The accepted value (v) for the minimum
crossing number of a member of the family of complete graphs (K,,) was conjectured
by Richard Guy in[2] and is given by the formula
an e - 10een - 20en- 30

V(Kn):e2za 2 ze42 ® 2 g

Where n is the number of vertices of the complete graph This has been proven for all

n £ 10 [10].

2.5 Beowulf Clusters

Thomas Lawerence Sterling begins the introduction of his computer cluster
building and maintenance guide with the following:

Beowulf was the legendary sixth-century hero from a distant realm
who freed the Danes of Heorot by destroying the oppressive monster
Grendel. As a metaphor, "Beowulf" has been applied to a new
strategy in high performance computing that exploits mass- market
technologies to overcome the oppressive costs in time and money of
supercomputing, thus freeing scientists, engineers, and others to
devote themselves to their respective disciplines [ 11].
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Beowulf clusters are groups of linked workstations that can be used to solve
computationally intensive problems. By using single, relatively cheap workstations,
these clusters are both economical and scalable.

The Beowulf Project was developed at NASA’s Goddard Space Flight Center
by Thomas Sterling and Donald Becker in the summer of 1994. Because of the
availability of low cost PC workstations a 16 node cluster was built for less than the
target of $50,000 [12]. The project was driven by the need for high performance
workstations in the Earth and space sciences community [13]. The origind
benchmark goa for the project was one Gigaflops, or one thousand million (10°)
floating point operations per second. This was achieved in 1996 using 16 100 MHz
Intel processors.

A Beowulf cluster uses a single computer as a node; these nodes are
interconnected using a variety of networking onfigurations, utilizing Ethernet for
their interconnectedness. Messaging is managed through the TCP/IP protocol stack.
The nodes usualy run a UNIX-based operating system such as Linux [11]. Linux is
an open source operating system under the GNU standard, allowing users to change
components as necessary for different applications. This adaptability, as well as the
inclusion of the TCP/IP protocol, made Linux particularly suited to use as an
operating system in the Beowulf Project [12].

The Beowulf architecture emphasizes severa key hardware and networking
attributes.  The system must be built from mass market commodity components; it
must have dedicated processors, rather than borrowing processing from idle

workstations and should have its own private system area network [12]. By using
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consumer products, these clusters were developed to benefit from competition in the
PC markets. The designers intended for the cluster nodes to use free operating
systems and distributed computing tools whenever possible, thereby significantly
cutting costs. Their main goal was high performance at an affordable price.

In effect, a multi- node cluster acts as a supercomputer, giving large amounts
of processing power for a fraction of the cost of traditional multi-processor systems.
By utilizing current high performance processors and networking standards, new
Beowulf clusters have taken multi-processor computation to new heights of
performance. The Beowulf architecture gives anyone with a need for high processing

power arelatively inexpensive, easy to construct computing option.
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Chapter 3 Proposed Implementation

We have devised a parallel queuing system utilizing some aspects of both
ETC and LTC. This system is being used and will be used to solve computationally
intensive problems, particularly those involving graph theory. The system has been
used to solve the MCN problem for a complete graph. Message synchronization and
load balancing is achieved using acombination local and centralized queuing system.
In this case, these jobs can also spawn other jobs. It isthis property that the system of
central and distributed work queues is designed to exploit.

We began with an existing implementation of an algorithm to find the MCN
of a complete planar graph given by Harrisin [1]. Thisimplementation had also been
paralelized using static partitioning by Tadjiev in [14, 15]. As mentioned in the
previous chapter, static partitioning generaly does nothing to ensure load balancing.
Very little speedup was noticed in solving larger vertex sets even when the method
was run on many processors Frequently, only several hours into a many-day run,
one processor would be working while the others sat idle. By utilizing a generic work
gueuing system the MCN and other problems could be solved with a minimum of
adaptation.

In the rest of this chapter we will explain our implementation, describe where

it fits in this taxonomy, and give a detailed overview of our implementation.
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3.1 The Generic Queuing System

The queuing system was designed to be as generic as possible, alowing it to
be adapted to a variety of problem sizes and types The system works around a job.
This job represents whatever amount of work can be executed independently. Thus,
the system is easily tunable by the user to ensure good parallel efficiency. This
amount of work isreferred to asthe granularity of atask. Coarse granularity refers to
a task with a large amount of sequential instructions that take a significant amount of
time to execute [16]. In this system tasks with a finer granularity take better
advantage of the central and distributed queues. An example job is given in Chapter
4 for the MCN problem.

Many system variables are user definable, including: the maximum queue size
of both the local and central queues, the amount of work reserved by the slaves when
sending a packed queue, and the number of jobs created and enqueued by the master
prior to concurrent execution. These variables allow the queuing system to be
adapted to a variety of situations and granularities.

The normally high communication overhead of fine-grained tasks is
minimized by the use of the local queue. In addition, the queue sizes may be tuned to

allow coarse grained tasks to benefit from the central and distributed queue system.

3.2 Implementation Overview

In our proposed implementation, the master will create the fird m jobs. In
genera, m is determined by the problem under investigation and should be greater

than n, where n is the number of dave processors. These jobs are put in the master’s



17

gueue. The master then sends a job to each processor. From there, each processor
will create more nodes for the tree while working. These jobs are kept in a local work
gueue by each dave. When a dave's local work queue reaches some user defined
size, the queue is packed (reserving a predetermined number of jobs to continue
working) and sent back to the master for placement in the master queue. When a
dave is idle, it sends a request for a job to the master and, upon receipt, begins
computation and the filling of its loca queue. If adaveis idle and the master queue
is empty, the idle slave “steals’ a job from another slave via the master. Process

termination occurs when all slaves are idle and the master’ s work queue isempty.

3.2.1 The Master Process

The master creates enough jobs to fill its queue and provide a job for each
dave. It then sends ajob to each slave and waits in an idle loop for messages. These
messages can be one of several types. arequest for ajob, a packed-up job queue from
a slave whose bcal queue was overflowing, or an update of a new best solution
Upon receiving a request for a job, the master will dequeue from its local queue,
provided it is not empty, and send the job to the requesting dlave. If the master’s
gueue is empty, it will send a request to a portion of the working processes to pack
and send a portion of their queues to the master. The master only requests jobs from
a portion of the working slaves to avoid communication bottleneck. By using a
round-robin approach each portion of the saves will be polled in turn for available
jobs. This portion is user definable based on the number of slaves and the task

granularity. By gathering available jobs in this fashion, the master’s queue is
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adequately stocked, removing the need for frequent task stealing. Figure 3.1 shows
the loop that receives messages from the slaves (lines 262+).
Depending on the value of the received message, the master either sends a

new job to the dave or prepares to receive a packed job queue to enqueue locally.

[l

62 while(l){ /f loop and wait for requests and packed gueues from slaves

[
(=3
(5]

b3
(=21
=

if (mumberprocsidle »>= numprocs & naster(ueus. IsEumpty()){

5N
o
L

La
o
o
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+

(]
-1
-1

¥}
-1
o0

o]
-1
ir=

HPI_Recow(sduy,
i
MPI_INT,
MPI_ANT 30URCE,
MPI_ANT TAG,
MPI_COMM_WORLD,
&status);

[
=1
(=1

3
=]
=

]
=1
]

(5N
o
L)

(5]
o
=

(]
=
o

[s]
=]
(=]

5]
=]
-1

if(status.MPI_TAG == needjobtadg){
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3
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-
=l
fmi
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0
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if (masterQueue.IsEmpty()){ /¢ if job gueue empty make a note
/f and set process to idle
nmasteruene, munMasterRequesta+;
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Figure 3.1 Master Code

In Figure 3.2, line 292, the master checks to see if it has jobs available in its queue to

send to a dlave. If no jobs are available, the master will make a note of which slaves
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are idle and broadcast a “needjob” message to the daves who are still working. The
frequency of task stealing can be tuned by altering the min_queue_size variable.
The slaves will not respond to a needjob query if their queue is smaller than this size.
If a dave requests a job and the master's queue is not empty, the master simply
dequeues ajob and sendsit to that slave.

If the master receives a best solution update, it changes its local best solution
variable and then sends the new value to the daves. This approach allows the system

to take full advantage of a branch-and-bound algorithm.

292 if (masterfuene.IsEnpty()){ /F if job gqueue empty make a note
293 #f and set process to idle
=294 masterfuene. nunMasterRequests++;

295

296 f% send masterneedsjobtayg to other slaves if not idle *F
297 for{int j = 1; ] <= numprocs; j++){

298

299

300 if (mmberprocsidledrray[]] == 0){/f process is working
S01

302 MPI_Send(sduytag,

303 Ly

304 MFI_INT,

305 He

306 masterjobrequesttag,

307 MPI_COMM_WORLD) ;

308 1

309 i

310 it

S1l else{

3lz masterfuene.Degquene (jobTodend) ;

313

5314 Jjobsize = jobTofend,.zsize:;

315

316 HPI_Send(sjobzize,

317 T,

318 MFI_INT,

312 status.MPI_S0URCE,

G20 datatag,

321 MFI_COMM WORLD) ;

322

323 MPI_ZSend(sjobTolend,

324 sizeof (JobType),

325 MFI_BYIE,

326 status.MPI_S0URCE,

327 jobtag,

328 MPI_COMM_WORLD) ;

329

330 mmberprocsidle--;

331 numberprocaidleArray[status. MPI_SO0URCE] = 0: ffreset idle status
332 '

333 1

Figure 3.2: Master Code Part 2
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Figure 3.3, lines 403-434, show the termination routine. |If al processes are
idle and the master queue is empty, the master sends a stop message to al daves and
then returns. All processes will return upon receipt of this message and results, if

any, will be output prior to program termination.

403 if (numberprocsidle == nunprocs && master(ueue. IsEnpty ()14

4an4g

405 MPI_Iprobeil, ff probe to pick up messages:
406 HNFI_ANY_ TAG, F§F mincross num updates, gueus =Size changes
4an7? MPI_COMM WORLD,

408 sprobeflag, ## hefore working on johs
409 &3tatus) ;

410

4ll

412 if (probeflag) !

413

414 int flagg;

415

4le NPI_Recvisflagy,

417 L

4lg NPI_INT,

419 status.MPI_30URCE,

4z0 MPI_ANY TiG,

421 MFPI_COMM_WORLD,

422 sBecvstatus) ;

423 }

424

425 for({i = 1: i <= numprocs: i++){/* send stoptag to slave procs *f
4Z6

427 HNPI_Send(sdnyint,

478 1y

429 MFI_INT,

430 I,

431 stoptad,

432 MPI_COMM WORLD) :

433 i

434 return;

435 }

436 b

437 1}

Figure 3.3 Master Code Part 3

3.2.2 The Slave Process

Each dlave process requests an initial job from the master, receivesit, and
begins processing. If new jobs are created, they are put into the dave'sloca queue.
When the current job is finished, the dave dequeues ajob from the local queue and

continues to process. If the dave’ s queue reaches a maximum size or the master



21

reguests jobs from the dave, the queue is packed and sent to the master. A small
portion of the jobs are kept in the local queue for the dave to continue working. This
portion is user definable. The slave terminates upon receiving a stop message from

the master. Figure 3.4 shows the variety of messages the save may receive from the

G633 MFI_IprobeiO, ffprobe to pick wp messages:
664 MPI_ANY_TAG, #f mincross num updates, gqueue size changes
665 MPI_COMM_WORLD,

G666 sprobeflag,ff and such, before working on jobhs
667 &3tatus) ;

668

669

570 Ff messagetags run 15-21 inclusive
671 if( probeflag &g status.MPI_TAG < Z2 && status.MPI_TAG > 14 1§
672

873 HPI Recv(sduy,

674 1,

675 MPI_INT,

676 status.MPI_SOURCE,
677 MPI_ANY TAG,

678 MPI_COMM_WORLD .

579 susgkey) ;

680

651 sywitch({ nsgkey.MPI_TAG ) {
682

653 case gqueueiizelp:

654

635 SLAVE_(_SIZE MaX = msg:
686

687 break:

6885

559 case gqueueiizelowmn:

630

691 SLAVE_(_SIZE_MIN = mag:
692

693 break;

694

695 case mincrossUpdate:

696

697 MCHN = dmy:

695

699 break;

700

701 case masterjobrequesttag:
02

703 masterneedsiobsFLAGH;
704

705 break;

706

707 case stoptag:

708

709 return;

710

711 break;

712 1

713 :

714

Figure 3.4 Slave Probe Construct
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By fine-tuning the queue sizes and other variables, this queuing system can be
easily adapted to awide variety of problem types. Additional message types may be
added to increase or change functionality as need be. Optimal granularity varies
greatly from problem to problem. By leaving some control in the hands of the user,

we have increased the usefulness of this system.
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Chapter 4 Results

In order to test the effectiveness of our queuing system, we used several
problems. The first was a basic simulation, the second a graph theory problem
described in detail in Chapter 2 called the Minimum Crossing Number of a complete
graph and the third a classic problem referred to as the Traveling Salesman Problem
(TSP). The “job” structure used in these problems consists of a C/C++ data structure
as shown in Figure 4.1 and Figure 4.2. These jobs are representative of those that

could be used to solve other graph theory problems.

4.1 Testing Setup

The region lists for the MCN problem were developed using the rotational
embedding scheme found in [17]. We have found the MCN by mapping the search
Space to a tree using the algorithm found in Harris [1] and performing a breadth-first
search on that tree. We used a branch-and-bound algorithm to limit search space. In
these types of algorithms, current solutions are compared to best solutions allowing
that branch of the tree to be discarded if a better solution is aready known. Thus, by
limiting the search space we theoretically reduce execution time.

Figure 4.1 shows the job used in the queuing system to solve the MCN
problem This C language structure can be adapted to the problem as needed. The
generic nature of the queuing system and its reusability for a variety of problems is

achieved by wsing atemplated queue and a user defined job type.
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struct job{

int min cross num local; /* mincrossing number up to this job */

/* updated when job is dequed? */
int edge number; /* number of edges in edge list */
rgn ptr region; /% ptr to region in question 7
edge type *edge list; A% ptr to edge list to add */
edge type **matrix ptr; /% ptr to current edge matrix *7

int placeholder;

Figure4.1 MCN Job Structure

The Traveling Salesman Problem (TSP) is a common graph theory problem
described thus, “...given a finite number of "cities’ along with the cost of travel
between each pair of them, find the cheapest way of visiting all the cities and
returning to your starting point.” [18] This problem is commonly represented as a

complete graph.  Figure 4.2 shows the data structure used to hold data for the TSP.

struct soclutionf

int w; /* Weight of solution */

int n; /* Number of nodes visited */

int path _array[PATH LENTH]; /* Nodes visited storage %/
b

class Job{
solution tmps; /* Temporary solution */
solution best solution; /* Best solution ®/
int size; /* Size of graph */

1

Figure 4.2 TSP Job Structure
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4.2 Details

Because of the problems in passing dynamically allocated memory using MPI,
the user may define two “packing” functions, unpackjobs() and packjobs(). By
putting all data members into a structure and giving a size in bytes, the queuing
system can easily pass work and information of any data type from slave to master
and vice versa. This aso adds to the reusability of the queuing system—only the
gze, not the content, of the datain bytes is relevant.

The master unpacks the jobs and places them in its queue and waits for a dave
to request more work. Upon recelving the packed job from the master, a dave

unpacks and enqueues it. This allows the queuing system to be as generic as possible.

4.3 Testing

This structure was tested using a simulated job creation system. The job
structure was made up of one integer. The amount of work done by each slave was
determined randomly. Some slaves created jobs, sending back packed queues to the
master. Others requested jobs from the master. Upon receiving a certain number of
requests for work from the slaves, the master purged its queue and requested jobs
from working daves. This simulation was designed to test al functionality of the
generic queuing system.

The minimum crossing code was developed from work by Tadjeiv in [15] and
by Yuan in [19] and was used as an example of the types of problems that the
gueuing system can be used to solve. Figure 4.2 shows the number of jobs created by

the daves for the MCN problem using the queuing system. Results for two different
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Ke starting graphs are included. More results and a full description of these starting

graphs will be found in [19].

K6-1 Number of Jobs Number of Requests Number of Jobs
Enqueued For work Sent to Master
Master 36 16
Savel 476 8
Slave 2 297 6
Slave 3 305 2
Slave 4 432 14
K6-2
Master 7 10
Slave 1 498 1
Slave 2 455 0
Slave 3 455 0
Slave 4 497 2

Figure 4.3 Job Statistics for Kg

The first column of Figure 4.3 lists the number of jobs queued by each dave
and the master. This includes jobs the master created to start the search process. The
second column lists the number of requests for work received by the master, the third
the number of jobs each dave sent to the master process.

The TSP had a much finer granularity. As shown in Figure 4.4, many
thousands of jobs were created. The number of nodes refers to the number of “cities’
the salesman must visit. Each job was one step in a breadth-first search for the

optimal solution.
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Number of Jobs

Number of Requests

Number of Jobs

8 nodes Enqueued for Work Sent to M aster
Master 37 16
Savel 11,508 10
Save?2 6,052 7
Save3 2,513 7
Save4 1,281 6
Save5 1,078 0
11 nodes
Master 30, 549 258
Slave l 530,933 29534
Save?2 505,204 745
Slave 3 374,969 260
Save 4 69,821 0

Figure 4.4 Job Statisticsfor the TSP

Figure 4.4 is broken up into two test graphs, an eight node graph and an

eleven node graph. The first column of Figure 4.4 lists the number of jobs queued by

each dave and the master. Note the much larger numbers than the MCN. The second

column lists the number of requests for work received by the master, the third the

number of jobs returned to the master by each save process.

Figure 4.5 and Figure 4.6 show the dowdown as a result of the queuing

system in the TSP.
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Chapter 5 Conclusionsand Future work

By developing a standard queuing system for use in Beowulf clusters, we
have opened the door for easy adaptation of existing algorithms to solve a wide
variety of problems. Using our system, large amounts of costly development can be
avoided. The system allows for easy tuning for optimum performance based on the
computational intensity or job granularity of the chosen agorithm.

We plan to use this queuing system to solve the MCN problem for larger
vertex sets. Harris and Thorpe showed in [20] that the actual rectilinear minimum
crossing number diverges from the currently accepted vaue given by Guy in [2].
Using our queuing system as a framework to achieve load balancing, the non
rectilinear problem may be solved for K11 or greater.

We aso plan to develop a “job” with which the minimum crossing number of
a bipartite graph may be determined. Very little adaptation should be necessary to
use our queuing system for this and other similar graph theory problems.

The construct that allows messages such as slave queue size changes or
updates to a “best solution” could be encapsulated in function “hooks’. The
implementation of function parameters passed as void pointers is also in the works.
These additions would make the system even more general.

In future versions of this system, we plan on looking at the possibility of
slaves being able to query other slaves and being allowed to steal jobs directly from

each other—without the use of the master as an intermediary.
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We also plan to nmake queue size variables user definable at run-time rather
than just at compile time. This will possibly be implemented to include a graphical
user interface developed using an open source, readily available video library such as
GTK.

The performance slowdowns caused by the extersive message passing of the
gueuing system are less important than the ability to create, store and manage large
numbers of jobs. We are working toward a system to write the queue to a hard disk
or some other form of nonvolatile storage to prevent excessive memory
consumption. Saving the queue contents would also allow the suspension of long
running jobs. Easy stopping and restarting of large jobs will alow a cluster to be

used for shorter processes without requiring starting computation from the beginning.
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