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Abstract 
 

Large groups of networked workstations, commonly referred to as Beowulf 

clusters, require a systematic approach to load balancing.  Many applications require 

extensive message passing and synchronization to take full advantage of the available 

processing power.  We have endeavored to simplify this task by developing a generic 

queuing system that can be adapted to different applications.  This system is particularly 

suited to graph theory problems, many of which require a high ratio of computation to 

message passing.  We have used the queuing system to solve a common graph theory 

problem, finding the Minimum Crossing Number of a complete graph.  
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Chapter 1 Introduction 
 

The difficulty in parallelizing most algorithms lies in properly and efficiently 

dividing the work to ensure maximum concurrency and simultaneous termination.  

Work queues have proven to be an efficient means of ensuring load balancing.  Work 

queues often require large amounts of message passing as slave processes request 

work from the queue.  These messages make proper synchronization of the utmost 

importance, but they also make it difficult to achieve.  By developing a generic work 

queuing system for medium to large Beowulf clusters, we attempt to simplify this 

problem. 

The algorithm Harris and Harris presented in [1] uses an exhaustive search to 

find the Minimum Crossing Number (MCN) of a graph.  As problem size grows, 

exhaustive searches can become computationally intensive—taking months or even 

years to complete on a single processor.  Using a medium to large Beowulf cluster 

and a parallel queuing system that can be optimized for problem granularity, we have 

solved the MCN of a complete graph for a number of vertices less than nine.  The 

MCN of complete graphs with vertices numbering less than 10 was conjectured by 

Guy in [2] and has been proven in [10], allowing us to verify our results.  The MCN 

for larger vertex sets has not been proven, but by harnessing the power of large 

computer clusters, this problem may finally be solved.  Our queuing system has been 

designed to aid in solving this and other large, computationally intensive problems. 
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The remainder of this paper is laid out in the following manner: Chapter 2 

describes background information concerning parallel load balancing, work queues, 

and introductory graph theory concepts.  It describes the Minimum Crossing Number 

of a complete graph and a generic work queuing system.  Chapter 2 also includes 

descriptions of branch and bound algorithms, breadth first and depth first searches 

and a brief introduction to Beowulf clusters.  Chapter 3 relates the proposed 

implementation of our queuing system.  Chapter 4 describes the “job” used to solve 

the Minimum Crossing Number Problem and the Traveling Salesman Problem in our 

queuing system and lists the results obtained, and Chapter 5 finishes the paper with 

our conclusions and future work.   
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Chapter 2 Background and Literature Review 
 

Problems such as the Minimum Crossing Number of a complete graph are 

computationally intensive and virtually impossible to solve using a conventional 

single processor machine.  Fortunately, these problems can often be easily broken 

down into smaller problems.  The size, or granularity, of these smaller problems can 

vary greatly, but the concept of each processor tackling only a portion of the overall 

problem applies regardless of size.  In this chapter we will begin with a look at work 

queues in Section 2.1, parallel queues in Section 2.2, branch and bound algorithms, 

breadth-first and depth-first searches in Section 2.3, graphs and the Minimum 

Crossing Number of a graph in Section 2.4 and Beowulf clusters in Section 2.5.  

2.1 Work Queues 
 

A work queue is one method of ensuring a balanced work load that is  evenly 

distributed across many processors or machines.  This load balancing can be either 

centralized, residing with a master process, or decentralized, controlled by each slave.  

A combination of these two systems may also be used.  The work queue is especially 

useful in load balancing with irregular data structures such as an unbalanced search 

tree [3].   

In centralized load balancing, the tasks to be performed are held by the master 

and meted out to the slaves as they finish other tasks and become idle.  This process 

minimizes the time each slave is idle, thereby maximizing efficiency.   A variation of 

this strategy involves the distribution of non-homogenous tasks.  These tasks are 
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usually arranged in descending order of size and/or complexity.  This approach 

allows some slaves to work on smaller tasks (deeper in the queue) while waiting for 

the early larger tasks to complete.  The wisdom in this ordering is readily apparent: if 

a large or time consuming task is left for last, processes could sit idle while the last 

task is computing.  One disadvantage  of centralized load balancing is the possibility 

of a bottleneck while the master distributes tasks—many slaves may request tasks, 

but the master can only issue one at a time. 

In decentralized load balancing, local processes keep the ir own work pools.  

This strategy has the benefit of avoiding the bottleneck mentioned above.  

Decentralized load balancing is similar to static partitioning and has the same 

attendant problems.  In more complex systems, the slaves may request work from 

each other or from a centralized master queue.    

The difficulty in parallelizing most algorithms lies in dividing the work to 

ensure maximum concurrency and synchronizing the processes to achieve 

simultaneous termination.  There exist several ways to implement dynamic load 

balancing in a multi-processor system.  One of the most common methods is the work 

pool or processor farm.  These constructs are referred to as a queue and have the 

First-In, First-Out characteristic common to all types of queues.  These queues often 

require large amounts of message passing as slave processes request jobs from the 

queue, making the difficult task of proper synchronization very important.  Our  

generic work queuing system is an attempt to simplify the problem stated above.    
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2.2 Parallel Work Queue 
  
 It is often advantageous to use a divide and conquer strategy when dealing 

with difficult and/or lengthy problems.  These problems may have data sets that are 

completely defined prior to run-time and are often divided among the processors, 

each computing its own results from that data set.  This is referred to as static 

partitioning.  If one processor finishes working it must wait idle while the other 

processors “catch up.” When a processor is idle, the benefits of concurrent execution 

are not realized to their entirety.  In addition, heterogeneous processor clusters can 

make effective partitioning very difficult.  Static partitioning is effective when data 

sets are known prior to runtime and the execution time of the data can be easily 

determined.  This is seldom the case, however.  One solution is dynamic load 

balancing.   

2.2.1 Eager Task Creation 
 

A central work queue is an effective tool in load balancing during distributed, 

concurrent execution.  When each process becomes idle, it can query a master process 

and remove the next job from the queue.  This approach is referred to in [4] as a form 

of eager task creation (ETC).  But, by using a central work queue there exists the 

likelihood of a bottleneck when removing jobs from the queue.  Additionally, if two 

or more processes attempt to access the queue simultaneously, data may be corrupted 

and the possibility of a resultant race condition or deadlock may require additional 

overhead to ensure mutual exclusion (e.g., a semaphore).  By using local work queues 

in addition to a central one, these problems are largely avoided.  
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2.2.2 Lazy Task Creation 
 

A task with too fine a grain can create a suboptimum work distribution when 

utilizing eager task creation.  One solution presented by Mohr, et al. in [5] is referred 

to as lazy task creation (LTC).  Initial work in [5] focuses on a mechanism they call 

breadth-first until saturation, then depth-first (BUSD).  BUSD uses an initial breadth-

first task creation until all processors are busy and then a depth-first execution and 

further task creation.  This method can also utilize a run-time construct called task 

stealing.  When one task is idle it may “steal” a task from another processor, thus 

helping to balance the workload.   

2.3 Depth-first Search, Breadth-first Search and Branch and Bound 
 

In many cases, a search space may be mapped to a tree structure.  In such a 

tree, nodes further from the root represent a more complete possible solution.  Each 

leaf node signifies a complete solution.  Two methods used to search trees for 

solutions are depth-first search (DFS) and breadth-first search (BFS).   

In a depth-first search, the search traverses the tree until a complete solution, a 

leaf node, or a dead-end (i.e., no solution) is reached.  The search then returns to the 

node closest to the root that has an alternate path and again moves down the tree 

toward a solution.   

In a breadth-first search, the search will visit every node adjacent to the root 

and then move to the next level and visit every node adjacent to every node at that 

level.  All possible solutions are visited when the search completes searching all leaf 

nodes.   
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Branch and bound refers to the process of using a known solution to prune 

branches from the search tree.  Once one solution is found, that value becomes the 

bound, the yardstick by which all other solutions are measured.  It is also possible to 

use a predetermined good solution.  If, during a search, the partial solution has 

exceeded the bound, that branch of the search tree is abandoned.  This technique is 

particularly effective in an exhaustive search when the initial search space is very 

large.  By eliminating branches as close to the root as possible, this method can 

significantly reduce the actual number nodes searched.   

2.4 Graphs 
 

A graph is an ordered pair G = (V, E), where V is a finite, non-empty set of 

objects called vertices, and E is a (possibly empty) set of unordered pairs of distinct 

vertices (i.e., 2-subsets of V) called edges.  The set V  [or V (G) to emphasize that it 

belongs to the graph G] is called the vertex set of G, and E [or E(G) to emphasize as 

above] is called the edge set of G.  These sets must conform to the following rules as 

given in [6]: 

• no edge contains a vertex other than its endpoints  
• no two adjacent edges share a point other than their common endpoint  
• two nonadjacent edges share at most one point at which they cross 

transversally  
• and no three edges cross at the same point  
 

If e = {u, v} ∈ E(G), we say that vertices u and v are adjacent in G and that e 

joins u and v. We also say that u and v are the ends of e. The edge e is said to be 

incident with u (and v), and vice versa. We write uv (or vu) to denote the edge {u,v} 

with the understanding that no order is implied [6].  Note that in Figure 2.1 the graph 

G has sets V and E as follows: 
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V = {a, b, c, d, e} 

E = {ab, bc, cd, de, ec, bd, ac} 

 

 

 

Figure 2.1: Graph G 
 

2.4.1 Complete graphs 
 

A complete graph (denoted Kn) is a graph with n vertices in which each vertex 

is connected to each of the others (with one edge between each pair of vertices).  

Thus in a complete graph all vertices have an edge incident to every other vertex.  

The graph in Figure 2.1 is not a complete graph because it is missing the edges (ad) 

and (eb).  Figure 2.2 is a complete graph on five vertices (K5).   
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Figure 2.2: Complete Graph (K5) 

 

 

2.4.2 Planar graphs 
 

A graph is considered planar if it can be drawn on a plane and the edges 

intersect only at their ends.  A drawing of a graph on a plane is called a planar 

embedding of that graph.  A planar embedding divides a graph into connected 

regions.  It is important to note that one of the regions lies outside all edges and is 

infinite [6].  Figure 2.2 represents a non-planar embedding of K5.  It is worth noting 

that K5 is not a planar graph. 

 
    

2.4.3 Bipartite graphs 
 

A graph is bipartite if its vertices can be partitioned into two disjoint subsets U 

and V such that each edge connects a vertex from U to one from V. A bipartite graph 

is a complete bipartite graph if every vertex in U is connected to every vertex in V.  
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Figure 2.3 shows a complete bipartite graph with 3 vertices in set U and 3 in set V.  

This graph is denoted K3,3. 

 
 
 

 
 

Figure 2.3: Complete Bipartite graph (K3,3) 

 

2.4.4 Crossing Number 
 

The crossing number of a graph refers to the number of times its edges cross.  

It has been conjectured by Guy in [7] that the following formula holds true for the 

minimum crossing number of a complete bipartite graph. 
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where [r] denotes the integer part of r 

 
Figure 2.4 shows a complete bipartite graph (K3,3) with the minimum number of 
crossings. 
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Figure 2.4: (K3,3) with Minimum Number of Crossings  

 

2.4.5 Minimum Crossing Number Problem 
 

Paul Turan was the first to recognize the minimum crossing number problem 

for what it is today.  The following anecdote from [8] relates his discovery: 

In July 1944 the danger of deportation was real in Budapest, and a 
reality outside Budapest. We worked near Budapest, in a brick factory.  
There were some kilns where the bricks were made and some open 
storage yards where the bricks were stored. All the kilns were 
connected by rail with all the storage yards. The bricks were carried on 
small wheeled trucks to the storage yards. All we had to do was to put 
the bricks on the trucks at the kilns, push the trucks to the storage 
yards, and unload them there. We had a reasonable piece rate for the 
trucks, and the work itself was not difficult; the trouble was only at the 
crossings. The trucks generally jumped the rails there, and the bricks 
fell out of them; in short this caused a lot of trouble and loss of time 
which was rather precious to all of us (for reasons not to be discussed 
here). We were all sweating and cursing at such occasions, I too; but 
nolens-volens the idea occurred to me that this loss of time could have 
been minimized if the number of crossings of the rails had been 
minimized. But what is the minimum number of crossings?  

 
As a result, this problem has become informally known as “Turan’s Brickyard 

Problem.” 
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Calculating the MCN of a complete graph is a problem with the following 

characteristics: 

• every vertex must have an edge incident to every other vertex 
• the graph must be planar 
• no edge crosses itself 
• no pair of adjacent edges cross 
• two edges cross at most once 
• no more than two edges cross at one point 

 
This problem was proved to be NP-complete by Garey and Johnson in [10].  

Guy and Erdös presented a survey of the minimum crossing number of several 

families of graph including Kn in [9].  The accepted value (v) for the minimum 

crossing number of a member of the family of complete graphs (Kn) was conjectured 

by Richard Guy in [2] and is given by the formula: 
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Where n is the number of vertices of the complete graph.  This has been proven for all 

n ≤ 10 [10]. 

2.5 Beowulf Clusters 

 Thomas Lawerence Sterling begins the introduction of his computer cluster 

building and maintenance guide with the following:  

Beowulf was the legendary sixth-century hero from a distant realm 
who freed the Danes of Heorot by destroying the oppressive monster 
Grendel.  As a metaphor, "Beowulf" has been applied to a new 
strategy in high performance computing that exploits mass-market 
technologies to overcome the oppressive costs in time and money of 
supercomputing, thus freeing scientists, engineers, and others to 
devote themselves to their respective disciplines [11].   
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Beowulf clusters are groups of linked workstations that can be used to solve 

computationally intensive problems.  By using single, relatively cheap workstations, 

these clusters are both economical and scalable.  

The Beowulf Project was developed at NASA’s Goddard Space Flight Center 

by Thomas Sterling and Donald Becker in the summer of 1994.  Because of the 

availability of low cost PC workstations a 16 node cluster was built for less than the 

target of $50,000 [12].  The project was driven by the need for high performance 

workstations in the Earth and space sciences community [13]. The original 

benchmark goal for the project was one Gigaflops, or one thousand million (109) 

floating point operations per second.  This was achieved in 1996 using 16 100 MHz 

Intel processors.    

 A Beowulf cluster uses a single computer as a node; these nodes are 

interconnected using a variety of networking configurations, utilizing Ethernet for 

their interconnectedness.  Messaging is managed through the TCP/IP protocol stack.  

The nodes usually run a UNIX-based operating system such as Linux [11].  Linux is 

an open source operating system under the GNU standard, allowing users to change 

components as necessary for different applications.  This adaptability, as well as the 

inclusion of the TCP/IP protocol, made Linux particularly suited to use as an 

operating system in the Beowulf Project [12]. 

 The Beowulf architecture emphasizes several key hardware and networking 

attributes.  The system must be built from mass market commodity components; it 

must have dedicated processors, rather than borrowing processing from idle 

workstations and should have its own private system area network [12].  By using 
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consumer products, these clusters were developed to benefit from competition in the 

PC markets.  The designers intended for the clus ter nodes to use free operating 

systems and distributed computing tools whenever possible, thereby significantly 

cutting costs.  Their main goal was high performance at an affordable price.   

In effect, a multi-node cluster acts as a supercomputer, giving large amounts 

of processing power for a fraction of the cost of traditional multi-processor systems.   

By utilizing current high performance processors and networking standards, new 

Beowulf clusters have taken multi-processor computation to new heights of 

performance.  The Beowulf architecture gives anyone with a need for high processing 

power a relatively inexpensive, easy to construct computing option.   
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Chapter 3 Proposed Implementation  
 

We have devised a parallel queuing system utilizing some aspects of both 

ETC and LTC.  This system is being used and will be used to solve computationally 

intensive problems, particularly those involving graph theory.  The system has been 

used to solve the MCN problem for a complete graph.  Message synchronization and 

load balancing is achieved using a combination local and centralized queuing system.   

In this case, these jobs can also spawn other jobs.  It is this property that the system of 

central and distributed work queues is designed to exploit. 

We began with an existing implementation of an algorithm to find the MCN 

of a complete planar graph given by Harris in [1].  This implementation had also been 

parallelized using static partitioning by Tadjiev in [14, 15].  As mentioned in the 

previous chapter, static partitioning generally does nothing to ensure load balancing.  

Very little speedup was noticed in solving larger vertex sets, even when the method 

was run on many processors.  Frequently, only several hours into a many-day run, 

one processor would be working while the others sat idle.  By utilizing a generic work 

queuing system, the MCN and other problems could be solved with a minimum of 

adaptation.    

In the rest of this chapter we will explain our implementation, describe where 

it fits in this taxonomy, and give a detailed overview of our implementation.    
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3.1 The Generic Queuing System 
 

The queuing system was designed to be as generic as possible, allowing it to 

be adapted to a variety of problem sizes and types.  The system works around a job.  

This job represents whatever amount of work can be executed independently.  Thus, 

the system is easily tunable by the user to ensure good parallel efficiency.  This 

amount of work is referred to as the granularity of a task.  Coarse granularity refers to 

a task with a large amount of sequential instructions that take a significant amount of 

time to execute [16].  In this system, tasks with a finer granularity take better 

advantage of the central and distributed queues.  An example job is given in Chapter 

4 for the MCN problem.      

Many system variables are user definable, including: the maximum queue size 

of both the local and central queues, the amount of work reserved by the slaves when 

sending a packed queue, and the number of jobs created and enqueued by the master 

prior to concurrent execution.  These variables allow the queuing system to be 

adapted to a variety of situations and granularities. 

The normally high communication overhead of fine-grained tasks is 

minimized by the use of the local queue.  In addition, the queue sizes may be tuned to 

allow coarse grained tasks to benefit from the central and distributed queue system.   

3.2 Implementation Overview 
 

In our proposed implementation, the master will create the first m jobs.  In 

general, m is determined by the problem under investigation and should be greater 

than n, where n is the number of slave processors.  These jobs are put in the master’s 
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queue.  The master then sends a job to each processor.  From there, each processor 

will create more nodes for the tree while working.  These jobs are kept in a local work 

queue by each slave.  When a slave’s local work queue reaches some user defined 

size, the queue is packed (reserving a predetermined number of jobs to continue 

working) and sent back to the master for placement in the master queue.  When a 

slave is idle, it sends a request for a job to the master and, upon receipt, begins 

computation and the filling of its local queue.  If a slave is idle and the master queue 

is empty, the idle slave “steals” a job from another slave via the master.  Process 

termination occurs when all slaves are idle and the master’s work queue is empty.  

3.2.1 The Master Process 
 

The master creates enough jobs to fill its queue and provide a job for each 

slave.  It then sends a job to each slave and waits in an idle loop for messages.  These 

messages can be one of several types: a request for a job, a packed-up job queue from 

a slave whose local queue was overflowing, or an update of a new best solution.  

Upon receiving a request for a job, the master will dequeue from its local queue, 

provided it is not empty, and send the job to the requesting slave.  If the master’s 

queue is empty, it will send a request to a portion of the working processes to pack 

and send a portion of their queues to the master.  The master only requests jobs from 

a portion of the working slaves to avoid communication bottleneck.  By using a 

round-robin approach each portion of the slaves will be polled in turn for available 

jobs.  This portion is user definable based on the number of slaves and the task 

granularity.  By gathering available jobs in this fashion, the master’s queue is 
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adequately stocked, removing the need for frequent task stealing.  Figure 3.1 shows 

the loop that receives messages from the slaves (lines 262+).   

Depending on the value of the received message, the master either sends a 

new job to the slave or prepares to receive a packed job queue to enqueue locally.    

 

Figure 3.1 Master Code  

 

In Figure 3.2, line 292, the master checks to see if it has jobs available in its queue to 

send to a slave.  If no jobs are available, the master will make a note of which slaves 
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are idle and broadcast a “needjob” message to the slaves who are still working.  The 

frequency of task stealing can be tuned by altering the min_queue_size  variable.  

The slaves will not respond to a needjob query if their queue is smaller than this size.  

If a slave requests a job and the master’s queue is not empty, the master simply 

dequeues a job and sends it to that slave.   

If the master receives a best solution update, it changes its local best solution 

variable and then sends the new value to the slaves.  This approach allows the system 

to take full advantage of a branch-and-bound algorithm.   

 

 

Figure 3.2: Master Code Part 2 
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Figure 3.3, lines 403-434, show the termination routine.  If all processes are 

idle and the master queue is empty, the master sends a stop message to all slaves and  

then returns.  All processes will return upon receipt of this message and results, if 

any, will be output prior to program termination. 

 

Figure 3.3 Master Code Part 3 

 

3.2.2 The Slave Process 
 
 Each slave process requests an initial job from the master, receives it, and 

begins processing.  If new jobs are created, they are put into the slave’s local queue.  

When the current job is finished, the slave dequeues a job from the local queue and 

continues to process.  If the slave’s queue reaches a maximum size or the master 
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requests jobs from the slave, the queue is packed and sent to the master.  A small 

portion of the jobs are kept in the local queue for the slave to continue working.  This 

portion is user definable.  The slave terminates upon receiving a stop message from 

the master.  Figure 3.4 shows the variety of messages the slave may receive from the 

master.  This switch construct (line 681) is easily altered because additional messages 

for expanded functionality can be added by the user.   

 

Figure 3.4 Slave Probe Construct 
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By fine-tuning the queue sizes and other variables, this queuing system can be 

easily adapted to a wide variety of problem types.  Additional message types may be 

added to increase or change functionality as need be.  Optimal granularity varies 

greatly from problem to problem.  By leaving some control in the hands of the user, 

we have increased the usefulness of this system.   
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Chapter 4 Results 
 
 In order to test the effectiveness of our queuing system, we used several 

problems.  The first was a basic simulation, the second a graph theory problem 

described in detail in Chapter 2 called the Minimum Crossing Number of a complete 

graph and the third a classic problem referred to as the Traveling Salesman Problem 

(TSP).  The “job” structure used in these problems consists of a C/C++ data structure 

as shown in Figure 4.1 and Figure 4.2.  These jobs are representative of those that 

could be used to solve other graph theory problems.    

4.1 Testing Setup 

The region lists for the MCN problem were developed using the rotational 

embedding scheme found in [17].  We have found the MCN by mapping the search 

space to a tree using the algorithm found in Harris [1] and performing a breadth-first 

search on that tree.  We used a branch-and-bound algorithm to limit search space.  In 

these types of algorithms, current solutions are compared to best solutions allowing 

that branch of the tree to be discarded if a better solution is already known.  Thus, by 

limiting the search space we theoretically reduce execution time. 

Figure 4.1 shows the job used in the queuing system to solve the MCN 

problem.  This C language structure can be adapted to the problem as needed.  The 

generic nature of the queuing system and its reusability for a variety of problems is 

achieved by using a templated queue and a user defined job type.   

 



 

 

24 

 

Figure 4.1 MCN Job Structure  

 
 

The Traveling Salesman Problem (TSP) is a common graph theory problem 

described thus, “…given a finite number of "cities" along with the cost of travel 

between each pair of them, find the cheapest way of visiting all the cities and 

returning to your starting point.” [18]  This problem is commonly represented as a 

complete graph.    Figure 4.2 shows the data structure used to hold data for the TSP. 

 

 

Figure 4.2 TSP Job Structure 
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4.2 Details 

Because of the problems in passing dynamically allocated memory using MPI, 

the user may define two “packing” functions, unpackjobs() and packjobs().  By 

putting all data members into a structure and giving a size in bytes, the queuing 

system can easily pass work and information, of any data type from slave to master 

and vice versa.  This also adds to the reusability of the queuing system—only the 

size, not the content, of the data in bytes is relevant.   

The master unpacks the jobs and places them in its queue and waits for a slave 

to request more work.  Upon receiving the packed job from the master, a slave 

unpacks and enqueues it.  This allows the queuing system to be as generic as possible. 

4.3 Testing 
 

This structure was tested using a simulated job creation system.  The job 

structure was made up of one integer.  The amount of work done by each slave was 

determined randomly.  Some slaves created jobs, sending back packed queues to the 

master.  Others requested jobs from the master.  Upon receiving a certain number of 

requests for work from the slaves, the master purged its queue and requested jobs 

from working slaves.  This simulation was designed to test all functionality of the 

generic queuing system.    

The minimum crossing code was developed from work by Tadjeiv in [15] and 

by Yuan in [19] and was used as an example of the types of problems that the 

queuing system can be used to solve.  Figure 4.2 shows the number of jobs created by 

the slaves for the MCN problem using the queuing system.  Results for two different 
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K6 starting graphs are included.  More results and a full description of these starting 

graphs will be found in [19]. 

  

K6-1 Number of Jobs  
Enqueued 

Number of Requests 
For work 

Number of Jobs  
Sent to Master 

Master 36 16  
Slave 1 476  8 
Slave 2 297  6 
Slave 3 305  2 
Slave 4 432  14 

K6-2    

Master 7 10  
Slave 1 498  1 
Slave 2 455  0 
Slave 3 455  0 
Slave 4 497  2 

 

Figure 4.3 Job Statistics for K6 

 

The first column of Figure 4.3 lists the number of jobs queued by each slave 

and the master.  This includes jobs the master created to start the search process.  The 

second column lists the number of requests for work received by the master, the third 

the number of jobs each slave sent to the master process. 

The TSP had a much finer granularity.  As shown in Figure 4.4, many 

thousands of jobs were created.  The number of nodes refers to the number of “cities” 

the salesman must visit.  Each job was one step in a breadth-first search for the 

optimal solution.  
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8 nodes Number of Jobs  
Enqueued 

Number of Requests  
for Work 

Number of Jobs  
Sent to Master 

Master 37 16  
Slave 1 11,508  10 
Slave 2 6,052  7 
Slave 3 2,513  7 
Slave 4 1,281  6 
Slave 5 1,078  0 

11 nodes    

Master 30, 549 258  
Slave 1 530,933  29534 
Slave 2 505,204  745 
Slave 3 374,969  260 
Slave 4 69,821  0 

 

Figure 4.4 Job Statistics for the TSP 

 

Figure 4.4 is broken up into two test graphs, an eight node graph and an 

eleven node graph.  The first column of Figure 4.4 lists the number of jobs queued by 

each slave and the master.  Note the much larger numbers than the MCN.  The second 

column lists the number of requests for work received by the master, the third the 

number of jobs returned to the master by each slave process. 

Figure 4.5 and Figure 4.6 show the slowdown as a result of the queuing 

system in the TSP.   
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Figure 4.5 TSP Performance for Eight Nodes 
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Figure 4.6 TSP Performance for Eleven Nodes 
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Chapter 5 Conclusions and Future work 
 

By developing a standard queuing system for use in Beowulf clusters, we 

have opened the door for easy adaptation of existing algorithms to solve a wide 

variety of problems.  Using our system, large amounts of costly development can be 

avoided.  The system allows for easy tuning for optimum performance based on the 

computational intensity or job granularity of the chosen algorithm.   

We plan to use this queuing system to solve the MCN problem for larger 

vertex sets.  Harris and Thorpe showed in [20] that the actual rectilinear minimum 

crossing number diverges from the currently accepted value given by Guy in [2].  

Using our queuing system as a framework to achieve load balancing, the  non-

rectilinear problem may be solved for K11 or greater. 

We also plan to develop a “job” with which the minimum crossing number of 

a bipartite graph may be determined.  Very little adaptation should be necessary to 

use our queuing system for this and other similar graph theory problems. 

The construct that allows messages such as slave queue size changes or 

updates to a “best solution” could be encapsulated in function “hooks”.  The 

implementation of function parameters passed as void pointers is also in the works. 

These additions would make the system even more general. 

In future versions of this system, we plan on looking at the possibility of 

slaves being able to query other slaves and being allowed to steal jobs directly from 

each other—without the use of the master as an intermediary.   
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We also plan to make queue size variables user definable at run-time rather 

than just at compile time.  This will possibly be implemented to include a graphical 

user interface developed using an open source, readily available video library such as 

GTK.   

The performance slowdowns caused by the extensive message passing of the 

queuing system are less important than the ability to create, store and manage large 

numbers of jobs.  We are working toward a system to write the queue to a hard disk 

or some other form of non-volatile storage to prevent excessive memory 

consumption.  Saving the queue contents would also allow the suspension of long 

running jobs.  Easy stopping and restarting of large jobs will allow a cluster to be 

used for shorter processes without requiring starting computation from the beginning.   
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