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Abstract

This thesis describes work done in optimizing an existing NeoCortical Simulation Pro-

gram (NCS), including the development of a set of parallel profiling and measurement tools.

The NCS program is an ongoing project of the Brain Computation Lab. Previous de-

velopment work was most recently presented in [18]. Using the results presented there as

a baseline, it will be shown that this work has increased computation speed by at least an

order of magnitude; increased the demonstrated model size by three orders of magnitude;

created a program which exhibits near-linear speedup over the number of processors avail-

able for testing; and, despite having added significant additional functionality, has decreased

the code base by some 45 percent.
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Chapter 1

Introduction and Motivation

The NeoCortical Simulation program (NCS) is a project of the Brain Computation Lab-

oratory at the University of Nevada, Reno. This laboratory is an ongoing collaboration

between the UNR Department of Computer Science and the University of Nevada School

of Medicine, which is applying computer modeling to the investigation of the fundamental

operation of the brain.

Despite a half century of progress in computer technology, the performance of the brain

remains unrivaled at many tasks. For instance, primates can correctly classify environmental

stimuli and respond to them within 100 milliseconds of presentation — a fact that is all the

more surprising when it is realized that the brain is at base a very low-speed device. Typical

pyramidal neurons,in vivo, fire at rates between 10 and 40 Hz [2], so only a few “machine

cycles” must somehow process the entire complex of sensory, associative, and motor events

that constitute perception and response. It thus appears that the mammalian cortex must

operate on principles very different from those employed by conventional computers.

One hypothesis is that the brain encodes and processes information by pulse-coding –

that is, by the timing of spikes among a population of neurons. It is this hypothesis that

the Brain Computation Laboratory proposed to test by creating NCS: the first large-scale,

synaptically realistic computational model of the mammalian cortex.
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1.1 History

Preliminary work by Goodman [8, 17] served as the basis for an initial pilot project in 1999

that implemented a biologically realistic simulator in Matlab. The cells modeled in this pro-

totype successfully learned to reproduce synchronous input-output activity across multiple-

layered cortical regions without the need for explicit ‘back-propagation or recurrent output-

input interconnection. In general, very complex dynamics, including periodicity, oscillation,

and chaos, could be replicated.

Between 1999 and the summer of 2001, the prototype software was redesigned using

object-oriented design principles and recoded in C++ [18, 19, 20]. The principal goals of

this phase were to increase the biological realism of the model, and to allow users to input

brain designs and stimuli in a form directly related to the biology. Due to the size and

computational demands of the problems the model was intended to study, this version was

designed from the beginning to run in parallel.

In this design, a “brain” consists of objects such as cells, compartments, channels, and

the like, which model the corresponding cortical entities. The cells, in turn, communicate

via messages passed through synapse objects. Input parameters allow the user to create

many variations of the basic objects in order to model measured or hypothesized biological

properties.

This work produced a functional simulation program in which the basic biological com-

ponents were developed and tested in a working sequential program. A preliminary parallel

version had demonstrated the ability to run simulated “brains” containing up to 1.5 mil-

lion synapses. Although this version allowed the lab to begin some of its planned research

[11, 14, 16], it was somewhat disappointing in both compute speed and maximum model

size.
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1.2 Goals

This phase of the project set goals of increasing the maximum brain size by approximately

three orders of magnitude (to 106 cells and 109 synapses) while decreasing execution time

for a given model by at least an order of magnitude.

1.3 Terms

A number of shorthand terms commonly used in this thesis are defined here.

• Action Potential (AP) - A synonym for Spike.

• Brain - A set of inputs to one of the NCS programs, defining the cells and synapses

that are to be simulated.

• Cluster - A group of identical cells, as specified by aCELL TYPE input statement. The

cluster is the basic address unit of the input file: connections are made between two

clusters, stimuli go to specified clusters, and reports are specified by clusters.

• NCS3 - The version of the simulation program described in [18].

• NCS5 - The version of the program described in this thesis.

• Spike, or Action Potential (AP) - The electrochemical pulse that travels between neu-

rons.

• Synapse - Biologically, this is the small gap between the dendrite of a sending cell and

the axon of the receiving cell. In this model, the synapse represents the entire path

between neurons.

• Thinking - The process of running NCS on a brain.
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1.4 Necessary Biology

This section gives a brief review of some aspects of the biology of the brain that NCS is

attempting to model. Those wishing more detail are referred to any good neurobiology text,

such as [4].

Although the brain is composed of several parts, we are interested mainly in the cerebral

cortex, the area in which it is believed that cognition takes place. Topologically, the cortex is

a thin sheet on the outer surface of the brain. It is highly convoluted: folded in three dimen-

sions so as to fit within the skull. It is composed of a large number of neurons (in the human

brain, about 1011) and a similar number of glial cells of various types. Current thinking is

that the glial cells play a secondary role in brain function, supporting and maintaining the

neurons without being involved in cognition.

The cortex is divided vertically into layers that are distinguished by variations in the

types of neurons. Most of the cortex has six of these layers; the hippocampus has only

four. The cortex is also organized horizontally into columns, which are localized regions of

high neural connectivity. It should be noted that columns and layers are not in any sense

separate organs; they are distinguished anatomically only as patterns of cell distribution and

connection. In NCS, they are used in the input constructs that define a particular brain and

its organization, but otherwise have no function that can be modelled.

Each neuron is connected by axons and synapses to a number of other neurons (typically

about a thousand). Neurons maintain a small electrical potential, normally about -70 mV,

due to the interactions of channels in their cell walls with ions in the intercellular fluid. This

voltage continually changes in response to external inputs, primarily stimuli received from

incoming synapses. When the voltage reaches a critical threshold, these ion channels cause

an abrupt rise and fall in the cell voltage. This is called an action potential (AP) or “firing a

spike”.

This spike produces an electrochemical pulse which travels from the cell body, along

outgoing axons and synapses, to destination cells. The propagation speed of this pulse is
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relatively slow, under 10 m/sec, although it varies between different axon types. These

pulses are nearly identical for cells of a particular type. Figure1.1 shows the shape of a

typical spike.
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Figure 1.1: Typical Spike Profile.

When the spike pulse reaches the destination cell, it combines with the inputs from

all the cell’s other incoming synapses, which in turn may cause the destination cell to fire,

thus continuing the process. Note that although anatomically the synapse is simply the gap

between the axon of the transmitting nerve cell and the cell body of the receiving cell, in the

program the entire mechanism that transmits this electrochemical pulse is contained in the

Synapse object.

The behavior of some types of synapses changes in response to previous inputs, through

a process known as Hebbian learning. A neuron’s response to spikes may be increased

(positive learning) or decreased (negative learning), depending on the number and timing of

previous spikes.
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1.5 Hardware

The NCS software currently runs on the Brain Computing Laboratory’s dedicated Beowulf

cluster, Cortex. Cortex presently consists of 64 compute nodes, each of which is a dual

Pentium CPU motherboard with 4 GBytes of RAM. The cluster thus has a total of 128

processors, 60 Pentium IIIs at 1 GHz and 68 Pentium IVs1 The software thus has available

some 298,800 bogimips2 of processing power.

Packet Size Packet Transfer Transfer Rate
(Bytes) Time (µSec) (MBytes/Sec)

128 25 4.9
256 25 9.8
512 25 19.5
1K 25 39.1
2K 50 39.1
4K 50 78.1
8K 101 77.5

16K 126 124.0
32K 201 155.5

Table 1.1: Myrinet/MPI Packet Times.

The nodes are interconnectedvia a high-speed Myrinet [12] network, providing a max-

imum transfer rate of 2.2 Gbits/sec. In practice there is considerable overhead imposed by

the MPI library and other system-level software. Measured transfer rates for various packet

sizes, using a standardMPI Send/MPI Recv protocol are given in table1.1.

1The Intel Pentium 4 processor contains two virtual processors, which in theory should provide double the
computing power. Their performance has proved disappointing in practice, however.

2The bogomips number is a performance measure readily available on any Linux system.
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Chapter 2

Overview of Program Design and
Operation

2.1 The Input File

NCS is intended for use primarily by a user community that is familiar with the anatomy of

the brain, therefore the input format was designed to correspond to the structures found in the

biological brain. A brain (at least in our present understanding) is organized hierarchically:

it is composed of columns which are made up of layers which are made of different types of

cells. Each cell contains compartments which are connected to the compartments of other

cells by synapses. Compartments also contain substructures such as channels. The input file

also allows for specification of inputs to the brain (STIMULUS) and outputs (REPORT).

2.2 Initialization

On startup, the program first collects some information about itself and the hardware on

which it is running: the number of nodes and their compute power, process ids, and so on.

Some of this information is written to akill file1 This file contains a line for each program

sub-process with the node name, node number (MPI rank), and process ID of the program

on that node. Collecting this information in one place allows ease of operations on all the

1The name reflects its original purpose, which was to provide a means of quickly killing all the processes
of a misbehaving job.
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processes: a misbehaving program may be killed, a debugger may be started, or the program

resource usage may be monitored in a manner analogous to the Unix top utility.

2.3 Input and Parsing

After initialization, the program next must read and parse the input file(s)2. The parsing

step is duplicated on each node, as the processing required is insignificant and the complex

and error-prone code that would be needed to distribute the brain structures created by the

parsing step is thereby avoided.

The NFS file server experiences contention problems when many nodes (more than 25

or so) simultaneously attempt to open and read from the same file. Therefore, input files

are read only by the root node. Each file is read into a buffer, and MPI functions are then

used to distribute this buffer to all of the other nodes. (Conceptually this distribution is

an MPI Bcast, but due to problems with the MPI broadcast of large blocks of data, it is

implemented as a series ofMPI Send andMPI Recv operations, each transmitting a fairly

small packet.)

This buffer is then passed to the parsing module, which scans the input, checking for

duplicate or undefined names and other errors. This module is a mini-compiler implemented

in YACC andLex3. The use of these tools allows the easy implementation of fairly sophisti-

cated syntax checking and error reporting and makes it almost trivial to add features such as

the use of variables and expressions in addition to simple numeric values.

If no errors are found in the input, the parsing module creates anINPUT structure con-

taining the information in the input file in a form that is readily usable by subsequent code.

Note that this structure contains the definitions from which the brain will be created. A par-

ticular definition may create many instances of the component it defines, or it may be present

in the file but never used.
2The program receives one input file as an argument, but this may include further input files and other data

files such as PSC templates orSTIMULUSinput. All are read and distributed in the same fashion.
3Actually the implementation uses the Gnu workalikes,Bison [5] andFlex[6]
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2.4 Global Index Creation

TheCellManager module now processes the parsedINPUT structure, and creates two index

tables that allow subsequent code to locate the definitions of the objects it will be creat-

ing. These tables are the Global Cluster List (GCList) and the Connection Descriptor List

(CDList). TheGCList contains an entry for each cluster of cells defined in the input, while

the CDList contains an entry for each connection between clusters. This entry contains

pointers to the entries of the FROM and TO clusters inCDList and the synapse definition in

INPUT. Once theCDList is created, theCellManager scans through it and determines the

number of synapses for each connect4. The synapse count for each connection is added to

the TO cluster’s total for use by the distribution algorithm.

At this point, each node contains identical copies of theINPUT, GCList, andCDList

structures.

2.5 Distribution

The components of the brain next must be distributed among the CPUs on which the pro-

gram is running. The basic distribution unit is the cluster. Earlier code distributed individual

cells, but this required excessive memory for the index tables. of memory because the global

index needed to contain an entry for each cell. Distributing at the cluster level has the ad-

ditional advantage that intra-cluster connections, which generally have the most stringent

transmission time requirement, will always use the intra-node message-passing mechanism.

(See section4.3.)

Synapse processing dominates computation in any realistic brain, but because it is not

possible to determine this load in advance, various heuristic distribution algorithms have

been developed. The user may specify the choice of algorithm at run time. (The problem

of designing an appropriate distribution algorithm will be discussed further in Section4.1.)

4The specific cells that are connected will be determined randomly at a later point. Earlier code computed
this information here and stored it, using an excessive amount of memory.
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Once the distribution algorithm has computed cluster weights, the distribution routine pro-

cesses theGCList and assigns each cluster of cells to a CPU.

As in the index creation step, at this point each node still contains identical information.

2.6 Brain Construction

Each node constructs an object of typeBrain, which contains (among other things) an array

of pointers to each of theCell 5 objects created on the node. To construct thisBrain each

node scans through its copy ofGCList and, for each cluster assigned to the node, creates the

specified number ofCell objects and all the components contained within the particular cell

type.

EachCell likewise contains an array of pointers to theCell’s Compartment objects.

Conceptually, each compartment thus has an internal address which is a triple of numbers:

(Node, Cell, Compartment), which theMessageBus uses to pass between the compartments

of the brain information such as stimulus inputs, report output, and most importantly synapse

firings. For efficiency, this NCC address scheme has been superseded by one that uses the

physical memory address of the receiving object. See Section15.

When this step is completed, the structures on each of the nodes will differ, with each

node containing some fraction of the cells that make up the complete brain.

2.7 Connection

Now that each node has been populated with its share of cells, the program must establish

the connections between them. Recall from Section1.4 that these connections, or synapses,

are one-way communication channels along which an action potential propagates. Each

connection thus involves two compartments, theFromor sending compartment and theToor

receiving compartment. The connection exists in two parts: on theFromside, each cell must

5In the current implementation, a Cell object is simply a shell that serves as a container for the compartments
from which the cell is constructed. Computation takes place in the compartment and the elements contained
within it.
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know where to send messages when it fires an AP. On theToside the cell not know where the

AP originated, but must contain the necessary code to process the messages as they arrive.

The connection process thus consists of each node determining which of the cells that

reside on it are to be connected, finding the node on which the other end of the connection

resides, and exchanging the information needed to create the necessary data structures on

both sides. Implementing an efficient solution to this problem is not a trivial process. It will

be discussed in Section4.2.

At this point in the program, the brain has essentially been created.

2.8 Stimulus and Report Creation

The brain now needs something to think about and some way to communicate its “thoughts”

to the outside world. This is the function of theStimulus and Report objects, respec-

tively. These objects are essentially mirror images. They are both based on the same(CLCC)

paradigm used in theCONNECT. EachStimulus object delivers input messages to the spec-

ified CLCC group, and eachReport object retrieves information from a specifiedCLCC

group and writes it to output. The input and output channels are usually files, but the pro-

gram has the capability to read and write sockets as well, so that it may interact with the

world in real time [9, 10].

The sameGCList created by the connection manager is used to determine which nodes

contain theCLCCgroup for eachStimulus or Report. If a node does contain the cells, an

object is created and placed in theBrain’s list.

2.9 Thinking

The initialization process is now complete, and the program is ready to begin “thinking”;

i.e. processing input stimuli. At the highest level this is a simple loop (inBrain::DoThink)

which iterates over the number of timesteps specified in the input. At each iteration, each

node performs the following steps:
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• Process the stimulus objects for the node. These objects create stimulus messages that

are dispatched to cells on the same node. Unlike synapse messages, these messages

must be delivered at the same timestep in which they are created.

• Call theMessageBus function to deliver to the destination compartments messages

created by stimulii or received from other nodes.

• Loop through the list of cells on the node, calling each one’sDoProcessCell function

to invoke its computation. This in turn calls each of the cell’sDoProcessCompartment

function.

• Call theMessageBus function to ensure that all message packets created at this timestep

have been started on their way to the destination nodes.

• Process the reports

• Ensure synchronization. For performance (as discussed in Section4.3), this is not a

simple barrier at the end of the timestep, but it can be approximated as such.

Once the the specified number of timesteps has been completed, the program does any

required cleanup work and then terminates.

2.10 Internal Cell Processing

The simple statement “process the cell” hides the bulk of the computation of cellular and

synaptic dynamics that are being simulated. The remainder of this chapter expands on that

statement.

As mentioned previously, theCell object is merely a container for one or moreCompartments,

so that theDoProcessCell function consists simply of calling eachCompartment object’s

DoProcessCompartment function.
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2.11 Compartment Processing

A compartment has an internal state which consists of various biologically-derived parame-

ters. Additionally, a compartment will contain some or all of the following types of objects:.

• Channel objects of various types. These objects simulate various components of the

biological neuron, and contribute the channel currentIchan to the compartment.

• SendTo structures, which specify to which cells the firing messages are to be sent.

These are derived from the From side in the connection step.

• Synapse objects, derived from the To side in the connection step. These objects sim-

ulate inputs received from other cells, and contribute the synapse currentIsyn to the

compartment.

There may be an arbitrary number of objects of each type, implemented as arrays or

lists.

The compartment state is reflected in the membrane voltageVm. In a quiescent cell,

this has a resting valueVrest. The activities of input stimulii, channels, and synapses all

create currents which driveVm away fromVrest, while the leakage currentILeak= GLeak(Vm−

Vrest) acts to returnVm back toVrest. Thus a compartment’s membrane voltage normally is

determined by the equation

Vm[i] = Vrest+(Vm[i−1]−Vrest)P+
∆t
C

Itotal

where

• P is the compartment’s persistence;

• C is the compartment’s capacitance;

• ∆t is the length of a timestep, in seconds; and

• Itotal = Istim+ Ichan+ Isyn− ILeak.
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However, the real-world behavior of the compartment voltage is highly non-linear:

whenVm reaches a particular threshold value, it increases rapidly (“spikes”), the cell fires

an action potential, and the voltage quickly collapses towards the compartment’s resting po-

tentialVrest. This spike behavior is essentially identical for all cells of a given type and is

modelled as a spike template (Figure1.1), rather than being explicitly computed.

In general, the processing loop for a compartment does the following:

• Process all the incoming messages for the timestep. These may be either stimulus or

spike (synapse firing) messages. Stimulus messages simply modify the compartment’s

internal voltage or current. Spike messages place the corresponding synapse on the

active list (if it is not already active) or add a new Post-Synaptic Conductance (PSC)

waveform to it if it is already active.

• Compute the channel current. This current modifies the internal state of the compart-

ment. If the threshold voltage is reached, the compartment fires. TheSendTo list is

used to generate spike messages for all destination cells.

• Process the active synapses and channels. Their outputs modify the internal state of the

compartment. If the threshold voltage is reached, the compartment fires. TheSendTo

list is used to generate spike messages for all destination cells.

2.12 Channels

There are several types (orfamilies in the input) ofChannel objects. Each family is quite

simple and merely computes the channel current as an exponential function of the compart-

ment voltage, the specific equations for each type being determined from experimental data.

The owning compartment simply sums the current contributions of all its channels.
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2.13 Synapse and Spike Processing

Synapse objects interact with the owning compartment in a more complicated fashion. A

Synapse is activeonly if it has recently6 received a spike message. On receipt of a message,

it updates its USE7 and RSE8 values according to the general equations

USE[i] = USEbase+(1−USEbase)(USE[i−1]e
−∆t

τFacil )

RSE[i] = 1+(RSE[i−1](1−USE)−1)e
−∆t

τDepr )

and uses them to compute the conductance valueGsyn for the synapse, asUSE∗RSE∗

GMax. Note that any particular synapse type may be specified to compute either USE or RSE,

both, or neither (in which case theGsyn is simplyUSEbase∗GMax).

Gsyn is then used in conjunction with the PSC waveform template to compute the

contribution of that spike to the compartment’s synapse current. TheSynapse places an

ActiveSynPtr structure on its compartment’sActiveList. The structure contains the con-

ductance value, a pointer back to the synapse object, and an index into the synapse’s PSC

template array. At each timestep, the compartment code steps to the next template value and

computes that synapse’s contribution to the synapse current asI = Gsyn∗PSG[i](VSR−Vm),

whereVSR is a property of the synapse calledSynapse Reversal, which is fixed for any par-

ticular synapse. TheActiveSyn structure’s index is decremented and, if it is zero (meaning

it has reached the end of its template), it is removed from the list.

At each timestep, the compartment sums the current contributions of all the active

synapses on theActiveList. Because at any time there may be hundreds or thousands

of these, the processing of these lists is a major factor in performance. (See Section17 for

measurements.) Consequently, two potential optimizations present themselves.

The first optimization entails simply reducing the length of the PSC template. As shown

in Figure2.1, the typical PSC waveform rises quickly to a maximum and then decays expo-

6That is, within a number of timesteps determined by the length of its PSC template.
7Utilization of Synaptic Efficacy
8Reduction of Synaptic Efficacy
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nentially, so that the tail of the waveform contributes relatively little to the synapse current

and might be neglected with little effect. Preliminary tests show that this is indeed the case:

shortening the template produces a speedup roughly proportional to the amount of shorten-

ing. The PSC templates are read from files, however, so this is a decision that can and should

be made by the brain designer rather than the application programmer.
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Figure 2.1: Typical Post-Synaptic Conductance (PSC) Template.

The second optimization can be done if all synapses use the same PSC template (which

currently is the case in practice). A compartment will frequently receive more than one

synapse input at any given timestep. The summation of these synapses can be done at the

receiving timestep, with one combinedActiveSynPtr added to the list, rather than many.

2.14 Synapse Learning

Synapses also may exhibit a property known asHebbian learning, in which the response of

the synapse is modified, depending on how recently it had received previous spikes (positive

learning), or how recently the owning compartment itself had fired (negative learning).

Learning is implementedvia learning tables. For negative learning, when the synapse

receives an incoming spike message, it computes the number of timesteps since the previous

message and, (if the value is less than the table length, looks up the corresponding value in

the negative learning table and subtracts it from the synapse’s current USE value. This has
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the effect of reducing the current contributed to the compartment by the incoming spike.

Positive learning is similar but is triggered by the firing of a compartment. The com-

partment scans through all its synapses that have positive learning enabled and, for each,

computes the time since that synapse last received a spike, looks up the corresponding value

in the positive learning table, and increases the synapses USE value by that amount.
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Chapter 3

Profiling Tools

In attempting to model biologically interesting properties of the brain within a realistic time

frame, the NCS program is pushing the limits of current technology in both processor speed

and memory usage. Considerable effort has therefore been devoted to optimizing the code

for both speed and size.

Many compute-intensive programs consist of a few loops iterating many times over the

same code, so changes in performance can be adequately measured with relatively coarse-

grained tools. An NCS brain, however, is typically composed of a large number of different

elements which are processed in no particular order. Therefore, unless timing measurements

can be made to a precision on the order of tens or hundreds of machine cycles, the effect of

a change to some element may be lost, even though the change might be highly significant

to the performance of that element.

Currently there do not appear to be any tools, especially for parallel programs, that allow

such precise timing measurements and which are both useable and readily available. Thus

in order to efficiently do the optimization work described in this thesis, it was necessary

to develop a set of tools which could accurately measure both elapsed time (or number of

machine instructions executed) and memory usage.

This chapter describes those tools and their use. They are of two sorts: functions called

from within the program, which collect information for later analysis, and programs that use

external information to monitor run-time progress and resource statistics.
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3.1 Internal Profiling Routines

The internal profiling routines that were developed fall into two categories: those that profile

execution speed, and those that profile memory use. Although the methods used in the

two categories are different, the functions and their outputs have been combined in a single

package for convenience.

3.1.1 Profiling Execution Time

There are two basic methods of profiling code. The first is to pre-process the code, inserting

data collection statements in the executable at regular intervals. The output is then analyzed,

and the fraction of time spent in any particular section can be calculated. This is the approach

used by e.g. the classicprof/gprof interface.

Unfortunately, executing the data collection statements typically will increase a pro-

gram’s execution time by an order of magnitude or more. While this overhead is not itself

counted in the profiling (so that results remain valid), the increased run time may, and most

certainly does in the case of NCS, make profiling runs impractical. Furthermore, parallel

programs are often dependent on the relative timing of events in different execution threads,

so that the increase in execution time changes the behavior of the program. Probably for

these reasons, there do not seem to be any attempts at parallel profiling packages using this

approach.

The second method is simply to measure the execution time of particular segments

of code, using some external or internal clock as a reference. This is more practical in

that it does not significantly change the executing code or its timing. The difficulty lies in

finding a clock that is both accurate and fine-grained enough to measure short sections of

code. Readily available sources, such as the Linuxtime and MPIMPI Wtime functions,

have resolutions in the microsecond range at best, while CPUs currently operate at clock

frequencies of 1 GHz and above. Thus during each tick of these clocks, several thousand

machine instructions may be executed.
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To address this problem, many current microprocessors implement an internal hardware

clock of some sort. In the Intel Pentium family, the clock is a 128-bit counter that is incre-

mented at each processor cycle. The counter is accessible from user code by means of the

RDTSC assembly language instruction.

There are a number of technicalities, mostly related to instruction scheduling and pipelin-

ing, that limit the practical resolution of this clock to several tens of processor cycles. These

are addressed in [3]. However, it is still far more accurate than any other time source. For the

purposes of this code, it is sufficient to know that the RDTSC instruction is atomic, that the

value is returned as a 128-bitunsigned long long that is the number of processor cycles

since the processor was rebooted, and that the rollover period of the counter is on the order

of 100 years.

Presently there are several profiling packages described in the literature[13, 15] that

use this approach. The available ones were tested, but none proved usable with the NCS

code, being tied to particular environments and/or C++ dialects or requiring the installation

of kernel patches that might have conflicted with the cluster management software. These

packages also seemed rather over-ambitious, attempting (but failing) to automate the instru-

mentation of the code or providing GUI analysis tools which did not display useful output.

For these reasons, it was necessary to develop a simple profiling package for use with NCS.

3.2 The QQ Profiling Library

The profiling package is called QQ. It is by no means tied to NCS: it should be possible

to use it as-is with any program, parallel or sequential, that runs on an Intel Pentium based

Linux platform and is compiled with a gcc-based compiler. It should also be easy to adapt it

to other processor families with similar internal counters by replacing the assembly language

RDTSC instruction with one appropriate to the hardware.
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3.2.1 Basic Theory of Operation

The principal development goal of the QQ timing code was to interfere as little as possible

with existing code. The profiling operations themselves should execute as quickly as prossi-

ble, so as to cause minimal change to program timing and increase in execution time. It

was likewise desireable to be able to insert the needed instrumentation calls in the code in

a manner that would distract as little as possible from code readability, and which could be

turned on and off with a simple compile flag.

QQ is based on the notion of recording named events. There are several types of events,

each with some some associated information. All have in common a key, which identifies the

particular event, and an event time. Depending on the type, there may be other information

such as a value, count, or state flag. The various event types are combined into an event

union.

When the profiler is initialized by calling the QQInit function, it allocates memory for

some specified number of events, initializes the event pointer to the first event, and sets the

base time to the currentRDTSC value.

After initialization, one or more of theQQAdd* functions are called to add event types

to the internal name table. Each function is passed a name (character string) for the type of

event, and returns the integer key for the event. These keys are variables in program space,

and are the only parts of the QQ timing package that exist in code when it is compiled with

theQQ ENABLE flag off.

The individual event recording functions are thus reduced to a minimum: each checks

to see if the event pointer has exhausted the allocated number of events. If not, theRDTSC

instruction is called, the returned value, the key, and any other information is written to the

current event, and the event counter is incremented.

TheQQRecord function allows event recording to be turned off and on under program

control. It does this by caching the current event pointer and replacing it with a value greater

than the maximmum allocated, thus allowing the event recording functions to use a single
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test to determine whether or not an event is to be recorded.

When profiling has finished, theQQOut function is called to write the saved event infor-

mation to a file. For parallel programs, the output from all nodes is combined into a single

file, along with information to identify each node. This file can later be read by a simple C

program, and the information converted to the forms needed by various analysis tools.

Figure3.1shows an example of such a tool: several timesteps of an NCS run are shown,

with the times spent in various sections of the code.
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Figure 3.1: Plot of Typical QQ Output.

3.3 Profiling Memory Use

Profiling a program’s memory usage is a more difficult task than profiling execution time.

Indeed, it does not appear that a completely satisfactory solution is possible. However, is is

possible to gather much useful information, and the routines to do so are described here.

First, in a Linux system it is possible to obtain the total memory allocated to a process

at any point in time by reading thestatm pseudo-file in the process directory of the/proc

filesystem. This file contains the number of 4 KByte pages allocated to the process. The
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number includes both code and data space, and may include memory owned but not actually

in use. It is thus is an upper bound on the memory used by the program at any point.

TheGetMemoryUsed function uses this method to return the total memory allocated to

the program at the time when the function is called. By careful use of this function, it is

possible to obtain a good idea of how much memory is used by sections of code. However,

it does not allow for measurements on the scale of individual structures or objects.

The system allocates memory to a program in units of pages. It is up to the internal

memory allocator (generally in themalloc library) to parcel the pages into smaller units. If

this memory allocation is done directly by calls tomalloc library functions, it is easily mea-

sured by using the preprocessor to redefine the function call to a different function, which

records allocation information and passes the operation through to the actual allocation func-

tion.

Thus, for example, themalloc function can be redefined to be

#ifdef MEM_STATS

#define malloc(arg) MemMalloc (MEM_KEY, arg)

#endif

Each call to malloc in the code now becomes a call to theMemMalloc function, and the

new call contains an additional argument, which is the key under which the allocated memory

will be recorded. Each chunk of allocated memory is stored in a C++map object, indexed

by its address (the pointer value returned by the alloc call) The call tofree is redefined to

remove the item corresponding to the address from the map. In this way, a consistent record

of all currently-allocated memory is maintained, and the record for each item may contain

information on the type of object, what routine allocated it, and so forth.



24

3.3.1 Object Creation

In principle it should be possible to do something similar to the above for objects by over-

loading the new and delete operators. This has not yet been done in practice. Instead, a

simpler method was used. This method requires more work from the programmer, but gives

useful results.

Eeach object constructor must have calls to theMEMADDOBJECT andMEMFREEOBJECT

routines added to them. When memory profiling is turned off, these calls evaluate to empty

statements; when it is on, they evaluate to calls to the memory recording functions and

contain the object’s this pointer and the sizeof (this) value as arguments.

These functions allow most explicitly allocated memory and objects defined in the code,

to be recorded. Memory that is allocated internally by various library functions or standard

C++ objects can not be recorded, however. The information available, although not com-

plete, is still quite useful. If nothing else, the amount of recorded as allocated by the profiler

can be compared to the total memory allocated to the program. If the two quantities are

significantly different, the memory is probably being allocated somewhere internally.

3.4 External Monitoring Programs

In Linux, the/proc filesystem contains a good deal of information about the state of the

system and of individual processes, The problem is one of extraction and organization. At

this writing, the Cortex cluster is composed of 64 separate Linux operating systems, each

controlling two CPUs. Parallel programs such as NCS may run on any or all of these nodes.

Indeed, a node may have several program processes running on it, for instance to take ad-

vantage of the P4 chip’s second (virtual) CPU. How then does one identify the subset of

available information that is relevent to the program one is examining?

One solution to this was addressed briefly in section2.2On startup, each process in the

parallel program extracts identifying information from the system: the name of the machine

within the cluster, its process ID, and its node number or MPI rank. That information is
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gathered to the root node via MPI and is written to a ”kill file”. Programs can use this

information to extract almost any item of information about a program that is available from

the system and organize it in a useful form. The variety of possible programs is unlimited,

but two useful examples will be briefly discussed here.

3.4.1 memsnoop

Thememsnoop program is somewhat analogous to the *nixtop utility. Large NCS models

tend to push the hardware limits of even the Cortex cluster, and so programs will fail for

reasons such as memory exhaustion. The MPI system often does not return an identifiable

error when this happens, because the other processes eventually block on communications

with the dead node.

The memsnoop program provides a means of monitoring process status and available

memory on all the nodes of a process. This consists of a simpeperl script which read

the killfile information, and uses thessh remote execution facility to repeatedly execute the

command

cat /proc/meminfo | grep MemFree

on each node. The returned line was scanned for the amount of free memory remaining,

the amounts sorted, and the several lowest displayed, thus identifying the problem node.

3.4.2 Parallelgdb

The use of a debugger such asgdb[7] can be considered to be an extreme case of performance

monitoring. Althoughgdb is not equipped with an intentional parallel debugging ability, it

does have features which, with the application of some ingenuity, will allow some simple but

extremely useful, parallel debugging to be done. This is most useful in cases where one or

more processes encounter an unexplained segfault, or where the section of code that needs

debugging can be located fairly precisely.
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gdb has the ability to attach itself to a running process. Since the killfile contains the

process ID and machine name of each process, a script can be written that invokes an instance

of gdb which attaches to each process. (The executable being debugged must have some

delay inserted after the initialization/killfile creation step in order to allow the user to run the

parallelgdb script.) The script opens anxterm window for each instance, and debugging

interaction can be done in each window.

gdb also has the ability to read commands from a script file.

By default,gdb simply resumes running the executable it has attached to. Each process

thus continues until the program terminates, either normally or with an error. At that point,

control returns to the user, and standardgdb commands such asbt andframe can be used

in the process window to localize the fault and examine code and data in order to determine

the cause.

Othergdb commands can be specified in a user-defined command file, so the user may

for instance specify particular breakpoints. Every process will continue until it reaches a

breakpoint, and then return control to the user. Different nodes may of course follow different

paths through the code, so the interaction in each process window may be different.
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Chapter 4

Improving Parallel Performance

Much of the work of optimizing the NCS code has been essentially sequential programming:

after all, parallelizing an inefficient sequential program yields an inefficient parallel program.

This sequential optimization has been mostly the repeated application of tools discussed in

section3.1to measure performance, locate speed bottlenecks or excess memory use, improve

that section of code, and repeat the process. While valuable, this type of work is not the stuff

of which a thesis is made.

Three factors limit the performance of NCS as a parallel program: load imbalance,

message-passing overhead, and synchronization. Each of these areas was addressed in this

work, and this chapter describes the solutions that were developed.

4.1 Load Balancing

Load balancing is the process of attempting to distribute work evenly amongst the CPUs on

which a parallel program runs, so that all processors are fully utilized. For many applications

this is a simple matter of assigning an equal number of work units to each node. The NCS3

program used this method, but for a number of reasons it proved less than satisfactory in

practice:

• The Cortex cluster originally was composed of 60 1.0 GHz CPUs. It was later ex-

panded to 128 CPUs, with the added CPUs the having about 3 times the compute power

of the originals. This difference must be factored into any load balancing scheme.
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• Cells are not identical: they are constructed from a number of different components

such as compartments, channels, and so on. Each cell type therefore has a different

computational weight, which can be approximated as the sum of the components.

• In all but the most trivial models, the number of synapses exceeds the number of

cells by a large factor. (Recall from Section1.4 that a typical cell may have more

than a thousand synapses.) Thus synapse processing is generally the most significant

component of computational load.

• When running models on the order of 109 synapses, it is necessary to balance memory

use rather than computation. Each synapse requires 56 bytes, plus 16 bytes for each

active spike1. The number of active spikes at any instant varies according to input but

is typically on the same order as the number of synapses. The Cortex cluster has only

256 Gbytes of RAM, so some imbalance in computation must be accepted in order to

allow large models to fit in physical memory.

Factoring synapses into the load-balancing process is complicated by the fact that com-

putation takes place on a particular synapse only when the synapse is in the firing state. It

is not possible to predict when or how often a synapse fires because firing is determined

by the input stimuli. Indeed, obtaining the patterns of synapse firing is the goal of an NCS

simulation.

This unpredictability applies to memory usage as well: the amount of memory needed

to construct the brain can be computed as the sum of its components, but a running brain

needs significant additional memory to hold the dynamic information that represents synapse

firing states. The exact amount required is impossible to predict, but in practice the current

implementation seems to require about equal amounts of memory for static and dynamic

data.
1As of SVN revision 14 of the code, compiled without theSAME PSC option. With theSAME PSC option,

usage is somewhat less but even more difficult to determine exactly. See Section2.13for a detailed explanation.
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In order to include synapse weights in the load balancing calculations, the number of

connections between each pair of cell clusters must be known before distribution. This, in

turn, implies some sort of global address table or lookup mechanism from which each node

may obtain the necessary information for the other ends of the synapses its cells own.

Because each node potentially needs information on any cell, the simplest way to imple-

ment this lookup mechanism is to create an identical copy of the table on each node. Early

versions used a lookup table with entries for each cell, which was adequate for fairly small

models. As the number of synapses approached 50 million, however, the amount of memory

used to store this table was approximately 1 gigabyte. Obviously, a more compact table was

needed.

Currently the table is based on cell clusters. (Recall from Section1.3 that a cluster is

a group of cells defined by theCELL TYPE statement.) This table configuration reduces the

memory requirement to a few megabytes, rather than gigabytes, with the reduction factor

depending on the number of cells per cluster. It is also convenient in other ways, because

the input file format describes inputs, outputs, and connections between cells in terms of

clusters.

4.1.1 Load Balancing Algorithm

Any balancing algorithm must have some way to determine the compute power of the pro-

cessors on which the program is running and the amount of computation to be distributed

among those processors. Linux provides a simple and reasonably accurate performance mea-

sure in the bogomips number. This number is calculated as part of the operating system boot

process and is always available in the/proc/cpuinfo pseudofile. In the initialization phase

of an NCS process, each node reads its bogomips number, and these individual values are

gathered (withMPI Allgather) onto every node. The sum of these values is the total com-

pute power available to the program, and thus the share contributed by each processor is a

simple fraction. The total amount of computation is determined by assigning some weight,

say 1.0 for simplicity, to a basic cell and ratios of this amount to other components that may
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be added. Table4.1shows performance numbers for some typical components. This simple

weighting scheme is complicated, however, because any particular synapse will fire, and thus

be active in computation, during only a small fraction of timesteps, and the firing of any par-

ticular synapse or group of synapses is unpredictable. In practice a heuristic factor must be

applied to the synapse weights. After this factor is applied, a simple summation gives a total

compute weight for each cluster. Then, using the cluster weights, clusters can be assigned

to each node according to some scheme which balances the compute load according to the

computing power available on each processor.

Item Time (µSec) Load Factor
Base Cell 0.246 1.0
Kahp Channel 1.541 6.2
Km Channel 0.152 8.4
Ka Channel 0.152 9.8
Synapsea 0.305 1.2
Synapseb 0.855 3.4
Synapsec 0.927 3.7

a) RSE = NONE, Learn = NONE
b) RSE = BOTH, Learn = NONE
c) RSE = BOTH, Learn = BOTH

Table 4.1: Compute Factors: Time required to process one instance of each element, as
measured on a 700 MHz Intel Pentium III processor.

The simplest scheme is to assign clusters to nodes in a round-robin fashion, so that each

node receives clusters in turn until it either exceeds its assigned weight or all clusters are

assigned. More complicated schemes are possible. For instance, cells within the same cell

grouping (cluster, layer, column) tend to communicate more frequently within the group than

across groups. Because message passing between cells on the same node is far cheaper than

between cells on different nodes, an effective load-balancing algorithm might try to assign

clusters to nodes in such a way as to minimize inter-node communication.
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4.1.2 Memory Balancing

As previously mentioned, in order to run the largest models it is necessary to balance memory

use, rather than compute load, and accept the resulting inefficiency. The user selects this

option by setting the input file’sDISTRIBUTEvariable2 to the value “BySynapse”, telling

the code to distribute an equal amount of memory to each node. In theory, the memory sizes

of different brain components could be used in this distribution. In practice, the memory

used by synapses usually exceeds that used by the rest of the brain by at least two orders

of magnitude. In the current implementation all synapses are the same size, so memory

balancing simply counts synapses.

Tables4.2 and4.3 show the results of balancing the same brain for computation and

memory use. Nodes 2 and 3 have P3 processors; nodes 0 and 1 have P4’s, with about 2.5

times the processing power.

Node Clusters Cells Synapses Bogomips Weight
Assigned Assigned Assigned of Node Assigned

0 411 4862 239912 4347.9 28825.4
1 396 4680 239704 4331.7 28650.4
2 174 2060 110070 1972.0 13067.0
3 173 2048 109934 1972.0 13041.4

Table 4.2: Example of Load Balancing.

Node Clusters Cells Synapses Bogomips Weight
Assigned Assigned Assigned of Node Assigned

0 298 3540 180789 4347.9 9770692.0
1 310 3666 173164 4331.7 9811472.0
2 273 3220 172839 1972.0 9765588.0
3 273 3224 172828 1972.0 9772880.0

Table 4.3: Example of Memory Balancing.

2The code is designed to allow any of a number of distribution schemes to be selected by specifying different
values forDISTRIBUTE.
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4.1.3 Implementation

As described above, the load distribution and connection process has four steps:

1. Create the cluster and connection information from the input, counting the number of

cells and connections.

2. Assign weights to the clusters according to load factors (Table4.1) or memory usage

(Table5.4).

3. Assign clusters to nodes according to some algorithm that attempts to optimize com-

putational load, memory use, and communication.

4. Create the cells and connections.

4.2 Connections

Once clusters have been distributed to nodes and the cell objects created, the connections

between them (that is, the synapses) must be determined.

4.2.1 Creating Connections

When two clusters of cells are to be connected, the connection is seldom all-to-all (that is,

connecting every cell in one cluster to every cell in the other) because this is both biologically

unrealistic and computationally infeasible. Instead, the brain designer specifies a connection

probability, and this fraction of the possible connections, chosen at random, are created.

More precisely, given two clustersFROM andTO, with M andN cells respectively, and a

connection probabilityP<=1.0, a connect specifier will createM×N×P synapses. Note that

it is also a requirement that the connections created by any specifier be unique: for anyi and

j, there should be at most one synapseFROM [i] -> TO [ j].

Previous versions of NCS used a simple probability test to determine connections: loop

through bothM andN, generate a random number each time and, if that number is less than
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the specified connection probability, make the connection. While this approach is adequate

for small numbers of cells, it is obviouslyO(n2) with respect to the product3 of M×N. This

factor was, in large part, responsible for the excessive setup times for larger brain models.

A simple algorithm that isO(n2) with respect to the number of connections created is

possible. Because the connection probability is generally quite small, this approach yields

much shorter startup times. The algorithm requires anM×N connection map array. Two

random numbers are selected in the ranges [0...M− 1] and [0...N− 1]. This pair indexes

an entry in the map array. If the entry is not set, it becomes set, and the total number of

connections made is incremented. If it is set, a new pair of random indices is generated.

In either case, the process continues until the required number of pairs are generated. (For

probabilities> 0.5, the obvious inversion is used: all connections are initially assumed to

exist, and the random process deletes them until the desired number is reached.) Because

connection probabilities are generally on the order of 0.1 or less, duplicates are quite rare,

and the algorithm is essentiallyO(n) with respect to the number of connections made.

Figure4.1shows the time taken to determine the connections between two clusters as a

function of cluster size. The clusters are the same size, and the connection probability is 0.1.

(Note that with a cluster size of 10,000 NCS3 fails due to memory exhaustion.)

4.2.2 Making Connections

Recall that each connection, or synapse, is a one-way communication channel from some cell

to some other cell. (In actuality, from a compartment in theFROMcell to a compartment in

theTOcell.) A cell sends firing messages out on all synapses for which it is theFROMend,

and so it must know where to send the messages. This is implemented as the compartment’s

SendTo list: an array containing the(Node, Cell, Compartment, Synapse)address of each of

the compartment’sTO compartments.

On theTOside, each cell likewise maintains an array ofSynapse objects, each of which

3This refers to the determination of the connections only. The actual synapse creation is done later, and is
proportional to the number of connections made.
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is the destination of aSendTo. This object is where the actual computation for the synapse

takes place.

At first sight, there seems to be a circularity here. The cells must be assigned to nodes

before the connections can be made, but the connections (or at least their number) must be

known to do the load balancing and distribution. By appropriate design of the connection

algorithm, however, the information in eachCONNECTstatement serves to specify the exact

number of synapses that are to be created, even though the specific cells to be connected by

them will not be determined until later.

The connection algorithm thus proceeds as follows:

1. On every node, loop through the connect descriptor list.

2. If the current node is theTOside of the connect, determine which particular cells are to

be connected. This is done with a connect map: pairs of random numbers are selected

to determine theFROMandTOcells, and the map is marked to prevent duplicates. For
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small connection probability (which is nearly always the case in practice), this scheme

is nearlyO(n).

3. If the FROM side of the connect is on this node as well, process the information

directly; otherwise use MPI to transmit a copy to theFROMnode.

4. If the current node is theFROM side, but not also theTO side, it waits for the infor-

mation to be received from MPI. Sends and receives will match because each node

processes the list ofFROM-TO pairs in the same order, eliminating any possibility of

deadlock.

5. TheFROMside uses the information to create aSendTo object for the specified com-

partment and stores a pointer to it in a temporary vector.

6. TheTO side likewise uses the information to create aSynapse object for the destina-

tion compartment and stores a pointer to it in a temporary vector.

7. When all connects have been processed, loop through all the compartments on the

node, allocate permanent arrays for bothSynapses andSendTos, and copy the pointers

to them. For efficiency, each compartment’s lists can be sorted.

4.3 Message Passing & Synchronization

Although, as will be explained in Section5.2.1, it is not possible to make direct comparisons

of the execution speed between NCS3 and NCS5, an examination of the surviving versions

of the code and documentation in [18] make it clear that the message passing scheme used by

NCS3 most likely had a number of inefficiencies. The most notable of these was the use of

the same communicator and message format for distributing stimulus and report data and the

synapse firing messages. This required the inclusion of a message type field in the message

packet, as well as additional overhead needed to distribute messages of different kinds to the

proper destinations.
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In addition, messages were pre-allocated, with a 60-byte message object allocated for

every synapse. This wasted memory, because only a small fraction of synapses (typically less

than 1%) are actively firing (and thus transmitting a message) during any particular timestep.

NCS5 separates the three functions. Stimulus messages and reports are now produced

locally on each node4. This approach reduces the traffic on the network and, along with other

optimizations, allows the size of the individual synapse firing message to be reduced from

60 to 20 bytes. In the NCS3 message packaging scheme, each message transmitted about 40

bytes of unnecessary information, resulting in a 200% overhead.

While these changes improved performance significantly, further analysis showed that

more improvement was possible. The old algorithm passed messages through several layers,

with a typical message packet read and written perhaps five times or more in its progress

from source to destination.

In the new scheme, the message becomes a logical entity which has no existence as an

individual object. This makes it possible for the bulk of the information in a message to be

written once, when sent, and read once, when it is received at its final destination. Instead of

individual messages, the program deals with packets containing many messages. The packet

size is chosen to match the most efficient Myrinet transfer size, which is 1 KByte5 in the

current implementation.

Figure4.2shows the structure of a message packet. Each packet contains some header

information, including a link field and the delivery time of the latest message in the packet,

and a number of messages. Each message likewise contains a link field and delivery time. All

messages in a packet will be delivered to the appropriate destination node by MPI, so sending

that part of the address in the packet (let alone in each message) is redundant. The link fields

might also seem redundant because they are filled in only at the destination, but including the

empty fields eliminates the need to copy the messages from the packet to individual message

buffers, and so improves overall performance.

4Excepting real-time I/O.
5See Table1.1
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Finally, the indexed addressing of messages to a (Cell, Compartment, Synapse) has

been eliminated. Instead, the connection algorithm determines the address of the destination

object on the receiving side and transmits it to the sender, which then uses it as the destination

address field in messages. The receiver’s message delivery code simply uses this address as

a function pointer to call the destination object’s message receiving function, thus replacing

12 bytes of indexes with a single 4-byte pointer, and reducing the delivery code to a single

line. The cluster thus can be viewed as a very large segmented address space, where the node

number is equivalent to the segment register and the 4 GByte physical address space of each

CPU becomes the offset.

4.3.1 The Message-Passing Algorithm

The newMessageBus algorithm operates as follows.

At startup, theMessageBus for each node determines to which nodes it will be sending

and prepares an empty outgoing packet for each node. It determines the permissible message

delay for each sending and receiving node, prepares arrays in which the allowed and actual

times will be stored, and creates ring buffers (PendList andMsgList) in which incoming

Packet
Header

Message 1

Message 2

Message N

Packet Link Field

Message Link field

Message Body

Figure 4.2: Structure of Message Packet.



38

packets and messages will be stored in linked lists until their delivery time. Figure4.3shows

a diagram of the packet and message links.

PendList

MsgList

T T+1 T + 2 ... T+N−1 T+N

T+1 T+2 T+3 T+N−1 T+N

Packet:  Each packet is linked to PendList,
and contains many message fields linked
to MsgList.

Figure 4.3: Schematic of MessageBus.

During theDoCell portion of each timestep, cells may fire. When one does, messages

for each cell in the firing cell’sSendTolist are placed in the destination nodes’ outgoing

packets, and the packets’TimeSentandLastTimefields are updated according to the synapse

propagation time (which must be at least one timestep). When a packet is full it is sent, and
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a new empty one is obtained from the packet pool. Meanwhile, the sent packet remains in an

active state so that the non-blockingMPI Isend function can be used, thus allowing overlap

of communication and computation.

This process continues until all cells are processed, at which time the last packet has

its SYNC flag set and is flushed. TheSYNC flag informs the destination node that the sending

node has completed the timestep. (If no messages are pending in the packet, it is sent empty,

so that the destination node will still receive theSYNC flag.) The program then continues with

the DoReportprocessing for the timestep while MPI/Myrinet is transferring the messages.

In any significant model the computation time is several orders of magnitude larger than the

packet transmission time, which allows most of the communication time to be effectively

overlapped by computation.

TheMessageBus::ReceiveMsgs function checks for incoming packets. When one is

received, it checks theSYNC field, and updates theNodeTime entry for the sending node.

It then places the packet in the slot of thePendList list that corresponds to the packet’s

LastTime field and walks through the messages in the packet, filling in theMsg->link field

to add it to the linked list of messages inMsgList to be delivered at theMsg->Time timestep.

At each timestep,DeliverMsgs takes the messages in that list and delivers them to their

destination compartments. The packet is meanwhile being held in thePendList (because

messages are just fields in the packet). When the timestep reaches the currentPendList

entry, all messages in the packets in that entry have been processed (because thePendListis

indexed by theLastTime field), and the empty packets can be returned to the packet pool.

4.3.2 Synchronization

Most of the computation time in the NCS program is used in computing the effects of synapse

firings on the receiving compartments. The firing rates, however, are essentially random,

being determined by the brain’s reactions to stimulus. Therefore it can be expected that,

regardless of how well the number of synapses is balanced between nodes, the actual amount

of computation will vary both between nodes and over time.
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As a consequence, one node, and probably not the same node at each timestep, will take

the longest amount of time to finish its computations. If a simple end of timestep barrier is

used for synchronization, then all the other nodes will be idle for some part of the timestep.

Figure4.4 shows an example of this idle time. Node 1 has (for the displayed timesteps)

the heaviest load, and so displays little or no idle time (labeledMessageBus::Sync in the

figure), while the others display more, with the amount varying between nodes andbetween

timesteps.

This MessageBus implementation attempts to circumvent that situation. Recall from

Section1.4 that the electrochemical pulse from a firing cell propagates along its synapses

at a relatively slow speed, so that the transmission time between the sending and receiving

cells typically translates to several tens of simulation timesteps. Thus for each node there

is an event horizon, which depends on the minimum synapse propagation time of the nodes

with which it communicates. If this minimum time isdt, then nothing other nodes do at

time T can affect this node until timeT+dt. Therefore, a barrier mechanism constructed to

utilize this event horizon can allow some of the end-of-timestep idle time to be used. A node

may simply continue to work until it reachesT+dt. Meanwhile, messages have continued to

arrive from the other nodes, and unless the node is consistently under-loaded, these messages

will containSYNC flags indicating that their nodes have progressed to another timestep.

Synchronization now becomes a relatively simple matter. On initialization, aNodeTime

array is allocated, with entries for each node from which the node receives messages. As

SYNC packets are received, these times are updated. When the node reaches the end of each

timestep, these NodeTimes fields are checked. If the other nodes are within the minimum

time difference, then the node can proceed to the next timestep; if not, it must wait for more

packets to be received and check again.
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Figure 4.4: Idle Time Due to Load Imbalance.
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Chapter 5

Results

In addition to the algorithmic improvements described in the preceeding chapters, many

other optimizations have been made in the process of creating the NCS5 program. These are

too numerous to describe individually. Indeed, most are obvious, and of no great theoretic

interest. This chapter describes the cumulative effect of all optimizations, which fall into

three categories:

• Sequential speedup, which increases the speed with which a particular compute node

will process the part of the brain assigned to it.

• Parallel speedup. In the ideal case, a brain that takes timeT to run on a single processor

would run in timeT/n when split amongn processors. Real programs virtually always

achieve less than ideal speedup1.

• Memory use, which determines the size of the largest model that will run in available

memory.

5.1 Models Used In Testing

Several basic models were used in this performance testing. Table5.1 summarizes their

characteristics. While selected to test different aspects of NCS, they were not purpose-built

for performance measurement but are instead modifications of models used for research in

1Neglecting such factors as cache effects.
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our lab. It is therefore to be hoped that the measurements here will be a good approximation

to real-world performance. These models are:

• 1Column - This model was used in the development of NCS3. It models a single

column of three layers, each having two cell types, excitatory and inhibitory. Input is

from an artificial pulse stimulus. It exhibits an unrealistically high cell firing rate.

• IVO - This is an adaption of the Intelligent Virtual Organism currently being devel-

oped. It was modified to contain a large number of similarly-sized small clusters, in

order to allow distribution over the largest possible number of nodes. It was back-

converted to NCS3 input format for comparison testing.

• BigIVO - This is identical to the IVO model, except that the cell counts have been in-

creased by a factor of 5 and the number of synapses by a factor of 25 (since connection

is n2) in order to even out statistical fluctuations in load.

• AVI - Taken unchanged from ongoing research [1], it attempts to model parts of the

audio and visual areas of the brain. With some 37.5 million synapses, it is too large to

run on a single node.

Model Clusters Cells Synapses
1Column 6 3,750 621,875
IVO 1,155 13,650 699,620
BigIVO 1,155 68,250 17,544,890
AVI 1,500 243,000 37,683,108

Table 5.1: Characteristics of Test Models

5.2 Sequential Performance Improvements

It is difficult if not impossible to define a simple performance metric for NCS. For a number

of reasons, the time a particular NCS brain takes to process some input file is only a useful

performance measure for that particular brain design and input.
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One reason is that NCS defines many different components, which the user may include

in fairly arbitrary proportions and connect in a large number of ways. Since the behavior of

NCS is highly non-linear, these differences can result in large variations in processing time

for models which might appear superficially similar.

More importantly, in a typical model the largest share of CPU time is devoted to synapse

and spike processing. The spike rate depends on model parameters such as synapse conduc-

tance and connection patterns,and also on the input being presented to the program. As

shown in Figure5.3, the spike rate can thus vary considerably from timestep to timestep.

To further complicate matters, spike processing time is not necessarily even a linear

function of the spike rate. There are two components to spike processing. First, some

synapse receives each spike and processes it. There are many types of synapses, and this

processing is different for each type. (Indeed, the differences are what defines the different

synapse types.) All of them produce an identical result: the calculation of several factors that

the owning compartment will apply to the synapse’s post-synaptic conductance template.

The compartment then processes the templates of all incoming spikes. This processing

is the same for all synapse types and continues over a number of timesteps defined by the

length of the template. However, under some circumstances the compartment can optimize

processing by combining all the spikes which it receives in a timestep, in which case the

processing time no longer has a simple relationship to the spike rate.

On the basis of these issues, the approach taken here is to measure, on the same input,

the performance of particular functional areas, or groups of operations with similar charac-

teristics. Because the groups share common performance features, the effect of a change in

the area on the whole program can be estimated. The area’s speed change can be compared

between program revisions: for example, if design A processes 1.0 million synapse firings

per second, and design B processes 1.1 million, then design B has better performance.

The following are the functional areas measured:

• Overhead. This area encompasses all the functions that create the brain and its con-
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nections and do other work associated with program initialization and termination.

For most models it is dominated by the time needed to create the connections between

cells. Processing time is largely independent of simulation length: simulating a few

thousandths of a second or tens of seconds incurs the same overhead cost.

• Base cell and compartment. This is the time to process the simplest sort of cell. It

also includes some overhead, such as stimulus input, that is not otherwise measured.

Processing time is proportional to the number of cells in the brain.

• Channels. There are several types: the tables measure times for cells which have one

channel for each type. Processing time is proportional to the total number of channels.

• Reports. Time is proportional to the number of items reported.

• Synapse and spike processing, as discussed above.

Table5.2 shows the performance differences in these functional areas between NCS3

and NSC5,

Figure5.1shows the time usage of the components in a one simulated second run of the

1Column model described above. The cell firing rate2 for this model is 282.4 per cell per

second, well above the biologically-realistic range. Given the connectivity patterns specified

in the model, this resulted in an average spiking rate of 161 million spikes per second.

Figure5.2shows the same information for a one simulated second run of the IVO model.

The cell firing rate for this model is 64.4 per cell per second, much closer to the biologically-

realistic range. Given the connectivity patterns specified in the model, this resulted in an

average spiking rate of 45 million spikes per second.

The execution time of a model has a strong dependence on the spike rate, which will

vary from timestep to timestep depending on the inputs presented to the program. The spik-

2Note the distinction between the firing rate and the spiking rate. Each firing cell sends spike messages
to some number of other cells to which it is connected. This number varies from cell to cell, depending on
the connection patterns specified in the input, and the particular random connections created in the connection
phase.
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Item NCS3 NCS5 Ratio
Overheada 1.897 294.167 155.1
Base Cell/Cmpb 0.020 3.035 153.6
Channelb 0.152 0.398 2.6
Reportc 0.017 4.113 239.4
Synapse, 0Hebbb 0.031 0.383 12.5
Synapse, +-Hebbb 0.020 0.368 18.1
a) Seconds.
b) Millions of Objects Processed per Second
c) Millions of Values Reported per Second

Table 5.2: Preformance Ratios of Functional Areas.
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Figure 5.1: Share of CPU Time Used by Functional Areas, 1Column Model.

ing rate is a function of the cell firing rate and the connectivity; that is, each cell that fires

produces a spike for each cell that it sends to. Recall from Section1.4 that firing ratesin

vivo are observed to fall within a certain range, which a realistic model would expect to

reproduce. Figure5.3 shows execution time versus firing and spiking rates for a one such

model.

While these rates depend in part on the input presented, they are also functions of model

parameters, such as the synaptic conductance, which may be adjusted by the user. Figure
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Figure 5.2: Share of CPU Time Used by Functional Areas, IVO Model.

5.4 shows how the execution time of the IVO model varies as the synaptic conductance is

changed to produce cell firing rates across the biological range of 15-60 firings per cell per

second. Note that the response to the changes is decidedly non-linear! Times are shown for

both standard spike handling, and the optimized SAMEPSC version described in Section

10.

5.2.1 Parallel Performance

Although comparison of sequential performance is difficult, direct comparisons of parallel

performance between NCS3 and NCS5 are, unfortunately, impossible. Due to a system crash

and subsequent backup failure, all working parallel versions of NCS3 were lost shortly after

the completion of [18], along with the data files used in its preparation. This section will

attempt to make comparisons with some of the data reported there, but the reader should be

aware that many factors that strongly affect performance, such as synapse firing and spiking

rates, were not included in that report. Thus, for example, it reports in Figure 4.2 an execution

time of some 13 hours for a 0.5 second simulation of 1.5 million synapses on 30 nodes, but
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there is no information as to what the spike rate was, and thus no way to make a meaningful

comparison.

Note that all parallel test runs shown here were made with reporting turned off. During

testing, several instances of the same model would be running simultaneously (on different

nodes), leading to file name clashes.

Transmitting synapse firing information accounts for virtually all of the communication

(other than theSYNC packets) between nodes. Forcing the cell firing rate to zero3 should thus

represent something of a base or ground state. Figure5.5shows run times for the IVO model

with zero firing.

Figure5.6shows performance for the IVO model with a more realistic spike rate.

3In this case, by not supplying input to the brain
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Recall from Section1.5 that the Cortex cluster is composed of dual-processor moth-

erboards. Figure5.7 shows parallel performance for the same model when processors are

allocated by twos - that is, the two CPUs on cluster node 0, then two on cluster node 1,etc.

This gives somewhat poorer performance than when allocating one CPU on node 0, one on

node 1, one on node 2,etc. This is counter-intuitive, since it might be expected that lower

communication overhead between two CPUs on the same motherboard would result in a

speedup, if anything4. Note also the change in slope when the processor count passes 40,

and less-capable P3 processors begin to be used.

Figure5.8 shows run times for the BIGIVO model. Notice that as each processor has

more work than in the base IVO model, there is less statistical fluctuation in load, and hence

somewhat better processor utilitization as the number used increases.

4We suspect this to be a side effect of scheduling with virtual processors enabled.
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And finally, Figure5.9 shows run times for the AVI model. As each processor has yet

more work than in the BigIVO model, processor utilitization improves to something very

close to ideal speedup.

5.2.2 Virtual Processors

As noted in Section1.5, each Pentium 4 processor in the cluster contains two virtual proces-

sors. Table5.3shows the result of test runs on the four virtual processors of one dual-CPU

machine,versuson four distinct machines. For this example the run time using two real

processors is less than when using two real and two virtual ones, so it appears that the virtual

processors do not provide much, if any, increase in performance.
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Condition Run Time (sec)
4 different nodes 311.0
4 CPUs, 2 per node 381.6
4 virtual CPUs on one node 592.8
2 CPUs 589.0

Table 5.3: Virtual and Dual CPU Performance

5.3 Memory Use

The original NCS3 program was limited in the size of the models it could handle. Although

the precise limits have not been determined due to the excessive compute time required,
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Wilson [18] cites as her largest case a brain with 1.5 million synapses distributed over 30

nodes (which took some 13 hours to process a 0.5 second simulation). The current code has

demonstrated the ability to handle models of over 1.1 billion synapses.

There are three reasons for the difference in memory use:

• NCS3 created a global cell index with an entry for each cell and kept a full copy on

each node. When a program was run on more than a few nodes, this index required

more memory than did the actual brain. NCS5 creates a much smaller table, typically

occupying only a few tens of megabytes.
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Figure 5.8: Run Times for BigIVO Model

• NCS3 pre-allocated many structures, such as message buffers, in amounts vastly larger

than needed. For example, a message buffer was allocated for each synapse, even

though any particular synapse might use its buffer only once in every several hundred

timesteps.

• Finally, the NCS3 structures were usually much larger than actually needed.

Table5.4 shows the amount of memory used by major brain components. For NCS3,

memory requirements for a particular brain (exclusive of the global cell index) can be esti-

mated from the number of cells, compartments, channels, and synapses. For NCS5, estima-

tion is not so simple. Each synapse requires aSynapse and aSendTo, but because the other
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Figure 5.9: Run Times for AVI Model

synapse-related components are allocated as needed the memory actually used depends on

the brain’s spiking rate.

The total memory use of any particular model can easily be compared between versions.

For example, the IVO model used for testing contains 13650 cells, 3 channels per cell, and

699,620 synapses5. NCS3 requires 800.117 MBytes of memory to run this model on a single

node, while NCS5 requires only 99.559 MBytes. This difference is further exaggerated for

larger models, which typically have a higher synapse/cell ratio.

Memory use distributes fairly well over nodes, as shown in Table5.5. There is of

5Counted in NCS5. NCS3 creates a slightly different number of synapses, due to differences in the connec-
tion algorithms.
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Cell Components NCS3 Bytes NCS5 Bytes
Cell 112 16
Compartment 548 284
Channel 392 252
Synapse 108 44
CompartmentDelay 12 -
CellCompConnect 20 -
SynapsePSGOutgoing 12 -
SynapseDelay 12 -
Sendto - 12
ActiveSynPtr - 20
Message 60 20

Table 5.4: Memory Used by Components - NCS3vsNCS5

course some overhead for the information the program uses to coordinate actions among

many nodes, but at 64 nodes, this overhead is only about 58 Mbytes per node, in a brain that

occupies some 5 GBytes.

Nodes Brain Dynamic Total
2 3497.2 1577.4 5074.6
4 3556.5 1578.9 5135.4
8 3674.2 1580.5 5254.7
16 3909.4 1584.6 5494.0
32 4377.7 1599.9 5977.6
64 5324.3 1643.9 6968.2

Table 5.5: Memory Use by AVI Model (MBytes).

The memory use shown has two components. Brain memory is that used to create all the

brain objects and supporting structures (the overhead), and is the amount of memory used at

the start of thinking. Dynamic memory is that allocated during the thinking process. It holds

message packets, active synapse structures, and the like. The amount of dynamic memory

required is not entirely predictable, as it is dependent on variables such as the spike rate, but

for any particular input it will stabilize when the brain has become fully active.
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Chapter 6

Conclusions and Future Work

The work covered by this thesis has:

• Significantly improved the performance of the NCS program.

• Demonstrated the capability of simulating realistic brains containing upwards of 106

cells and 109 synapses.

• Demonstrated that model size and performance scale linearly over the number of pro-

cessors available for testing.

• Created a number of useful profiling and performance measurement tools.

6.1 Performance - Time

Two separate areas of performance, sequential and parallel, have been addressed in this work.

The issue of sequential performance is complicated by the strong dependence of perfor-

mance on spike rates, which in turn is dependent on both the design of a particular model

and the input which is presented to it. There is a base performance, the time needed to pro-

cess the cells and their components in the absence of any spikes, and the spike processing

performance, which is complicated by factors such as synapse learning. Adding to the com-

plication are ongoing changes to input formats and the detection and repair of a number of

bugs that substantially affect results. In consequence, any performance comparison is both
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difficult and somewhat arbitrary. Even when the same model is created in the different for-

mats required by the old and new code, running that model on identical inputs will produce

different outputs and spike rates.

Various brain components can be tested and compared, and all of these show some de-

gree of speedup, ranging from a little over twice for channels, to two orders of magnitude for

the compartments and reports. The total effect these improvements will have on a particular

brain will depend on the proportions in which the corresponding components are used.

Parallel performance comparisons are more problematic yet, because no working ver-

sions of the parallel NCS3 code exist to compare against. The results reported in [18] are the

only available standard, but the information needed to make an accurate comparison is not

reported.

However, it is known (Section 4.1.4 of [18]) that a model containing 1.5 million synapses,

run for a simulated time of 0.5 second, took approximately 50,000 seconds execution time

on the original 60 P3-processor Cortex cluster. For comparison, the BigIVO model tested

here, with some 17 million synapses, requires about 870 seconds for one simulated second

on 24 P4 processors, while the AVI model with 37.6 million synapses requires 1490 seconds

for 0.5 simulated second on the same 24 processors. In the absence of a better standard of

comparison, this would suggest that the overall performance improvement from this work is

between two and three orders of magnitude.

6.2 Performance - Memory

In addition to processing speed, optimization of memory use is critical to the lab’s planned

research. Our cluster provides a mere 256 GBytes of RAM, but some of the models our team

would like to run require billions of synapses, each one requiring some memory to hold

its individual attributes and state. Here the comparison between versions is on somewhat

firmer ground. Although the 1.5 million synapse model is the largest reported for NCS3,

NCS5 has demonstrated the ability to run models containing at least 1.1 billion synapses, an
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improvement of nearly three orders of magnitude1.

6.3 Analysis

It is clear that the work described here has produced significant improvements in both speed

and size.

In computer science, it has lately become something of a truism that code optimization

(or at least optimization done by programmers rather than compilers) is wasted effort: if

more performance is needed, one simply buys faster processors. This thesis demonstrates its

falsity, at least for computationally significant applications.

Consider that during the course of this work, the size of the Cortex cluster was doubled,

with the new processors being about 3 times faster than the original. This was done at

a cost of some $200,000 and resulted in about a fivefold increase in performance and a

doubling of maximum model size. Over the same period, the programmer effort invested

in optimization would have cost perhaps half that amount at market rates, and resulted in at

the most conservative estimate a tenfold increase in speed, and a thousand-fold increase in

maximum model size.

Much of the difference in performance, especially in memory use, between the two

versions may be traced to a too-strict adherence to an object-oriented design philosophy in

the the original code. When a program is seen as a collection of abstract objects, divorced

from their actual machine representation, it becomes difficult to keep in mind that those

objects and their operations will always incur some cost in machine cycles and memory, and

that cost does not necessarily bear any relation to the representation of the object in the

source code.

It is also interesting to compare the source code sizes of the two versions. Despite the

addition of a number of new features to the program, the number of source code lines, as

shown in Table6.1, has shrunk by nearly 45%.

1Since these models were tested, memory use has been further improved.
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Item NCS3 NCS5 Ratio
Total Lines 26720 16912 0.63
Code Lines 19801 11114 0.56
Blank Lines 4880 3172 0.65
Comments 2039 2626 1.28

Table 6.1: Code Size Comparison

6.4 Future Work

Despite the significant performance increases in the course of this work, there are still areas

- not limited to performance - where further improvements might be made. Some of these

are:

• Channel andSynapse objects. Each of these have many variants, differentiated by

internal logic within the singleChannel or Synapse class. The objects thus contain

internal variables that are used in some variants, but not others. Implementing the

variants as sub-classes which inherit from a baseChannel or Synapse class will thus

save memory, and might improve performance.

• Synapse Model. As is evident from Figures5.1and5.2, spike processing now uses by

far the greatest share of processing time, much of which is incurred by compartments

iterating through long lists of PSC templates. A model that uses a computation rather

than the template list processing might well be faster and use less memory.

• Channel Model. Channel processing consumes the second largest share of processing

time. Unfortunately there seems little scope for improvement within the current chan-

nel model, as channels are little more than a simple calculation of a few exponential

and power equations. Lookup tables might be a faster alternative.

• Threaded Message Receive. Currently incoming messages are processed only at cer-

tain points in any timestep. Efficiency might be improved if message reception was
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threaded out, so that each message packet would move from the MPI subsystem to

program space as soon as it arrives.

• Distribution. It should be possible to distribute cells to the various nodes in such a way

as to minimize inter-node message traffic and its associated overhead. Likewise, if

clusters can be assigned to nodes in such a way that a degree of pipelining is possible,

then the MessageBus will allow more overlap of computation, and throughput will be

improved.

• Load Balancing: At present, when some area of the code has been improved, it is

necessary to measure the new performance weights manually and apply them to the

code. It should be possible to automate this process.

• Consistent random number generation: For improved biological realism, many cell

and synapse parameters can be specified with a random variation. Parallel random

number generation currently is not consistent, so that the output of the same model

will show some random variation when run on different numbers of nodes.

6.5 Finally...

As noted in the first chapter, the human brain contains some 1011 cells, with an estimated

1014 synapses. Currently we can simulate approximately 106 cells and 109 synapses, at a

rate of perhaps 104 seconds of computation to each second of real time. Thus our program

and cluster, for all that it is close to state-of-the-art computing technology, is capable of

simulating only about one billionth of the activity of a human brain.
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