
University of Nevada, Reno

The Redwood Programming Environment

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

with a major in Computer Science.

by

Brian T. Westphal

Dr. Frederick C. Harris, Jr., Primary thesis advisor

Dr. Sergiu M. Dascalu, Secondary thesis advisor

August 2004

http://www.cs.unr.edu/redwood/

i

Abstract

Redwood is a visual environment for software design and implementation that allows

programmers to manipulate code using several new methods proposed by the author.

Through the use of two primary tools, snippets and design trees, programmers are able to

view programs at varying levels of complexity and output code to multiple languages and

highly variant machine architectures. The environment provides a single space in which

one may both design and implement software solutions, thus potentially reducing overall

time spent in the design and implementation processes. This document describes the

motivation for Redwood, the concepts underlying its design, implementation details,

results of use, and several directions of future work.

ii

Acknowledgements

I would like to give special thanks to my thesis advisors, Dr. Frederick C. Harris and Dr.

Sergiu M. Dascalu for all their support during Redwood’s development process, for their

help in editing this thesis, for their diligence on previous publications, and for their

continued efforts and enthusiasm towards Redwood.

I would also like to thank my thesis committee member, Dr. M. Sami Fadali, for his

invaluable comments and guidance in the editing process.

iii

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 01

1.1 What is Redwood? 01

1.2 Project Goals 02

1.3 Project Evolution 03

1.4 Thesis Outline 05

2 Background Survey 07

2.1 Textual Programming Languages (TPL) 07

Characteristics of TPL 07

Examples of TPL 08

Strengths and Weaknesses of TPL 08

2.2 Graphical Programming Languages (GPL) 10

Characteristics of GPL 10

Examples of GPL 10

Strengths and Weaknesses of GPL 12

2.3 Hybrid Programming Languages (HPL) 12

Characteristics of HPL 12

Examples of HPL 13

Strengths and Weaknesses of HPL 14

iv

2.4 A Novel Approach for Expressing Algorithms 14

3 Overview of the Redwood Proposal 17

3.1 Design Goals 17

3.2 Current Status 21

4 Main Design Concepts 22

4.1 Snippets 22

4.2 Design Trees 23

4.3 Drag-and-Drop Programming 24

4.4 Visualization Details 25

5 Snippets and the Snipplet Language 27

5.1 More on the Snippet Concept 27

5.2 Snippet Structure 28

5.3 Snippet Development Stages 29

5.4 Snippet Display Syntax and the Snipplet Language 30

6 Snippet Display Syntax (SDS) 33

6.1 SDS Features 33

6.2 SDS Reference 34

7 The Snipplet Language (SL) 41

7.1 SL Features 41

7.2 SL Grammar 43

7.3 SL Function Reference 47

7.4 Special Variables 56

8 Writing Programs in Redwood 58

v

8.1 Using Existing Snippets 58

8.2 Creating New Snippets 59

9 Conclusions 69

9.1 Summary of Contributions 69

9.2 Future Work 70

References 72

vi

List of Figures

1 Redwood Beta 1 User Interface Layout 05

2 Code 2.0, University of Texas 13

3 Snippet Development Stages 30

4 SL Grammar: Level 0 (the Start Symbol) of the SL Grammar 43

5 SL Grammar: Level 1, Basic Template Components 44

6 SL Grammar: Level 2, Statement Types 44

7 SL Grammar: Level 3, Statement Specifications 45

8 SL Grammar: Level 4, Primary Support for Statements 46

9 SL Grammar: Level 5, Secondary Support for Statements 46

10 SL Grammar: Level 6, Support for Functions 47

11 Most Common Parameter Formats for Snippet Editor Function Calls 55

12 The Syntax of PERL foreach Loops 60

13 Snippet Display of foreach Loop 61

14 Snippet Templates of foreach Loop 63

15 Standard Sigma Notation 64

16 Snippet Display of Sigma Summation 65

17 Snippet Templates of Sigma Summation 66

18 Use of Sigma Summation 68

vii

List of Tables

I Major Redwood Project Goals and Their Statuses 21

II The SDS table Tag: Attributes and Example 35

III The SDS td Tag: Attributes and Example 36

IV The SDS function and param Tags: Attributes and Example 37

V The SDS Value Tags: Attributes and Example 38

VI The SDS LineEditor and StringEditor Tags: Parameters and Example 40

VII The SDS CodeEditor Tag: Parameters and Example 40

VIII The SL arrayLength Function: Description and Example 48

IX The SL datatype Function: Description and Examp 48

X The SL defined Function: Description and Example 49

XI The SL evaluate Function: Description and Example 49

XII The SL getSnippetType Function: Description and Example 50

XIII The SL getUID Function: Description and Example 50

XIV The SL instanceOf Function: Description and Example 51

XV The SL join Function: Description and Example 51

XVI The SL keys Function: Description and Example 52

XVII The SL removeElementFromArray Function: Description and Example 52

XVIII The SL replaceAll Function: Description and Example 53

XIX The SL split Function: Description and Example 53

XX The SL values Function: Description and Example 54

1

Chapter 1 – Introduction

1.1 What is Redwood?

Developed recently in the Computer Science and Engineering Department at the

University of Nevada, Reno, Redwood is an integrated development environment that

allows programmers to create and visualize source code in a new way. The environment

was designed from the ground up with problem solving support for open source

developers in mind. Sharing code and collaborating in a visual workspace is much more

intuitive and effective than when using plain text code editors. Redwood’s drag-and-drop

interface allows developers to select program constructs and components by simply

clicking on entries in a tools panel. With Redwood's plans for a built-in online library of

snippets, programmers may even be able to create new software with little or no code at

all!

 This project was initially inspired by Carnegie Melon’s Alice software package

[1, 2]. Although Alice is an excellent program for instruction, Redwood has been

conceived with a much more powerful interface, primarily based on drag-and-drop

manipulation of program components – the main idea being that the interface should not

get in the programmer’s way, but should instead be a tool for improving the

programmer’s efficiency. As the project progressed, Redwood has incorporated

additional features that further distinguish it in the landscape of visual programming

environments.

2

1.2 Project Goals

The direct writing and manipulation of computer programming language source code is

inefficient when dealing with a large number of abstractions. Most programs could be

built by combining pieces of code that have previously been used successfully. However,

the bulk of computer programming still involves repeatedly rewriting such pieces of

code.

With open source software, part of this problem can be avoided. For example, if a

new web browser package is to be developed, through open source software the

developers can have access to a significant amount of code already written. In this

particular example a package such as kHTML [3], developed for KDE [4] and used by

systems such as Apple’s Safari browser [5], can be used as a foundation. Thus, the

developers can avoid rewriting large pieces of code and focus instead on the innovative

aspects of their software.

Still, with open source software, developers are required to know a lot about the

software they need to use and customize. Open source code is widely available over the

Internet but, inconveniently, it is also widely spread over numerous sites. In practice,

there are often several competing flavors of the same package. Moreover, development

using an open source foundation is typically complicated by the lack of proper

documentation. These problems make using open source packages impractical in many

cases. For corporate use, open source software is insufficiently supported and not stable

enough. For novice programmers or individuals that work in other fields (such as

chemistry or physics) and resort to coding to increase their productivity, dealing with

3

undocumented open source packages or even simply finding that a particular package

exists requires significant effort. Such programmers do not have the knowledge of

general resources and often do not know where to look to find software packages that can

be trusted. To complicate things further, even when suitable software is available, it is

typically undocumented to the point of incomprehensibility, except by expert

programmers [6].

The snippets technology of Redwood is an excellent tool for promoting the

reusability of code. Snippets give developers the power to encapsulate ideas, not just

classes or functions, and to visualize syntax in a meaningful way. With a snippet one

can, for instance, use images or drawings to represent design concepts for which one

might implement the code later. A future release of Redwood will include an integrated,

online library of snippets. In addition, a future release of Redwood will be configurable

so that software documentation can be enforced. These features of Redwood will help

solve problems with open source development and programming in general. Developers

will not have to rewrite the same code; it will be available from the development

interface. Only customization of existing snippets will be necessary for many projects.

1.3 Project Evolution

Redwood came about as part of an amalgamation of ideas put together into one project.

Initially, in Spring 2003, a design goals document was completed, listing several key

directions for developing a new IDE: enhanced support for hierarchical design, drag-and-

drop, algorithmic independence, object-oriented programming, parallelism, usability,

4

open source, and documentation. After the original design document was created, the

environment underwent concentrated development that led to an initial operational

version, Redwood Beta 1.

 Redwood Beta 1 demonstrated many of the key technologies that would be

necessary to implement a usable drag-and-drop programming environment. That release

also led to formulations of new ideas and realizations that certain aspects would have to

be modified to create a truly functional development product. Beta 1 introduced the

concepts of snippets, design trees, and disclosure dots to programming. Snippets provide

a means by which generic programming constructs could be described. Design trees

describe, in part, the relationships between programming constructs. Lastly, disclosure

dots, used in conjunction with disclosure triangles familiar to Mac OS X [7], work with

snippets and design trees to allow programmers to visualize source code at varying levels

of abstraction.

 One of the most important lessons learned in developing the first release of

Redwood, is that screen real estate is a precious resource for programmers. For Beta 2,

the entire snippets engine had to be rethought and rewritten to better consider this.

Another lesson that became apparent while developing complicated programs using

Redwood Beta 1 was that static templates are not sufficient for describing generic

programming constructs. With the Beta 2 release, one can create very powerful, dynamic

templates. The complete Beta 2 release will be publicly available in the Fall of 2004.

The remainder of this thesis, though focusing heavily on the Beta 2 release, attempts to

point out significant differences between Beta 1 and Beta 2. For illustration purposes,

Figure 1 presents a screenshot of the Redwood Beta 1 environment.

5

Figure 1. Redwood Beta 1 User Interface Layout

1.4 Thesis Outline

The remaining chapters of this thesis discuss the Redwood programming environment in

detail. Chapter 2 gives background information that helps one to understand the

motivations in creating Redwood. Chapter 3 presents the initial design goals that were

used to guide the development of the environment. Chapter 4 contains an overview of

6

the main design concepts of Redwood including snippets, design trees, and drag-and-drop

programming. Chapter 5 discusses in detail snippets and the Snipplet language used to

generate source code. Chapters 6 and 7 provide references to the syntax for snippet

displays and, respectively, to the Snipplet language. Chapter 8 includes several detailed

examples of how snippets can be used and created. Chapter 9 summarizes the

contributions of this thesis and presents some of our plans for future work.

7

Chapter 2 – Background Survey

2.1 Textual Programming Languages (TPL)

2.1.1 Characteristics of TPL

Textual programming languages (TPL) are those most often associated with

programmers. Programmers typically use plain text to describe instructions to a machine.

Although sometimes this source code is color coded, very little additional support is

given to help visualize the meaning of code segments. Instead, programmers rely on

paradigms that help encapsulate concepts. However, there are currently only two major

categories of paradigms and new paradigms are rare within the industry. Programmers

have been working with the two major categories of paradigms, declarative and

imperative, for nearly the entire existence of computers [8].

A declarative language is one in which a programmer “describes a problem rather

than defining a solution” [9]. Declarative languages are popular for solving certain types

of problems, for example, problems in the area of artificial intelligence. However,

imperative languages, those with which a programmer specifically defines solutions, are

currently most popular. Later in this section, the strengths and weaknesses of TPL are

discussed.

8

2.1.2 Examples of TPL

With TPL, classical programming languages come to mind. Lisp, Scheme, and ML are

functional languages (on the declarative side). Prolog is a logic language, which is also

declarative. Fortran, Pascal, and C fall under the “von Neumann” paradigm [8]. These

are imperative languages. Examples of object-oriented languages include Smalltalk,

C++, and Java. Most computer programmers are familiar with at least a few of the

above-mentioned textual programming languages.

2.1.3 Strengths and Weaknesses of TPL

The most significant strength of textual programming languages is also its key weakness.

Programmers know that virtually anything can be described with text. One invests time

and rigor to develop products based on TPL that describe every interaction, feature, and

detail. While having the potential for unequivocal precision, in human hands this method

of programming leads nevertheless to mistakes, to software bugs. Programmers have

long struggled with buggy code; many have realized that bugs will never be eliminated.

Still, it makes one think that there might be a better way to develop software. There

might be a way that takes advantage of natural human characteristics, such as the ability

to quickly acquire information from images, to help reduce the burden on the

programmer, to ensure some level of correctness.

 The problem with text is that it is, even though learned very early on, a manmade

concept. In most languages there are few natural mappings between text and physical

9

objects [10]. As such, it is difficult to build a safety system that checks the sensibility of

program statements. In a TPL it is possible to skip important details, to create non-sense,

and to never realize it because with text mistakes cannot often be caught by casual

inspection. It is difficult to visualize connections and interrelationships because there is

no physical line being drawn between interconnected elements. Text requires more

complex, human, and error-prone analysis and interpretation [11]. Besides requiring

great amounts of time, the requirement for analysis and interpretation is a significant

cause of buggy programs.

 A large portion of time that goes into developing programs is spent during the

debugging phase. Debugging is typically required for reasons related to two problems.

The first problem is mistranslation from the natural language problem description to the

programming language solution. The second problem is that it is often difficult to

identify the connections between interdependent elements of a program and thus one has

to spend time analyzing where the interdependencies exist, and where potential problems

lie. Because text gives very few visual clues about correctness, and because of the

human tendency to make mistakes, debugging programs created with TPL can be a

tedious, imperfect, and frustrating process.

10

2.2 Graphical Programming Languages (GPL)

2.2.1 Characteristics of GPL

A graphical programming language is a tool that allows one to visualize and manipulate a

program’s components. It is common for GPL systems to use drag-and-drop

manipulation, often for icon-based program representations. One can think of GPL in a

broader sense however, as any graphical tool that allows one to precisely describe the

components of a computer program. As such, interface builders and even program

file/class trees can be thought of as small examples of GPL integrated into many

development environments.

2.2.2 Examples of GPL

The development of computer graphics first and then of graphical programming systems

has changed programming in particular and problem solving in general. The history of

this field started in 1963 when Ivan Sutherland developed Sketchpad [12], the first

interactive computer graphics application. This development opened an entirely new

world of possibilities for computer programming. Computer graphics and game

development took off, but twelve years had to pass before the next significant

breakthrough in graphical programming occurred. Pygmalion [13], developed by David

Smith, was the first icon-based programming system, the first system that started taking

the shape of modern graphical programming systems. From 1975 to the present, a

11

significant amount of work has been invested in developing graphical programming

systems and visual programming environments.

At first, visual programming only worked for toy problems and many believed

that it was not suitable for “real-world” projects. In her work on visual programming,

Margaret Burnett discusses various approaches that have been taken to overcome what

once was a rather valid perception [14]. A great amount of research went into using

graphical programming for the front-end systems, specifying GUI layout. Two of the

major commercial successes arising from this branch of research have been Microsoft’s

Visual Basic [15] and ParcPlace System’s VisualWorks for Smalltalk [16].

Other approaches have tried to increase the range of projects that were suitable for

visual programming. This was usually done by developing domain specific visual

programming systems or environments. The approach varies widely and is dependant

largely on the problem domain. For example, Stagecoach Software’s Cocoa (formerly

KidSim) is directed towards graphical simulations and games [17], Cypress Research’s

PhonePro handles telephone and voice-mail [18], Advanced Visual Solutions’ software

deals with scientific visualization [19], and National Instruments’ LabVIEW focuses on

laboratory data acquisition [20].

In the sequential domain, languages such as ARK, VIPR, Prograph, Forms/3, and

Cube have demonstrated varied possibilities for graphical programming languages.

Discussions of these and many more can be found in a survey by Boshernitsan and

Downes [21] as well as in Margaret Burnett’s Visual Programming Language

Bibliography [22]. In the parallel and distributed programming arena, there are several

graphical programming tools that have been developed to help advance the programming

12

capabilities of those learning the field. These tools range from analysis systems such as

Pablo from the University of Illinois [23] to systems such as Paralex [24], Grade [25],

and Trapper [26]. Many of these systems use similar iconic designs, while others

incorporate graphs and connection-based constructs.

2.2.3 Strengths and Weaknesses of GPL

Modern GPL systems tend to be highly specialized, working well for only one type of

problem. No GPL tools exist that can be used for general computer programming.

Visual Basic’s interface builder is good for developing interfaces. Pablo is good for

writing performance analysis programs but is not designed for much else. Many other

systems are technically capable for writing general programs, but are easily overwhelmed

by complexity. Resulting programs have to be simple and small. With modern GPL, one

must choose between specialization and ability to deal with complexity.

2.3 Hybrid Programming Languages (HPL)

2.3.1 Characteristics of HPL

Most modern GPL are actually hybrid systems in which one must interact with both

graphical components and textual components. It seems like a natural extension of ideas

that one should not be tied to using one method or the other. Programmers should be able

to use the most appropriate method, as it is convenient. The most important aspect when

13

dealing with HPL is to find the right balance between the amount of TPL and GPL

involved.

2.3.2 Examples of HPL

Code, from the University of Texas, is one of the most apparent examples of an HPL

[27]. With Code, the GPL portion is used to describe the parallelization and to give hints

about the parallelization of an otherwise serial program. The system is hybrid because

the serial portions of the program are written using a standard source code editor and

TPL. After the serial code is written, each function is associated with an icon. These

icons, in Code, can be connected to demonstrate the desired parallelized activities of the

program. Compared to the tedious task of writing synchronization and message passing

functionality by hand, Code seems to provide a much simpler alternative. A screenshot

of the Code interface is shown in Figure 2.

Figure 2. Code 2.0, University of Texas

14

2.3.3 Strengths and Weaknesses of HPL

HPL allows one to have a mixture of TPL and GPL, thus giving one the “best of both

worlds.” One problem with current systems, however, is that there is a fixed, and often

unbalanced, mixture. The ability of a programmer not only to use both TPL and GPL,

but also to select the proportion of each, is essential. Our proposed programming

environment, Redwood, helps manage this balance, allowing the programmer to select

the text-like components as well as the graphical components that he or she wishes to

work with.

2.4 A Novel Approach for Expressing Algorithms

In his book, Tremblay says that in terms of current knowledge and technique, there are at

least five levels of abstraction involved in “expressing algorithms” [28]. These are:

• Natural languages,

• Diagrams,

• Flowcharts,

• Algorithmic languages (pseudo code), and

• Programming Languages.

These levels of abstraction have changed little in the past several decades [29].

 Current computer programming systems tend to require a programmer to translate

from the highest level, natural languages, to the lowest level, programming languages.

15

Higher-level abstractions tend to be more powerful than lower-level ones, but at the cost

of being less specific. In other words, in terms of describing systems, the English

language is much more powerful than a programming language such as Java or C++, but

programming languages have the advantage of precision. Translating from a natural

language to a programming language can be quite a challenge for human programmers,

as the level of precision required by programming languages is rather demanding for

most humans to manage. One of the problems with the current approach is that there are

certain aspects of any program that need to be very precise, and certain aspects that can

be specified at higher-levels of abstraction. Paradigms such as object-oriented

programming address these needs to some extent.

With an object-oriented programming language, one can specify, with a relatively

high level of abstraction, that one requires access to an object, which belongs to a certain

category (or class) of objects. One can also specify, on a lower level of abstraction, the

precise calculations needed to manipulate an object of the class. Besides being highly

dependent on the skills of the programmer, there are several weaknesses with this

approach. The primary weakness is that, through the use of textual programming

languages, one cannot represent an object as it appears in the physical world. The syntax

of any textual programming language, even though familiar and seemingly fluent for

many programmers, is arbitrary, and often unrelated even to the arbitrary structure of

natural languages.

An ideal method of computer programming would use the precise level of

abstraction that is needed to most efficiently express the desired instructions. That is,

each of the five levels of abstraction, as mentioned above, would be used appropriately.

16

Much in the same way that interface builders help design interfaces, future programming

system environments will allow programmers to graphically manipulate and interconnect

programming instructions using natural language, diagrams, flowcharts, pseudo code,

programming languages, and related multimedia representations where suitable.

17

Chapter 3 – Overview of the Redwood Proposal

3.1 Design Goals

Redwood came about as part of an amalgamation of ideas put together into one project.

Initially, in Spring 2003, a design goals document was completed, listing several key

directions for developing a new IDE: enhanced support for hierarchical design, drag-and-

drop manipulation, algorithmic independence, object-oriented programming, parallelism,

usability, open source code, and software documentation [30]. Each of these foci, as

discussed below, will be pivotal in the future of programming.

3.1.1 Hierarchical Design

Designing from the top-down or bottom-up should be more recognizable throughout the

code writing/maintaining process. Dependencies and relationships could be

demonstrated through graphical representations. This should also be carried out with an

integrated versioning system that will keep track of build numbers, developer/change

information, and allow for multiple concurrent versions of portions of a project. This

should also include collapsible/expandable code, allowing developers to distinguish the

big picture ideas of a program from its smaller details and ideas.

18

3.1.2 Drag-and-Drop Manipulation

Because most new code is structurally similar to code that has been used in the past,

templates and some elements of drag-and-drop programming should be employed to

increase programmability and decrease debugging time. Templates should be available

from built-in libraries, user libraries, and in online collections (available directly in the

development interface).

3.1.3 Algorithmic Independence

Where possible, entire algorithms should be interchangeable, simply by dragging and

dropping, without modifying code. By replacing a single element in the graph structure

of a program, one can incorporate more efficient implementations of an algorithm. This

allows for fast conversions from rapid prototypes to full-scale products. Once again,

algorithms, such as those for sorting, should be available in built-in libraries, user

libraries, and in online collections (which can be updated with submissions from other

developers). A priority ranking system should be made available for such algorithms,

giving developers the ability to see (in graphical form), the ratings for the following

categories: speed, memory use, parallelizability, and price (for proprietary algorithms).

Such rankings could be maintained by groups of developers (through a voting system)

giving developers the ability to prioritize, select, and immediately plug in, new

algorithms.

19

3.1.4 Object-Oriented Programming

Objects, methods, and data could be organized using principles from Java. Packages

group related objects into a hierarchy of components. Unlike in Java however, access

control should be more strictly guarded, with permissions (at the object/package design

level) for reading, writing, extending/overriding, implementing, and so forth. Enforced

by both the language and in some cases a layer of encryption (to be used with proprietary

algorithms), developers should be ensured that their code is used correctly within the

development environment.

3.1.5 Parallelism

Designing for single processor, multi-processor, and distributed processor machines (with

various configurations) could be done virtually automatically when appropriate hints are

given to a compiler. These hints could be given and represented in graphical form,

giving an intuitive flow to programs. This could include allowing a user to deploy a

program optimized to run on a specific cluster or machine (by specifying machine

topology and networking layers via connection graphs), or to be ready for general use.

3.1.6 Usability

In all of the above, the design environment should be immediately familiar for virtually

any programmer to use – without the need for extensive training. Based on ideas from

20

C/C++, Java, Perl, and a few other languages, the code level (which may not be reached

by all developers), should be relatively simple to learn. Much of the overhead (such as

classes and templates) should be taken care of by the graphical environment, so

knowledge of syntax and other implementation details could be unnecessary.

3.1.7 Open Source Code

These software design ideas should be applicable to the open and shared source

initiatives, but should also be advantageous to internal (within a company) settings, as

code sharing would become more fluid.

3.1.8 Software Documentation

The crux of shared code is the ability to understand it without needing to take an in-depth

look at the code. Shared source code should make clear through comments and naming

conventions, what a particular function does for instance. Design principles, such as

commenting could be enforceable in the development environment (at the option of the

developer or employer) and have various levels of enforcement. Comments, for example,

could be required before a function is written, after a function is completed, before a

build can proceed, or before the CVS can be updated. These settings should be applied,

and possibly locked, by employers so that employees must comply with the standards, or

left open for a developer that needs more freedom. Such settings could be local to the

computer or available on the network.

21

3.2 Current Status

The above goals have driven the development of Redwood. Several of the goals were

accomplished in Beta 1, completed in September 2003. Additional goals, which provide

significant enhancements to the overall project, are largely completed for the Beta 2

version, which will be publicly released in the Fall of 2004. Still, there are additional,

more specialized goals to complete during the future development of Redwood. A

synopsis of the environments goals, listed in alphabetical order, and their achievement

statuses is shown in Table I.

Table I Major Redwood Project Goals and Their Statuses

Goal Beta 1
(2003

Beta 2
(2004)

Future
(2005/06)

Advanced Support for Parallelism
Collapsible/Expandable Code
Commenting/Design Enforcement
Data Security
Data Security – Encryption Layer
Dependency Highlighting
Drag-and-Drop Programming
Dynamic Templating System
Easy-to-Learn Environment
Familiar Meta-Language
General Support for Parallelism
Integrated Online Template Library
Integrated Versioning System
Integrated Voting/Ranking System for Snippets
Package Organization
Ready for Open/Shared Source Development
Support for Whole Algorithm Replacement
Templating System

22

Chapter 4 – Main Design Concepts

4.1 Snippets

Snippets are the cornerstone of everything that is built within the Redwood environment.

They provide, in combination with design trees, the structure of a program. Snippets are

available for each major aspect of a programming language: functions, loops, statements,

and so forth. Unlike with a TPL, the grammar for a language is not predefined with

Redwood. Instead, the language is constructed from the set of tools that one has

available. These tools are snippets.

 In the Merriam-Webster Dictionary a snippet is defined as “a small part, piece, or

thing”. In Redwood, a snippet is used in the sense of “a small part” of a solution. A

snippet is comprised of two sections, the display section and the template section. The

structure of a snippet is described using XML. The display section of a snippet describes

the visualization of the snippet. It specifies how the elements of the snippet are placed on

the screen. The elements of a snippet are called snippet editors. Several snippet editors,

including a CodeEditor and IdentifierEditor are included in Redwood. These

editors allow programmers to store values and structures, including other snippets, inside

of snippets. They can represent anything from a block of code to a single numeric value.

The XML syntax for the display section of a snippet is discussed in detail in Chapter 6.

 The template section of a snippet is made up of one or more XML tags that

contain Snipplet scripts. A Snipplet script is a script written in the Snipplet language for

23

the purpose of mapping from the visual structure of a snippet into the programming

language that the user has selected for output. In other words, a Snipplet script (often

referred to as a template) generates source code. The Snipplet language is presented in

detail in Chapter 7.

4.2 Design Trees

Design trees are constructed when snippets are nested. A design tree is the structure that

allows, for example, a function to contain a block of code and a block of code to contain

statements. This concept may not seem readily novel or useful to distinguish. In a

standard compiler, a design tree would be called a parse tree. The difference between

these two concepts however, is important. A parse tree is composed of text built from

static rules based on a grammar. A design tree, powered by snippets, however, is built

with dynamic rules. It is as if one were to have a programming language that was able to

adapt to the needs of the programmer. The concept of a design tree provides the

framework through which snippets are connected.

 During the build process, a Snipplet script can access a program’s design tree

using two methods. First, the script can use the $snippetGraph and

$rootSnippetGraph variables which provide direct access to snippets and snippet

editors. Second, the script can use snippet editor function calls and filters. Both methods

are discussed at length in Chapter 7.

24

4.3 Drag-and-Drop Programming

Drag-and-drop programming is an aspect of virtually all GPLs and HPLs. In one of the

most representative examples, Carnegie Mellon’s educational tool Alice [1], drag-and-

drop programming was demonstrated more as textual programming combined with drag-

and-drop to help reduce the burden on the programmer. The programmer would no

longer have to remember the exact syntax for a for loop or an assignment statement.

He/she only has to remember how pieces could fit together. Other GPL, drag-and-drop

programming systems, similar to Alice, fall into two categories: the highly specialized, or

the trivial. Alice was itself specialized, providing an interface to programming for

students. However, taking the way that drag-and-drop programming was used in Alice

one step further leads to a method that offers graphical, drag-and-drop capabilities that

can be used for general-purpose computer programming. This was a large part of the

inspiration for Redwood.

 The drag-and-drop elements of Redwood are similar to those in Alice. That is,

constructs are selected from a menu and dragged into place in an editor. Once in place,

constructs can be edited and repositioned as necessary. One can create a program that

contains a class. Instead of typing in the syntax elements as one would in a traditional

TPL, Redwood allows one to drag an entire class construct. Then, the programmer fills

in the name and other customized aspects of the class. Similarly, one can drag in a

function, a for loop, or an assignment statement. As learned from Alice and other

GPL/HPL systems, drag-and-drop programming alone is not enough to create a major

change in programming. However, drag-and-drop programming, when combined with

25

the power of snippets, with the ability to extend one’s language and present code in more

meaningful ways, may.

4.4 Visualization Details

The visualization details immediately noticeable in Redwood Beta 2 may seem relatively

insignificant compared to those in Beta 1. Through the development of Beta 1, it was

realized that space usage could become a problem. Textual programs take up a fair

amount of screen real estate. With Beta 1, programmers found themselves being weighed

down by the amount of space simple constructs took up. For example, in Beta 1, because

of the linear layout requirements, a basic for loop was unnecessarily large, even if it

contained only a single statement.

 In Beta 2, one of the motivating factors for rewriting the snippet handling code

was space (and organization in general). In TPLs, programmers were used to working

with loop constructs that took minimal space. Even with the ability to hide portions of

code in Beta 1, it still was not nearly enough; at issue were the snippets themselves. The

snippet visualization in Beta 1 was performed in a way that resulted in large graphics.

Large outlines surrounded each snippet and the snippet editors. With the Beta 2 release,

the visual structure that allows one to modify a snippet’s properties, such as visibility, is

hidden until necessary. The programmer uses the mouse to bring up the controls. When

the mouse cursor runs over a snippet, the controls become visible. For convenience,

holding the escape key will maintain the state of the controls so they do not disappear

when moving over other objects. Similarly, releasing the escape key will force the

26

controls to disappear.

 The controls used in Beta 1 for adjusting the visibility of components within the

snippet were disclosure triangles and disclosure dots. As of the current status of Beta 2,

only disclosure triangles (as found in Mac OS X) are present. The future of disclosure

dots is currently undecided. For reference, a disclosure triangle is a triangular shape that

when pointing right is non-disclosing, meaning the contents associated with that

disclosure triangle are invisible. When the triangle points downward the contents are

disclosed. Disclosure dots provide finer-grained controls over visibility allowing certain

subcomponents to be made visible or invisible. In Beta 2 an alternative method for this

with a more natural mapping or at least a more standardized approach will be introduced.

27

Chapter 5 – Snippets and the Snipplet Language

5.1 More on the Snippet Concept

Snippets are tools for creating mappings between visual representations of programming

constructs and source code output. The visual part of a snippet, its display section, is a

collection of snippet editors that are organized in two dimensions using a table layout.

These editors can be used to store other snippets, display data, and/or act as inputs.

Snippet editors are standard Java Swing components that inherit from the

SnippetEditor class. Each snippet editor has a name and a type. The built-in snippet

editors include CodeEditor, DropdownEditor, ExpressionEditor, HR,

IdentifierEditor, LineEditor, ParametersEditor, StringEditor, and

TypeIdentifierEditor. This list will be expanded in the future because the current set

is minimal and more powerful tools can be created that allow one to more efficiently

visualize and manipulate programming constructs. The name of a snippet editor is

assigned in the display section of its containing snippet. Using the name of a snippet

editor inside a Snipplet script, one can access the editor and its contents. This is

discussed in detail in Chapter 7.

 The template section of a snippet stores Snipplet scripts. For each language

supported by a given snippet, at least one template has to be created. More than one

template can be created for a single language and more than one language can be used by

a single template. This is described in Chapter 8. For each language, the templates for

28

that language are concatenated in-order. Thus, the result is one Snipplet script per

language for each snippet. The portion of a Snipplet script that does not appear to exist

within a function is actually within a function called “template”. This function can be

accessed as any other function. Functions placed inside the template functions are

accessible in two ways. The first method is by directly using a function call. Many

Snipplet scripts can use “helper” functions to achieve their mappings. The second

method is to use a snippet editor function call. The exact syntax of a snippet editor

function call is shown in Figure 9, Production 45. A Snipplet can access the functions of

another Snipplet via this syntax. This is one method of accessing the design tree. For

additional details, the reader is again referred to Chapters 7 and 8.

5.2 Snippet Structure

Before rushing into creating one’s own snippets, one should survey the landscape of

existing snippets. This is simple to do because snippets are organized by category in their

hierarchical structure. In addition, when the online library is integrated it will be fully

searchable and viewable by category as well. A developer must decide what type of

snippet is to be created. For example, if one is implementing a new type of operator, then

the type is most likely an Expression and/or Statement. The extends attribute allows

one to formally specify which type of snippets a new snippet is similar to. This is

discussed in more detail in Chapter 8.

29

5.3 Snippet Development Stages

A snippet is defined and used in a process that can be represented, with certain

simplifications, as shown in Figure 3. (Note that activities are represented using shaded

rounded rectangles, while the results of these activities are shown using regular

rectangles.)

 First, the definition of the snippet is created using XML code. Next, at the

environment’s start-up the snippet tag is listed in Redwood’s Snippet Chooser tool,

thus the snippet becomes available for use (“selectable,” or ready to be dragged-and-

dropped). Then, if needed in the program, when the snippet is dragged into the program’s

workspace, the graphical representation of the snippet is rendered on the screen

(visualized snippet). Because in practice two types of snippets are used (base snippets, or

generic snippets, such as a generic class snippet and customized snippets, or instantiated

snippets, such as a book class snippet), the next typical step in using snippets is

customization, where the details of the snippet are fleshed out (e.g., a generic class

snippet becomes the instantiated book class snippet). Finally, when the current project

is built, the snippet is mapped onto its associated code according to the templates section

of the snippet definition. The snippet development stages are illustrated in Figure 3. Note

that for simplicity some details of the snippet development stages are omitted.

30

Figure 3. Snippet Development Stages

5.4 Snippet Display Syntax and the Snipplet Language

A snippet’s display and templates are described using the snippet display syntax (SDS)

and Snipplet language (SL), respectively. The display section of a snippet describes the

portions of the snippet that are visible to the user and the template section describes the

mapping from the visualized snippet to the programming language output (generated

code). Displays are currently described using static XML and templates are described

using dynamic Snipplet scripts. In a future release, displays may also be dynamically

created and modified.

 The SDS was designed to be a general-purpose interface description that is both

easy to write and simple to parse. The SDS came about as part of a supporting technology

designed for Redwood, the interface builder. Upon examining the source files of

Redwood Beta 2, one may notice that several of the files end with the “interface” file

extension. These files are used to describe interfaces, such as for dialog boxes, and are

31

constructed using XML. Interface files are a convenient way to build interfaces without

Java code, which can be tedious. This syntax allows one to place into the interface

description any Java AWT or Swing components, including custom components,

snippets, and snippet editors. This technology becomes especially important when

considering localized versions of Redwood. Perhaps more importantly, the technology is

flexible enough to be reused for external projects. The interface builder allows one to

load an interface dynamically from a file so the named components are saved as variables

accessible via a returned hash map. Chapter 6 provides a detailed reference for the

syntax related to creating snippets.

 The Snipplet language is designed for generating source code. As such, its design

needed to revolve around parsing and string handling. In addition, scripts needed to have

dynamic access to the elements of the design tree. The language was built primarily with

two other languages in mind, PERL [31] and JavaScript [32]. These languages are

commonly used for generating HTML and JavaScript code for web pages. Still, they are

not fully geared towards source code generation. In particular, code in both languages

tends to become unstructured quickly, if not carefully managed. For source code

generation, dealing with “languages inside of languages”, this was something that had to

be avoided. Like PERL and JavaScript, Snipplet makes use of variant types and has

several built-in functions specifically designed for parsing. Unlike with PERL and

JavaScript however, the language set is kept to a minimum. Even I/O is not included.

Another important factor that went into designing the Snipplet language was security.

Eventually an online snippet library will be integrated into the Redwood environment.

When programmers download new tools, it is essential that they do not have to worry

32

about viruses. If a language has too many features, it could become easily exploited for

malicious purposes. Chapter 7 provides a detailed description of the Snipplet language.

33

Chapter 6 – Snippet Display Syntax (SDS)

6.1 SDS Features

A snippet is defined, using XML, in two sections. The first section, the display, is

immediately apparent to the user of the snippet. The second section, the template, is only

noticeable when the user builds a program containing a snippet. This chapter discusses

the syntax used for defining the display section of a snippet.

In Beta 1, only vertical, linear layouts were supported. In Beta 2, the snippet

display tag contains a table-based layout of snippet editors. Using a table-based layout

allows one to create non-linear or two-dimensional layouts. The structure of the table

layouts in Beta 2 is similar to HTML-style tables. That is, tables are organized into rows,

and rows are organized into columns – they are “row major”. Each cell can span one or

more rows and columns and can be given width and height attributes. In addition, each

cell can be given alignment parameters in both the horizontal and vertical directions.

Unlike HTML tables however, the Beta 2 table layouts only allow one element (which

can be a nested table) per cell.

 Snippet editors are the foundation of snippet displays. Each snippet must contain

at least one snippet editor. Snippet editors are special Java Swing components that

extend the SnippetEditor class (these will be discussed in more detail in Section 8.2).

Several snippet editors are included in Redwood. Each has various parameters that may

be set. For example, the LineEditor snippet editor is commonly used to display a single

34

line of text. The Editable parameter can be set to false so that the editor is used as a

display only, and not as an input. The Text parameter is used to set the message of the

editor.

6.2 SDS Reference

The following reference assumes that one has a basic knowledge of XML including

knowledge of tags and attributes. All possible tags, along with several examples of

snippet editors, are listed below. It is important to note that snippet tags are case-

sensitive as many of them refer to Java class names.

6.2.1 SDS Tag – display

The display tag is used as a wrapper for the entire snippet display. It contains either a

snippet editor or, more commonly, a table.

6.2.2 SDS Tag - table

The table tag organizes cells used for storing snippet editors and nested tables into rows

and columns. A table may only directly contain tr (table row) tags. Table II gives the

list of attributes available to the table tag, their descriptions, and also gives an example

using the table tag.

35

Table II The SDS table Tag: Attributes and Example

Attribute Description
margin The size of the margin placed around the outside of the table. This

gives padding to the contents.
margin-left The size of the left margin. This is useful for creating a “tabbed” look.
margin-right The size of the right margin.
margin-top The size of the top margin.
margin-bottom The size of the bottom margin.
Example
<table margin="2">
 <tr>
 <td>
 <LineEditor>
 <param name="Text">
 <String value="Line Editor 1"/>
 </param>
 </LineEditor>
 </td>
 <td>
 <LineEditor>
 <param name="Text">
 <String value="Line Editor 2"/>
 </param>
 </LineEditor>
 </td>
 </tr>
</table>

6.2.3 SDS Tag - tr

The tr tag represents a table row. A tr tag has no attributes and may only directly

contain td (table data) tags. See the example given in Table II for use of the tr tag.

6.2.4 SDS Tag - td

The td tag represents a cell (td stands for table data). A td tag may directly contain table

or snippet editor tags. Unlike HTML, there is no need for a td tag to contain anything.

The appropriate amount of space is allocated for the cell whether or not the cell contains

anything. Table III lists the attributes and gives an example using the td tag.

36

Table III The SDS td Tag: Attributes and Example

Attribute Description
width The width of the column, which can be an absolute (pixel) value or a

percentage of the table width. The percentage is the percentage after
statically allocated widths are used. The default width is the preferred
width of the largest visible component. The actual width of a column
will be the largest of the specified widths if multiple widths are
specified for a single column.

height The height of the row, allocated similarly to the width.
colspan The number of columns over which the cell exists (spans). The default

is 1.
rowspan The number of rows over which the cell exists. The default is 1.
halign The horizontal alignment of the contents of the cell. The default is

“fill”. Possible values include “left”, “right”, and “center”.
valign The vertical alignment of the contents of the cell. The default is “fill”.

Possible values include “top”, “bottom”, and “center”.
Example
<tr>
 <td width=”100%” colspan=”3”>
 <LineEditor>
 <param name="Text">
 <String value="Line Editor 1"/>
 </param>
 </LineEditor>
 </td>
</tr>
<tr>
 <td width=”50%”>
 <LineEditor>
 <param name="Text">
 <String value="Line Editor 2"/>
 </param>
 </LineEditor>
 </td>
 <td width=”12”></td>
 <td width=”50%”>
 <LineEditor>
 <param name="Text">
 <String value="Line Editor 3"/>
 </param>
 </LineEditor>
 </td>
</tr>

6.2.5 SDS Snippet Editors

Various snippet editors are included in Redwood. This reference describes how to use

snippet editors in general and gives several specific examples. To use a snippet editor,

37

give the tag the name of the snippet editor class file. This is case-sensitive. For example,

to use the LineEditor class, one would use <LineEditor/>. The param tag is used for

setting parameters in snippet editors. The function tag is used to call functions on the

snippet editor. The function tag can be used in place of the param tag, but for

readability, this is generally not recommended.

6.2.6 SDS Tag - param

The param tag is an alias for the function tag with a name parameter that must start with

“set”. For example, if a param tag has the name “Enabled”, the equivalent function tag

would have the name “setEnabled”. See the function tag reference for additional

details.

6.2.7 SDS Tag - function

The function tag allows one to call any public function of the snippet editor. The tag

requires the name attribute and may contain any number of value tags, as discussed next.

Table IV contains the list of attributes that may be used with the function tag. Only the

name attribute may be used with the param tag.

Table IV The SDS function and param Tags: Attributes and Example

Attribute Description
name The name of the function to be called on the snippet editor.
type The return type of the function.
cast The type to cast the result value to.
Example
<td><LineEditor>
 <param name="Text"><String value="Line Editor 1"/></param>
 <param name="MinimumSize">

38

Table IV Continued from previous page

 <Dimension>
 <param name="Size">
 <int value="-1"/>
 <int value="10"/>
 </param>
 </Dimension>
 </param>
</LineEditor></td>
<td><LineEditor>
 <function name=”setText”>
 <String value=”Line Editor 2”/>
 </function>
</LineEditor></td>

6.2.8 SDS Value Tags

Various value tags can be used within param and function tags. These currently include

the following types: nested function tags, byte, short, int, long, float, double,

char, boolean, String, and any other type in any of the following packages: the default

package, redwood, redwood.plugins, java.lang, java.awt, java.awt.event,

java.util, javax.swing, or javax.swing.event. The cast attribute (as in the

function tag) can be used for most of the value tag types. For classes without default

constructors, the constructor tag may be used to specify the initialization method of the

object (see the “Foreground” param tag below). Table V gives an example using several

types of value tags.

Table V The SDS Value Tags: Attributes and Example

Attribute Description
various Most value tags can use the cast attribute, some can use the value

attribute.
Example
<LineEditor>
 <param name="Text"><String value="Line Editor 1"/></param>
 <param name="Editable"><boolean value="false"/></param>
 <param name="Foreground">

39

Table V Continued from previous page

 <Color>
 <constructor>
 <int value="128"/><int value="128"/><int value="128"/>
 </constructor>
 </Color>
 </param>
 <param name="MinimumSize">
 <Dimension>
 <param name="Size">
 <int value="-1"/>
 <int value="10"/>
 </param>
 </Dimension>
 </param>
</LineEditor>

In the following, examples are provided for a few of the included snippet editor types.

This list is not all-inclusive. For additional information about specific snippet editors,

one should read the generated HTML documentation that will be included with the

Redwood download when publicly available at [33].

6.2.9 SDS Tags - LineEditor, StringEditor, IdentifierEditor, TypeIdentifierEditor

A LineEditor displays and/or allows the user to input a single line of text. A

StringEditor is similar to a LineEditor except that it allows for multiple lines of text.

IdenfitierEditor and TypeIdentifierEditor are special types of LineEditors that

are designed for users to enter identifiers (i.e. variable names) and type identifiers (i.e.

class names). In the future, these modified types will provide enhanced usability features

such as auto-completion for known variable names. Table VI gives a usage example and

the list of parameters commonly used with these editors.

40

Table VI The SDS LineEditor and StringEditor Tags: Parameters and Example

Parameter Description
Editable Whether or not the text is editable. Use a boolean value.
FontSize The size of the font to be displayed. Use an int value.
Foreground The color of the text. Use a Color value.
Text The text to be displayed. Use a String value.
Example
<LineEditor name="id">
 <param name="Text"><String value="Line Editor 1"/></param>
 <param name="Editable"><Boolean value="true"/></param>
 <param name="Foreground"><Color>
 <constructor>
 <int value="255"/>
 <int value="0"/>
 <int value="0"/>
 </constructor>
 </Color>
</LineEditor>

6.2.10 SDS Tag - CodeEditor

A CodeEditor allows one to place many snippets in a vertically linear order. These are

used in the SnippetGroup, Class, and Function snippets, among others, for dropping

code. Table VII gives the parameters that are commonly used with the CodeEditor tag

and gives an example.

Table VII The SDS CodeEditor Tag: Parameters and Example

Parameter Description
Allow Used to specify which types of snippets can be dropped. Use a

LinkedList of String values.
ConstSnippets Whether or not new snippets can be added to / current snippets can be

removed from the editor. Takes no parameters, used to set only.
Example
<CodeEditor name="code">
 <param name="Allow"><LinkedList>
 <String value="Comment"/>
 <String value="Statement"/>
 </LinkedList></param>
</CodeEditor>

41

Chapter 7 – The Snipplet Language (SL)

7.1 SL Features

The Snipplet language was created specifically to support source code generation. For

inspiration, ideas from two languages commonly used for code generation, PERL and

JavaScript, were used. The PERL or Practical Extraction and Report Language [31] is

often used for CGI programming [34]. CGI allows one to dynamically create web pages,

through generation of code such as HTML, JavaScript, and CSS. The JavaScript

language, a derivative of Java, is often used to generate HTML and JavaScript code on

the client-side [32]. Both languages have features and syntax that lend nicely to source

code generation. In addition, several original ideas have been incorporated into the

Snipplet language design.

 The most important aspects of the language design are the functionality of return

statements and the scalability of variables. The return statement, unlike in most other

languages, does not automatically halt function execution. Instead, return values are

concatenated. This is effective for source code generation in that the repetitive

construction of functions can be reduced. To jump out of a function after a return or at

any other time, a break statement can be used. Like JavaScript, variables in Snipplet are

of variant type, meaning they can switch between types. The standard data types include

integers, real numbers, strings, arrays (including multi-dimensional), and associative

arrays (or hash tables). In addition to these, it is also possible to access snippets, giving

42

scripts direct access to the design trees of programs.

 While examining the features that a source code generation language should have,

several important factors come to mind. Most importantly, the syntax should be direct

and simple, able to “stay out of the developer’s way.” Because one is working with two

levels of syntax, the syntax for the language being used (Snipplet) and the syntax for the

language being generated, it should be easy to distinguish between the two languages. At

the same time, the language should be powerful enough and flexible enough to simplify

the often complex demands involved in source code generation. Although uncommon

with respect to other languages, the issue of concatenating return values became

important as, without it, for virtually every function that one would write, one would

need to create an output variable specifically used for concatenation.

 Another important factor in designing a language for generating code is to provide

a tendency for self-organizing syntax. That is, Snipplet code should not become

confusing to examine due to lack of organizational formatting or overly compressed

syntax. PERL programs often suffer from use of rather esoteric functions. Even though

one can look up the meanings of various shortcut functions, inclusion of these in a

language designed specifically for source code generation would be a mistake. Examples

include the familiar “s///” function in PERL, which is a function for replacing

substrings. Although compressed syntax can be convenient for the programmer, more

straightforward naming conventions let programmers less experienced with the language

or program interpret and modify code more easily. In fact, in Snipplet’s case, even

though the language is quite powerful, the grammar and the list of functions that one

needs to know to work with it are relatively short.

43

7.2 SL Grammar

In order to facilitate the implementation of the Snipplet interpreter, a custom grammar

and parser generator were created. A grammar file describes language syntax. In the

case of Snipplet scripts, everything revolves around templates. A template is a single

Snipplet script that can be interpreted and executed. Once a grammar is constructed, a

parser can be created for the grammar. The parser generator used for Redwood takes the

Snipplet grammar and produces such a parser.

 The Snipplet parser is a Java class whose parse function takes a string as a

parameter. This string is parsed and the result is placed into a parse tree. The parse tree

represents a full analysis of the syntactical structure of the string. It breaks the string

down so that one can determine that the string is a template, the template contains blocks,

the blocks contain statements, and so on. Given a parse tree, another Java class,

SnippletHandler, is used to interpret the script. At this point, the result of the script,

specifically the concatenated return values of the script, are returned.

The Snipplet grammar, presented below in a variant of Extended Backus-Naur

Form (EBNF), is separated by level for easier reading. Levels 0, 2, and 3 are the most

significant, containing the start symbol and the types (and specifications) of statements.

Level 0, also known as the “start symbol”, is shown in Figure 4 and is the wrapper

for the entire template code; it encapsulates all Snipplet code.

1 template ::= block WS

Figure 4. SL Grammar: Level 0 (the Start Symbol) of the SL Grammar

44

In Figure 4, one should notice that allowance of whitespace is being explicitly specified.

Figure 5 contains the basic pieces of a template, blocks (or collections of statements) and

whitespace (which includes C++ style comments). The syntax within single quotes

follows PERL regular expression syntax.

2 block ::= statement*

3 WS ::= (‘\s+’ | ‘//.*’ | ‘/*([\u0000-\u0029\u002B-\u9999]|*[\u0000-\u002E\u0030-

\u9999])**/’)*
Figure 5. SL Grammar: Level 1, Basic Template Components

Figure 6 shows Level 2 of the SL Grammar. This level is one of the most significant as it

describes the different types of statements that are possible with the Snipplet language. A

statement is the crux of the grammar; each element of the script can be reduced to a

statement.

4 statement ::= WS (break | declaration | return | expression) WS ';' | WS
(functionDeclaration | if | loop) WS

Figure 6. SL Grammar: Level 2, Statement Types

Level 3 is shown in Figure 7. This level gives a detailed description for the specification

of each of the statement types listed in Level 2 (Figure 6). For convenience, the

expression production is broken down into sub-expressions (starting with

binaryArithmeticLevel5). Though these sub-expressions should belong to higher

levels, they have been grouped together for more efficient organization.

45

5 break ::= 'break'

6 declaration ::= 'var' SP identifier (WS '=' WS (arrayInitializer | expression))?

7 expression ::= binaryArithmeticLevel5

8 //Sub-expressions

9 binaryArithmeticLevel5 ::= binaryArithmeticLevel4 binaryArithmeticLevel5a?

10 binaryArithmeticLevel5a ::= WS '\|\|' WS binaryArithmeticLevel4

binaryArithmeticLevel5a?

11 binaryArithmeticLevel4 ::= binaryArithmeticLevel3 binaryArithmeticLevel4a?

12 binaryArithmeticLevel4a ::= WS '&&' WS binaryArithmeticLevel3

binaryArithmeticLevel4a?

13 binaryArithmeticLevel3 ::= binaryArithmeticLevel2 binaryArithmeticLevel3a?

14 binaryArithmeticLevel3a ::= WS '!=|<|<=|==|>=|>' WS binaryArithmeticLevel2

binaryArithmeticLevel3a?

15 binaryArithmeticLevel2 ::= binaryArithmeticLevel1 binaryArithmeticLevel2a?

16 binaryArithmeticLevel2a ::= WS '\+|\-' WS binaryArithmeticLevel1

binaryArithmeticLevel2a?

17 binaryArithmeticLevel1 ::= binaryArithmeticLevel0 binaryArithmeticLevel1a?

18 binaryArithmeticLevel1a ::= WS '*|/|%' WS binaryArithmeticLevel0

binaryArithmeticLevel1a?

19 binaryArithmeticLevel0 ::= mainExpressionPart

20 //End sub-expressions

21 return ::= 'return' SP expression

22 functionDeclaration ::= 'sub' SP identifier WS '\{' WS block WS '\}'

23 if ::= ifPart (WS elseIfPart)* (WS elsePart)?

24 loop ::= dowhileLoop | foreachLoop | forLoop | whileLoop

Figure 7. SL Grammar: Level 3, Statement Specifications

Level 4, shown in Figure 8, is a support level. A few important language features are

specified here. Perhaps most significant is the forced use of curly braces for if

statements and loops. Such forced formatting helps to maintain the ease of distinction

between Snipplet code and output code.

46

25 identifier ::= arrayIdentifier | scalarIdentifier | hashIdentifier

26 arrayInitializer ::= '\{' WS (expression (WS ',' WS expression)* WS)? '\}'

27 typeCast ::= '\(' WS ('string' | 'real' | 'integer') WS '\)'

28 mainExpressionPart ::= (typeCast WS)? (assignment | doubleValue | functionCall |

identifier | longValue | parentheses | string | unaryArithmetic |
snippetEditorFunctionCall)

29 ifPart ::= 'if' WS condition WS '\{' WS block WS '\}'

30 elseIfPart ::= 'elseif' WS condition WS '\{' WS block WS '\}'

31 elsePart ::= 'else' WS '\{' WS block WS '\}'
32 dowhileLoop ::= 'do' WS '\{' WS block WS '\}' WS 'while' WS condition

33 foreachLoop ::= 'foreach' SP identifier WS '\(' WS expression WS '\)' WS '\{' WS

block WS '\}'

34 forLoop ::= 'for' WS '\(' (expression | declaration) WS ';' WS expression WS ';'

WS expression WS '\)' WS '\{' WS block WS '\}'

35 SP ::= ('\s+' | '//.*' | '/*([\u0000-\u0029\u002B-\u9999]|*[\u0000-\u002E\u0030-

\u9999])**/')+

36 whileLoop ::= 'while' WS condition WS '\{' WS block WS '\}'

Figure 8. SL Grammar: Level 4, Primary Support for Statements

Figure 9. shows the productions for Level 5 of the SL grammar. The most important

language feature apparent in this level is the use of multi-line strings (similar to those

used in PERL) which are, like forced formatting, a useful tool in helping to distinguish

between Snipplet and output code. Although automatic formatting will be implemented

in a future release of Redwood, Snipplet programmers may wish to see roughly what the

output will look like before running their programs.

37 arrayIdentifier ::= scalarIdentifier ('\[' expression? '\]')+

38 assignment ::= identifier WS ('=' | '\+=' | '\-=' | '*=' | '/=' | '%=') WS

expression

39 doubleValue ::= '(\+|\-)?[0-9]+\.[0-9]+'

Figure 9. SL Grammar: Level 5, Secondary Support for Statements

47

40 functionCall ::= identifier WS '\(' WS parameters? WS '\)'

41 hashIdentifier ::= scalarIdentifier '\{' expression? '\}'

42 longValue ::= '(\+|\-)?[0-9]+'

43 parentheses ::= '\(' expression '\)'

44 scalarIdentifier ::= '[\$@A-Za-z_][A-Za-z_0-9]*'

45 snippetEditorFunctionCall ::= '\[#' WS expression (WS ':' WS parameters)? WS '\]'

46 string ::= '"(\\"|[\u0000-\u0021\u0023-\u9999])*"|\'(\\\'|[\u0000-\u0026\u0028-

\u9999])*\''

47 unaryArithmetic ::= '!' WS expression

48 condition ::= '\(' WS expression WS '\)'

Figure 9. Continued from previous page

Level 6, shown in Figure 10, is a minor level that contains the specification for function

parameters. Similarly to PERL, as many parameters as are needed may be sent to a

function. Unlike PERL however, the Snipplet language does not collapse array or hash

tables into the parameters list.

49 parameters ::= expression | expression (WS ',' WS expression)+

Figure 10. SL Grammar: Level 6, Support for Functions

7.3 SL Function Reference

The following is a list of the built-in functions that can be used in the Snipplet language.

This reference is provided to give greater depth in understanding how Redwood is able to

map from programming construct visualizations to target languages.

48

7.3.1 SL Function - arrayLength

The arrayLength function gets the length of the specified array. Table VIII describes

the function’s parameters and return value, and gives an example of how the function can

be used.

Table VIII The SL arrayLength Function: Description and Example

Parameter Description
Array The array whose length is to be returned.

Return Description
Integer The number of elements in the array.
Example
var exampleArray = (1, 2, 3, 4, 5);
return arrayLength (exampleArray);

7.3.2 SL Function - datatype

The datatype function determines the data type of the specified object. The parameter

to this function, as shown in Table IX, can be of any type. Table IX provides an example

and lists the parameters and return types for the datatype function.

Table IX The SL datatype Function: Description and Example

Parameter Description
Any Type The object whose datatype is to be returned.

Return Description
String The datatype of the specified object. Possible return values include:

“Array”, “Associative Array”, “Integer”, “Real”, “String”, and
“Snippet”.

Example
var exampleArray = (1, 2, 3, 4, 5);
return “Datatype #1: ” + datatype (exampleArray) + “\n”;
return “Datatype #2: ” + datatype (exampleArray[0]);

49

7.3.3 SL Function - defined

The defined function determines whether or not the specified object is defined. Table X

provides a description and example for the defined function.

Table X The SL defined Function: Description and Example

Parameter Description
Any Type Determines whether or not the specified object is defined.

Return Description
Integer 1 if the object is defined, 0 otherwise.
Example
if (defined (checkString)) { return “checkString is defined.\n”; }
else { return “checkString is not defined.\n”; }

7.3.4 SL Function - evaluate

The evaluate function dynamically evaluates the specified Snipplet code. The string

parameter, as shown in Table XI, can be a dynamically generated string containing

Snipplet code.

Table XI The SL evaluate Function: Description and Example

Parameter Description
String Snipplet code to be dynamically evaluated.

Return Description
Any Type The result of the evaluation of the specified code.
Example
var codeString = “var x = 5; return x;”;
return evaluate (codeString);

50

7.3.5 SL Function - getSnippetType

The getSnippetType function returns the type of the specified snippet. Table XII

describes and provides an example for getSnippetType.

Table XII The SL getSnippetType Function: Description and Example

Parameter Description
Snippet The snippet whose name is to be returned.

Return Description
String The name of the specified snippet.
Example
var codeString = getSnippetType ($snippetGraph{“”});

7.3.6 SL Function - getUID

The getUID function returns a unique identification number. This number is unique only

to the build and is not guaranteed to be stable. This function is generally used to for

generating unique temporary variable names. Table XIII describes the return value and

gives an example for the getUID function.

Table XIII The SL getUID Function: Description and Example

Parameter Description
none n/a

Return Description
Integer A unique identification number.
Example
return “int temp_” + getUID () + “ = 0;\n”;

51

7.3.7 SL Function - instanceOf

The instanceOf function checks to see if a snippet is or extends the specified type.

Table XIV provides a description and example.

Table XIV The SL instanceOf Function: Description and Example

Parameter Description
Snippet The snippet to be checked.
String The type of snippet to check for (including with extends attribute).

Return Description
Integer 1 if the snippet is an instance of the specified type, 0 other wise.
Example
var codeSnippets = $snippetGraph{“code”};
var graph = codeSnippets[1];
if (instanceof (graph{“”}, “Expression”))
{
 return [#“code”];
}

7.3.8 SL Function join

The join function combines the specified array with the specified delimiter. Table XV

describes the join function and provides an example.

Table XV The SL join Function: Description and Example

Parameter Description
String The delimiter with which the elements of the array are to be joined (the

delimiter will be placed between each adjacent pair of elements in the
array).

Array The array whose elements are to be joined.

Return Description
String The joined array whose format is like: element1delimelement2…
Example
var exampleArray = (1, 2, 3, 4, 5);
return join (“, ”, exampleArray);

52

7.3.9 SL Function - keys

The keys function returns the keys of the specified associative array (hash table). Table

XVI contains an example and description of the function parameters and return value.

Table XVI The SL keys Function: Description and Example

Parameter Description
Associative
Array

 The associative array whose list of keys is to be returned.

Return Description

Array The list of keys associated with the specified associative array.
Example
var associativeArray = (0, “Zero”, 1, “One”, 2, “Two”);
var sum = 0;
foreach var key (keys (associativeArray))
{
 return key + “\n”;
 sum += key;
 return sum + “\n”;
}

7.3.10 SL Function - removeElementFromArray

The removeElementFromArray function removes the specified element from the

specified array. Table XVII describes and provides an example for this function.

Table XVII The SL removeElementFromArray Function: Description and Example

Parameter Description
Array The array from which an element is to be eliminated.
Integer The index of the element to be eliminated.

Return Description
none n/a
Example
var exampleArray = (1, 2, 3, 4, 5);
removeElementFromArray (exampleArray, 2);
return join (“, ”, exampleArray);

53

7.3.11 SL Function - replaceAll

The replaceAll function, described in Table XVIII, replaces the specified regular

expression delimiter in the specified string with a specified value.

Table XVIII The SL replaceAll Function: Description and Example

Parameter Description
String The string to have parts replaced.
String The regular expression used to replace parts of the specified string.
String The string to replace the matching substrings with.

Return Description
String The string with matching substrings replaced.
Example
var exampleString = “one two three four”;
replaceAll (exampleString, “ ”, “,”);

7.3.12 SL Function - split

The split function performs the opposite operation as the join function. It returns an

array from a string that contains the specified regular expression delimiter. The split

function is described in Table XIX.

Table XIX The SL split Function: Description and Example

Parameter Description
String The string to be split.
String The delimiter to split on.

Return Description
Array An array of the elements split on the specified delimiter.
Example
var exampleString = “one two three four”;
var exampleArray = split (exampleString, “ ”);

54

7.3.13 SL Function - values

The values function, described in Table XX, returns the values from the specified

associative array.

Table XX The SL values Function: Description and Example

Parameter Description
Associative
Array

 The associative array whose list of values is to be returned.

Return Description

Array The list of values associated with the specified associative array.
Example
var associativeArray = (0, “Zero”, 1, “One”, 2, “Two”);
return join (“\n”, values (associativeArray)) + “\n”;

Calling snippet editor functions allows one to access the design tree. The syntax for

calling a snippet editor function is given in Figure 9, Production 45. In summary, the

syntax is as follows. The entire function call is surrounded by square brackets. Before

the snippet editor name a pound sign (#) is placed. The snippet editor name is the value

of the first expression, most commonly a literal string (however, it can be a string value

from a variable as well). If parameters are needed for the snippet editor function call, a

colon is placed in between the snippet editor name and the list of comma separated

parameters. Each parameter is an expression. The most common parameters take one of

three possible forms, as shown in Figure 11.

55

1. +Snippet Type:Snipplet Code
2. +Snippet Type
3. –Snippet Type

Figure 11. Most Common Parameter Formats for Snippet Editor Function Calls

Most types of snippet editors that contain snippets support these parameter formats.

These allow one to filter certain types of contained snippets and to call functions on

certain types. The leading plus (+) stands for an additive snippet type. The leading

minus (-) is for a subtractive type. If the first parameter is additive, the list of acceptable

types begins as an empty list. If the first parameter is subtractive, the list of acceptable

types begins as a list with all possible types. The specified types include the exact names

of snippets and the types that they extend. If a snippet is of type Assignment, which

extends Expression and Statement, than +Expression would also accept the

Assignment. To counter this, one could use +Expression followed by -Assignment.

 The default Snipplet code for an accepted type is “return template ();”. If one

modifies this value, the modification is a substitution. That is, instead of running

“return template ();” the script would run, for example, “return

asFunctionPrototype ();”. This example case is used for functions because it is often

necessary to extract a function prototype from a function implementation, as it is the case

in the programming languages C and C++.

56

7.4 Special Variables

A few special variables are available to Snipplet scripts. These are summarized in the

following subsections.

7.4.1 Special Variables - $rootSnippetGraph and $snippetGraph

These variables give scripts access to the design tree. The $rootSnippetGraph variable

provides a pointer from the SnippetGroup snippet that contains all the code in the project

to the root of the design tree. The $snippetGraph is a pointer from the current snippet to

its location in the design tree. These variables are hash tables. The keys of the hash are

the names of the snippet editors contained in the snippet. An additional key, the empty

string, is provided to give a reference to the snippet itself. For most types of snippet

editors, the value of a hash element will be a linked list of all snippets contained by the

snippet editor. The first element of such a list is reserved for the class and the name of

the snippet editor (a pair of strings separated by a colon).

7.4.2 Special Variable - $language

The $language variable stores the name of the language that is used for code output such

as “C”, “C++”, or “Java”.

7.4.3 Special Variable - $projectName

The $projectName variable stores the name of the project.

57

7.4.4 Special Variables - @ and $1, $2, $3,…

These special variables are used for function parameters. The array variable @ stores all

the parameters of the array. Each parameter can also be accessed individually using the

dollar sign ($) variables. Unlike with PERL, parameters that are complex types such as

arrays are not reduced to become part of the parameter array. Rather, the whole array is

one element of the parameter array.

58

Chapter 8 – Writing Programs in Redwood

8.1 Using Existing Snippets

To use an existing snippet, one may simply drag a snippet, listed by name in the Snippet

Chooser tool, and drop it into the editing space. Once in place, a snippet can be

repositioned and manipulated as needed. A newly dropped snippet is called a visualized

snippet. These snippets are ready for customization. Not all snippets require

customization; some may meet one’s needs immediately upon being dropped. However,

most snippets will need at least minor customizations. A snippet can be customized in

two ways. First, with some types of snippet editors, editing text and/or manipulating

controls will help customize the snippet. Second, with other types of snippet editors, one

may drop additional snippets. For example, in a CodeEditor one may drop as many

snippets as necessary. In an ExpressionEditor only a single snippet may be dropped,

and in a LineEditor only a single line of text may be input.

 The Select Build Language option of the Project menu allows a programmer

to select the language desired for output. The current version of Redwood does not

perform checking for compatibility with already-dropped snippets, but a future version

will. The current Beta 2 release supports C, C++, and Java output for all included

snippets. The Project menu’s Build option runs the Snipplet scripts for the project

generating source code output in the desired language. This code is placed in source files

as appropriate.

59

8.2 Creating New Snippets

Since Redwood is a newly developed programming environment, the number of snippets

it contains currently is rather limited. Once the online integration is complete, a much

wider variety of snippets will be available. Still, from time to time, one may need to

develop custom snippets for solving particular problems. The goal of Redwood is, of

course, that after one completes a custom snippet, that one could uploaded it to the public

snippet server for the general use in the integrated online library.

 There are two basic ways to create new snippets. The first is to create a snippet

from scratch. The second is to combine other snippets and save the combination as a new

type of snippet. Even though the first method is more powerful, it is also slightly more

complicated. Section 8.1 has indirectly discussed methods for creating new snippets with

the second method. This section discusses creating snippets from scratch. For

illustration purposes, this section will cover the creation of a foreach loop snippet

compatible with the C++ and Java languages, as well as a sigma summation operator.

8.2.1 Foreach Loop Snippet

One of the most useful examples for demonstrating the power of snippets is to show that

one can extend a language to include new structures. This fact is already demonstrated

with the included snippets for classes that are compatible with C. To create a new

snippet, for a structure or any other programming component, one should begin by

thinking of mappings to common languages. A foreach loop is a loop that goes through

60

each element of an array, assigning the current element to a variable, for convenient

access. The programming language PERL makes use of these structures. For languages

such as C and C++ it does not necessarily make sense to have such support included.

However, when one creates an array class, the usefulness becomes more apparent. For a

language such as Java, it would have made sense to allow foreach loops. Still, for

some reason they were left out of the specification. Fortunately, Redwood’s snippets

allow one to get around these limitations of the language grammars by creating mappings

to those languages. A foreach loop’s mapping is simple to imagine. Instead of directly

using foreach loop syntax, one can use for loop syntax in combination with an extra

variable that is set for each element. The for loop has n iterations, where n is the length

of the array.

 The syntax for a PERL foreach loop is shown in Figure 12.

foreach variable (array)
{
 …
}

Figure 12. The Syntax of PERL foreach Loops

Using the PERL syntax as a model, one can fairly easily create the snippet display

section. The display will consist of four rows. The first row will contain the structure

heading “foreach variable (array)”. The second and fourth rows will contain only

the left and right braces, respectively. The third row will contain the loop’s code.

 To create the first row, the structure heading, one will need a nested table that

contains five columns. These columns will hold the “foreach” label, the variable name

61

input (an IdentifierEditor), the open parenthesis, the array name input (an

IdentifierEditor), and the closing parenthesis. The third row will contain a single

CodeEditor and will have a left margin of ten pixels, to create a tabbed appearance for

the code. Figure 13 shows the snippet’s entire display section.

<display>
 <table>
 <tr>
 <td>
 <table><tr>
 <td>
 <LineEditor>
 <param name="Text"><String value="foreach "/></param>
 <param name="Editable">boolean value="false"/></param>
 </LineEditor>
 </td>
 <td>
 <IdentifierEditor name="loopvariable">
 <param name="Text">String value="variable name"/></param>
 <param name="MinimumSize"><Dimension>
 <param name="Size">int value="4"/><int value="-1"/></param>
 </Dimension></param>
 </IdentifierEditor>
 </td>
 <td>
 <LineEditor>
 <param name="Text"><String value=" ("/></param>
 <param name="Editable">boolean value="false"/></param>
 </LineEditor>
 </td>
 <td>
 <IdentifierEditor name="array">
 <param name="Text">String value="array variable name"/></param>
 <param name="MinimumSize"><Dimension>
 <param name="Size"><int value="4"/><int value="-1"/></param>
 </Dimension></param>
 </IdentifierEditor>
 </td>
 <td>
 <LineEditor>
 <param name="Text"><String value=")"/></param>
 <param name="Editable"><boolean value="false"/></param>
 </LineEditor>
 </td>
 </tr></table>
 </td>
 </tr>

Figure 13. Snippet Display of foreach Loop

62

 <tr>
 <td>
 <LineEditor>
 <param name="Text"><String value="{"/></param>
 <param name="Editable"><boolean value="false"/></param>
 </LineEditor>
 </td>
 </tr>
 <tr>
 <td width="100%">
 <table margin-left="10"><tr>
 <td width="100%">
 <CodeEditor name="code">
 <param name="Allow"><LinkedList>
 <String value="Statement"/>
 <String value="Variable Declaration"/>
 </LinkedList></param>
 <param name="MinimumSize"><Dimension>
 <param name="Size"><int value="-1"/><int value="10"/></param>
 </Dimension></param>
 </CodeEditor>
 </td>
 </tr></table>
 </td>
 </tr>
 <tr>
 <td>
 <LineEditor>
 <param name="Text"><String value="}"/></param>
 <param name="Editable"><boolean value=”false”/></param>
 </LineEditor>
 </td>
 </tr>
 </table>
</display>

Figure 13. Continued from previous page

After defining the display section, the part that will be immediately visible to the user,

one must create the templates that map the snippet’s display and contents into the target

programming language that the user has selected. Using the Snipplet language reference

presented in Chapter 7 for guidance, one should be able to create the template example as

shown in Figure 14.

63

<template language="C++">
 var uid = getUID ();

 return "
 int Snippet_ForEach_length_" + uid + " = " + [#"array"] + "->getLength ();
 for (int Snippet_ForEach_index_" + uid + " = 0; Snippet_ForEach_index_" + uid + "
 < Snippet_ForEach_length_" + uid + "; Snippet_ForEach_index_" + uid + "++)
 {
 " + [#"array" : "getElementType"] + " " + [#"loopvariable"] + " = " + [#"array"]
 + "->getElementByIndex (Snippet_ForEach_index_" + uid + ");

 " + [#"code"] + "
 }
 ";
</template>

<template language="Java">
 var uid = getUID ();

 return "
 int Snippet_ForEach_length_" + uid + " = " + [#"array"] + ".getLength ();
 for (int Snippet_ForEach_index_" + uid + " = 0; Snippet_ForEach_index_" + uid + " <
 Snippet_ForEach_length_" + uid + "; Snippet_ForEach_index_" + uid + "++)
 {
 " + [#"array" : "getElementType"] + " " + [#"loopvariable"] + " = " + [#"array"]
 + ".getElementByIndex (Snippet_ForEach_index_" + uid + ");

 " + [#"code"] + "
 }
 ";
</template>

Figure 14. Snippet Templates (written in the Snipplet language) of foreach Loop,
compatible with C++ and Java

8.2.2 Sigma Summation Snippet

Another example that demonstrates the power of Redwood is to create a snippet that

allows the “syntax” of a language to extend beyond what is possible with a standard text

editor. In Redwood, one can create graphical representations of object and programming

constructs or one can simply provide a non-linear layout. The mathematical “sigma” (∑)

operator provides a convenient syntax by which mathematicians can sum values. The

syntax is non-linear and therefore cannot, in its standard form, be described using a

standard text-editor. Figure 15 shows the standard form of sigma notation.

64

Figure 15. Standard Sigma Notation

 Creating a sigma operator is slightly more complicated than creating a foreach

loop. To create a sigma operation one effectively needs to create a for loop that returns

a value. This is of course not possible in most languages. On the other hand, one could

create a function. However, this would require that one looks up and then passes a fair

number of variables to that function. Conveniently, Redwood takes such considerations

into account. For any expression, the result is determined in two parts: the part that

calculates the value, and the value (or variable that stores the value). A function called

calculateReturnValue is used for this purpose. All expressions should implement this

function.

 The calculateReturnValue function returns an array of two string elements.

The first element is the code used to calculate the value, or the empty string if this is not

applicable. The second element is the name of the variable that holds the result of the

calculation. In some cases, when it is guaranteed that a literal will be specified (such as

with a Numeric Value snippet) this may be a direct value instead of a variable name.

 To specify the display section of the Sigma Summation one should use two

columns. The first column is the sigma portion; the second column is the expression to

be summed. The first column contains three rows. This means that the rowspan attribute

will need to be used for the second column. The last row in the first column should

contain a nested table with three columns. In all, the snippet will require three

65

ExpressionEditors, an IdentifierEditor, and two LineEditors (the latter used as

labels). The tricky part comes when creating the sigma character. Fortunately, because

XML fully supports UNICODE, this becomes trivial. The sigma character is represented

in XML by the character encoding “∑”. The font size of the sigma label is

increased to 24 points. Figure 16. shows the complete display section of the sigma

summation snippet while Figure 17 contains the code of the snippet’s template section.

<Snippet type="Math.Sigma Summation" extends="Statement, Expression">
 <display>
 <table>
 <tr>
 <td width="8"/>
 <td valign="center">
 <table>
 <tr>
 <td halign="center">
 <ExpressionEditor name="haltingvalue">
 <param name="MinimumSize"><Dimension>
 <param name="Size">
 <int value="10"/>
 <int value="10"/>
 </param>
 </Dimension></param>
 </ExpressionEditor>
 </td>
 </tr>
 <tr>
 <td halign="center">
 <LineEditor>
 <param name="Text"><String value="∑"/></param>
 <param name="FontSize"><int value="24"/></param>
 <param name="Editable"><boolean value="false"/></param>
 </LineEditor>
 </td>
 </tr>
 <tr>
 <td halign="center">
 <table><tr>
 <td>
 <IdentifierEditor name="loopvariable">
 <param name="Text"><String value="i"/></param>
 <param name="MinimumSize"><Dimension>
 <param name="Size">
 <int value="4"/>
 <int value="-1"/>
 </param>

Figure 16. Snippet Display of Sigma Summation

66

 </Dimension></param>
 </IdentifierEditor>
 </td>
 <td>
 <LineEditor>
 <param name="Text"><String value=" = "/></param>
 <param name="Editable"><boolean value="false"/></param>
 </LineEditor>
 </td>
 <td>
 <ExpressionEditor name=”initialvalue”>
 <param name=”Snippet”>
 <Snippet type=”Numeric Value”>
 <LineEditor name=”value”>
 <param name=”Text”><String value=”0”/></param>
 </LineEditor>
 </Snippet>
 </param>
 <param name=”MinimumSize”><Dimension>
 <param name=”Size”>
 <int value=”10”/>
 <int value=”10”/>
 </param>
 </Dimension></param>
 </ExpressionEditor>
 </td>
 </tr></table>
 </td>
 </tr>
 </table>
 </td>
 <td valign=”center”>
 <ExpressionEditor name=”expression”>
 <param name=”MinimumSize”><Dimension>
 <param name=”Size”><int value=”10”/><int value=”10”/></param>
 </Dimension></param>
 </ExpressionEditor>
 </td>
 <td width=”4”/>
 </tr>
 </table>
 </display>

Figure 16. Continued from previous page

 <template language="C++">
 sub calculateReturnValue
 {
 var uid = getUID ();

 var expressionReturnValue = [#"expression" : "+Expression:return
 calculateReturnValue ();"];

 var resultType = [#"expression" : "+Expression:return determineResultType ();"];

Figure 17. Snippet Templates of Sigma Summation

67

 var result[] = {
 "
 " + resultType + "* Snippet_SigmaSummation_sum_" + uid + " = new " +
 resultType + " ();
 for (RedwoodDouble* " + [#"loopvariable"] + " = " + [#"initialvalue"] + ";
 " + [#"loopvariable"] + "->lessThanOrEqualTo (" + [#"haltingvalue"] +
 ")->booleanValue (); " + [#"loopvariable"] + " = " +
 [#"loopvariable"] +
 "->add (new RedwoodDouble (1)))
 {
 " + expressionReturnValue[0] + "
 Snippet_SigmaSummation_sum_" + uid + " = Snippet_SigmaSummation_sum_" +
 uid + "->add (" + expressionReturnValue[1] + ");
 }
 ",
 "Snippet_SigmaSummation_sum_" + uid
 };
 return result;
 }

 var returnValue = calculateReturnValue ();
 return returnValue[0];
 </template>
 <template language="Java">
 sub calculateReturnValue
 {
 var uid = getUID ();

 var expressionReturnValue = [#"expression" : "+Expression:return
 calculateReturnValue ();"];

 var resultType = [#"expression" : "+Expression:return determineResultType ();"];

 var result[] = {
 "
 " + resultType + " Snippet_SigmaSummation_sum_" + uid + " = new " +
 resultType + " ();
 for (RedwoodDouble " + [#"loopvariable"] + " = " + [#"initialvalue"] + ";
 " + [#"loopvariable"] + ".lessThanOrEqualTo (" + [#"haltingvalue"] +
 ").booleanValue (); " + [#"loopvariable"] + " = " + [#"loopvariable"] +
 ".add (new RedwoodDouble (1)))
 {
 " + expressionReturnValue[0] + "
 Snippet_SigmaSummation_sum_" + uid + " = Snippet_SigmaSummation_sum_" +
 uid + ".add (" + expressionReturnValue[1] + ");
 }
 ",
 "Snippet_SigmaSummation_sum_" + uid
 };
 return result;
 }

 var returnValue = calculateReturnValue ();
 return returnValue[0];
 </template>
</Snippet>

Figure 17. Continued from previous page

68

 In Figure 16 one might notice that the extends attribute is used in the Snippet tag.

The extends attribute is used to denote that the snippet is similar to the extended types.

Any snippet that extends another snippet should have at least the same, but possibly

more, snippet editors (with the same names) and implement at least the same, but

possibly more, functions in the templates section (relative to each language) as the

extended snippet.

After creating the Foreach Loop and Sigma Summation snippets, one can use

them in Redwood. Figure 18 shows the use of the Sigma Summation snippets.

Figure 18. Use of Sigma Summation

69

Chapter 9 – Conclusions

9.1 Summary of Contributions

Redwood is a complex project that proposes a new type of HPL that is much more

adaptable to developer’s needs than current systems. In Redwood, snippets provide a

powerful method for accessing dynamic parse trees (called design trees), and for

dynamically generating source code in various programming languages. In essence,

Redwood is a system that allows one to expand the feature set of a programming

language beyond what its syntax would naturally support. Furthermore, with Redwood,

one can visualize and manipulate programming structures and source code in new and

flexible ways. This technology will prove to be beneficial to programmers by allowing

them to design, write, and debug code in less time.

 Redwood provides a flexible visualization model that allows the proportions of

GPL and TPL to be adjusted by the programmer through the use of different snippet sets.

Redwood is a general programming tool that is not limited to a specific domain and is

scalable for handling large problems.

Through the use of snippets, a programmer is able to use a toolset that is

customized to meet the needs for his or her current solutions. The programmer will not

be tied to a language that is well suited for one part of a problem but not for another.

Further, as innovative TPL technologies are developed, new snippets will be created that

use those technologies, allowing the programmer to use the latest tools even when using

an “older” target programming language.

70

9.2 Future Work

Enhancements to Redwood will primarily be directed towards increased portability,

usability, and overall functionality.

 The most important aspect pertaining to the portability of the Redwood

environment is the integration of the online snippets library, as specified in the initial

Redwood design document. Support for additional languages and technologies, such as

for HTML/JavaScript webpage creation, will also be useful for programmers and

designers as Redwood can be used as a general organizational tool. Lastly, support for

integrated compilation and execution on non-UNIX operating systems such as Microsoft

Windows will be essential to reach the largest possible market.

 In terms of usability enhancements, the focus will first be on standardizing the

Redwood environment. In particular, support for the clipboard (cut, copy, and paste

functions) and undo/redo stacks are essential for a useful software development package.

These features are so useful in fact that they may be added by the time of the public Beta

2 release in Fall 2004. The other priorities will be to create a GUI editor for building

snippet displays and possibly simplifying the snippet display syntax for easier editing

with a standard text editor. In addition, Redwood needs more configuration options and

the ability to save project state. Finally, adding localized versions of Redwood will help

broaden the base of programmers that can use the system. Localization is a very

important feature that will be added to Redwood. Popular programming languages have

historically been English-centric, adding an extra layer of difficulty for non-English

speaking programmers. Redwood can help resolve such issues by having different

71

displays (with localized keywords) that map to standard programming structures.

Virtually any programmer can create these localized snippets, as knowledge of advanced

topics such as compilers will be unnecessary.

 Regarding increasing Redwood’s overall functionality, a key goal will be to

expand the number of included snippets. Of particular interest is the ability to include

tools for automatic parallelization, such as forall loops. The number of built-in

Snipplet script functions should also be increased. Support for a Snipplet preprocessor

and advanced syntax error checking will make Snipplet development a much quicker

process. In addition, Source code generated by Snipplet scripts will need to be formatted

for easier reading, especially for verification purposes (it is likely that a third party

product might be used to take care of these needs). Finally, with all of the enhancements

that need to be made, it is evident that Redwood could be maintained, in the near future,

using the Redwood development environment itself.

72

References

[1] “Alice: Free, Easy, Interactive 3D Graphics for the WWW”, retrieved July 21,
2004 at http://www.alice.org/

[2] Conway, M. J. (1997) “Alice: Easy-to-Learn 3D Scripting for Novices”, PhD

dissertation, University of Virginia, VA, USA.

[3] KDE HTML Widget, kHTML Library, retrieved October 30, 2003 at

http://develhome.kde.org/~danimo/apidocs/khtml/html/index.html

[4] KDE Homepage, retrieved October 30, 2003 at http://www.kde.org/

[5] Apple – Safari Website, retrieved October 30, 2003 at

http://www.apple.com/safari/

[6] The Ganssle Group (2000), “Open Source?”. retrieved October 30, 2003 at

http://www.ganssle.com/articles/opensrc.htm

[7] Apple (2004), “Mac OS X”, retrieved August 2, 2004 at

http://www.apple.com/macosx/

[8] Scott, M. L. (2000) Programming Language Pragmatics. Academic Press, San

Diego, CA.

[9] Wikipedia. “Declarative Programming Language”.retrieved July 21, 2004 at

http://en.wikipedia.org/wiki/Declarative_programming_language

[10] Norman, D. A. (2002) The Design of Everyday Things. Basic Books, New York.

[11] Pacific Northwest National Laboratory. “A Picture is Worth a Thousand Words”,

retrieved August 2, 2004, from http://mscf.emsl.pnl.gov/pdf/brochures/visutil.pdf

[12] Sutherland, I. E. (1963) “SKETCHPAD, A Man-Machine Graphical

Communication System”, Proceedings of the Spring Joint Computer Conference,
Spartan Books, Baltimore, MD, p. 329-346.

[13] Smith, D.C. (1975) “PYGMALION: A Creative Programming Environment”,

PhD dissertation, Stanford University, CA, USA.

[14] Burnett, M. (1999) “Visual Programming”. In Encyclopedia of Electrical and

Electronics Engineering (J. G. Webster, ed.), John Wiley & Sons Inc., New York.

73

[15] Visual Basic (2004) Microsoft Corp., Visual Basic Developer Center, retrieved
February 14, 2004 from http://msdn.microsoft.com/vbasic/

[16] Cincom Corp., Cincom Smalltalk Homepage (2004) retrieved February, 14, 2004

from http://smalltalk.cincom.com/Home.ssp

[17] Smith, D., Cypher, A., and Spohrer, J., Kidsim: programming agents without a

programming language. Communications of the ACM 37(7): 54-67, July 1994.

[18] Byte (1994) “Develop Your Own Automated Phone Applications with

PhonePro”, retrieved August 2, 2004 from
http://www.byte.com/art/9403/sec7/art8.htm

[19] “Advanced Visual Solutions Modeling and Simulation Solutions for Scientific

and Real-Time Computing”, retrieved August 2, 2004 from
http://solutions.intergraph.com/core/avs/

[20] Bishop, R. H. (2001) LabVIEW Student Edition, Prentice Hall, Upper Saddle

River, NJ.

[21] Boshernitsan, M. and Downes, M. (2004) “Visual Programming Languages: A

Survey”, retrieved Feb. 2004 from
http://www.cs.berkeley.edu/~maratb/cs263/paper/paper.html

[22] Burnett, M. (2004) “Visual Programming Languages Bibliography”, retrieved

February 14, 2004 from http://cs.oregonstate.edu/~burnett/vpl.html

[23] Reed, D. A., Aydt, R. A., Madhyastha, T. M., Noe, R. J., Shields, K.A. et al.

(1992) “An overview of the Pablo performance analysis environment”, Technical
report, University of Illinois, Urbana, Illinois.

[24] Babaoglu, O., Alvisi, L., Amoroso, A., Davoli, R. and Giachini, L. A. (1992)

“Paralex: An Environment for Parallel Programming in Distributed Systems”,
Proceedings of the ACM international Conference on Supercomputing, p. 178-
187.

[25] Kacsuk, P. et al. (1997) "A Graphical Development and Debugging Environment

for Parallel Programs”, Parallel Computing, Vol. 22, p. 1747-1770.

[26] Scheidler, C. and Schafers, L. (1993) “TRAPPER: A Graphical Programming

Environment for Industrial High-Performance Applications”, Procs. of
PARLE'93: Parallel Architectures and Languages Europe, Munich, Germany, p.
403 – 413.

[27] “CODE Visual Parallel Programming System”, retrieved August 2, 2004 from
http://www.cs.utexas.edu/users/code/

74

[28] Tremblay, J. P. “Algorithms”, Introduction to Computer Science: An Algorithmic
Approach, pp. 18-23, McGraw-Hill, 1989.

[29] Westphal, B. T., Harris, F.C., Jr., Fadali, M. S. “Graphical Programming: A

Vehicle for Training Computer Problem Solving.” Proceedings of Frontiers in
Education (FIE '03). November 5-8, 2003, Boulder, CO.

[30] Westphal, B. T, Harris, F. C, Jr., Dascalu, S. M. “Snippets: Support for Drag-and-

Drop Programming in the Redwood Environment.” Proceedings of the 8th
Brazilian Symposium on Programming Languages (SBLP-2004), Niteroi, Rio de
Janeiro, Brazil, May 26-28, 2004, pp. 116-127. Also to appear in the Journal of
Universal Computer Science, 2004.

[31] “Perl.com: Documentation”, retrieved August 3, 2004 from

http://www.perl.com/pub/q/documentation

[32] “Core JavaScript Reference 1.5”, retrieved August 3, 2004 from

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/

[33] “Redwood”, retrieved August 3, 2004, from http://www.cs.unr.edu/redwood/

[34] Kew, N. (2000) “CGI Programming FAQ”, retrieved August 3, 2004 from

http://www.htmlhelp.com/faq/cgifaq.html

