
University of Nevada
Reno

A Unified Approach for Cross-Platform Software
Development

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

with a major in Computer Science.

by

Jeffery Alan Stuart

Dr. Frederick C. Harris, Jr., Thesis advisor

August 2005

i

Abstract

Cross-platform software development is a complex and challenging activity. Fre-

quently, developers have to create portions of code that use platform-specific data

types and functions. This has led to two largely adopted practices: either making ex-

tensive use of the preprocessor, or splitting the software package into several branches,

one for each target platform. Both practices have their drawbacks. To tackle the is-

sues of cross-platform development, this thesis proposes two programming solutions

referred to as cores and routers. By using them, the need for advanced preprocessing

and separate development branches is virtually eliminated. The conceptual solutions

are described and examples of application are presented.

ii

Contents

Abstract i

List of Figures iii

List of Tables iv

1 Introduction 1

2 Cross-Platform Software Development 3

2.1 History of Cross-Platform Development 3

2.2 Preprocessor Use . 4

2.2.1 Example 1: Boost Threads . 5

2.2.2 Example 2: HawkNL . 5

2.2.3 Example 3: MsgConnect . 6

2.2.4 Example 4: ZThreads . 8

2.2.5 Comparison of Packages . 8

2.3 Separate Development Branches . 9

2.4 A Taxonomy of Software Packages . 10

2.5 Design Patterns . 11

3 Cores and Routers 13
3.1 Introduction . 13
3.2 Overview of Cores and Routers . 14
3.3 Core Example . 16

3.4 Router Example . 20

4 The JTK and PCM-Client/Server 25

4.1 JTK . 25
4.1.1 Package: jtk . 26

4.1.2 Package: jtk::io . 27

4.1.3 Package: jtk::media . 28

4.1.4 Package: jtk::net . 29

4.1.5 Package: jtk::os . 30

4.1.6 Package: jtk::util . 30

iii

4.2 PCM-Client/Server . 32

4.2.1 PCM-Server . 33
4.2.2 PCM-Client . 34

5 Future Work 36

6 Conclusions 38

iv

List of Figures

2.1 Excerpt from Boost Threads Source Code (thread.hpp) 5

2.2 Excerpt from HawkNL Source Code (nl.h) 6

2.3 Excerpt from MsgConnect Source Code (MC.h) 7

2.4 Excerpt from ZThreads Source Code (ThreadOpts.h) 8

2.5 Excerpt from Qt Source Code (QWidget.h) 10

3.1 UML Diagram for Core solution . 14

3.2 UML Diagram for Router solution . 15

3.3 Non-Core Thread implementation . 18

3.4 Thread implementation . 19

3.5 ThreadCore implementation . 19

3.6 Win32ThreadCore implementation 20

3.7 PosixThreadCore implementation . 21

3.8 UML Diagram for Thread core . 21

3.9 Non-System File implementation . 22

3.10 File implementation . 23

3.11 FileSystem implementation . 23

3.12 Posix File System implementation . 24

3.13 UML Diagram for File router . 24

4.1 The JTK Package hierarchy . 26

4.2 The jtk package . 27

4.3 The jtk::io package . 28

4.4 The jtk::media package . 29

4.5 The jtk::net package . 30

4.6 The jtk::os package . 31

4.7 The jtk::util package . 32

4.8 PCM-Server Flow Diagram . 33

4.9 PCM-Client Flow Diagram . 34

v

List of Tables

2.1 Comparison of Preprocessor Based Software Packages 9

2.2 Taxonomy of Software Libraries . 11

1

Chapter 1

Introduction

Cross-platform software development is an intricate and demanding activity [2, 4, 10,

15, 17, 18, 26]. Very often, the developers have to create parts of code that require

platform-specific data types and functions. This requirement has led to two largely

adopted practices: either making extensive use of the preprocessor, or dividing the

software package into several segments (branches), each corresponding to a target

platform [7]. The former practice frequently leads to unreadable code, making later

modifications difficult and error-prone. The latter approach can lead to lack of organi-

zation and code not being shared across branches. These drawbacks were experienced

in various software projects such as [8, 16, 27].

Starting from these observations, this thesis examines several cross-platform soft-

ware packages and identifies common traits between the packages. Then, using funda-

mental object-oriented programming techniques, two design and implementation so-

lutions referred to as cores and routers are used to address the issues of cross-platform

software development in object-oriented programming languages. A core provides the

underlying data types and operations necessary for platform-specific code whereas a

router provides only the needed operations (more precisely, a router is used when

platform-independent data types can adequately represent the state of an object).

By using cores and routers, the need for advanced preprocessing and/or separate

development branches is practically eliminated. The code produced is much more

readable, while the absence of separate platform-dependent development branches

allows for more efficient code sharing.

2

Based on cores and routers, two simple yet effective (and rather symmetrical) de-

velopment solutions, a more consistent (“unified”) approach for cross-platform soft-

ware development is suggested. The idea is implemented in C++, though other

object-oriented languages can be used. Although the idea of the proposed approach

might seem obvious at the first sight, research and study show that it has not yet

been applied – at least not on a larger scale, for example in popular packages for

cross-platform software development such as [14], [22], and [23]. The proposed cross-

platform software development core and router solutions are illustrated in this thesis

through several examples of application. Details about the intended meaning of the

specific terms used (cores and routers), are also provided.

The remainder of this thesis is organized as follows: Chapter 2 presents back-

ground information on current cross-platform software development practices, design

patterns, and related issues, Chapter 3 introduces the concepts of cores and routers

intended to help solve these issues, as well as an example implementation of a core and

an example implementation of a router. Chapter 4 presents a cross-platform library

called the JTK developed using cores and routers, as well as an application made

using the JTK. Chapter 5 outlines several directions of future work, and Chapter 6

concludes with a summary of the thesis’s contributions.

3

Chapter 2

Cross-Platform Software
Development

This chapter discusses the common methods employed for cross-platform software

development. Section 2.1 discusses the history and gives a brief timeline of cross-

platform development methods. Section 2.2 discusses the first method of cross-

platform software development: making heavy use of the preprocessor to strip source

code from inclusion at compile time. Section 2.3 discusses the second method of

cross-platform software development: using separate development branches for each

targeted platform. Section 2.4 presents a taxonomy of the software packages surveyed

by this thesis, while Section 2.5 gives a brief overview of design patterns and their

significance with respect to cross-platform software development.

2.1 History of Cross-Platform Development

Perhaps the best way to understand why cross-platform development techniques is

by examining how and why they originated. For a large part of early UNIX devel-

opment [25], ranging from approximately 1969 to 1976, there was no such thing as

cross-platform software. Software was written for one very specific hardware/software

platform. If the platform became extinct, the entire package would be ported to the

old platform’s successor.

Once multiple hardware and software platforms became popular, the UNIX kernel

needed a way to compile and run on many different platforms. With the advent of

4

the program make and Makefiles [12] in 1979, the preprocessor became widely used

in applications that sought to compile on multiple platforms. Originally, the makefile

was made not only to smart-compile source files, but also to pass excessively long and

numerous command line arguments to the compiler. The majority of the arguments

passed were preprocessor defines.

As time progressed, more software packages were targeted for multiple platforms,

and eventually, the idea of separate development branches, one for each platform,

came about. Instead of having source files contain code for every platform, devel-

opment would be split into branches. Each branch contained only the source code

necessary for a specific platform, thereby reducing the number of conditional checks

by the preprocessor.

2.2 Preprocessor Use

In the first approach for cross-platform software development, source files are sprin-

kled with preprocessor statements, which makes the code hard to read, error-prone,

difficult to test on all platforms, and hard to maintain. Examples of software packages

that rely on this approach are Boost Threads [3], HawkNL [21], MsgConnect [5], and

ZThreads [6]. Also, one might note that the POSIX [22] Threads package employs

both of the methods mentioned, but this thesis considers it a stronger fit for the

“separate branches” category.

An interesting observation is that even though all of these packages make heavy

use of the preprocessor, they all use it in different ways, as is described below in

their respective subsections. However, even with four different methods of using

the preprocessor, no greater readability or code security is achieved. The methods

employed by each package are most likely used because the respective authors of

each package have grown accustomed to said methods. While this thesis in no way

seeks to proclaim one of these packages superior to any other, it does make certain

observations about the safety and readability of each method.

5

2.2.1 Example 1: Boost Threads

Boost Threads [3] is a cross-platform threading API written in C++ with the goal of

being adopted into standard C++ library specifications and implementations. Boost

has possibly the most dangerous and hardest to read methods of using the preproces-

sor. Boost uses the preprocessor to section out platform-specific function implementa-

tions. Boost also uses the preprocessor to conditionally determine what variables are

to be stored within a class. This practice can be extremely dangerous as one might

expect a certain preprocessor condition to be true, when in fact it is not, making

the class’s new definition incompatible with the binary representation and possibly

causing a highly untraceable runtime error. An example of this method, part of the

Boost Threads source code, is shown in Figure 2.1.

class BOOST_THREAD_DECL thread : private noncopyable
{
public:

... source code is here

private:
#if defined(BOOST_HAS_WINTHREADS)
 void* m_thread;
 unsigned int m_id;
#elif defined(BOOST_HAS_PTHREADS)
private:
 pthread_t m_thread;
#elif defined(BOOST_HAS_MPTASKS)
 MPQueueID m_pJoinQueueID;
 MPTaskID m_pTaskID;
#endif
 bool m_joinable;
};

Figure 2.1: Excerpt from Boost Threads Source Code (thread.hpp)

2.2.2 Example 2: HawkNL

HawkNL [21] is a cross-platform networking API written in C. HawkNL uses the

preprocessor in a similar manner to Boost Threads. However, instead of declaring

members of a class or structure conditionally, HawkNL uses conditional typedefs and

preprocessor defines. This practice leads to safer use of code, but is still confusing to

6

the average programmer, especially when one tries to read through header and source

files. An example of HawkNL’s use of the preprocessor is shown in Figure 2.2.

/* Any more needed here? */
#if defined WIN32 || defined WIN64 || defined __i386__ || \
 defined __alpha__ || defined __mips__
#define NL_LITTLE_ENDIAN
#else
#define NL_BIG_ENDIAN
#endif

/* How do we detect Solaris 64 and Linux 64 bit? */
#if defined WIN64
#define IS_64_BIT
#endif

/* 8 bit */
typedef char NLbyte;
typedef unsigned char NLubyte;
typedef unsigned char NLboolean;
/* 16 bit */
typedef short NLshort;
typedef unsigned short NLushort;
/* 32 bit */
typedef float NLfloat;
#ifdef IS_64_BIT
typedef int NLlong; /* Longs are 64 bit on a 64 bit
 CPU, but integers are still
 32 bit. */
typedef unsigned int NLulong; /* This is, of course, not true
 on Windows (yet another
 exception), */
 /* but it does not hurt. */
#else
typedef long NLlong;
typedef unsigned long NLulong;
#endif

Figure 2.2: Excerpt from HawkNL Source Code (nl.h)

2.2.3 Example 3: MsgConnect

MsgConnect [5] is a cross-platform networking API written in C++. Its use of the

preprocessor is slightly different from other packages. It has a few “include” files that

create preprocessor macros based on other preprocessor defines. An example is that

in order to put a thread to sleep, MsgConnect makes a macro called Sleep(x). If

MsgConnect is compiled for windows, the preprocessor is told to define the Sleep(x)

macro as a call to the Win32 function Sleep. If, however, MsgConnect is compiled

for a Linux platform, the preprocessor is told to define the Sleep(x) macro as a call

7

to the standard usleep function.

As can be seen in an excerpt from MsgConnect shown in Figure 2.3, many macros

are being defined as their Win32 equivalents. Many constants are also being defined to

Win32 constants if the platform being targeted is not Windows. This can be some-

what confusing to programmers with experience in both Win32 and UNIX/Linux

programming. They can (and the author of this thesis has done this before) look

through the source code and think they do not have the right version, because they

were expecting code for Linux and what appears in front of them seems to be Win32

API calls and Win32 constants. The same scenario would hold if a package tried

to define as many POSIX (or Linux) constants and macros, and a programmer was

intending to build something for a Win32 target. This method of using the prepro-

cessor most likely came as a side-effect of the package’s development schedule. The

package was probably made for Windows initially, and in an attempt to minimize

the cost of porting to other platforms the author(s) decided to emulate the Win32

API in Linux by using macros and typedefs with conditional compiling. Much of the

MsgConnect code is written this way.

#ifdef __GNUC__
#ifndef __USE_UNIX98
define __USE_UNIX98
#endif

	typedef long long __int64;
 typedef unsigned char byte;
 const unsigned long INFINITE = 0xFFFFFFFFul; // Infinite timeout
 const unsigned long INVALID_SOCKET = (unsigned long)-1;
 const unsigned long SOCKET_ERROR = (unsigned long)-1;
 unsigned long GetTickCount(void);

#	define TCHAR char
#	define __T(x) x
#	define _T(x) __T(x)
#	define TEXT(x) __T(x)
#	define _TEXT(x) __T(x)
#	define LPTSTR		char *
#	define LPCTSTR		const char *
define Sleep(s) usleep((long)s*1000)
// more preprocessor defines are here
#else
include <windows.h>
#endif

Figure 2.3: Excerpt from MsgConnect Source Code (MC.h)

8

2.2.4 Example 4: ZThreads

ZThreads [6] is a cross-platform threading API written in C++. The use of pre-

processor statements within contains the normal conditional defines and execution

statements, but also performs a clever trick with include statements. In some places,

instead of wrapping sections of executable code in preprocessor statements, ZThreads

will instead include platform-specific implementation source code. This aids in effi-

ciency of the code, but still makes tracing through source files a problem as it can be

hard to determine which files are being included without digging through the entire

library. Most of the ZThreads code is in written this manner. Figure 2.4 shows an

example of ZThreads conditionally defining which implementation files to include.

#if defined(ZT_POSIX)

include "posix/ThreadOps.h"
define ZT_THREADOPS_IMPLEMENTATION "posix/ThreadOps.cxx"

#elif defined(ZT_WIN32) || defined(ZT_WIN9X)

... more source code here

include "win32/ThreadOps.h"
define ZT_THREADOPS_IMPLEMENTATION "win32/ThreadOps.cxx"

#elif defined(ZT_MACOS)

include "macos/ThreadOps.h"
define ZT_THREADOPS_IMPLEMENTATION "macos/ThreadOps.cxx"

#endif

Figure 2.4: Excerpt from ZThreads Source Code (ThreadOpts.h)

2.2.5 Comparison of Packages

All four packages described previously use preprocessor statements to conditionally

compile code. Table 2.1 gives a summation of the side effects of each package’s use

of the preprocessor.

9

Table 2.1: Comparison of Preprocessor Based Software Packages
Boost Threads HawkNL MsgConnect ZThreads

Conditionals in functions X
Variable size structures X X X X
Conditional in source X X X
“Emulated” platform X

2.3 Separate Development Branches

The second approach for cross-platform software development is categorized as having

source code split into separate development branches. Most of the packages this thesis

identifies as belonging to this category are quite large and continue to be in a state

of active development. The use of this development method seems to be common,

and is most likely attributed to the vast amount of resources and knowledge (of more

than one platform) that the programmers for these projects have.

Examples of projects using separate development branches are OpenSG [19],

Qt [23], GTK [14], and POSIX Threads [22]. All these projects are still in active

development and/or refinement, and they all support many platforms. For example,

OpenSG supports four operating systems (Windows, Vanilla Linux, Irix, and Irix 64),

with a total of five compilers (Intel’s Compiler, Microsoft’s Optimizing Compiler for

ISO C++, GCC 3.2 and above, SGI CC, and SGI 64 bit CC).

Several unfortunate side effects are often seen with a package being split into

several development branches. First and foremost, code sharing is minimized. Some-

times access to platform-specific objects and functionality is granted, thus making

it harder to write platform-independent code using the package. Perhaps the most

severe side-effect (in terms of development) is the case when a small design change or

enhancement is made, and that change requires different levels of effort to incorporate

on the many different platforms.

Using separate development branches, code might be written for one platform

that could simply be ”dropped-in” with another development branch. However, code-

sharing usually does not happen because the programmers of the different branches

10

tend to be isolated from each other.

In some packages, an application programmer is given access to platform-specific

functionality in such a manner as to break the write-once/compile-anywhere model.

Qt allows this in some cases, and a code excerpt from the base class for all of Qt’s

windowing gadgets, QWidget, is shown in Figure 2.5. Since the QWidget class

gives access to its platform-specific functionality in a trivial manner, a naive applica-

tion programmer might be tempted to use the platform-specific functionality without

realizing the consequences.

#ifndef QWIDGET_H
#define QWIDGET_H

class Q_EXPORT QWidget : public QObject, public QPaintDevice
{
... more source is here
public:
 QWidget(QWidget *parent=0, const char *name=0, WFlags f=0);
 ~QWidget();

 WId		 winId() const;
 void	 setName(const char *name);
... more source is here
};

Figure 2.5: Excerpt from Qt Source Code (QWidget.h)

From the library development point of view, managing multiple branches can

be a daunting task. A small change (simple addition or subtraction of a member

function) in one branch might instigate an entire code re-write in another branch.

This forces the API and library designers to have an intricate knowledge of how each

branch is implemented, so that when a change is proposed, one development branch

doesn’t suddenly fall behind all the other branches.

2.4 A Taxonomy of Software Packages

A taxonomy of the above software packages is shown in Table 2.2. One idea to be

inferred from this categorization is that larger software packages tend to use separate

development branches, most likely because there is a larger collection of developers

11

to assist in all the different branches of code. With smaller packages, typically there

is only a handful of primary authors and, with such, breaking the work into several

branches is an unnecessary complication. This segregation of programming methods

is undesirable and is a problem this thesis addresses.

Table 2.2: Taxonomy of Software Libraries
Heavy Preprocessing Separate Development Branches

ZThreads Qt
MsgConnect GTK

HawkNL POSIX
Boost

2.5 Design Patterns

Design patterns [9, 13] are representation of real-world programming solutions. De-

sign patterns began to appear in published work in the late 1970s [1], as something

more general; simply a better way to present ideas about planning, building, archi-

tecture, and representation. Design patterns allow programmers to easily share their

program’s architecture, and can be split into three main categories [9]:

• Creational patterns

• Structural patterns

• Behavioral patterns

Creational patterns are used to help instantiate classes in non-standard ways (e.g.

not explicitly calling a constructor). Structural patterns are used to make the design

of complex classes and inheritance chains more elegant. Behavioral patterns define

the ways in which classes interact with each other and in what ways a class may be

used.

The two new solutions proposed by this thesis rely on creational patterns and

structural patterns to provide a more elegant means of cross-platform API develop-

12

ment. Specifically, the design patterns Bridge, Builder, and Abstract Factory

are used. Note that cores and routers are not identical to theses patterns, though.

13

Chapter 3

Cores and Routers

Chapter 3 presents the new development solutions presented in this thesis. Section 3.1

provides the motivation behind this thesis’ idea. Section 3.2 gives an overview of

the solutions, referred to as cores and routers. Sections 3.3 provides details and an

example of a core, and Section 3.4 provides details and an example of a router.

3.1 Introduction

Starting from the observations presented in Chapter 2 and driven by practical software

development needs, a better method of writing cross-platform code was sought after.

This method would have to address the seemingly hard to satisfy (at the same time)

properties: readability and structure (on the one hand) and code sharing (on the

other hand). In other words, the method would have to answer the question “how

could the readability of the code be improved and the code sharing maximized while

keeping the software organized?” The solution found is based on two simple, yet

efficient development solutions, referred to as cores and routers. These are in fact

two design constructs aimed at object-oriented implementation. From the experience

gained in writing code for a general-purpose C++ APIs and from using it in actual

software development projects it is shown that the resulting programs are easier to

read and understand while at the same time the amount of code common for the

platforms considered is maximized. The simplicity of the solutions (they are indeed

meant to be easy to implement) and their rather symmetrical structure (which aids

14

quicker learning and memorization), allows a more consistent, smoother and “unified”

way of writing cross-platform object-oriented library code. The concepts of cores and

routers are introduced next with examples of their use.

3.2 Overview of Cores and Routers

A core is a generic code development solution that can be represented using the UML

notation [24] as shown in Figure 3.1. In this figure a class (Class A) intended for

cross-platform development relies on the services of the abstract class Class A Core

which, in turn, has specialized platform-dependent implementations in the subclasses

Platform 1 Class A Core, Platform 2 Class A Core, etc. Thus, a clean sep-

aration of platform-independent services from platform-dependent implementations

is achieved. Because, generally speaking, most of the base (foundation) code for all

cross-platform software is to be included in cores, the name core was used to highlight

its pragmatic significance.

Figure 3.1: UML Diagram for Core solution

Note also that, in practical terms, our proposed generic core solution consists of a

wrapper (principal) class, an abstract core class (for platform-independent services),

and a set of concrete core classes (which implement the services provided in platform-

dependent ways). An example of using the core solution is presented in Section 3.3

of this thesis.

The other component of our proposed approach for cross-platform software de-

velopment is the router. A router is a generic code development solution, shown

in Figure 3.2 using the UML notation. In this figure, Class B intended for cross-

15

platform software development relies on the services of the concrete class Class B

Router which, in turn, is associated with the platform-dependent implementation

classes Platform 1 Class B Router, Platform 2 Class B Router, etc. In con-

trast to the core solution, which reliess on aggregation and inheritance relationships

between its component classes, the router solution is based on dependency (“use”)

relationships between classes.

Figure 3.2: UML Diagram for Router solution

Note also that, in practical terms, our proposed generic router solution consists of

a wrapper [13] (principal) class, a (main) router class and a set of (base) router classes

(which implement services in platform-dependent ways). Regarding the terminology

used, the name router was chosen because its design emphasizes the “routing” of

required services towards appropriate implementations (from the wrapper and the

base routers to the main router).

Technically speaking, the main router class could be eliminated from the design

presented in Figure 3.2 by using several macros, but this would negatively (and sig-

nificantly) affect the consistency of the programming style and the convenience of the

existing regular source code structure (similar across the entire project in terms of

asssociations among .h and .cpp files). Also, as shown later in this thesis, actual base

router classes may not always be necessary.

Cores and routers borrow concepts from the both the Bridge and Factory [13]

design patterns. Cores use the Factory design pattern to instantiate implementation

classes. Both cores and routers rely on the Bridge design pattern to relay platform-

dependent requests to platform-specific implementations. However, the use of cores

16

and routers extends beyond that of the Bridge, Factory, or any other previously

defined concept or design pattern. However, one should note that neither a core nor

a router are previously identified design-patterns/programming-solutions.

An example of using the router solution is provided in Section 3.4 of this thesis.

To summarize the key concepts introduced, the rules for using cores and routers are

the following:

• A core solution should be used when both (some of) the member variables and

(some of) the operations of a class are platform-dependent;

• A router solution should be used when all the member variables of a class are

platform-independent but (some of) the class operations are platform-dependent.

3.3 Core Example

A simple yet illustrative example for using cores is a Thread class. Threads are

essential elements to practically every operating system, but there is no standard

thread package so far (although the POSIX committee has tried to initiate the creation

of one). Most UNIX platforms have their own threading library, virtually all flavors of

Linux use POSIX threads (pthreads), and Microsoft Windows currently uses Win32

threads. All of these threads use platform-specific data types, for example POSIX

threads use a pthread t while Win32 threads use a HANDLE.

The expected functions for a Thread class are oulined as follows. First, a con-

structor and (because the implementation language chosen was C++) a destructor

are needed. A function to start the execution of the thread should be available, so

we include in this class a function called start. One might wish to wait for a thread

to finish, so a waitFor function will be needed. One might also wish to relinquish

the remaining time slice of a thread to the operating system, so a yield function is

necessary. Of course, a thread is used to execute code, so an abstract function called

run will be available for a user defined class to override. Obviously, more function-

ality is expected of a thread, but the above functionality is sufficient to demonstrate

17

the application of the proposed core concept.

Shown in Figure 3.3 is a previous implementation of the Thread class. The

specific implementation used the preprocessor method to detect what platform is

being used. Practically every other line is a preprocessor statement, and makes the

reading of the code quite challenging. This is where the use of cores comes in. As

explained in Section 3.2, a wrapper class, an abstract core class, and implemented

core classes are needed. The implementation for the Thread wrapper class is shown

in Figure 3.4. As it can be noticed, the Thread class in the core solution is merely

an empty shell, relying on its core class for virtually all functionality. Also, one could

notice that the only member variable is typically a core, and the Thread class is no

exception.

The code for the abstract ThreadCore class is shown in Figure 3.5. The

platform-independent functionality has been implemented but, as can be seen, all of

the platform specific code is purposefully left out so child classes can implement the

necessary functionality in a platform-specific manner. Next, shown in Figure 3.6 is the

concrete Win32ThreadCore class, which implements all the remaining (platform-

specific) code necessary to use a thread. Figure 3.7 shows the concrete PosixThread-

Core class. Similar to the Win32ThreadCore class, this class implements all the

platform-specific code necessary to use a thread.

While it may seem that more work is needed to use the core method than to

employ the method exemplified in Figure 3.2, one must view the development process

from a larger perspective. For example, any support for new platforms requires the

modification of the Thread implementation file. This can become complicated when

advanced users and developers make fine-tuned adjustments to their specific platform

and then want to add support for a new platform. They cannot simply use the most

up-to-date file provided by the Thread class maintainer, they must acquire the new

Thread implementation and then manually merge the file with the changes they

made. On the other hand, if one decides to use cores, any new platform support

requires the modification of at most one file: the Makefile. If the users decide to

18

#ifdef _POSIX
 #include <pthread.h>
 #include <sched.h>
#elif defined(_WIN32)
 #include <windows.h>
#endif
// Class representing an operating system execution thread
class Thread {
 protected:
 #ifdef _POSIX
 pthread_t pthreadObject;
 #elif defined(_WIN32)
 DWORD threadID;
 HANDLE threadHandle;
 #endif
 public:
 Thread() { }
 virtual ~Thread() { }
 #ifdef _POSIX
 void * threadStart(void * p) { ((Thread*)p)->run(); }
 #elif defined(_WIN32)
 DWORD WINAPI threadStart(void * p) { ((Thread*)p)->run(); }
 #endif

 // This function will halt until the passed in thread finishes
 // its execution
 static void waitFor(Thread * thread) {
 #ifdef _POSIX
 pthread_join(thread->pthreadObject, NULL);
 #elif defined(_WIN32)
 WaitForSingleObject(thread->threadHandle, INFINITY, TRUE);
 #endif
 }
 // This function will make the current thread attempt to give back the
 // remaining time slice to the operating system
 static void yield() {
 #ifdef _POSIX
 sched_yield();
 #elif defined(_WIN32)
 SwitchToThread();
 #endif
 }
 // this function will start the thread
 void start() {
 #ifdef _POSIX
 pthread_create(&pthreadObject, NULL, threadStart, NULL);
 #elif defined(_WIN32)
 threadHandle = CreateThread(NULL, 0, threadStart, thread, 0, &threadID);
 #endif
 }
 // One must implement this function in order to use the thread class. When
 // the �start� function of a thread is called, this function is executed.
 virtual void run() = 0;
};

Figure 3.3: Non-Core Thread implementation

make fine-tuned adjustments to a specific platform implementation, they do not need

to worry about having those changes accidentally erased or overwritten when they

obtain source code for a new platform, nor do they have to worry about performing

code merges when implementation updates become available.

At design level, the entire core solution for Thread is represented in Figure 3.8

19

#include <ThreadCore.h>

class Thread {
 friend class ThreadCore;
 protected:
 ThreadCore * core;
 public:
 inline Thread() { core = ThreadCore::createCore();}
 inline virtual ~Thread() { ThreadCore::deleteCore(core); }

 inline static void waitFor(Thread * thread) { ThreadCore::waitFor(thread); }
 inline static void yield() { ThreadCore::yield(); }
 inline void start() { core->start(this); }
 virtual void run() = 0;
};

Figure 3.4: Thread implementation

// Forward declare the thread class.
#include <Thread.h>
class Thread;

// Abstract core class for Thread
class ThreadCore {
public:
 // Provide a platform independent way for a thread core to be created
 static ThreadCore * createCore();
 // A �safe-delete� for thread cores. More functionality should be added.
 inline static void deleteCore(ThreadCore * core) {
 if (core) delete core;
 }
 // Constructor and destructor, don’t need to do anything
 inline ThreadCore() { }
 inline virtual ~ThreadCore() { }

 // The following functions are all platform dependent in their operations,
 // so make any platform-specific instance implement these functions.
 static void yield();
 static void waitFor(Thread * thread);
 virtual void start(Thread * thread)=0;
};

Figure 3.5: ThreadCore implementation

using the UML notation. From this figure, it can be noticed that this is a particular

application of the generic core design shown in Figure 3.1.

20

#include <ThreadCore.h>
// Wrapper class for a operating-system thread.

// Check to make sure that the user wants to compile for win32 systems
#ifdef USE_WIN32THREADCORE

#include <ThreadCore.h>
#include <windows.h>
class Win32ThreadCore : ThreadCore {
 protected:
 DWORD threadID; // thread id
 HANDLE threadHandle; // thread handle
 static DWORD threadStart(void * win32Param) {
 ((Thread*)win32Param)->run();
 return 0;
 }
 public:
 inline Win32ThreadCore() { }
 inline virtual ~Win32ThreadCore() { }

 virtual void start(Thread * thread) {
 threadHandle = CreateThread(NULL, 0, threadStart, thread, 0, &threadID);
 }
};
// Simple implementations
ThreadCore * ThreadCore::createCore() {
 return new Win32ThreadCore;
}
void ThreadCore::waitFor(Thread * thread) {
 Win32ThreadCore * core = (Win32ThreadCore*)thread->core;
 WaitForSingleObjectEx(core->threadHandle, INFINITY, TRUE);
}
void ThreadCore::yield() {
 SwitchToThread();
}

#endif

Figure 3.6: Win32ThreadCore implementation

3.4 Router Example

The intuitive use of routers can be grasped from a File class. Practically every

operating system uses files and allows files to be adequately represented using a

standard string. However, the common operations one might expect from a File

class are not implemented using the same functions on every platform. For example,

to determine all the files in a directory on a POSIX file system, one would use the

opendir, readdir, and closedir function calls. But on a Win32 file system, one

would use the FindFirstFile, FindNextFile, and FindClose function calls.

A useful File class would contain several operations, but for the sake of brevity,

we limit the scope of this example to a constructor, a destructor, an exists function

(which determines if the given file exists in the file system), and an isDirectory

21

// Make sure the user wants to compile for a POSIX compliant system
#ifdef USE_POSIXTHREADCORE

#include <ThreadCore.h>
#include <pthread.h>
#include <sched.h>

// Posix implementation of the thread core class
class PosixThreadCore : ThreadCore {
 protected:
 pthread_t posixThread;
 static void * threadStart(void * pthreadParam) {
 Thread * thread = (Thread*)pthreadParam;
 thread->run();
 return 0;
 }
 public:
 // empty constructor and destructor
 inline PosixThreadCore() { }
 inline virtual ~PosixThreadCore() { }

 // start the thread
 virtual void start(Thread * thread) {
 pthread_create(&posixThread, NULL, threadStart, thread);
 }
};
// Simple implementations, but since we do not want a lot of preprocessor
// statements everywhere, we implement them in this file. Implementing these
// functions in this file also helps to ensure that no more than one
// threadcore implementation is linked

ThreadCore * ThreadCore::createCore() {
 return new PosixThreadCore;
}
void ThreadCore::waitFor(Thread * thread) {
 PosixThreadCore * core = ((PosixThreadCore*)thread)->core;
 pthread_join(core->posixThread, NULL);
}
void ThreadCore::yield() {
 sched_yield();
}

#endif

Figure 3.7: PosixThreadCore implementation

Figure 3.8: UML Diagram for Thread core

22

function (which determines if the given file represents a directory in the file system).

Figure 3.9 shows how a File class can be written using the preprocessor to detect

the correct build platform. Figure 3.10 presents the implementation of a File class

which uses the router technique discussed in Section 3. As should be noticed, all the

operations are passed directly to the FileRouter class.

The FileRouter class is shown in Figure 3.11. As was explained in Section 3,

router classes represent an optimization over core classes as they do not require virtual

functions. Router classes also do not require any platform-dependent data members.

#include <string>
#ifdef _POSIX
 #include <unistd.h>
 #include <dirent.h>
 #include <sys/stat.h>
#elif defined(_WIN32)
 #include <windows.h>
 #include <sys/stat.h>
#else
 #error Couldn’t detect correct OS
#endif
using namespace std;
// File class, similar to java.io.File, though lacking functionality
class File {
 protected:
 string path; // the path to the file
 public:
 inline File(const string & filePath) : path(filePath) { }
 inline virtual ~File() { }
 // ensure that a �File� is a directory
 inline bool isDirectory() const {
 #ifdef _POSIX // if on posix system
 struct stat sbuf;
 if (stat(path.c_str(), &sbuf) == -1) return false;
 return (sbuf.st_mode & _S_IFDIR)!=0;
 #elif defined(_WIN32)
 struct _stati64 sbuf;
 if (_stati64(path.c_str(), &sbuf)==-1) return false;
 return (sbuf.st_mode & _S_IFDIR)!=0;
 #endif
 }
 // make sure that a file exists
 inline bool exists() const {
 #ifdef _POSIX // if on posix
 struct stat sbuf;
 return stat(path.c_str(), &sbuf)!=-1;
 #elif defined(_WIN32)
 return GetFileAttributes(path.c_str()) != INVALID_FILE_ATTRIBUTES;
 #endif
 }
};

Figure 3.9: Non-System File implementation

The PosixFileRouter class implementation is shown in Figure 3.12. Just like in

the Core example, one could implement a file router using Win32 concurrently with

23

the POSIX file router.

Just as with core classes, it may appear that less work is necessary if one used the

method shown in Figure 3.9 than when using a router, but the same consequences

indicated in Section 3 in relation with cores could be observed for routers when a

larger perspective is considered.

From a design level perspective, the entire router solution for File is shown

in UML notation in Figure 3.13. From this figure it can be noticed that this is a

particular application of the generic router design shown in Figure 3.2.

#include <string>
#include <FileRouter.h>

// Platform-independent wrapper for the FileRouter class
class File {
 protected:
 std::string path;
 public:
 // Simply pass off all operations to the FileRouter class
 inline File(const std::string & filePath) : path(filePath) { }
 inline ~File() { }
 inline bool exists() const { return FileRouter::exists(path); }
 inline bool isDirectory() const { return FileRouter::isDirectory(path); }
};

Figure 3.10: File implementation

#include <string>

// Class to handle all File operations in a platform-dependent manner
class FileRouter {
 public:
 static bool exists(const std::string & path);
 static bool isDirectory(const std::string & path);
};

Figure 3.11: FileSystem implementation

24

// Check to make sure that the user wants a Posix compatible implementation
#ifdef USE_POSIXFILEROUTER

#include <FileRouter.h>
#include <sys/stat.h>

// check to see if a file (path) is a directory
bool FileRouter::isDirectory(const std::string & path) {
 struct _stat sbuf;
 if (stat(path.c_str(), &sbuf) == -1) return false;
 return (sbuf.st_mode & S_IFDIR) != 0;
}

// check to see if a file (path) exists
bool FileRouter::exists(const std::string & path) {
 struct stat sbuf;
 return stat(path.c_str(), &sbuf)!=-1;
}

#endif

Figure 3.12: Posix File System implementation

Figure 3.13: UML Diagram for File router

25

Chapter 4

The JTK and PCM-Client/Server

With the idea for cores and routers solidified, a functional example was necessary

to truly expose the potential of these methods. As such, a library known as the

‘J’ Toolkit (JTK) was developed using cores and routers. An application was also

developed that used the JTK. Section 4.1 gives details on the JTK and Section 4.2

gives details on the sample application made with the JTK.

4.1 JTK

The JTK needed to address several issues commonly dealt with in cross-platform

library development, as well as less common issues, as follows:

• Use cores and routers

• Provide the same ease of use as any other cross-platform library

• Allow application code to be write-once, compile-anywhere

• Give true low-level access to a system

• Allow for easy expansion (adding new platform support), extension (adding new

functionality), and optimization

Using cores and routers is an obvious requirement. Providing ease of use is im-

portant because it shows that the use of cores and routers does not make application

development any harder than with other cross-platform development methods. For

26

the JTK, it was decided to model many of the classes after their corresponding im-

plementation in Java. Making application code “write-once, compile-anywhere” is a

common goal for virtually all cross-platform APIs. Some cross-platform libraries do

not give access to the full potential of the underlying operating/embedded system,

some say this is due to the design of the library. The JTK needed to show that a

cross-platform library written using cores and routers could deliver all the features

one would have if they were using platform-dependent code instead of a platform-

independent API. The ability to expand, extend and optimize are also important

because these are three critical areas examined with any cross-platform design tech-

nique and library.

Keeping in mind the ideas mentioned above, the JTK provides several packages

of classes (implemented as namespaces in C++). Figure 4.1 gives a diagram of all

the packages of the JTK. The jtk package is presented in Section 4.1.1, the jtk::io

package is described in Section 4.1.2, the jtk::media package is explained in Sec-

tion 4.1.3, the jtk::net package is presented in Section 4.1.4, the jtk::os package is

described in Section 4.1.5, and the jtk::util package is explained in Section 4.1.6.

Figure 4.1: The JTK Package hierarchy

4.1.1 Package: jtk

The jtk package contains the base class for all others classes in the library, jtk::Object,

as well as a base class for all run-time exceptions, jtk::Exception. Having a common

27

base class for runtime exceptions provides an elegant method to deal with exceptions

using C++. Wrapper classes for C++ primitives reside in the jtk package. In com-

bination with all these classes, all sub-packages of the JTK are nested in the jtk

package. Figure 4.2 shows all the classes of the jtk package.

Figure 4.2: The jtk package

4.1.2 Package: jtk::io

The jtk::io package contains all necessary base classes to perform low-level input and

output (I/O). Included are classes to represent streams of information (e.g. Input-

Stream and OutputStream), a core-based FileDescriptor class, a router-based

File class, and a Pipe class. Figure 4.3 shows the class hierarchy for the jtk::io

package.

The FileDescriptor class serves as an abstraction for file descriptors on different

platforms. On a windows system, a file descriptor is represented as a HANDLE,

while on a UNIX/Linux system, a file descriptor is simply an int.

The File class is a full implementation of the router example shown in Chapter 3.

It provides almost all the functionalty one would expect from a file on any operating

28

Figure 4.3: The jtk::io package

system. And since a standard string can be used to represent a file to an operating

system, the router solution can be used instead of the core solution.

4.1.3 Package: jtk::media

The jtk::media package provides low-level access to any media equipment on the

computer. Currently, only writing to audio devices is supported, but that is more

than what most general-use cross-platform APIs provide. This package gives possibly

the best example of how powerful and elegant the JTK is because it was implemented

using cores and routers. The jtk::media package provides a class to read Pulse Code

Modulation (PCM) files, as well as a core-based AudioDevice class that can be used

to play PCM files. The jtk::media package also provides exception classes for media

devices, as well as an event-listener combination for audio device events. A full class

diagram for the jtk::media package is shown in Figure 4.4.

Media APIs are commonly the most non-standard API on operating systems. For

example, the Windows operating system allows the use of one of two custom built

libraries, the Windows MultiMedia (WinMM) library or the Windows DirectSound

library. On Linux, the operating system allows the use of either the Open Sound

System (OSS) or the Advanced Linux Sound Architecture (ALSA) library. On Mac

OS X, the operating system uses the custom built library Core Audio. This varies

from other cross-platform APIs such as sockets due to how the complete difference the

29

Figure 4.4: The jtk::media package

underlying operating system APIs for media access are implemented. Like other cross-

platform libraries, the JTK hides these differences from the application programmer.

However, it is in the ease of extension that shows how elegant the design of a library

using cores and routers can be.

The AudioDevice is used to wrap the low-level access to sound cards. Very little

functionality is implemented in the abstract core class due to the vast differences in

sound API on operating systems.

4.1.4 Package: jtk::net

The jtk::net package gives programmer all the classes and functionality necessary to

implement an application that uses TCP/IP or UDP networking. Classes are present

to represent TCP sockets, TCP server sockets, and UDP sockets (all of which use

cores). Since TCP sockets are stream based, a core-based input stream and a core-

based output stream class are also provided. UDP sockets have a platform-indepent

DatagramPacket class used to send and receive datagrams. The jtk::net package

also provides address support using the InternetAddress and IPv4Address classes.

The IPv4Address class uses a router-solution, since exactly four bytes are sufficient

to represent an address using IPv4. A full class diagram for the jtk::net package is

30

shown in Figure 4.5.

Figure 4.5: The jtk::net package

4.1.5 Package: jtk::os

Classes dealing primarily with the low-level functionality of an operating system are

provided in the jtk::os package. One example is the core-based Thread class that

represents a thread of execution on an operating system and allows an application

developer to run multiple threads in their code. Core-based Semaphore and Process

classes are also in this package, as well as a router-based OperatingSystem class

which serves as the intermediary between the application and the environment of

the OperatingSystem. A full class diagram for the jtk::os package is shown in

Figure 4.6.

4.1.6 Package: jtk::util

While the jtk::media package is the best example for providing low-level access to

an application programmer, the jtk::util package is the best example of giving the

ability to easily optimize to the application programmer. The jtk::util package has

31

Figure 4.6: The jtk::os package

core-based container classes such as lists and vectors, as well as general use classes

like the regular-expression Pattern and Matcher classes, or the core-based Timer

class. A diagram of the jtk::util package is shown below in Figure 4.7.

The container classes default to using the standard template library (STL) classes

for their implementation, but one could choose to make their own optimized List or

Map class, and compile their own code in the place of the default STL implementa-

tion. This shows the power of optimization and customization using cores, a user can

create their own customized/optimized implementation of a class, and simply drop it

in, without worrying about damaging the default implementation provided.

The Timer class is core-based because high-precision timing is not handled the

same way on every operating system. If the Timer is to be used on a Windows

operating system, it must interface with the PerformanceCounter or multi-media

timer, whereas on UNIX/Linux, the Timer class can simply use the gettimeofday

32

Figure 4.7: The jtk::util package

function. The Timer class is also an excellent example of how the JTK does not have

to use the lowest-common-denominator of functionality between operating systems.

On Windows, the granularity of timing accuracy is at best one millisecond. On most

UNIX/Linux systems, an accuracy in tens/hundreds of microseconds can be achieved

using the gettimeofday function.

4.2 PCM-Client/Server

In order to demonstrate the capabilities of the JTK, two sample applications were

built. One is a network-server that acts as a limited file server and can stream Pulse

Code Modulation (PCM) data to clients. The other application is the network-client

that interfaces with the network-serve to browse remote directories and stream Pulse

Code Modulation data.

33

4.2.1 PCM-Server

The server application was designed with the goal of maximizing use of platform-

dependent concepts through the JTK. As such, the server was implemented using

multiple threads, several semaphores, and both TCP and UDP networking. The

server then relies heavily on the jtk::net and jtk::os packages. A flowchart for the

behavior of the server is shown in Figure 4.8. It should be noted that more error

checking is present in the code than there is shown in Figure 4.8. Error checking was

removed from the flow diagram for brevity.

Figure 4.8: PCM-Server Flow Diagram

The server application is approximately three-hundred and fifty lines of code

using the JTK. This amount is near optimum, even if the server used another cross-

platform API in place of the JTK. If the server were to be written using platform-

34

dependent code in place of the JTK, the code size would expand to more than one-

thousand lines. The JTK, with cores and routers, not only helps the development of

cross-platform code, but can also make application-code as (if not more) concise and

readable than any other cross-platform library. A full listing of the server code can

be found at http://www.cse.unr.edu/˜stuart/projects/thesis app/server.tar.gz.

4.2.2 PCM-Client

A flow-chart of the PCM client is shown in Figure 4.9, and a discussion of the client

follows.

Figure 4.9: PCM-Client Flow Diagram

The client application was designed primarily as an interface to the server, and

35

also to show off the audio device capabilities of the the JTK. The audio-device

capabilities were an important feature to test, being that those capabilities required

the lowest latency and highest-performance of anything in the JTK. The client runs

in a single thread, and uses standard TCP to talk to the server and UDP to stream

PCM data from the server.

Since the client does not use multiple threads, it relies less on the jtk::os package

than the server, but it still makes heavy use of the jtk::net package, as well as using

the jtk::net::AudioDevice class.

The client code is approximately two-hundred and sixty lines of code (using the

JTK). If the application was to be written using platform-dependent code in place

of the JTK, the source code would swell to approximately eight- hundred lines. The

complete source code for the client can be found at

http://www.cse.unr.edu/˜stuart/projects/thesis app/client.tar.gz.

36

Chapter 5

Future Work

Several possibilities exist for future work on this topic. First and foremost, it is hoped

that an elegant way can be found to rid the code of pointer lookups, which can be

computationally expensive in some cases. Using separate development branches or

making heavy use of the preprocessor can lead to better performance and, in some

cases, this performance is crucial. From a compilers’ and optimizations’ standpoint,

so far inheritance has been dealt with rather inefficiently. Inheritance adds sometimes

unnecessary overhead, as pointer lookups can be expensive. However, when only a

single subclass of an abstract class is implemented (as is the typical case with cores),

it seems a compiler should optimize the code by “merging” the inherited class into

the abstract class, therefore eliminating the overhead of virtual functions and such

[11, 20]. Currently, no compiler exists (that we know of) that can do this, so writing

this optimization is one potential direction of future work.

Another avenue of future work is the extension of the JTK. Currently, only Win-

dows XP and Linux/UNIX are supported (partial support for Mac OS X is included).

The goal of this thesis is to make software development on multiple branches elegant

and efficient. Since the JTK provides a basic framework from which to start, it is

hoped that others will choose to add on to it and support other platforms such as

Mac OS X, and miscellaneous embedded systems.

Another interesting direction of future work is in the construction of a program-

ming environment conducive to the development of cross-platform code. Research

has been done at the University of Nevada, Reno, on a concept known as stratified

37

programming [16] where, in essence, code is organized into strata and substrata, and

the developer, based on his or her objectives in a given context, can choose to hide all

strata beneath a certain threshold. This concept can be expanded to cross-platform

source code development, where instead of only using strata, one also chooses to

display which target-platform’s code one wants to see.

38

Chapter 6

Conclusions

Object oriented programming (C++, C#, Java) has become popular, but old habits

from the days of imperative programming (C) still have a strong influence on im-

plementation styles. Several libraries were studied that have similarities with the

method we proposed. In particular, [23] and [6] use inheritance for platform specific

code, but in contrast to our approach they tend to:

• Use multiple levels of inheritance, when one generally suffices;

• Provide only one implementation of the inherited class, and specifically reference

it in various places;

• Separate code development and releases into platform-specific branches; and

• Use a void pointer (which becomes a pointer to a structure) for member vari-

ables instead of having the variables stored in the inherited class.

The library written (JTK) shows that the ideas of cores and routers are both

easy to understand and easy to implement. Expansion and extension of code that uses

cores and routers has also been proven to be an easy and straight-forward endeavor.

The concepts of cores and routers presented in this thesis and the software de-

velopment method they promote are aimed at creating higher-quality cross-platform

code. Simplicity and efficiency are desirable qualities in programming which can be

achieved with the development solutions proposed. While improved code readability,

code sharing, and program structure can certainly benefit from these solutions, future

39

work should focus on code optimization and larger-scale application of the proposed

methods.

40

Bibliography

[1] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-
guage, 1997.

[2] L.C. Banerjee, T. DeFanti, and S. Mehrotra. Realistic Cross-Platform Haptic
Applications Using Freely Available Libraries. Proceedingss of the 12th IEEE In-
ternational Symposium on Haptic Interfaces for Virtual Environments and Tele-
operator Systems, pages 282–289, 2004.

[3] BOOST. Chapter 10. Boost.Threads. http://www.boost.org/doc/html/
threads.html, Accessed June 6. 2005.

[4] T.C. Brooke. Development of a Distributed, Cross-Platform Simulator. Proceed-
ings of ACM SIGADA, pages 12–21, 2002.

[5] Eldos Corporation. MsgConnect: There is a world to connect. http://
msgconnect.com, Accessed March 2005.

[6] E. Crahen. Netinformations Computer Guide: “ZThreads”. http://zthread.
sourceforge.net, Accessed March 2005.

[7] M.A. Cusumano and D.B. Yoffie. What Netscape Learned from Cross-Platform
Software Development. Communications of the ACM, 42:72–78, 1999.

[8] S.M. Dascalu, A. Pasculescu, J. Woolever, E. Fritzinger, , and V. Sharan. Strati-
fied Programming Integrated Development Environment (SPIDER). Proceedings
of the 12th International Conference on Intelligent and Adaptive Systems and
Software Engineering, pages 227–232, 2003.

[9] DOFactory. Design Patterns. http://www.dofactory.com/Patterns/
Patterns.aspx, Accessed June 7. 2005.

[10] M. Franz. Dynamic Linking of Software Components. IEEE Computer, 30(3):74–
81, 1997.

[11] A. Gal, S. Wolfgang, and O. Spinczyk. On Minimal Overhead Operating Systems
and Aspect-Oriented Programming. Proceedings of the 4th ECOOP Workshop
on Object-Orientation, 2001.

[12] GNU. GNU Make. http://www.gnu.org/software/make/make.html, Accessed
June 6. 2005.

41

[13] E. Goman, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1994.

[14] GTK+. The GIMP Toolkit. http://www.gtk.org, Accessed Jan. 28 2005.

[15] I.J. Hayes. Towards Platform-Independent Real-Time Systems. Proceedings of
the 2004 Australian Software Engineering Conference, pages 1–9, 2004.

[16] J. Jusayan. SPINDLE: The Stratified Programming INtegrated DeveLopment
Environment. 2004.

[17] S. Li, J. Xu, and L. Deng. Periodic Partial Validation: Cost-Effective Source
Code Validation Process in Cross-Platform Software Development Environment.
Proceedings of the IEEE Pacific Rim International Symposium on Dependable
Computing, pages 401–406, 2004.

[18] H. Nishimura, C. Timossi, and J.L. McDonald. Cross-Platform SCA Component
Using C++ Builder and Kylix. Proceedings of the Particle Accelerator Confer-
ence, pages 2385–2386, 2003.

[19] OpenSG. OpenSG Home. http://www.opensg.org, Accessed March 2005.

[20] U. P. Shultz. Partial Evaluation for Class-Based Object-Oriented Languages.
Proceedings of the 2nd Symposium on Programs as Data Objects, pages 173–197,
2000.

[21] Hawk Software. HawkNL (Hawk Network Library). http://www.hawksoft.
com/hawknl, Accessed March 2005.

[22] POSIX Threads. POSIX Threads Links. http://www.humanfactor.com, Ac-
cessed April 2005.

[23] Trolltech. QT Application Framework, Cross-Platform C++ GUI Development
and Embedded Systems Solutions. http://www.trolltech.com, Accessed Jan.
28 2005.

[24] UML. OMG’s UML resource page. http://www.omg.org/uml, Accessed March
2005.

[25] UNIX. UNIX History. http://www.levenez.com/unix, Accessed June 6. 2005.

[26] D. Waugh and W.J. Phillips. Cross-Platform Help Products: The Andyne So-
lution. Proceedings of the IEEE Professional Communication Conference, pages
86–88, 1995.

[27] B. Westphal, F. Harris, and S. Dascalu. Snippets: Support for Drag-and-Drop
Programming in the Redwood Environment. Journal of Universal Computer
Science, 10(7):859–871, 2004.

