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Abstract

This thesis presents Ringermute, an application designed to support audio feature
recognition and machine learning, from the training and testing to the deployment
phase. By choosing from a combination of feature extraction routines provided by
plug-ins, a researcher can quickly produce files for input to standard data mining
tools. The best combination of feature-extraction and classifier plugins can then be

used to drive a near-real-time application for further testing or production use.
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Chapter 1

Introduction

Context-aware computing and communication is a relatively recent area of research.
The goal is to produce systems and applications that modify their behavior in response
to changes in the physical or social environment of the primary user or users [75].
These systems consist of sensors and one or more controllers, which can operate
according to behavioral models of variable complexity [42]. Context-aware computing
can be seen as a marriage of machine learning with human-computer interaction.

Sensor design is one of several challenges in the field. Tasks that humans find
intuitive (face recognition, for example) are still more difficult for machines and can
only be done in a narrower range of circumstances, or force larger tolerances for error.
Even recognizing the ring of a phone over the sound of conversation or music—a trivial
task for most humans—is difficult for a machine [89, 45]. But such real-world sensors
are crucial to providing machines with the same context that supports successful
human interactions.

Most sensors, and particularly those that operate on audio or video, are given
noisy and unpredictable input. While Digital Signal Processing (DSP) is a mature
field of research, most of its algorithms are straightforward mathematical transforma-
tions and are frequently designed for human decision support, and do not necessarily
obviate the need for further analysis. The problem is essentially a machine-learning
problem, in that machines are faced with second-order input from DSP algorithms
that varies in its complexity. For example, an office environment may be generally

quiet and simple to segment into periods of distinct activity types, perhaps even on



the basis of volume alone. However, a restaurant, factory floor or even the passenger
compartment of an automobile present far more challenging environments. In these
cases, spectrum analysis will get us only so far.

Voice recognition has long been a fruitful area of research and development, but
audio sensing in support of context-aware systems is relatively less sophisticated.
While data mining tools are plentiful, audio feature recognition is still an evolving
area of research, and very few audio tools are designed with the needs of machine
learning in mind. FEven ignoring the vast majority of tools that are designed for
music or multimedia production, most audio analysis tools are focused on DSP, and
not machine learning tasks.

This thesis presents Ringermute, a tool designed to support audio feature recog-
nition and machine learning, from the training and testing to the deployment phase.
By choosing from a combination of feature extraction routines provided by plug-ins, a
researcher can quickly produce files for input to standard data mining tools. The best
combination of feature-extraction and classifier plug-ins can then be used to drive a
near-real-time application for further testing or production use.

The problem of audio event and scene classification, and the current state of
research, is summarized in Chapter 2. The intent and scope of the Ringermute
system is discussed in more detail in Chapter 3, and the implementation is covered in
Chapter 4. Two usage scenarios are outlined in Chapter 5. The results of the project

and avenues for future research are found in Chapter 6.



Chapter 2

Background

2.1 Context-aware Computing

As computers have evolved from a job description to a ubiquitous and pervasive
part of human life, their peculiarities and limitations have come into sharp focus,
and their effects a serious concern. Where once an error in computation might see
months to take effect, and pass through a number of human gatekeepers, the state
of the art is such that computers are an active and immediate part of all major
activities, including transportation, commerce, communication and even creativity
itself. Soon after it became popular to speak of computers as “electronic brains,”
the limitations of this analogy became all too apparent. Far from replicating human
intelligence and thought, computers serve, at best, as rapid idiot savants. While it
is now equally popular to delineate the limits of computing and regale readers with
the problems of software as it is practiced,[18] it is more useful to concentrate on
the key phenomelogical differences between humans and computers. One such area
is context, and the application of what is known as context-aware computing.
Although the field is relatively recent and fluid, Dey, Abowd and Salber [24]

provide an excellent definition for the central property of context:

Any information that can be used to characterize the situation of en-
tities (i.e., whether a person, place or object) that are considered relevant
to the interaction between a user and an application, including the user

and the application themselves. Context is typically the location, identity,



and state of people, groups, and computational and physical objects.

This covers the topic, but sometimes examples are the best guide. One classic
scenario is that of the urgent, time-sensitive notice that pops up when no one is
there to see it. Such notices would be generated by such applications as diverse
as personal information managers (PIMs) reminding someone of an appointment or
an industrial control system indicating a change in coolant level. In either case, a
human performing a similar function would immediately perceive that the message
would have to be either deferred or delivered in an alternative way, depending on the
context. In an industrial setting, there is a clear distinction between an event that
would require immediate operator attention, one that would require information to
be noted and collected for later analysis by an engineer [14].

In the first example, it may be that the user is already on their way to the ap-
pointment’s location, in which case the notice might be deferred, or if the appointment
is important enough, a text reminder could be sent to their cell phone. Similarly, if
the appointment is to take place in their office, perhaps they forgot, and paging their
cell phone is also in order if the appointment involves another person. Perhaps the
user is in their office, but is simultaneously speaking on the telephone and typing into
the computer. A pop-up message would seem intrusive at the moment. In this case,

context involves the following facts about the user and their environment:

Where is the user?

What are they doing?

What else is happening around them?

What are their preferences in situations like these?

These facts are not always easy to come by for a computer. They may involve au-
diovisual sensors, knowledge about the user and their relationships to others gleaned

from structured and unstructured data, and data collected from the past, particularly



data the computer can use to correct its actions in the future. In the past, context
would have been limited to what was provided such operating system modules as the
mouse, keyboard, internal clock, the processes run by the user, and network activity.
That the task is difficult does not mean it is out of reach: Context-aware notification
systems supporting the typical office worker already exist in research settings [34, 47].

It is useful to note, at this point, that applications rarely, if ever, directly interact
with humans. Standard software design practice is such that all such activity is
mediated by the operating system itself. So it is only natural, when envisioning a
new set of contextual information available to applications, to see this being provided
by the operating system as well, or at least by services available to all processes.
Dey, Abowd and Salber are clearly pointing toward this with their context-aware
framework and toolkit [24]. The central problem of integrating a myriad of sensors,
rules and inferences makes robust context-awareness not just a sensor problem or a

machine learning problem, but a software design problem as well [32].

2.1.1 Affective Computing

A closely related subject is that of affective computing, which shares the goal of re-
defining the user interface in ways that better support human activities and human-
computer interaction. Various interaction paradigms such as the command line and
direct manipulation through a graphic user interface (GUI) have evolved from previ-
ously dominant paradigms, but continue to coexist [68]. It becomes apparent that,
rather than having discovered the ideal means of interaction, we have found that our
increasingly broad relationship with computers leads to an equally broad collection of
interaction modes and paradigms. “There is rarely a one-size-fits-all solution for the
growing variety of computer users and interaction [64] .” In affective computing, the
concern is the emotional content of the interaction between the human and the com-
puter [65]. While our expressions of frustration, short of violence, have little effect on
current computers, affective interfaces would both recognize subtle and not-so-subtle

human emotional cues, and react accordingly. Affective computing, like context-



aware computing, implies both ubiquitous and attentive computing. It requires an
environmental awareness in order to perform the higher-level task of deducing emo-
tional states and possible responses. A good example of an affective application that
makes use of context, and auditory context in particular, is Rea, a virtual real estate
agent [13]. It recognizes both verbal and non-verbal cues and seeks to respect the

natural human conversational conventions, including feedback and turn-taking.

2.1.2 Interruptibility And User Attention

Most computing devices and interfaces are in large part unaware of context, or do
not fully make use of the available context information. One of the implications of
this situation is that computer-initiated communication in the form of notifications
and alerts will not always occur at opportune moments. One of the motivations
for context-aware research is to create systems that take into account the limits of
human cognitive abilities, in the sense of minimizing interruptions and their effect on
task performance. Recent work has begun with the premise that human attention is a
scarce resource, and that our cognitive abilities are fundamentally limited at any given
moment, but limited in ways that allow for successful prediction even under uncertain
conditions [35]. User studies have been able to quantify the effect of interruptions
on users, including the increase in annoyance, anxiety and the perception of the
task’s difficulty [6, 7]. It is also apparent that, beyond the interruption itself, the
nature of the interruption and the nature of the preexisting task, the timing of the
interruption can, intuitively enough, be correlated to the intensity of the negative
effect [1]. Through a series of studies Fogarty et al. [28] have demonstrated that
effective models of human interruptibility can be constructed using simple, cheap
and minimally intrusive sensors. Fundamentally, the problem of interruptibility can
be seen as one of a trade-off between the cost of interrupting and the benefit of

notification [53].



2.1.3 Some Context-Aware Applications

Speaking of what he terms “perceptual intelligence,” Pentland classifies context-aware
applications in one of two categories: smart rooms and smart clothing [62]. The
taxonomy should not be taken too literally: “Smart rooms” encompasses wide range
of environments, ranging from typical office settings such as meeting rooms to vehicles
as well. The key is that the context resides in the environment itself, which can be
seen as a stationary robot [42], or at least stationary with respect to the user(s).
Smart clothing, on the other hand, concerns the items, ubiquitous or not, that follow
the user around. This includes such items as cell phones, personal digital assistants,
and other more exotic devices. Perhaps a better, albeit more prosaic, set of terms
would be entity/environmental context (the context of an environment or non-human
entity) versus personal context (the context of a given person). Given a pervasive and
ubiquitous computing landscape, these distinctions will of course tend to blur, if not

disappear.
Environmental Context

The “intelligent” meeting room is the near-canonical example of a context-aware
environment. This comes as no surprise given the complexity that accompanies the
utility of presentation technology. Facilitating either a smooth presentation or collab-
oration is never easy, especially given the rise in meetings that involve geographically
dispersed participants [19]. Even without the need for flexible state models [42], an
organization benefits from a building that can determine which rooms need lighting
and environmental control [27].

The Reactive Room project is a context-aware meeting room, with an integrated
telepresence system [19]. Through the use of sensors (video, light) the interface to
the system becomes invisible. Tasks such as lighting control and camera selection
(for the remote attendees) are managed entirely by the system. In the SmartOffice
project, researchers from the French National Institute for Research in Computer

Science and Control (INRIA) used a combination of cameras and microphones to



create an “intelligent” conference room capable of identifying occupants and their
activities [44]. Though very similar to the Reactive Room project, SmartOffice goes
further by incorporating gesture recognition, which transforms the whiteboard into
an interface to the system. The Intelligent Room is also a meeting-room application,
and Kulkarni[42] presents a solution to the problems of behavior and decision-making,

problems which intelligent environments share with robots in general.
Personal Context

While environmental context concerns the behavior of a room or place given its con-
text, personal context is the set of conditions and facts that influence the behavior
of objects with respect to a single person, or that person’s identity and profile. De-
vices that fall in this category are concerned with assistance and communication in
a particular sense. Pentland presents the analogy of a well-trained dog [62], and
while he presents it with view toward smart environment, the comparison is apt here.
One obvious component of personal context is physical location [74], which plays a
large role in the issue of notification. Location can be determined using a number of
schemes, ranging from specialized networks [74] to GPS or even wireless local area
networks [80]. More recent work has moved beyond the issue of specific location to-
ward the use of multiple sensors in different modes [5]. The goal is that devices can
use their general context (a meeting inside the building vs. a walk outside, for exam-
ple) to help determine their behavioral state. This would require the incorporation of
context sensors and lower-level interpreters in a wide variety of devices, ranging from
cell phones to coffee cups [32]. Mobile audio context has proven a difficult problem,
although some results have been promising [73, 16]. Personal Information Managers
and their ilk should also be seen in a personal context; projects have included the

Notification Platform mentioned earlier [35] and the Syncophant project [47].



2.2 Auditory Context

Auditory context has been particularly interesting in mobile settings where a variety
of environments permit scene segmentation. Clarkson, Sawhney and Pentland first
identified the presence of sound objects or events (such as certain speakers or auto-
mobile engines), and then trained a Hidden Markov Method framework to classify
scenes. They were able to detect nine out of 10 transitions accurately [16].

A somewhat different problem of a conversational topic (linguistic context) was
the target of another study, which used speech recognition and machine learning
to determine the conversational topic, with a 93 percent accuracy rate over three
topics [37]. The team also wished to explore the possibility of classifying the emotional
tone of the conversation.

In general, audio context in isolation has not been the focus of as much study as
location-based context, particularly GPS-driven sensing. More than likely, auditory
and visual context sensors would integrate into a system containing multiple sensors
in varying modes [32].

There are significant problems to be solved before using audio sensors to detect
either sound events or tackling the even more difficult problem of scene segmen-
tation and recognition: even human subjects can have trouble detecting scenes by
sound alone [60]. Even so, Computational Auditory Scene Recognition (CASR) has
been a fertile ground for research. Early work attacked the problem of searching
multimedia databases, particularly video [25, 92], and this is still a strong motiva-
tion [55, 49, 50]. Given the difficulty of the task, much of the research has been
concerned with recognizing general classes of sound: speech, music, silence or ap-
plause, for example [55, 49, 50, 29]. Some approaches have attempted a two-stage
approach of recognizing sound object patterns, which are then fed to a probabilistic
network, such as Bayesian or a Hidden Markov Method [16, 48].

Although the research has grown out of the needs of multimedia databases, au-

ditory context in its strict sense is becoming a topic of research as well. Aside from
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the work by Clarkson, Sawhney and Pentland [16] mentioned earlier, Korpipaa et
al. [41] have used audio features in the recent MPEG-7 standard [51] to generate a
set of binary attributes that are then fed to a Bayesian network to infer context with
a relatively high accuracy. Some work has also been done on the detection of alarm
and notification sound objects, such as telephone rings and the like, in the presence

of background noise or music [45, 26, 46].

2.2.1 Human Audio Perception

Before turning to the relevant details of audio signal processing and feature extraction
for pattern recognition and machine learning, it helps to briefly cover what is known
about the most successful system for recognizing and discriminating sounds and sound
scenes: The human ear. The details of human hearing have been extensively covered
elsewhere [78, 33, 79], but the important fact to note for auditory context research
is that the basilar membrane in the inner ear acts as a frequency spectral analyzer
and associates specific neurons with specific frequencies. The auditory cortex itself
outnumbers the neurons directly attached to the basilar membrane by a factor of
about a 1,000, making for a very complex system indeed [33]. In addition, the acuity
of human hearing is frequency-dependent. While the range of human hearing extends
from 20 Hz to 20 kHz, human hearing is more sensitive to the the narrower band of

1 kHz to 4 kHz, and can detect sounds at a much lower amplitude [79].

2.2.2 Audio Digital Signal Processing

Audio signals can be seen as a subset of the larger topic of digital signals in general.
While sounds manifest themselves as waves in the physical medium of the atmosphere,
they are represented digitally as sample points in the Cartesian coordinate plane, with
the Y-axis representing amplitude and the X-axis representing time. An example can
be seen in Figure 2.1.

Although some features can be extracted directly from the raw time-domain

signal, most auditory pattern recognition and context inference has made use of either
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Figure 2.1: Example of the digital representation of a raw audio signal

11



12

the spectral data or features extracted from the spectrum. Derivation of spectral
data is discussed in detail in Section 2.2.3. Studies have made use of either the
standard spectrum [89, 46] or one adjusted to match the sensitivity profile of human

hearing [16, 81].

2.2.3 Relevant Audio Features

In this section we will briefly discuss the various audio features that have been used
in the past for audio scene recognition, speech/music discrimination, and other ap-
proaches to the general problem of audio segmentation. I have made extensive use of
[60], [50] and [63] here, and it is interesting to note that there always seem to be at
least two different ways to extract the same feature. In addition, this list of features
is by no means exhaustive. These features are either already incorporated, or are
planned for future inclusion in the Ringermute system. In reviewing the literature,
one is struck by the amount of trial and error involved in auditory feature selection.
They are chosen either because of their presumed emulation of human audio percep-
tion processes, or because of their correlation to phenomena in small samples. Since
the goal of classification is to transform complex input into more simplified output, it
would be interesting to explore automated means of feature generation and selection,

such as the GA-based technique proposed by Vafaie and De Jong [85].

Short-time Energy Function

While the average energy over the short term of a given analysis window is not
particularly discriminating for most audio object and scenes, its variation over the
long term becomes more useful. It can be directly derived as the root-mean square

of raw time-domain signal:

(2.1)
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Frequency Spectrum

Although a few useful features may be derived from the audio signal without perform-
ing spectral analysis, most feature extracting will involve the spectrum as a starting
point. As a first step, we transform the original time domain waveform into the

frequency domain. An example of such a transformation can be seen in Figure 2.2.

-20 T T T T

30 | -

-40 \ -

50 | | B

Amplitude

70 . 4

-80 A .

90 ! ! ! !
0 5000 10000 15000 20000 25000

Frequency

Figure 2.2: Example of the frequency spectrum of the audio signal from Figure 2.1.

We will briefly discuss the process, which is covered in greater detail in [33] and
[79]. The Discrete Fourier Transform, or DFT, is our primary tool. This transforma-
tion takes the original audio signal vector x[/N] and produces the real part ReX[N/2]
and imaginary part ImX|[N/2]. The real part contains the amplitude of the cosine
waves, while the imaginary part contains the amplitude of the sine waves. We are
primarily concerned with the real part, so the imaginary portion is discarded. We

start with the DFT basis functions:
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cxli] = cos(2mki/N) (2.2)

sk[i] = sin(27ki/N) (2.3)

In Equations 2.2 and 2.3, ¢, is the vector containing the cosine wave for the
amplitude in ReX|[k|, and s, contains the sine wave for the amplitude in ImX|[k].
The key to these functions is the frequency parameter k, which is equal to the number
of complete cycles that occur over the N points of the original signal [79]. We pass
over a considerable amount of derivation detail here, and proceed directly to the

equations for producing the DFT:

ReX[k] = Z x[i] cos(2mki/N) (2.4)
ImX[k] = ' x[i] sin(2mki/N) (2.5)

To produce a given sample in the frequency domain, we multiply the original
time domain signal by the particular sine or cosine wave sought, and then add the
resulting points. Note that this describes the Real DFT, which is a simpler version
of the complex DFT, which will not be discussed except to bring up the Fast Fourier
Transform, or FFT, credited to Cooley and Tukey [17]. The FFT is the efficient
algorithm generally used in spectral analysis to calculate the frequency domain. It
is quite complex and will not be covered here, although it should be noted that the
length of time required to calculate the DFT is usually a O(N?) operation; using the
FFT, it becomes O(N log N).

It can be seen that the size of the initial frequency spectrum of the analysis
window is dependent upon the length of the window. To facilitate analysis the initial
spectrum may be converted by averaging into sub-bands. This hard limit places a

lower bound on the size of the analysis window.
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Mel-scaled Cepstral Coefficients

The Mel-scaled Cepstral Coefficients (MFCC) filter bank is an example of a feature
extracted by applying more than one Fourier Transform to the original signal in
sequence. The term Cepstrum (an anagram of spectrum) derives from this repeated
use of the Fourier Transform. The MFCC feature seeks to emulate human perception

through the following general procedure [33]:

1. Compute the power spectrum using the Fast Fourier Transform discussed in

Section 2.2.3.
2. Apply the Mel-scale filter bank, which is based on human pitch perception.

3. Compress the spectral amplitudes to match human intensity and loudness per-

ception.
4. Perform the inverse DFT.

5. Perform spectral smoothing, usually by ignoring the higher filter magnitudes.

This final representation is an approximation of the compressed and equalized
signal produced by the mechanism of human hearing. Given the correlation, it makes
an attractive feature for context-aware research [16], and has been found to be more

discriminatory compared to other features mentioned here [60].
Spectral Centroid

This is the balancing point of the spectral energy distribution, and is related to the
brightness of sound. It is the amplitude-weighted mean of the spectrum components.
For relatively pure tones the spectral centroid will tend to equal the frequency of the
tone, while more complex tones can be placed on a simple “brightness” scale. It can

be calculated as follows:
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sc=E_____ (2.6)

Spectral or Signal Bandwidth

The spectral or signal bandwidth is the range of frequencies occupied by the signal—
since noisy real-world signals generally measure some value in most or all the frequen-
cies, a cutoff value equal to some fraction of the maximum value is usually employed.

Peltonen [60] uses the following definition:

BW = |22 (2.7)

where C is the spectral centroid found in Equation 2.6, F is the DFT of the signal
and M is the index of the highest-frequency sample greater than or equal to the cutoff

value.

Spectral RMS

The root-mean square of the spectral data, defined as follows:

(2.8)
where N is the total number of frequency “bins.”

2.2.4 Pitch Detection Features

Zero-Crossing Rate

The zero-crossing rate (ZCR) is the number of times the time-domain signal crosses

the y-axis zero point for a given sample window. It can be used as a very rough
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pitch-detection attribute in that it depends on the frequency, but does not require

calculation of the spectrum:

ZCR = % (Z_l isgn(z(i)) — sgn(z(i — i))|> (2.9)

In Equation 2.9 z is the original time-domain audio signal, N is the size of the

processing frame, and the function sgn is defined as follows:

L, (x>0)
sgn(z) = 0,(x =0) (2.10)
—1,(z <0)

Lu and Zhang found the ZCR variation to be more discriminating than the ZCR
value per se [50]. They define the high zero-crossing rate ratio (HZCRR) as follows:

N
1

= — 1L.5bavZ 1 2.11

HZCRR = 5N E:O [sgn(ZCR(7) 5avZCR) + 1] (2.11)

where i is the audio frame index, ZC'R(7) is the zero-crossing rate at the ith frame,
N is the total number of frames, avZCR is the average ZCR (they use a one-second

window), and sgn is the sign function defined in Equation 2.10.
Harmonic Product Spectrum (HPS) Sub-bands

The harmonic product spectrum is one of several algorithms used to detect the funda-
mental frequency, or pitch, of a given audio signal. A fairly simple but robust method,
the mechanics are covered in more detail by de la Cuadra, Master and Sapp [23]. In
earlier stages of the Ringermute project the recognizer implemented a simple three-

harmonic version of the HPS algorithm (base frequency plus two harmonics).
EAC Subbands

A slightly more complex pitch-detection algorithm than HPS, it was chosen after

examining the audio samples in the open-source audio editor Audacity, which provides
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a pitch visualization using EAC [12]. Ringermute’s algorithm is taken directly from
the Audacity code, which in turn is based on the enhanced autocorrelation algorithm
described by Tolonen and Karjalainen [83]. The algorithm seeks to duplicate the
characteristics of human pitch perception, but does so in a computationally efficient
way. As with the spectrum, the spectral output from EAC is condensed to a user-

configurable number of sub-bands.

2.3 Machine Learning and Context

Coping with noisy floating-point data is one of the critical issues for the use of
machine-learning algorithms in audio research. One of the central problems of noisy
data is that the most effective approaches for segmenting and classifying may not
actually give us a great deal of insight into the problem and its solution—all we can
say is that the approach worked for a particular problem set. Since these techniques
are all fundamentally machine learning techniques, it is implied that their effective-
ness also depends entirely upon the choice of the training set and composition of the
feature vectors. That being said, all of the following techniques lend themselves to
some form of visualization and generalization, given that they effectively solve the
problem.

Before discussing some of the approaches and algorithms, it would help to define

the terms we will be using. We will start with Mitchell’s formal definition:

A computer program is said to learn from experience F with respect to
some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E [54].

Relating the definition to context-aware audio, £ is a collection of exemplars
consisting of fixed-length windows of audio data and the features derived from them.
Each exemplar can be seen as a vector of features or attributes. For our purposes, a
feature might be a vector of spectrum values, the zero-crossing rate, or average energy

across the audio window. The exemplars in the training set R and test set S (where
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RUS C FE) are given expected values in order to evaluate the learning algorithm’s
ability to discern the target function, which is the function that correctly determines
the correct values for all exemplars in F.

While we cover the major machine-learning and pattern-recognition approaches
in the field, it should be noted that research has gravitated toward hybrid approaches
using some form of prior classification or segmentation, perhaps one suited to noisy
data, which is then fed to another approach, which may excel in classifying vectors
of discrete attributes [47, 41]. Some research has also focused on improving feature

selection and makes use of heuristic rules [92, 81, 93].

2.3.1 Training and Validation

Aside from the problem of feature selection and/or generation, machine learning
presents the challenge of validation: That is, the problem of determining whether the
combination of features and classifier would be effective on any data other than the
training set, and the problem of evaluating one classifier /feature combination against
another. The problems of system evaluation, and solutions developed in response,
is covered in more detail by Theodoridis and Koutroumbas [82] and Witten and
Frank [91]. Stratified tenfold cross-validation is one of the more popular techniques,
and the one that is used by the WEKA machine learning toolkit by default [88].
With this method, the available dataset is randomly split into 10 equal-sized “folds.”
Nine of the folds are used to train the classifier and the remaining fold is held back
for testing. This process is repeated until each fold has been used for testing. The
entire cross-validation process can be repeated to guard against bias introduced by

the process of creating the folds [91].

2.3.2 Swupervised Training

The primary difference between supervised training and unsupervised training (dis-
cussed in Section 2.3.3), is that supervised algorithms seek to exploit a priori infor-

mation, in the form of a training dataset composed of pre-classified instances. While
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this may seem an obvious advantage over unsupervised-training algorithms, it does
mean that improperly-classified data will skew the results and increase the trained

classifier’s error rate on future data.

Decision Trees

Decision Trees, such as the ID3 algorithm [70] and its descendants C4.5 [71] and
J48 [91], work by using the training set to construct a binary tree whose nodes
consist of decisions that are applied to new exemplars. Figure 2.3 demonstrates part
of a decision tree constructed from audio features. Sub-band 13 and Sub-band 15
are bands at the high end of the frequency spectrum, and the decision tree nodes are

evaluating exemplar attribute values in those bands. The tree itself is constructed

subband_15

<=121887.9 >121887.9

subband_13

<=131059.9

Class: No

Figure 2.3: Example of a decision tree constructed from audio data.

in a top-down fashion by choosing the most discriminatory attribute at each level on
the basis of its information gain—that is, how effective it is in classifying exemplars
on the basis of that attribute alone. This is covered by Quinlan [71] in more detail,
but a brief discussion taken from Mitchell [54] follows. We start with the idea of
information entropy, or uncertainty, as originally advanced by Shannon [76]. The

entropy measurement for a boolean classification is fairly simple:

Entropy(S) = —pe log, pe — pe log, pe (2.12)
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where pg is the proportion of positive examples in S and pg is the proportion of
negative examples. It can be seen from Equation 2.12 that the entropy increases as
|pes — po| — 0. As the entropy approaches 1, its discriminatory power decreases.
The entropy is used to derive the information gain of an attribute via the following

calculation:

Gain(S, A) = Entropy(S) — Z %Entropy(Sv) (2.13)
veValues(A)

In Equation 2.13, S is the collection of examples, S, is the subset of S where attribute
A has value v and Values(A) is the set of all possible values for the attribute A. De-
cision tree algorithms are biased toward simpler and thus more comprehensible trees,
and this information-gain metric tends to prevent excessive branching [91]. Even so,
it is usually necessary for the algorithm to “prune” the tree after building it, remov-
ing subtrees that have little effect on the overall classification accuracy [69]. Decision
tree-pruning and other methods of keeping the number of nodes small also helps in
combating the problem of overfitting, where the classifier increases its accuracy on
the training data at the expense of the test data. Very little auditory-context work
has been done with decision trees, although some of my earlier research was promis-
ing [45]. The use of decision trees is more established in more general context-aware

research, particularly where boolean attributes can be employed [47, 28].

Hidden Markov Models

Since one of the main goals of auditory scene and object recognition is to find an ab-
stract decision function within a time series of noisy real-world data, Hidden Markov
Models are an obvious choice [16, 94, 15]. Reduced to its essence, a HMM is a finite
state automaton with probabilistic transitions. They are covered in more detail by
Theodoridis and Koutroumbas [82], but we can explain HMMs by way of an example
auditory scene problem. If we were to attempt to determine whether a phone was
ringing in an office, we would construct a model with the states N and P, where

P represents the state where the phone is ringing. These are, in fact, the “hidden”
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states, in that they are not directly observable to the system—all it can observe is
the various audio features gleaned from the microphone. We can establish rough
initial probabilities for these states, of course, and we can also estimate transition
probabilities—the likelihood of a change from N to P or P to N at any given time.
These initial probabilities will, of course, be altered in the process of training, which

usually is done using the iterative Baum-Welch algorithm [8].
Artificial Neural Networks

Artificial Neural Networks (ANNs), or multi-layer perceptrons, hold quite a bit of
promise for auditory classifiers due to their robust performance with noisy data [54].
Biologically inspired, ANNs are a necessary simplification: Neurons and synapses are
simulated using a highly-connected directed graph. The nodes contain real values
used to weight the input to the node, the output of which is then used as an input for
the next node(s). The hypothesis space H is the set of all possible weights, and the
target function is iteratively approximated, commonly by using the gradient-descent
algorithm BACKPROPAGATION. For each training exemplar, BACKPROPAGATION
propagates the input forward through the network, and then propagates the error
adjustment backwards through the network. Other methods can also be used to cal-
culate weights for the network, such as one using a genetic algorithm [89]. Figure 2.4
shows a three-layer perceptron—an ANN with two hidden layers. It can be shown
that a network with two hidden layers can classify certain input spaces that are im-
possible for a network with a single hidden layer [82]. One problem faced in training
ANNSs, which they share with decision trees, is that of overfitting to the training
set [54, 90]. Under normal circumstances it will be seen that the classification error
for both training and validation sets will decrease, but as the number of training
iterations approaches oo the validation error will increase while the training error will
continue to decrease. At this point the ANN is adapting itself more perfectly to the
training set, but is losing its ability to classify unseen exemplars. Given their robust

handling of noisy continuous data, it is no surprise to see the use of ANNs in every-
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Figure 2.4: Example of an artificial neural network with two hidden layers

thing from the analysis of multiple simple sensors [43], detection of alarm sounds [26]

or the automatic segmentation of speech and music [38].
Bayesian Learning

The use of Bayesian learning methods in machine-learning applications has risen since
its widespread adoption in junk-email filters [72]. While Bayesian methods perform
well in text-based applications [37], they are not limited to that domain. Auditory
classification attempts have made use of Bayesian methods such as a naive Bayes
classifier [41] or Bayesian belief network [48] after a preliminary classification step,
which might simply consist of discretization of the initial continuous values. Bayesian
classifiers have also been used in research into human interruptibility, and tend also to
be used after initial discretization [34, 47, 28]. Both naive Bayes and Bayesian Belief
Network classifiers start with the venerable (and posthumous) Bayes theorem [54, 9]:

P(D|h)P(h)

P(HID) = =55

(2.14)

In Equation 2.14, P(h|D) is taken to mean the probability of the hypothesis h given

the observed training data D, where P(z]y) is used to denote the probability of z
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given y. In practice, the denominator P(D) is discarded because it is a constant
independent of h [54]. In Bayesian classifiers, the goal is to find the most probable
hypothesis or class from a set of classes, also known as the mazimum a posteriori
(MAP) hypothesis, defined as hyap = argmazx,cy P(D|h)P(h) [54]. Given a set of
exemplars consisting of a vector of features (a;, as...a,), we can describe the process

of finding the most probable class vy, 4p like so:

vmap = argmaz, oy P(vjlar, as...an|v;))
P(ay, as...an|v;)P(v;)
P(ay,as...ap)

argmaz, ey
= argmaz, cy P(a1, az...an|v;) P(v;)

(2.15)

In Equation 2.15, we are simply casting Equation 2.14 into the vector-of-features
problem domain, where v; is the particular class in the set of classes C'. Note, how-
ever, that P(ay,as...a,|v;) requires that we have an extremely large set of training
data (on the order of n!) in order to come up with reasonably accurate estimates. To
simplify, the naive Bayes classifier assumes that each individual attribute is indepen-
dent of the others, so that P(aq, as...a,|v;) is the product of the individual attributes’
probabilities:

unp = argmaz, ey P(v;) H P(a;|v)) (2.16)

i
While naive Bayes classifiers assume the independence of all attributes, Bayesian
belief networks remove this absolute constraint by allowing that this assumption only
applies to certain subsets of the variables. The removal of this constraint allows such
classifiers to tackle more complex problems, while preserving some of the efficiency

found in naive Bayes classifiers [54].

2.3.3 Unsupervised Training

When no prior classification is available for the training data, it is still possible to

discover similar classifications in the input data. This process, clustering, is useful in
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auditory analysis due to the difficulty of properly classifying the training examples.
For example, although it is possible to manually locate the beginning of a sound
object by viewing the waveform visualization of a file in a sound editor, the very
act of labeling might introduce errors by classifying the absolute a priori onset of
the sound object, which may not contain the feature values useful for programmatic
classification. Using a clustering algorithm, then, allows us to discover what groups
occur naturally in the data: “These clusters presumably reflect some mechanism at

work in the domain from which instances are drawn [91].”
k-Means Clustering

Also known as isodata clustering, this is a fairly simple and popular technique when
the number of clusters is known. Given a set of M classes: 0;,7 = 1,..M, the
N exemplars can be clustered using the algorithm seen in Figure 2.5, taken from

Theodoridis and Koutroumbas [82]:

1 repeat

2 for i =1to N do

3 Determine the closest representative 6; for x;

4 Set ¢(i) = j

5 end

6 for j =1to M do

7 | Determine 6; as the mean of vectors z; € X with ¢(i) = j
8 end

9 until no change in f;’s occurs in successive iterations.

Figure 2.5: Algorithm for k-Means Clustering

k-Nearest-Neighbor

The k-Nearest-Neighbor (kNN) algorithm is a perfect example of an instance-based
learning algorithm, meaning that instead of using the training data to create a gen-
eral, explicit description, the training data is used, either in part or in its entirety,

to classify exemplars. We will briefly discuss it here, but it is covered in more detail
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by Mitchell [54]. By storing previously-encountered data, it is able to defer compu-
tation until the classification step. This does mean that the classifier routine itself is
somewhat expensive. However, it is robust for complex target functions. The kNN
algorithm boils down every learning problem into one of simple geometry, assuming
that n-dimensional space can be considered simple.

We start by defining the problem space as an n-dimensional space R". The
target function can be either discrete (f : R" — V', where V is defined as a finite
set) or continuous (f : R" — R"). Each instance x is defined as a feature vec-
tor: (a1(x),az(x),...an(x)). When a new, unclassified instance is encountered, it is

compared to the existing data set using a Fuclidean distance function:

n

d(z;,x;) = Z(ar(:ci) —a,(x;))? (2.17)

r=1
Note that the Manhattan or city-block distance, where the differences between z;
and z; are merely summed, could be used as well, instead of the root-mean-square
distance shown in Equation 2.17. It is also common to normalize the attribute values
to avoid skewing the distance function with varying scales [91]. The new instance
is usually compared to at most £ nearest neighbors, and is frequently weighted by
distance. It also is possible to make a global comparison to all previously-classified
instances by using distance-weighting. It can be shown that classification is optimal as
k — oo [82], but it is common practice to use k = 5 [54, 91]. KNN-based approaches
have been quite successful depending on the feature selection [73], and are frequently

used in combination with secondary classifiers [49, 50].
Self-Organizing Maps

Influenced by research into ANNs, Kohonen self-organizing maps (SOMs) can be seen
as a specific type of competitive learning scheme, where the goal is to create clusters
by iteratively moving similar exemplars toward each other. Each new exemplar is
compared to the set of existing exemplars, and the most similar existing exemplar is

then moved within the hypothesis space toward the new exemplar, while the other
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exemplars stay where they are or are moved very little. Although it is not necessary
to have classified the exemplars from the training set, the algorithm does require some
knowledge of the number of clusters [82]. Kohonen describes a SOM more formally as
a mapping of non-linear and high-dimensional input data (in our example, the audio
input and features) onto the elements of a regular and lower-dimensional array [40].

By way of analogy, the SOM is an unsupervised version of the ANN discussed earlier.
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Chapter 3

Ringermute Design

While the world certainly does not lack for excellent audio tools [12, 59, 10] or
machine-learning applications [91, 88], there does exist a need for an application

that:

o Allows researchers to apply machine-learning techniques to live and stored audio
data without having to first learn how to use audio and digital signal processing

libraries.

e Allows researchers to develop new feature-extraction or classifier plug-ins that
are based on existing code, without having to learn much about the preexisting

code.

e Allows the rapid creation of an application based on the results of experimental

data, without even requiring compilation.

e Is flexible enough to allow further modification and additions.

It may seem that a tool such as MATLAB [52] would suffice to perform research
on audio context problems. Although such tools are useful and have a place in the
research, their primary limitation is that they were not designed to deliver usable
applications in an interactive context, particularly for live audio. And while WEKA’s
tool set [88] is well-adapted to constructing cross-platform applications, the audio

framework and feature selection is up to the researcher to provide. Yet the problems
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of audio input and sound file formats are not so complex that they necessitate re-
inventing the wheel. And the fields of auditory context and CASR provide a rich set
of features stable enough to be considered standard as well. The intent is to allow
the rapid creation of audio context widgets as conceived by Dey, Abowd and Salber,

either at the sensor or Interpreter level [24].

3.1 The Framework

The functionality of Ringermute is contained in three applications: The service
(rimuservice), the status monitor (rimutaskbar) and the feature-extractor (rimuextract).
rimutaskbar serves as the user’s GUI interface to the system. It allows the user
to view, edit and save settings, start or stop rimuservice, and start rimuextract
within a GUI context. It also displays the current rimuservice activity state.
rimuservice is the engine that is responsible for acquiring the raw audio data (either
from hardware input or a sound file), and activating data-processing modules (called
Listeners) on the data in turn. The service is also tasked with writing out any data
to a file or files. rimuextract is a command-line tool that extracts features from
a series of audio files and combines them into a single ARFF file. The relationship

between the three applications is seen in Figure 3.1.

Primary user interface

S Saves settings
S Starts/stops rmuservice
Calls rimuextract in GUI context
Manages notifications

EN

rimuservice rimuextract

Feeds audio input to Listeners Extracts features from audio files
Saves audio and/or features
Sends notification messages to rimutaskbar

Figure 3.1: Ringermute components and their interaction.
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3.2 The Central Repository

The key data structure is the central repository, also called Ringermute Central. At
its core it is a hash table [20] of pointers to objects containing data (usually arrays of
various types). Ringermute service places each frame of audio data in the repository
for use by the Listeners, which are responsible for managing the data in their own
namespaces. If a Listener requires historical data (the last N frames, for example),
it is responsible for keeping this data as well. The Ringermute service only promises
to provide the original audio data, and to trigger the Listeners whenever the data

changes.

3.3 Listeners

All data-processing and feature extraction(except for the original raw audio data) is
performed by Listeners. A set of standard Listeners is provided with Ringermute,
and provides basic audio processing, including spectral analysis. But the design of
Ringermute is such that third-party modules could easily be written to replace the
basic functions. As can be gathered by the description, Listeners are a relatively
straightforward implementation of the Observer pattern [31, 30]. A graphic repre-
sentation of the Listener interface can be seen in Figure 3.2. Another key point to
make is that Ringermute Listeners are designed to be loaded as dynamic plug-ins at
runtime. As such, they are required to provide several informational routines that
tell Ringermute what data they provide, and what data they depend on. This helps

Ringermute determine in which order to alert the Listeners.



Exported by DLL
wxString _ListenerName
wxString _ListenerDescription

RingermutelListener GetListener() Used by both the Service and Taskbar
to instantiate the Listener.

These provide the human-readable
attributes for display by the Taskbar.

The RingermuteListener class

(All Listeners inherit from this class)
Public: ... Used by both the Service and Taskbar
Ao . e to pass settings to the Listener.

SgtSettlngs(RMSgttlngs) T —— The primary function, called by the Service
virtual Update(RingermuteListenerPost) when new audio data is available.

virtual Ringermute_Listenerlnfo GetListenerinfo() .. The Listenerlnfo structure describes the data

Private: provided and options accepted by the Listener.

virtual InitializeWithSettings() Called by SetSettings(), uses the settings
to set up internal structures.

Figure 3.2: The Ringermute Listener specification.

31
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Chapter 4

Ringermute Implementation

Ringermute’s primary components have been implemented in C/C++, using several
open-source, cross-platform libraries. One basic requirement for Ringermute was
that it run on the three major desktop applications found in research environments:
Microsoft Windows, Apple Mac OS X, and Unix/Linux. Several alternatives were
considered, including Java and Python. Mindful of Knuth’s caution against premature
optimization [39], it was felt that the need for responsive and near-real-time audio
analysis, especially when functioning as part of a larger context-aware framework,
required better performance from the start. While Java has made great strides over
the past decade in speed comparisons with C/C++, it is unfortunately still true
that it performs at a disadvantage [86, 87]. Python, although it is a more rapid
deployment tool than C/C++ and performs nearly as well as Java [67], was eliminated
from consideration by its relative obscurity: more people have had experience with
C/C++ or Java than with Python. Another advantage of C/C++ is that byte-code
based runtime engines can be embedded within the Ringermute engine. This would
allow Listeners to make use of the Java-based WEKA [88] machine learning library,

for example.

4.1 Audio Input

Given that each major platform implements its own audio API (and in the case of

Linux, several different APIs over the years), it was essential to find robust cross-
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platform libraries in order to read audio data from both a live source and recorded
files. As it happens, only two open-source libraries are robust enough, under active de-

velopment and available on the required platforms: Portaudio [66] and libsndfile [22].

4.1.1 Portaudio

Portaudio [66] is an open-source library designed to provide access to the audio hard-
ware on a wide range of platforms, including Microsoft Windows, Apple Mac OS X,
several Unix variants and BeOS. It is used by a number of applications, most notably
the Audacity sound editor. Portaudio is usually run under a multi-threaded callback
scheme, but can be run as single-threaded process with blocking 1/O. This is how it
has been implemented in the Ringermute service, since it only needs to worry about

audio input during its execution.

4.1.2 Libsndfile

Since Portaudio does not provide for audio data input from stored files, libsndfile has
been used for sound file input and output. Like Portaudio, it is a free, open-source
library that runs on a wide range of hardware and operating system combinations. It
is capable of reading and writing standard audio formats such as WAVEform audio
format (WAV), Audio Interchange File Format (AIFF) and the Sun Unix Audio (AU)
file format. Additionally, it can read and write non-audio formats such as the MAT
file format used with the open-source MATLAB-compatible numerical application

Octave [56], and the file format used by the Hidden Markov Model toolkit HTK [36].

4.2 GUI Elements

Although the primary application is designed to run as as a background service, a user
interface has been developed to allow the user to start and stop the service, control
which modules are run, and access settings for each module. The Ringermute status
monitor runs as a “system tray” application, and displays an icon in the Microsoft

Windows Taskbar, the Macintosh OS X Dock, or in the area specified by freedesk-
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top.org’s System Tray protocol [61], which is supported by both GNOME and KDE.
This design allows the status monitor to indicate whether the Ringermute service
is active, access the settings menu, and also display notifications in a relatively un-
obtrusive manner. Examples of similar applications include Google Desktop Search

and Microsoft AntiSpyware. Figure 4.1 shows the service monitor in the Microsoft

Windows XP Taskbar.

Ringermute skopped

pd thesis,pdf IS A . 9:0ZPM

Figure 4.1: The Ringermute service monitor in the Microsoft Windows XP Taskbar.

Both the primary Ringermute settings (Figure 4.2) and the settings for each in-
dividual plug-in module (Figure 4.3) are accessed by using “tabbed” windows, which
use the metaphor of physical folder or workbook tabs to separate the settings values.
The individual plug-in modules do not access the GUI interface directly, but instead
indicate to Ringermute what properties are user-controlled. This allows plug-in au-

thors to contribute features without having to learn GUI toolkit routines.

M Ringermute Settings

General | F'Iug-insl EALC Listenerl Fhone Listenerl Faw Data Listenerl Spectrum Listenerl

Bitz Per Sample: I-IE vI
Sample Frequency: |441 oo vl
Sample ‘Window Size: |-| oon ms

¥ Save Audio Audia Filename: { .y by S ervicesinput 2 med- ZHEM, wav

I™ Save Features Features Filename: [y erviceshinput % Zmzd- ZH2%M  arff

Save

Figure 4.2: The Ringermute interface.

4.2.1 wxWidgets

Much of Ringermute’s functionality has been implemented using the wxWidgets li-

brary, a free, open-source, cross-platform toolkit in use since 1992 [77]. Aside from
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M Ringermute Settings

General ] Plug-ine EALC Listener | Phone Listener | Raw Data Listener | 5 pectrum Listener

PFitch Spectrum B ands:

Save

Figure 4.3: The Ringermute plug-in property interface for the EAC pitch-detection
plug-in.

providing a rich API for GUI applications, wxWidgets also includes several features
that made it useful for the Ringermute project. Both the service and status monitor
make use of its cross-platform dynamic library features to load the plug-in mod-
ules. Settings information for the Ringermute application and the plug-in modules
are handled by a cross-platform configuration framework: Under Microsoft Windows,
the information is saved to the Registry, and within *.ini files under Mac OS X and

Unix/Linux platforms.

4.3 Command-line and Background Applications

Both rimuextract and rimuservice are fundamentally similar in that they provide a
context for Listeners to operate. Their primary difference is the context in which they
in turn operate: rimuextract is designed to run from the command-line and takes
existing audio files as input, while rimuservice is designed to run in the background
and take live audio as its input. Both applications derive their primary functionality

from the Ringermute Central structure mentioned in Section 3.2.

4.3.1 Ringermute Extractor

At the moment, rimuextract is a fairly simple application. It accepts a list of audio

files as individual arguments, and transforms these into a single file containing the
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features extracted from the audio file, where each line contains the features from a
single audio window. The width of the audio window is set using the rimutaskbar
application. rimuextract makes use of the libsndfile [22] library to read the existing
audio files, and also makes use of several classes from the wxWidgets library. Although
rimuextract is designed to run as a command-line application, rimutaskbar allows

the user to invoke it within a GUI shell as a convenience feature.

4.3.2 Ringermute Service

Since rimuservice runs as a background process, it runs in a different environment
than rimuextract. Within Mac OS X and Unix systems rimuservuice is to run
as a daemonized process. This is usually done by forking the process and killing off
the parent, so that the newly “orphaned” process is “adopted” by the init process.
On the Windows platform, the application runs as a Windows Service instead. At
present, only the Windows version has been implemented. A service control API
has been written that abstracts the primary interface (start, stop, restart), and con-
crete subclasses are used to implement platform-specific functionality—this is a fairly

canonical example of the Bridge [31] design pattern.



37

Chapter 5

Ringermute Usage

The marriage of context-awareness with audio scene and object recognition makes
for a somewhat confusing combination of problems, many of which are still outstand-
ing. The overriding issue is the lack of context standards on any platform, let alone
platform-independent standards for gathering, reporting and acting on context. This,
in part, is why Ringermute is designed the way it is. Although it is by no means a
“context server,” it does expose some basic notification functions to its context and
recognition plugins. Similarly, while it does not include the breadth and depth of
audio analysis functions that other systems, such as Music Al Research SYstem for
Analysis and Synthesis (MARSYAS) [84] do, it compensates by integrating its recog-
nition features in the GUI. The goal was not to create the perfect application for
researchers or users, but to fit the general needs of both groups. In this way it allows
promising recognizers to be quickly used in a real-world setting, while also automating
some of the tedium of preparing audio for data mining and machine learning. Since
Ringermute was designed for two main categories of usage, we will explore them both

in this chapter.

5.1 Feature Extraction and Training

The first step is to gather the audio. Ringermute accepts audio input from the
underlying sound API, and can simultaneously save the audio and extract features

to an ARFF file. In most cases, the researcher will have recorded audio separately
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and perhaps prepared it with a tool such as Audacity [12]. In this case, we start
with one or more audio files. These will usually be WAV files, but Ringermute is
capable of reading all the formats and encodings supported by the open-source library
libsndfile. rimuextract is a command-line tool that takes the names of audio files as
its arguments. Using the central Ringermute settings file, it extracts audio features
using the Listener plug-ins mentioned earlier and saves the features to a combined
ARFF file. The ARFF format is shown in Figure 5.1. It consists of a header section
that describes the number and data types for each exemplar. This is followed by the
data for each exemplar, one per line, in comma-delimited format. The @QRELATION
line names the dataset, the QATTRIBUTE lines specify the number and types of the
data fields, and the @DATA keyword indicates the end of the header. The exemplars

follow, one per line, with comma-separated attributes.

ORELATION ringermute

@ATTRIBUTE "Pitch Spectral Bands 0" NUMERIC

@ATTRIBUTE "Pitch Spectral Bands 1" NUMERIC

Q@ATTRIBUTE "Pitch Spectral Bands 2" NUMERIC

Q@ATTRIBUTE "Pitch Spectral Bands 3" NUMERIC

@ATTRIBUTE "Spectral Bands 0" NUMERIC

@ATTRIBUTE "Spectral Bands 1" NUMERIC

@ATTRIBUTE "Spectral Bands 2" NUMERIC

Q@ATTRIBUTE "Spectral Bands 3" NUMERIC

©@DATA
0.000000,0.000000,0.000000,0.019188,0.057771,0.004998,0.003088,0.002283
0.030482,0.006997,0.000000,0.024618,0.053476,0.004356,0.003369,0.002325

Figure 5.1: An example of an ARFF file.

In order to make this file useful for machine learning applications such as WEKA,
we must include not only features, but a class, such as “phone ringing.” By conven-
tion, this is the last field or “attribute” in the list of features. For each audio file,
rimuextract will search for an accompanying text file that contains the start and
stop times for the class in question. For example, if a given audio file is named
“example.wav”, rimuextract will search for a text file named “example.txt” or “ex-

ample.wav.txt.” This text file contains lines in the following format:
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floating-point-number  (start|begin|stoplend) [ ,<string>]

This is the same format used by Audacity to save its track-labeling feature, so
Audacity can be used to visually mark start and stop points for the desired object
or scene. The Ringermute Taskbar settings interface (Figure 4.2) can be used to
determine which features are extracted from the file, and can also be used to extract

the features without using the command line (Figure 5.2).

Loak in: |L':}reserve j & ok EB-
= ﬁmiranda.wav ﬁphones-miranda.wav
'J cello-5.wav gphones-shuggie—s.wav
Recent ﬁcello-lu.wav ﬁphones-shuggie—lu.wav

gcello.wav gphones-stardust-s.wav
@ ﬁshuggie-S.wav ﬁphones-stardust-lﬂ.wav
ﬁshuggie-lﬂ.wav ﬁobladi—lu.wav
Desktop shuggie.way ﬁobladi.wav
ﬁstardust-S.wav ﬁphones-obladi-ln.wav
~ gstardust-lﬂ.wav ﬁphones-obladi.wav
ﬁstardust.wav

by Documents ﬁphones e

ﬁphones-cello-s.wav
ﬁphones-cello-l O.wav

@

by Computer

by Metwark Files of type: |WAV Files [*.wav]
Flaces

File name: | j Open
| Cancel

™ Open as read-only

Figure 5.2: File-chooser window launched from Ringermute taskbar.

Once the ARFF file has been generated, we have a set of exemplars to use
for training or evaluation. For example, WEKA provides a comprehensive interface
for data-mining, analysis and experimentation. Figure 5.3 demonstrates some of
WEKA'’s visualization capabilites, applied to a Ringermute-generated ARFF file. In
the figure, we are seeing a visualization of the resulting error rate after training an
artificial neural net on a data set. Given that the Ringermute project grew out of
a phone-recognition problem, I have written a small neural-net trainer in C++ that
accepts ARFF files with a variable number of numeric input attributes and a single
numeric output attribute indicating whether a phone is ringing. The ARFF file was

generated using the Ringermute system, and the resulting neural net is used by the
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Ringermute PhoneListener plug-in. This illustrates the power of the Ringermute
toolset, in that the output from the PhoneListener can then be used as an extracted
feature, either with live audio input or pre-recorded audio files. This allows for
stepwise refinement as the actual output from the plugin is compared to the expected
output, and any improvements to the neural net can be implemented by simply
replacing a configuration file.

- [=]]

Classity | Cluster | associate | Select atriutes | Visusize

0.11938111236266053
0.10365003514690374
Attrib Pitch Spectral Bands 244 0.09351440664910209
Attrib Pitch Spectral Bands 245  0.11511529920049748
Attrib Pitch Spectral Bands 246  0.031130426440186577

e L

Attrib Pitch spect)

X: Instance_number (Hum) | ¥ Pie Spectral Bands 0 (um) v

Select Instance v

Clas

Plc:tingermute_precicter

Input.
Hode 0

« ] ~

Tine taken to build no| N

Root mean squared
Relative absolute
squared
Total Number of Insten

Status

e [ [ 2w Mo [Oren [m35n s (G

Figure 5.3: Error visualization in WEKA of results of training of an artificial neural
net on ARFF file generated by rimuextract.

5.2 Interactive Usage

As previously mentioned, Ringermute is not a complete context server solution, and
in interactive mode is intended to be used as a more sophisticated sensor. The
Ringermute Listener plug-ins are responsible for taking data from a central repository,
processing it in some way (by calculating a spectrum or applying a neural net, for
example), and then leaving output for subsequent plug-ins. External actions and
notifications are intended to be performed by Listeners themselves, including action-
specific Listeners that only perform actions based on the work of previous Listeners.

For example, a useful plugin would be one which paused a given media player if a
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given sound event was detected.

However, some notification routines are built into the system. The main in-
teractive input loop is run as a Windows service or Unix daemon process, and can
communicate with the taskbar interface via Dynamic Data Exchange (on Windows)
or sockets (on Unix) if a GUI pop-up window is needed. Basic SMTP and HTTP
notification is also built into the system as a convenience for plug-in authors.

In any event, the first step for basic interactive usage is to launch rimutaskbar,
the Ringermute taskbar application, right-click on the icon and and select the “Set-

tings” option from the resulting pop-up window, seen in Figure 5.4.

Abaouk
Settings
Skark liskening
w
Extract LIJ
=== Notkify
35 INS

% |Flingermul:e stopped | m

Figure 5.4: Pop-up menu on Ringermute taskbar.

The resulting view can be seen in Figure 4.2. For the sake of demonstration,
let’s say we are interested in live phone detection. Since the phone detection plug-in
depends on the EAC pitch-detection plug-in, we want to make sure it is active as well.
Figure 5.5 demonstrates the main plug-in activation list. This shows which plug-ins
have been detected, and which ones have been activated.

We see that the EAC pitch-detection plug-in is active. The properties window
for this plug-in was previously shown in Figure 4.3. We now turn to the properties
window for the phone-detection plug-in, shown in Figure 5.6. We can see that it
allows the user to determine both which neural net file to use, and the tolerance level

to use when detecting phone rings. In this case, the neural net file is in the format
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M Ringermute Settings |:||E|rz|
General Plug-ing l EAC Listener] Phone Listener | Raw Data Listener | 5pectrum Listener

EALC Listener ~

Phone Listener

[ Raw Data Listerner —
[] Spectrum Listener ¥

Save

Figure 5.5: Ringermute plug-in list.

used by the Fast Artificial Neural Network Library (fann). Tolerance refers to the
output of the neural net, on a floating-point scale of 0.0 to 1.0, and a tolerance of 0.8
means that any output exceeding 0.8 means a phone ring is present. This allows the

user to roughly tune the detection algorithm while the application is running.

M Ringermute Settings E | EI@

General] Plug-ins] EAL Ligtener  Phone Listener l Raw Data Listener] S pectium Listener]

Meural Met file: CAMyServicesiListenersh 2005-10-15-18-21-31 .net
Tolerance: 04

Save

Figure 5.6: Properties window for the phone-detection plug-in.

Once the settings have been saved, the user starts the Ringermute listening ser-
vice with the “Start listening” option on the taskbar, and the service begins taking
the audio input and calling the plug-ins. If the phone-detection plug-in’s output ex-
ceeds the tolerance level, it indicates to other plug-ins that a phone was detected. At
present it also instructs the taskbar to pop up a notification window—mnot an ideal
action, but suitable for demonstration purposes. This notification can be disabled in

the properties window.
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Chapter 6

Conclusions and Further Work

The primary niche for Ringermute is sensor design. Before systems can make higher-
level decisions about physical or social context, they must first sense more basic
phenomena and objects. While calendar data stored inside the computer is trivial to
read, the desk calendar next to the computer is not, and yet this may contain useful
context information as well.

We have seen where Ringermute fits into the spectrum of context-aware research
and applications — it is a toolkit that addresses some of the issues involved in audio
object and scene recognition, particularly in concert with machine learning and data
mining applications. It has been designed to integrate with users in their natural
environment: The graphical user interface. The combination of a plug-in interface
with feature extraction allows for the refinement of recognition plug-ins by testing
them on live and pre-recorded audio, but also allows their output data to be used as
input by subsequent plug-ins, either to perform external actions or additional analysis.

It may seem that a tool such as MATLAB would suffice to perform research
on audio context problems. Although such tools are useful and have a place in the
research, their primary limitation is that they were not designed to deliver usable
applications in an interactive context, particularly for live audio. And while WEKA’s
tool set is well-adapted to constructing cross-platform applications, the audio frame-
work and feature selection is up to the researcher to provide. Yet the problems of
audio input and sound file formats are not so complex that they require re-inventing

the wheel every time we want to try a new approach. And the fields of auditory con-
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text and scene recognition provide a rich set of features stable enough to be considered

standard as well.

6.1 Similar Projects and Existing Tools

6.1.1 MARSYAS

MARSYAS is an existing framework designed to support audio analysis research [84].
As such, it is not a single application, but includes several command-line applications
useful for audio analysis. It shares some goals and features with Ringermute. The
predominant metaphor is one of a pipeline, similar to the UNIX concept of pipes,
and MARSYAS. Since it is a framework, it is designed to be used by a number
of different applications, but no single included application contains all the features
in the Ringermute design. Since it has a larger collection of audio feature extrac-
tion routines, MARSYAS is an excellent tool to use in the creation of Ringermute
plug-ins. The primary difference, then, between Ringermute and MARSYAS is that
Ringermute is designed to be a user-friendly, graphical “control panel” for auditory
context-awareness research. MARSYAS is a general-purpose library and framework

for auditory analysis in general.

6.1.2 Sound Ruler

Sound Ruler is an application that has been developed to meet the needs of bioa-
coustics researchers [59, 10]. It operates on recorded sound files, and allows the user
to recognize and label audio sequences (such as animal calls), either manually or au-
tomatically. It offers a large feature set, including the display and graphing of audio
data in various forms, including both the time and frequency domains. A screen shot
of the interface can be seen in Figure 6.1.

One of SoundRuler’s most interesting features is the ability to automatically
recognize audio sequences. It does so with a correlation technique: Given an exam-

ple of the sequence, it seeks to find sequences that match the exemplar’s envelope.
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Figure 6.1: The Sound Ruler interface.

While this is certainly useful in the context of animal calls, it does not allow for
recognition over a general class of sequences: the general class of bullfrog calls, for
example, versus the specific class of European tree frog Hyla arborea. In addition,
the recognition algorithm does not appear to be robust enough to recognize all calls
individually. Finally, the algorithm itself and the included audio features are not de-
signed to be extensible by others: The application itself is a monolithic one. However,

it demonstrates the utility of sound analysis applications in general.

6.1.3 CLAM

On the other end of the spectrum from Sound Ruler, C++ Library for Audio and
Music (CLAM) [2, 3] is a framework for audio signal processing. Along with classes
and routines for input, processing and analysis, CLAM provides such ancillary func-
tions as data serialization and visualization. Data types range from low-level signal
components to higher-level units of analysis, such as phrasing and segmentation [4].
While it provides a wide range of components and features for digital signal appli-
cations, CLAM is not an application as such. Neither is it simply a library, in that
it provides a conceptual model along with its library functions [2]. A key difference
between CLAM and Ringermute, aside from the features CLAM offers, is that CLAM

requires more effort to install and deploy in an application. It has been designed to
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meet the widest range of audio applications, not just context-aware computing. As
such it is certainly possible to make use of CLAM’s features within the context of a

Ringermute Listener.

6.1.4 Audacity

Strictly speaking, Audacity [12] is a sound editing application, and so on first glance
may not compare very well to Ringermute at all. However, aside from its obvious
utility in preparing sound files for analysis, it includes several analysis visualization
features in the program itself, and supports extension through a plug-in interface.
Aside from waveform visualization, Audacity includes a spectrum view and a pitch-
detection visualization based on work by Tolonen and Karjalainen [83]. Given its
feature set, Audacity is a natural candidate to provide supporting features to the
Ringermute project—one problem that Ringermute does not solve directly is the
issue of labeling sound segments for training purposes. Audacity’s interface allows
manual labeling, and Aubio, a separate audio labeling project [11, 57, 58], can create
label tracks automatically based on audio signal events, such as the beginning of
musical notes. Figure 6.2. shows three of Audacity’s built-in visualizations: the raw
audio waveform, the spectrum, and the EAC pitch-detection algorithm. The label

track can be seen below the visualizations.

6.2 Future Improvements

Even though Ringermute is a working and usable tool, there are many opportunities
for future refinement. For example, although Ringermute has been built with cross-
platform libraries, it has only been developed and tested on the Windows platform.
The immediate goal is to produce working executables for the Linux and Mac OS X
platforms as well. Documentation, particular API documentation for those seeking

to build Ringermute Listeners, is lacking as well.
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Figure 6.2: The Audacity interface, displaying the sound file used in Figure 2.1 and
Figure 2.2.

6.2.1 Plug-in Dependencies

More sophisticated use of plug-ins would require the system to be aware of plug-
in dependencies — at the moment plug-ins are loaded and activated in the order
they are discovered by the operating system (alphabetical, in the case of Windows).
Plug-ins already provide “provision” information to the system by enumerating the

configuration. Adding dependency information and handling would be a fairly simple

task.

6.2.2 Multithreading

In its current form, Ringermute performs blocking reads on the audio input, and must
wait for all the plug-in modules to execute before reading another input window. A
multi-threaded version would simultaneously read audio input to a buffer and execute
a plug-in loop. Modules that were not dependent on the execution of earlier modules
could run simultaneously. This sub-project would require modification of the data-

writing portion as well.
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6.2.3 Scripting Interface

Although the plug-in model allows cooperation by researchers without requiring
knowledge of GUI or audio libraries, it still requires a separate compilation step for
each platform. An ideal situation would be to allow researchers to write plug-ins that
can be run on multiple platforms. Audacity, for example, allows the use of plug-ins
written in the audio synthesis language Nyquist [21], which contains some features
useful in analysis applications. Many languages are designed to be easily incorporated
into C/C++ applications: For example, existing gaming engines use languages such

as Python and Lua.
6.2.4 Mobile Devices

Aside from the office or workgroup scenarios, the mobile environment offers the largest
set of interesting applications for context-aware computing [73, 16]. It also offers a
new set of challenges to researchers, although these barriers are rapidly disappearing
with the advent of cheaper and more powerful mobile devices. Even so, another
project would be to adapt Ringermute to the technical limitations and requirements

of mobile devices, such as a the PocketPC or Palm OS.
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