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Abstract

An accurate representation of terrain is crucial for land based operations. Com-

puter technology is helping expert geographers analyze terrain in new and more accu-

rate ways. This thesis presents an application called Taverns which stands for “Ter-

rain Analyzing in a Virtual Environment with Real–time Native Shape Creation”.

Taverns will help analysts create an accurate representation of terrain because it is

designed to be used in an immersive environment, creating the deepest sense of re-

alism graphics technology can deliver today. Using Taverns, specialists with many

years of experience may analyze terrain with a high degree of accuracy based on in-

formation that can be gathered through remote sensing techniques. The applications

of remote sensing are not limited to Earth, increasing the potential of Taverns to aide

specialists in more thoroughly analyzing the surface of other solid surface planets, in

particular the surface of Mars.
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Chapter 1

Introduction

Training through experience is a valuable asset to military forces. Throughout most

of history, the most effective training scenarios for a soldier were actual scenarios

themselves. As one can guess, actual scenarios for military forces are quite often costly

experiences of war and death. We are fortunate to live in a day and age where research

and development promises to provide militaries more experience while avoiding the

horrors of war. The advantages that technology provides with regards to training

personnel have proved incredibly successful and continue to grow in potential. For

this reason, significant research and development continues creating more and more

realistic training environments for military personnel.

One simply cannot exaggerate the necessity of military training, it is utterly

essential [38, 42]. Generally, the more realistic training is to the soldier, the better

prepared that soldier will be when an actual scenario arises [24, 26, 34]. Creating a

realistic training environment is an intensive process involving significant planning,

coordination, time and money. Resources such as equipment, fuel, vehicle parts,

and maintenance time are used extensively making it difficult to provide consistent,

thorough training for everyone.

The field of computer graphics and visualization has become crucial for the cre-

ation of realistic training environments. With modern technology, the military can

train its personnel in computer simulated situations, thus alleviating much of the

need for travel and equipment transportation. Also, personnel can work their way

through a simulation several times, honing their skills while using minimal resources.
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Visualization techniques help to establish realism, but quite often, real–world

geographic data is also necessary to achieve a fully immersive and realistic simulation.

The geographic data represents a true–to–life landscape in the simulated environment.

The data can be visualized via computer graphics and virtual reality techniques. The

end goal is to give personnel the feeling they are at the real–world location, even

though they are actually in a simulated environment.

In order to obtain accurate information about a location, specialists in geographic

and geological disciplines must first visit and thoroughly analyze the location. This is

viewed as a necessary expenditure of time and resources. However, situations occur

where the resources and access necessary to collect ample data is simply not available.

This lack of data can endanger missions, especially when specific training, such as

helicopter flight, requires accurate knowledge and representation of an area.

Remote sensing methods allow geographic experts to gather data without ever

visiting the location, and later analyze this new data off–site [4, 10]. One such piece of

data is a Digital Elevation Model (DEM) [5]. The name has pragmatic significance in

that it consists of spatially explicit digital values of height data. Other important data

are Geographic Information Systems (GIS) vector layers [27]. GIS vector layers are

maps (i.e. represent a location) that store two–dimensional shapes (polygons) with

attributes. Attributes can be assigned from a variety of sources including satellite

imagery, site visits, current databases, and so on. DEMs are also referred to as GIS

raster layers, but from this point forward, any mention of a GIS layer refers to a GIS

vector layer.

There are current software packages available that provide geographic experts

the tools to analyze data layers. ESRITM [16] currently provides a wide array of

GIS software packages such as ArcGISTM [14] and ArcSceneTM [15]. As useful and

accurate as these packages have proven to be, they unfortunately do not allow the

expert to analyze the terrain while viewing it in 3D. This thesis introduces a revolu-

tionary application called Taverns which stands for “Terrain Analyzing in a Virtual

Environment with Real-time Native Shape Creation”. Taverns is especially designed
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to allow the analysis of data layers in a three dimensional view on both the standard

desktop monitor and in a virtual environment. The virtual environment will provide

the expert user another level of realism unattainable on desktop monitors.

Taverns is actually the first large step in a project called Desert Terrain [21, 22].

One of the goals of this project is to model dust behavior of desert regions as accurately

as possible and use these predicted behaviors for training simulations. As mentioned

above, better realism in training environments produces more prepared personnel for

the real–world scenario. In order for the specialists to accurately model dust behavior,

they must have an accurate representation of the terrain. Experts of geographic

disciplines will use Taverns to create this accurate representation.

The remainder of this thesis is structured as follows: Chapter 2 presents back-

ground information on GIS methods and applications, computer graphics, and immer-

sive virtual environments. Chapter 3 outlines application requirements and modeling

specifications for Taverns. We present the implementation design of Taverns in Chap-

ter 4. Finally, we finish with conclusions and the strong potential for future work in

Chapter 5.
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Chapter 2

GIS and Virtual Reality

This thesis presents a project that combines a number of disciplines ranging from

geographic information systems to visual psychology. This chapter presents these

disciplines in detail enough to understand their role for this project. Section 2.1 dis-

cusses geographic information systems which are the driving force behind this project.

Section 2.2 discusses a popular field of computer graphics known as virtual reality

and the methods for creating realistic environments through illusion. Section 2.3 in-

troduces the overarching project called Desert Terrain of which this project is a large

portion. Finally, Section 2.4 presents several arguments for why a three dimensional

view is crucial for accurate terrain analysis.

2.1 Geographic Information Systems

What is GIS

GIS is a very broad term that stands for Geographic Informations Systems [27]. To

word it differently, it is a collection of systems for geographic information. These sys-

tems revolve around the creation and management of spatial data. It is an extensive

field that allows users to integrate, store, edit, analyze and display geographic data.

The practical applications of GIS are immense ranging from scientific investigations

to military training.

ESRITM is a predominant provider of GIS software [16]. One significant software

package ESRI supplies is ArcGISTM [14]. ArcGIS is incredibly functional allowing the
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user to load a vast array of data formats, combining information, converting informa-

tion, etc. One may think of ArcGIS as a very powerful editor for spatial information.

ArcSceneTM [15] enables geographers to view GIS data in three dimensions. The user

has quite a bit of control over how the data is viewed, but it lacks the support for

drawing “Shapes” on the data displayed in 3D.

Shapes, as will be detailed in further chapters, are used to represent features

of spatial and geographic data and are widely used in terrain analysis. Currently,

software packages only allow the creation of shapes while viewing the data in two

dimensions, that is to say, no elevation data is rendered while the user is creating

shapes. For example, if a geographer wanted to outline a mountain range with a

shape and label it the “Rocky Mountains,” the user would be forced to estimate the

location of the mountains because the slopes of the mountains would not be rendered.

Essentially, the geographer would be estimating the location of the mountain range

with a “birds–eye” aerial photo. Though expert geographers have a large amount of

resources available to make close estimations of tasks such as the example, inaccura-

cies will develop. What is needed is an application that will read current GIS data

formats, render the data in a three dimensional view, allow the creation of shapes on

the 3D data, and finally save the newly created shapes to GIS data formats.

Remote Sensing

A tremendous amount of data is available for any one location. Geographers gather

vast amounts of data ranging from elevation data, moisture content, vegetation den-

sity, soil density, even magnetic field information. Often this data is extracted from

an expert “on–site,” that is to say, the expert must travel to the location to start

extracting these types of data features. The process of gathering this data without

actually visiting the location is referred to as Remote Sensing [4, 10].

New remote sensing techniques are always being researched in order to determine

what other types of data can be gathered with imaging equipment on board aircraft

or satellites. When it is found that remote sensing can gather a new type of data, it is
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very important to ensure that the gathered data is accurate. This most often requires

an expert to visit the location which is quite necessary in the interest of proving the

new remote sensing technique is accurate.

Many remote sensing techniques have proven to be fast and reliable which is

strong support for continued research. Another strong argument is the fact that not

all areas of the world are available for a site visit. Military applications often require

information about terrain, yet political and other complications will restrict experts

from visiting the site. This is when remotely gathered data becomes invaluable.

Once a variety of data is gathered with remote sensing techniques, geographers

may organize this data in a more “research friendly” environment and use it to extract

features that would normally require a site visit. The preferred method for viewing

several types of data pertaining to one location is to create layers from the data.

Current GIS software allows the user to customize how the layers are presented in

order to more easily determine differences and similarities between the layers, which

is vital for extracting further features. Figure 2.1 shows an example of several data

layers that represent different types of data pertaining to the same location [21, 22].

Digital Elevation Model

Elevation data is one of the many data layers that may be remotely gathered from a

location. A Digital Elevation Model (DEM) is a table of height values that represents

the contour of a particular location [5]. DEMs come in numerous formats but they

must all contain at least the following data:

1. A starting reference location

2. Number of height values per row

3. Separation distance between each row value

4. Number of height values per column

5. Separation distance between each column value

6. The height data itself
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Figure 2.1: Example data layers for a particular location [22].

Items 3 and 5 are often consolidated into one value. If not, the the values

are normally the same because they represent the “resolution” of the DEM. For

example, if the separation value is 10 meters, then the DEM is referred to as a 10

meter resolution DEM. Each individual DEM file format will specify the numerical

representation (eg: feet, meters, etc.).

The resolution of the DEM is definitely an important piece of information, but it

does not help us understand how detailed the DEM is without also knowing the size

of the terrain the DEM represents. A 10 meter resolution DEM is very high detail for

an area the size of California for example, but fairly low resolution for a small county.
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Other metadata may be included with individual DEM file formats, however

the data listed above is a minimum. With this data, an application can render and

manage the terrain quite easily. We will briefly discuss the popular BIL format for

representing DEM data because future chapters will reference this format. The BIL

interpretation of DEM data is actually a collection of three files, but are collectively

required for the BIL format [39].

The data file itself is a simple binary raster file that stores the height values in

row major form. The metadata for the DEM is contained in a Header file and a World

file, described below.

The header file is the first of two files that contains metadata for the data file. It

is an ASCII text file with values following keywords. The majority of the necessary

metadata for the DEM is stored in this file. The pieces of information that will be

referenced in following chapters are listed below:

1. BYTEORDER: Byte order of the height values

2. NROWS: Number of rows in the data table

3. NCOLS: Number of columns in the data table

4. NBITS: Number of bits for each height value

The World file contains the rest of the necessary metadata to accurately render

and manage the terrain. There are no keywords in this file, the reader must store the

values appropriately. The pertinent values that will be referenced in future chapters

are listed below:

1. Row resolution value

2. Column resolution value

3. X location of the upper–left corner (in georeference coordinates)

4. Y location of the upper–left corner (in georeference coordinates)

With the data contained in a DEM, the contour of the terrain can be rendered to

scale portraying a realistic image of the terrain. Though simply visualizing the terrain

is useful, more can be calculated about the terrain with the georeference coordinates

that specify exactly where in the world the terrain is located.



9

The Shapefile

The “shapefile” is a very common and widely used data layer format. As may can

guess, a “shapefile” stores “shapes” and it is with these shapes that geographers

represent spatial and geographic data [13]. There are three primitive shape types:

Points, Lines and Polygons. Points can be used to, for example, record the locations

of objects such as wells or buildings. Lines may be used to represent roads or airways.

Polygons can be used to cover an entire area. Multiple polygons can cover multiple

areas, perhaps marking state boundaries and thus a shapefile consisting of polygons

that represent state boundaries would represent an entire country.

Shapes themselves are powerful visualization tools, but alone are not very useful

for computation purposes. Geographers assign “attributes” to shapes in order to

specify particular properties between, for example, one state and another state. A

geographer may outline a state with one polygon shape and assign it an attribute of

10,000 which represents the state’s population. Another shape can be created and

assigned an attribute of 100,000 which also represents population. With the polygon

representing state area and one attribute per polygon representing state population,

functions can be implemented to determine the relationship of state size to population,

for example. Multiple attributes can be assigned to any one shape which increases

the potential to determine similarities and differences between shapes.

Points and Lines are very useful shape types, but this thesis does not discuss any

functionality involving these types. From this point, any reference to a “shape” will

refer to the Polygon type shape. A Polygon shape is merely a collection of points

that start and end with the same point. When an application renders a Polygon, line

segments are drawn between the points and the interior of the Polygon is shaded to

show that it is not a line loop, but a filled Polygon.

We can now discuss the Shapefile itself. As stated earlier, shapefiles store shapes

and the attributes associated with them. But like the BIL representation of a DEM,

one shapefile is a collection of three files: the file that contains the shapes (Shp file),

an index file into the Shp file (Shx file), and the file containing attributes for each
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shape (Dbf file).

Index files are indicated by the suffix “shx”. This binary file is used to access the

shapes in the Shp file, therefore the number of shapes in the Shx file must match the

number in the Shp file. The Shx file makes it very easy to obtain data for individual

shapes, or make small changes without recreating the entire shapefile. Figure 2.2

shows how the Shx file points to each shape in the Shp file.

The file containing attributes for each shape is indicated by the suffix “dbf” which

follows the dBase IV file format [2]. This is also a binary file and because one shape

may be assigned multiple attributes, this file stores the attributes in a table. The

values in every row in the Dbf file are assigned to the corresponding shape in the

Shp file. That is to say, row n in the Dbf file corresponds to shape n in the Shp file

(Figure 2.2).

Attributes are stored as text strings regardless of what they are meant to rep-

resent. The Dbf file therefore stores a flag in the header for each column to specify

how the values in each column should be translated. For example, if a column of

values is meant to represent dust potential of the soil in a shape, that value could

quite possibly be a floating point value. The Dbf file would store each digit as a

character and once each character is read in, the entire string must be converted to a

floating point number. The dBase IV format supports a variety of types ranging from

“Dates” to “Memos,” but the rest of this thesis will only refer to Integers, Floats and

Alpha–Numeric Strings.

The Shp file contains the actual spatial data, the polygons themselves. As stated

earlier, Polygon shape types are a set of points. When the points are connected in

order, a concave or convex polygon is created. The format specification states that

polygons with self–intersecting lines are not supported [13]. This is not entirely accu-

rate because it is current GIS software that may work improperly with any polygons

that contain self–intersecting lines. The Shp file itself just stores raw point data.

A simple Shp file of polygons will contain header information about the shapes

followed by the data pertaining to each shape. Shp files are a bit more complicated
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because they support “holes” within the shapes. A hole within a shape is an area that

does not share the same attributes as the surrounding shape. Holes within shapes are

filled in with other shapes stored in the same Shp file. Figure 2.2 shows that within

the Shp file, there are two shapes, 1 and 2. Shp 1 has a hole and Shp 2 is specified as

the shape to fill this hole.

Figure 2.2: Relationship of the Shx, Shp and Dbf files.

It is very important to represent and manage holes correctly in order to obtain

accurate computations that will be performed with the shapefile. If a shape stored

in the Shp file has one or more holes, then the points for each hole are ultimately

duplicated in the Shp file. Referring back to Figure 2.2, the data in the Shp file would

appear as follows:

1. Header information

2. Points for Shp 1

- Points for Shp 2

3. Points for Shp 2

For each shape, the points of the holes are necessary in order to determine the

area of the shape that is not part of the current shape. For example, in order to

render a shape, the portions that are specified as holes must be left open because

they are not part of the shape (future chapters examine the function of “fixing” holes

to render them properly). Therefore, if a shape is drawn with holes empty, and the

shapes that fill the holes are specified later in the Shp file, then ultimately holes will

be correctly filled in with the correct shape. Figure 2.3 helps illustrate these steps.
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Figure 2.3: Process of drawing a shape (A), erasing the hole (B) and filling it with
another shape (C).

Figure 2.3 is a trivial example of a shape containing a hole, however the reader

must not underestimate the usefulness of creating shapes that represent useful infor-

mation. Shapefiles and attributes themselves are vague, it is the context in which

they are being used that gives meaning to the shapes and attributes. If the shapes

from Figure 2.3 are put in the context of restricted and unrestricted airspace, new

meaning begins to appear. Figure 2.4 uses Shp 1 to represent unrestricted airspace

and Shp 2 to represent restricted airspace over a key facility (such as the US Pentagon

in Arlington, VA. Photo courtesy of Google EarthTM [18]).

The Shp, Shx and Dbf files presented here form the foundation for one individual

data layer. A collection of data layers forms the basis of a solid geographic infor-

mation system, which revolves around the creation and management of spatial data.

The practical applications of well managed, accurate spatial data are immense and

continue to grow.

The demand for accurate geographic data has spawned the idea of terrain analysis

in a virtual environment. This will give expert geographers another level of realism

while extracting features from the terrain. We can now discuss the system that will

create this level of reality purely through illusion.
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Figure 2.4: Example of potentially restricted air space over a key facility [18].

2.2 Virtual Reality

Virtual Reality is a very specialized field of computer graphics. The methods and

applications of virtual reality are tremendous [36], thus this section will discuss areas

of virtual reality that are immediately related to this project.

The term “Virtual Reality” itself is very broad, referring to the idea of repre-

senting something as realistically as possible with computer technology. Playing 3D

games on a standard desktop monitor is a type of virtual reality, and indeed with

improving physics models, rendering methods and more powerful computer hardware,

a desktop monitor will portray very realistic scenes. However, the term “Virtual Re-

ality” is generally used to refer more specifically to an “Immersive Environment”. We

will use the term “Immersive Environment” to help portray the idea that the user

is not merely seeing a realistic scene, but is immersed into the representation of the

environment.

The feeling of being immersed into the environment is achieved by an entire
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system that is specifically designed to appeal to the user’s senses. These environments

today strive primarily to appeal to the visual (sight), aural (hearing) and haptic

(touch) senses [3, 9]. Appealing to our aural senses is fairly straight forward. Todays

surround sound technology is very realistic with a high quality system, however sound

can take away from the immersive feel if used improperly from the context of the

application. Appealing to our haptic senses is much more complicated. Immersive

environments can use props to create an entire stage the user may interact with.

The user may also wear equipment designed to restrict and allow muscle movement.

However, this project does not focus on appealing to haptic senses so little discussion

will follow related to this topic (the reader may learn a good deal more from [3], [9],

and [36]).

The goal of the project presented in this thesis is to appeal to the user’s visual

senses, particularly those that perceive depth. An excellent design for creating depth

illusions has been developed over the years which creates a firm foundation for all

immersive environments. But before we can discuss how the system is designed to

trigger our depth perception, we must have an understanding of how humans perceive

depth.

Depth Cues

Many people will attest that we see in 3D. This is not entirely accurate because the

mechanics of our eyes gather light on the retina, a two dimensional surface [29]. The

process of creating a three dimensional scene takes place after our eyes gather light

information. It would be more accurate to say that we “see” in two dimensions and

“perceive” in three dimensions. Precisely how our eyes gather light is not in the scope

of this project, but how we interpret two dimensional data from the retina into a three

dimensional scene is directly related to this project because immersive environments

are designed to appeal to the user’s depth perception. Once we know how this works,

we can understand how to appeal to it (covered in the next section).

Items that we use to gather depth information from an image are known as Depth
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Cues. Depth cues help us answer the question, “How do I know object A is further

away than object B?” There is no single answer, but a combination of answers that

vary depending on what the person is viewing. We will discuss three key categories

of depth cues: motion, monoscopic, and stereoscopic depth cues.

Depth cues we receive through relative object motion are also referred to as

“motion parallax”. The idea is very simple: as we move through an environment, the

movement of objects is a function of proximity. The best example is while traveling

in a vehicle, close objects move past the vehicle quickly and objects further away

appear to have almost no motion at all. If the image the viewer is looking at changes

in an organized manner, motion depth cues will be present. However when viewing

a photograph, motion cues are not present, viewers must use other cues to perceive

depth in the image.

Monoscopic depth cues can be described in two ways. They may first be described

as the only depth cues present when we look at our environment with one eye, that

is, if the viewer is stationary. Even with one eye, motion depth cues are present if the

viewer or environment gradually changes position. To be a bit more general in the

description of monoscopic depth cues, we can say that they are the only cues present

when viewing an image presented on a flat surface. Flat surfaces include printed

photographs, computer monitors, even the retinas in our eyes. Monoscopic depth

cues are always present, whether working in a real–world environment or working

with a desktop monitor, whether looking with one eye or two eyes. The following list

describes several types of monoscopic depth cues with a brief description. This list is

only meant to provide examples of monoscopic depth cues, more information may be

found in [32]:

1. Occlusion: When one object is covering another object, we say it is “occluding”
that object. This tells us that the occluded object is farther away.

2. Familiar Size: When an object is familiar to us, we compare the perceived size
to the expected size. We can therefore determine that the smaller an object
appears, the farther away it is.

3. Texture Gradient: We see more detailed textures of objects closer to us. As an
object’s texture decreases in detail, we presume it is farther away. Atmospheric
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conditions such as fog or haze will increase the rate at which texture detail
diminishes, thus creating the illusion that objects are actually farther away
than they really are.

4. Linear Perspective: The ever popular examples of looking down a road or train
tracks accurately describes this type of depth cue. Two parallel lines will ap-
pear to converge in the distance, which helps us assess the distance of objects
positioned near the parallel lines as well.

5. Shadows: Shadows are an extension of Occlusion however there are many factors
that account for the creation of shadows. If these factors are unknown to the
viewer, illusions will occur (we will see an example of a powerful illusion due to
shadows in following sections).

We can now describe stereoscopic depth cues, perhaps more popularly referred

to as “binocular vision”. Stereoscopic depth cues require the viewer to look at an

actual three dimensional environment, are those that require two eyes. These cues

rely on our ability to calculate the differences and similarities between the two images

captured by our eyes. Our eyes capture two different images because they are offset

from one another which is called “binocular disparity”. Stereoscopic depth cues are

very powerful and we learn to rely on them for many of our daily activities. However

these cues are only reliable within a certain distance, roughly six meters. Outside

of this range, stereoscopic cues are ineffective because the binocular disparity is so

minute, the differences between the two images is insignificant. We must then rely

on other depth cues, such as motion parallax and monoscopic cues, to determine

distance.

With this brief understanding of how we perceive depth in our environment, we

can now explain exactly how to design an environment, a Virtual Environment, meant

to appeal to our depth perception.

Environment Design

The term “Virtual Environment” is used to refer to the entire system of hardware

and software that is orchestrated together to create an immersive environment. An

environment may be a head–mounted display as shown in Figure 2.5, or an elaborate

projection based display as shown in in Figure 2.6. The project presented in this thesis
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is designed for use in a projection based system to allow the user to feel physically

immersed in the environment.

Figure 2.5: Head mounted VR display [36].

Figure 2.6: Projection based VR display [36].

Projection based display systems are large, stationary environments and as can

be determined from Figure 2.6, require a carefully built system. The user in Figure 2.6

is surrounded by four projection screens (left, right, front and bottom), thus this type
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of environment is referred to as a four–wall environment. The minimum requirements

to create a single–wall, projection based virtual environment are listed below:

1. One rear projection screen

2. Projector(s):

(a) One projector for active stereo

(b) Two projectors for passive stereo, with light filters

3. Glasses:

(a) Shuttering glasses for active stereo

(b) Filtering glasses for passive stereo

Optional items shown in Figure 2.6 that are not required to visually immerse the

user into the environment, but are fairly standard with projection–based displays are

listed below:

1. Mylar (or front faced glass) mirrors

2. Surround sound speaker system

As mentioned earlier, immersion with sound technology is not in the scope of

this project. Sometimes the mylar mirrors are required because of space limitations.

The larger the projection screens, the more distance is required between the screens

and the projectors, and the mirrors help to reduce this distance.

The user will only see the display on the projection screens. Having large display

screens fills the user’s field of view and allows the user to move about the environment

freely. With multi–wall environments, the ability to join screens together makes the

user feel even more immersed into the environment because the user may now freely

look to the left, right, even top and behind in six–wall environments, to see what is

displayed in that relative direction. With fewer projection screens, the user is forced

to control the camera to change the looking direction, which takes away from the

immersive experience.

We can now determine exactly how the virtual environment appeals to our depth

perception. It is a combination of the projectors and the appropriate glasses for the
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projectors. Remember in the previous section regarding depth cues that we can

already gather depth information on a standard desktop monitor with motion (that

is, when the 3D application moves the virtual camera) and monoscopic cues. The

projectors and user glasses are used solely to trigger our stereoscopic depth cues. The

projectors create what is simply referred to as a “stereo” projection, and the glasses

utilize the stereo projection to trigger our depth cues.

The goal is to simulate the data our eyes would gather in a real–world envi-

ronment. As mentioned in the previous section, the offset of our eyes causes two

different images to be sent through the image processing pathways of our brain. We

then calculate differences and similarities between these two images to interpret depth

information. The virtual environment forces our eyes to see two different images of

the same computer generated scene. There are two methods used for sending these

images to the appropriate left or right eye which are known as “passive stereo” and

“active stereo”.

Passive stereo requires two projectors to display the scene. One projector is

responsible for displaying information for the left eye, and the other projector displays

information for the right eye. Since both of these images show directly over each other

on the projection screens, filters must be used to distinguish what image should be

sent to the left and right eyes. The glasses the user wears will filter the light so only

light meant for the left eye is received by the left eye, and likewise for the right eye.

But to determine exactly what light is meant for the left and right eyes, it must be

filtered as it shines from the appropriate projector. Passive stereo projections are

generally imperfect because filtering the light precisely is incredibly difficult. Passive

projections are excellent for general demos and testing purposes.

Active stereo projections help diminish the imperfections present in passive pro-

jections. Active projections use only one projector, so no filtering is required. However

these projectors are quite expensive because they must refresh at twice the rate of

normal projectors. Now, only one projector is responsible for displaying images for

the left and right eyes. The glasses are known as “shuttering” glasses because they
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essentially “open” one eye to allow light to pass through while “closing” the other

eye. The glasses are synchronized with the projector so light intended for the left eye

passes through an “open” left eye slot in the glasses, and not through the right eye

slot. When the projector refreshes, the new image is intended for the right eye, thus

the glasses will “shutter,” now opening the right eye slot and closing the left.

Both passive and active stereo projections ultimately create an illusion which

triggers our stereoscopic depth cues. Users now feel as though the scene truly has

depth because it is no longer perceived as a flat surface. A well designed stereo view is

the first step to immersing a user into a virtual environment. How the system receives

input from the user and how the user interacts with the system are two significant

topics required to create a deeper sense of immersion. These topics are covered briefly,

staying within the scope of this project.

Input and Immersion

Input refers to any means of sending information to the computer system managing

the immersive environment. Input must be sent to the computer in order for the

environment to respond appropriately to the user’s actions.

Common input devices such as joysticks and joypads are often present in im-

mersive environments. These are a form of physical control devices. They serve the

purpose of being intuitive devices that take little time to learn. The result of input

from these devices is evident based on the actions of the objects being displayed. For

example, if a joypad were responsible for navigation controls, then leaning one of the

control sticks left may turn the camera to the left, or move the camera left. Either

way, the feedback is instantaneous which is crucial for fluid interaction [37].

These devices also serve the purpose of performing tasks that we are otherwise

incapable of accomplishing. For example, the user may be immersed in a real–world

representation of a large landscape and wish to move quickly from one side of the

large landscape to the other. One may think that a simple joypad is the perfect

device to navigate over large areas, however devices such as these do not create the
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sensation of being immersed in the environment like other methods do.

These environments have created a new realm of interaction. Because desktop

interaction methods and devices are so common, it is difficult for one to think of

what it means to interact immersively in virtual environments. This introduces the

idea of “User Monitoring” in order to more fully immerse the user into the virtual

environment. The idea of monitoring the actions of the user gives light to what it

means to be immersed into the environment. Sherman and Craig [36] give several

definitions of immersion:

immersion sensation of being in an environment; can be a purely mental

state or can be accomplished through physical means: physical immersion

is a defining characteristic of virtual reality; mental immersion is probably

the goal of most media creators.

mental immersion state of being deeply engaged; suspension of disbe-

lief; involvement.

physical immersion bodily entering into a medium; synthetic stimulus

of the body’s senses via the use of technology; this does not imply all

senses or that the entire body is immersed/engulfed.

These definitions help us understand that we often mentally immerse ourselves

into what we enjoy such as literature, music and cinema. We are always physically

immersed in the world in which we live, but the essence of a virtual environment is

to immerse a user into a world that is not accessible, or perhaps not even real.

Monitoring the actions of the user allows us to create environments that will

respond to those actions. Many devices and methods are available to track the user,

but the one method we will introduce is “head tracking”. Remember that the goal of

this project is to appeal to the user’s visual senses, and a virtual environment with a

well designed stereoscopic view will appeal to the three types of depth cues mentioned

previously.

Head tracking creates a new way for the user to receive motion depth cues. If
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the user were to use physical control devices, then the world may be altered with

this device and thus the user will effectively receive motion depth cues. However,

head tracking not only relieves the need for controls to view the world, but creates

a deeper sense of immersion for the user. While the user moves freely around the

virtual environment, the system will respond by appropriately adjusting the viewpoint

to match that of the user. Figure 2.7 shows four views of a user within a virtual

environment utilizing a head tracking system. The different views show that the

rendered objects “move” relative to the user as one would expect if placed in a similar

real–world situation.

Figure 2.7: Virtual objects move relative to the user utilizing a head tracking sys-
tem [36].

With proper head tracking, the user is completely unaware that input is being

supplied to the system, and the foundation for a physically immersive environment

is now in place.
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2.3 The Desert Terrain Project

The Desert Research Institute in Reno, Nevada has undertaken the task of modeling

and forecasting the conditions of desert landscapes [20, 21, 22]. There are two key

components of this project:

1. Forecast desert regions

2. Predict the effects of the region on equipment and personnel

The project intends to forecast and model desert regions as accurately as possible

using data gathered via remote sensing techniques. As mentioned previously, current

GIS software does not allow analysts to create representations of terrain in three

dimensional view which will cause the accuracy of the analysis to suffer.

This thesis introduces an application designed to give expert geographers the

ability to analyze terrain in a three dimensional view. However, since accuracy is

crucial for this project, the application will also allow the user to analyze terrain in

a virtual environment.

2.4 Need for 3D

Depth Illusions

We are subject to a significant illusion when viewing aerial photographs. As men-

tioned briefly in the section regarding depth cues, shadows are a powerful method

for determining distance in an image. However, we make assumptions when we use

shadows to determine depth, assumptions such as the number of light sources, and

the location of the light sources. If this information is not presented to the viewer,

then it is entirely possible that the viewer will make incorrect presumptions of height

and depth areas in an image.

Figure 2.8 is a landscape of the surface of Mars showing several lava flows on

the terrain. Many other planetary photos such as these may be viewed at the online

NASA Photo Journal [30]. Having read that the elevated areas are in fact lava flows,

your assumptions of light number and source are confirmed.
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Figure 2.8: Lava flows on the surface of Mars [30].

Now we present the illusion. The assumptions of light number and source have

already been confirmed and thus will remain in place when a similar image is viewed.

Figure 2.9 portrays the very same image from Figure 2.8, however it has been ro-

tated 180 degrees. If this classic illusion has taken effect, the reader should now see

depressed areas where there were elevated areas in the previous figure [32]. Though

expert geographers are generally very familiar with the terrain they are analyzing,

they too may suffer from this illusion. This is strong support for performing analysis

while viewing the terrain in a three dimensional view.

Figure 2.9: Rotated view of the lava flows on Mars [30].
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Desert Terrain

The Desert Terrain project is particularly interested in a terrain feature called an

Alluvial Fan. Figure 2.10 portrays a classic example of an alluvial fan [28, 41]. Alluvial

fans are created as water flow through a canyon releases sediment at the opening of

the canyon. Several aspects of the project require close examination of these fans

which can be very difficult to locate on terrain rendered in 2D. A 3D rendition of the

terrain greatly increases the geographer’s ability to locate areas where alluvial fans

would typically be located, and help the geographer more accurately distinguish the

fan itself.

Figure 2.10: Classic alluvial fan [41].
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Chapter 3

Requirements Specification and
Modeling

As we have seen from Chapter 2, in order for the Desert Terrain project to be a success,

expert geographers need to be able to analyze terrain as accurately as possible. The

most accurate method for analyzing terrain is by going to the location and starting

the process of extracting features from there. Going to the site location is simply

not an option at times, so geographers must extract features from data gathered via

remote sensing techniques.

To give expert geographers the ability to extract features from a given piece of

terrain as accurately as possible, without sending the expert to the location, this thesis

proposes an application named Taverns. The name is an acronym that stands for

“Terrain Analyzing in a Virtual Environment with Real–time Native Shape Creation”.

The reader should now have a fairly clear understanding of the title and the purpose

of the application with the background presented in Chapter 2.

This chapter will formally introduce Taverns by specifying the requirements,

specifications and modeling characteristics for the application. Because Taverns is a

prototype still in the beginning stages of development, we follow common software

engineering practices while developing the application [1, 40]. The following sections

present core elements that create a solid foundation for Taverns that shall remain in

place during the development process.
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3.1 Functional Requirements

The motivation for Taverns comes from the specialists at the Desert Research Institute

as a large step in the Desert Terrain project [20, 21, 22]. It is therefore important for

the developers to meet the needs of these specialists. Certain requirements have been

created for Taverns which ultimately lead to the ability to analyze terrain rendered

in 3D. Below are listed the minimum requirements for the application that make this

final goal possible:

1. Taverns shall load and display GIS data layers

2. Taverns shall display the GIS data layers in 3D

3. Taverns shall allow the user to free fly around the 3D world

4. Taverns shall allow the user to toggle between data layers being displayed

5. Taverns shall have a wire frame view to more easily see the contour of the terrain

6. Taverns shall allow the user to draw shapes on the 3D terrain

7. Taverns shall provide undo and redo capability when creating shapes

8. Taverns shall allow the user to edit attributes about the created shapes

9. Taverns shall save the created shapes in the GIS standard shapefile format

10. Taverns shall save the created shapes in its own format

11. Taverns shall load both its own format and shapefile format to continue working

12. Taverns shall function in a desktop environment and virtual environment

3.2 Non–Functional Requirements

The developers have created other requirements for the application that fit more

appropriately in the category of non–functional requirements. Requirements such as

these specify how the application will be implemented and place constraints on the

system. Much research in the field of human–computer interaction focuses on the

seamless usability of an application and as such, these non–functional requirements

should be nearly invisible to the user [37].

1. Taverns shall be written in C++
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2. Taverns shall render objects with OpenGL

3. Taverns shall be cross platform compatible

4. Taverns shall provide pertinent feedback in the HUD (Heads Up Display)

5. Taverns shall be as automated as possible

6. Taverns shall allow the user to create shapes in any order

7. Taverns shall be highly configurable

8. Taverns shall receive input from a variety of different devices

9. Taverns shall format the shape and attribute information before it is saved

3.3 Primary Use Cases

Use cases are a very powerful method for portraying essential items the application

is responsible for implementing and supporting. Well planned use cases are also the

basis for determining what classes and modules will be required during the imple-

mentation process. The diagram shown in Figure 3.1 portrays the intended users of

the application, and where the output of the application shall be directed. Both of

these pieces of information are important to establish for the development process.

If intended users, use cases, and output direction have not been clearly established

early in the development process, inconsistencies and flaws will develop resulting in

an application that may be unusable, or produces flawed output. Taverns is a piece of

a much larger project, therefore the effectiveness of this application will significantly

influence the success of the entire project.

3.4 Requirements Traceability Matrix

With established functional requirements and established use cases, we create a re-

quirements traceability matrix to associate the requirements and use cases together.

It is very important to map these together because the users will expect functionality

from the application, but in the way of use cases. Similarly, the developers will pro-

vide use cases for the users, but by means of the functional requirements. Table 3.1
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Figure 3.1: Taverns primary use case diagram.
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maps the use cases that the user will expect from the program to the functional

requirements the program must fulfill.

UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8
FR1 X
FR2 X
FR3 X
FR4 X
FR5 X
FR6 X X
FR7 X
FR8 X
FR9 X
FR10 X
FR11 X
FR12 X

Table 3.1: Functional requirements (Section 3.1) mapped to use cases (Section 3.3).

3.5 UML Scenarios

We can combine the requirements and use cases set forth in previous sections to create

potential scenarios that the user will encounter while using the application. Scenarios

help the developers determine how the user and the application will interact with each

other through the duration of the program. Possible errors and improvements may

then be determined before the development process has progressed too far, making

changes to past work incredibly tedious.

The scenarios presented in this section are in common UML form to portray the

typical usage of Taverns. The full scenario of loading data, using the data to create a

shapefile, and using the created shapefile for further studies is presented in Table 3.2.

The two most plausible secondary scenarios, which are possible deviations from the

primary scenario, are described in Tables 3.3 and 3.4.
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Scenario: Create a new shapefile.
Actors:
Expert User
Requirements:
1. At least one GIS data layer loaded successfully.
2. At least one shape has been created to save.
3. Paths to save to specified in the configuration file.
Primary scenario:
1. The user will specify the data layers to load in the configuration file.
2. The user will specify the files to save to in the configuration file.
3. The system will read the configuration file and check for errors.
4. The system will load the data layers and store them in memory in

the order specified in the configuration file.
5. The system will display the first data layer in 3D.
6. The system will wait for user input.
7. The system will respond to user input according to the use cases

as described in Section 3.3.
Secondary scenario:
1. The user creates no shapes.
2. The user creates some shapes, but not all have been assigned attributes.
Postconditions:
1. The created shapefile is ready for use in further studies.

Table 3.2: Primary scenario, create a new shapefile.

Scenario: The user creates no shapes.
Actors:
Expert User
Requirements:
1. At least one GIS layer loaded successfully.
Secondary scenario:
1. The user will press the key command to save work.
2. The system will detect if any shapes have been created.
3. The system will find that none have been created.
4. The save operation will terminate.
Postconditions:
1. No new files will be created.

Table 3.3: Secondary scenario, the user creates no shapes.
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Scenario: The user creates some shapes, but not all have been
assigned attributes.

Actors:
Expert User
Requirements:
1. At least one GIS layer loaded successfully.
Secondary scenario:
1. The user will press the key command to save work.
2. The system will detect if any shapes have been created.
3. The system will find that some shapes have been created
4. The system will find that the number of shapes and number of attributes do

not match.
5. The system will assign empty string attributes to the shapes

without any assigned attributes.
6. The save operation will continue as normal.
Postconditions:
1. The user resumes work uninterrupted.

Table 3.4: Secondary scenario, not all shapes have assigned attributes.
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Chapter 4

Implementation Design

With the requirements, specifications and modeling characteristics in place, we can

discuss the methodology for fulfilling the functional requirements presented in Sec-

tion 3.1, thus providing the users with the use cases presented in Section 3.3.

It is important to remember that Taverns must be as portable as possible. For

this reason, it will make use of as few toolkits and packages as possible. Taverns could

make use of packages such as Demeter (terrain manager) [12], or Open SceneGraph

(scene graph) [6] however these toolkits, as toolkits are designed to do, alleviate

responsibility from the programmer and take control of tedious tasks such as camera

management, lighting calculations, and model loading. As advantageous as these

toolkits are, they typically involve different setup methods per operating system,

that is, if they are available for multiple operating systems. They also may take

control of some aspects of the application that the programmer must have control

of to make the application usable in a virtual environment. Open SceneGraph is an

example of a package that may take control of the camera. This makes it very difficult

to use the application in a virtual environment. Fortunately, there are also toolkits

available specifically for displaying an application in a virtual environment such as

FreeVR [35] which will be discussed in the next section.

Section 4.1 first presents the class structure of Taverns, along with explanations

of pertinent algorithms in the appropriate class. Section 4.2 examines our efforts to

balance the functionality and intuitiveness of Taverns on both desktop and virtual

environments.
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4.1 Architecture and Algorithms

Taverns is a wonderfully object oriented application. Figure 4.1 portrays the high-

level structure of Taverns with a description of each module following the figure.

Taverns is still a prototype, so it does not implement any advanced optimization

algorithms. However there are several computational geometry algorithms that will

be described in the section that implements the algorithm [11, 31].

Figure 4.1: Taverns class structure.

FreeVR and Taverns

FreeVR is a software toolkit designed for managing Taverns while running in a virtual

environment [35]. Within the scope of this project, FreeVR provides functions for two

important aspects of virtual environments as mentioned in Chapter 2: user input and

camera management.

Remember from Section 2.2 that input may be from physical control devices and

from tracking devices. FreeVR accepts input from both devices but not all input

is sent to the same location. The input from control devices such as joysticks and

joypads is sent immediately to Taverns. Once Taverns receives the input from FreeVR,

it must respond appropriately. Taverns manages the sub–classes which collectively

creates the functional application.

In terms of tracking devices, this project will only focus on head tracking for the

time being. FreeVR will receive input from head tracking devices and use this to

adjust the camera to match the perspective of the viewer.
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Section 2.2 also describes the projectors used in virtual environments and how

they must display images for both our left and right eyes. It is FreeVR that coordi-

nates the images sent to each projector. Though Taverns is responsible for rendering

the virtual world, FreeVR is responsible for placing the camera in the virtual world to

not only match the perspective of the viewer, but alternate positions which simulates

the views for our left and right eyes.

FreeVR itself has an extensive configuration file. It allows us to configure two

key components, the first of which is the number of walls in the virtual environment

the application will run in. Secondly, we must specify whether the environment is

a passive stereo or active stereo projection system. FreeVR will manage the camera

appropriately for either case. Figure 2.7 demonstrates how the user can move in the

virtual environment and FreeVR will update the virtual camera position accordingly

(that is, if a head tracking system is being utilized).

With the use of FreeVR, the implementation of the following sections is un-

affected. The configuration file allows us to specify a large amount of parameters

specific to individual virtual environments, and FreeVR will work according to these

parameters.

Configuration Class

Taverns must be versatile. For any given sample of terrain that is to be analyzed, the

amount of current data about the terrain varies. The expert user may wish to use

a large amount of current data to extract more features. Or, the user may wish to

simply start with the terrain itself and extract features. The most practical way to

obtain this versatility is with a configuration file. Automating, validating and error

checking the data specified in the configuration file is all done through this class.

Taverns requires certain pieces of information before it will allow the user to begin

work. Figure 4.2 displays the flow of loading the configuration data and sending that

data to the appropriate class.

First and foremost, the user must provide elevation data. One source DEM file
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(as described in Section 2.1) must be specified. The DEM data alone is not very

useful without a data layer to texture over the rendered terrain mesh, therefore the

user must also specify an image file to be textured over the terrain (most often an

aerial photo but the user may specify any image to be textured). The texture specified

with the elevation data is the first data layer the user will see when the display loads.

Finally, once the data is validated, it is sent to the terrain manager class.

Next the user may specify data layers that will be used to extract features from

the terrain. Taverns does not require any data layers because the amount of data

already gathered regarding a sample of terrain varies. Quite often the only data

geographers have is elevation data and an aerial photo and the process of extracting

features begins there. If a layer is specified, the user must specify a shapefile, an

attribute file (Section 2.1), and an image texture of the shapefile. The user may

specify any number of layers to load and Taverns will allow the user to toggle between

them while creating shapes. Once validated, the layers are sent to the layer manager

class.

In order to load and save work done, the user must specify the paths to the

appropriate shapefiles to load from and save to. These are data layers just like the

ones mentioned above and the configuration class will read, validate, and send them

to the layer manager appropriately. When the configuration class sends these layers,

it must specify to the layer manager that they are layers to load from and save to

and it is the layer manager’s responsibility to manage them appropriately.

Lastly, the user must specify a small amount of information regarding the com-

puter environment Taverns will run on. The user must first specify if the application

will run on a desktop environment, or in a virtual environment. If it is to run on a

desktop environment, the user must also specify whether to run the application in

full screen mode or not. This section is highly expandable due to the potential for

other items to be added later, for example different input devices.
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Figure 4.2: Loading configuration data.

Terrain Manager Class

Accurately and efficiently managing the terrain is crucial for many reasons. For one,

the user wants the application to run smoothly. Rendering the terrain inefficiently

will cause a significant drop in the refresh rate. Only simple rendering algorithms

are currently implemented for the prototype application, however this class will be

responsible for the future optimizations described in Chapter 5.

More important than rendering the terrain efficiently is maintaining data accu-

racy. A solid foundation for data accuracy must be established. If the terrain is

rendered improperly, it is quite possible that inconsistencies will develop. If flaws

evolve between the output of Taverns and current GIS software, the entire point of
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the application is defeated.

The most reliable way to maintain consistency is to render the terrain at the very

same location specified in the header of the DEM file. As described in Section 2.1, the

header of a DEM file specifies the upper-left location of the terrain in georeferenced

coordinates, and all of the necessary information to render the terrain to scale. If we

render the terrain to scale starting from the upper–left location, then all of the shapes

the user creates will be placed at the very location the user expects them to be and

no calculations are required to move them to the appropriate georeferenced location.

If future developers alter the terrain in any way, perhaps scale the terrain or render

it in a different location, then the shapes must be scaled and/or moved appropriately

so as to appear over the same location when loaded in current GIS software.

Layer Manager Class

As mentioned in Chapter 2, remote sensing techniques gather a wide variety of data

and the preferred method for viewing this data is in layers. The layer manager is

responsible for organizing these textures into those that the user will:

1. View while creating shapes

2. Load shapes from to edit

3. Save edited shapes to

If the paths to save work to exist, they will be overwritten. If the paths to the

load work from exist, the work is loaded, otherwise an empty work set is created.

The same files to load from and save to may be specified supposing the user wants to

continue working on a set of shapes. Taverns does not keep handles to the files open,

all of the data is stored in memory and only written to file when the user chooses to

save the work.

Other than elevation data, shapefiles are the only layer format Taverns currently

supports. In order to view this data on the rendered terrain, an image of the shapefile

is created and that image is textured on the terrain. The user may specify an image
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to use as the texture for the data layer which will save time in the loading process.

If no texture is specified, the layer manager will create one.

Because the header information of a shapefile contains the bounding box for the

shapes, the texture making algorithm that the layer manager currently has imple-

mented begins at the top–left part of the bounding box and scans left to right, top

to bottom. A pixel is written to the image file according to the shape each pixel

is contained within. But each shape has one “key” attribute that determines which

shapes are similar and which are different. So before the scanner can begin, each

unique “key” field of the attribute table is assigned a random color (checking first

that the color is not already chosen) so all shapes that share the same “key” value are

colored the same. Figure 4.3 helps visualize the algorithm described in Figure 4.4.

Figure 4.3: Creating an image texture from a shapefile.
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From Y Max. → Y Min.
From X Min. → X Max.

s = The shape point (x, y) is in
k = The key field value for shape s
c = The color for key k

Write color c to the image

Figure 4.4: Algorithm for creating a texture of a shapefile.

Shape Class

Shapes themselves are relatively simple, but there are many computational geometry

functions that apply directly to shapes which warrants a subsystem directly for them.

The most often used algorithm Taverns implements is one that tests if a point

is within a shape or not. It is a simple algorithm, but very crucial to the entire

function of the application. In order to test if a point lies within a shape, we create

an imaginary vertical line from the point and ending past the highest point of the

shape. We then count the number of times this newly created line segment intersects

the border of the shape. This algorithm therefore relies utterly on the ability to

detect if two line segments intersect. Such an equation is presented in the popular

“Introduction to Algorithms” textbook [8]. If the number is even, then the point

lies outside the shape. If the number is odd, then the point lies inside the shape.

Figure 4.5 shows examples for several point locations with circles drawn around the

intersection points. One may quickly notice that because this algorithm works with

concave shapes, it will work equally well with convex shapes.

Following this algorithm is one that determines if a shape lies within another

shape. This is a simple extension of the one above. The algorithm must be given two

shapes, a “main” shape and a “hole” shape. This will return true if the hole shape

lies within the main shape, or false otherwise. A shape lies within another shape if

all of its points are inside the main shape. As soon as one point is found that is not

inside the main shape, the algorithm will return false. Figure 4.6 shows three test
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Figure 4.5: Example point locations around a shape.

cases of a “main” shape and potential “hole” shapes. The algorithm will return true

for hole A because all of its points are inside the main shape. False will be returned

for shapes B and C because not all of their points lie inside the main shape.

Figure 4.6: Potential “hole” shapes inside a “main” shape.

As described in Section 2.1, shapes and holes are stored as a collection of points

within shapefiles. What the section did not mention is that the points stored in the

shapefile must be ordered a particular way. We will refer to the order of the points as

“clockwise” or “counterclockwise” however these terms are not entirely accurate, we
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use them for brevity purposes. For each shape in the shapefile, the points must be

ordered in a clockwise fashion. The shapefile format gives a definition for a clockwise

shape:

The neighborhood to the right of an observer walking along the ring in
vertex order is the neighborhood inside the polygon [13].

To put it another way, if we create line segments between all of the points, starting

from the first point through the last point, the area to the right of each created line

segment is the interior of the shape. This method helps ensure distinct designation

between shapes and holes within the shapes. The points of holes must be ordered in

counterclockwise fashion. The specification document need not give a definition for

counterclockwise order because it is quite the opposite of the clockwise definition.

With the points of shapes specified in a clockwise and the points of holes specified

in a counterclockwise fashion, it is easy to distinguish shapes from their corresponding

holes. The next step is to determine whether a set of points is specified in clockwise

or counterclockwise order.

Our Shape class determines whether a shape is drawn “clockwise” or “counter-

clockwise”. See Figure 4.7 for an example of the same shape drawn clockwise and

counterclockwise. We can determine whether a shape is clockwise or counterclockwise

by first finding the point with the maximum Y value. If there are multiple points

level with each other, we must find the point with the lowest X value. We end up

with the top-most left-most point of the shape. It is from this point that we begin to

test whether the shape is clockwise or counterclockwise.

We must now find the “next” point and the “previous” point and this is relative

to the order of the points. So in the left shape in Figure 4.7, the top–most left–most

point is point 4, the next point is point 5 and the previous point is point 3. Finally, a

simple dot product will tell us if angle B turns to the right or to the left. If the angle

turns right, the shape is clockwise. For the right shape in Figure 4.7, the top–most

left–most point is point 9, thus the next point must be point 1 and the previous point

is point 8. Angle B turns to the left which makes the shape a counterclockwise shape.
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Figure 4.7: The same shape drawn “clockwise” and “counterclockwise”.

In both shapes in Figure 4.7, angle A is drawn to show that this method works for

concave shapes. For convex shapes, the algorithm need only pick the first three points

and determine what direction the angle between them turns. Angle A shows this will

not work for concave shapes. The algorithm’s run time is increased for concave

shapes because it must find the target top–most left–most point. Fortunately, the

necessity for determining whether a shape is clockwise or counterclockwise need only

be performed before the user saves the created shapes.

When Taverns loads a shapefile, it must “fix” the holes of shapes. As mentioned

earlier, determining if a point lies within a shape is a common function within Taverns,

therefore holes must be “fixed” for this function to work properly. To fix a hole, we

must add the points of the hole to the shape it resides within. A series of steps is

performed to accomplish this. We must first define the main shape as shape A and

the hole shape as shape B.

Now we can define two points, pA and pB. These two points are the two with

the minimum distance between them of all the points of shape A and shape B. To

put it another way, pA is a point from shape A and pB is a point from shape B, and

they are the two closest together. We must find the two closest points so the shape

combination step does not overlap any edges of the shapes. Figure 4.8 describes this

process. Once pA and pB have been identified, we can continue to step two which is
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D = 1000000
From 0 → points in shape A

From 0 → points in shape B
f = distance(current A point, current B point)
if D > f

pA = current A point
pB = current B point
D = f

Figure 4.8: Find two points closest from shape A and shape B

combining the two shapes between pA and pB.

Combining the two shapes A and hole B together requires several steps. Refer

to Figure 4.9 to help understand these steps. We must create a new array of points

to represent the new shape, which will be the main shape A combined with the hole

shape B. The order in which the points are added to the new points array is the

most important part. While referring to Figure 4.9, the starting point of shape A is

1A and the end point of shape A is 4A. The same is true for shape B. The points

must be inserted in this order:

1. Start(A) → pA

2. pB → Start(B)

3. End(B) → pB

4. pA → End(A)

The resulting point order from the example is as follows:

1A 2A 2B 1B 4B 3B 2B 2A 3A 4A

The steps 1–4 added the following points to the array:

1. 1A → 2A

2. 2B → 1B

3. 4B → 2B

4. 2A → 4A
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Figure 4.9: A shape with a hole and the two closest points pA and pB.

Once this operation is complete, the hole is now merely a concave portion of

the shape. Figure 4.10 portrays what the shape will look like when rendered and

an exaggerated version to help visualize how the resulting shape is merely a concave

shape. The function that determines if a point lies within the shape can now work

properly.

Figure 4.10: Shape A after hole B has been “fixed”.

Shapefile Class

The shapefile itself is a complicated matter due to the numerous ways shapes can

be created. This class provides functions for reading, writing, displaying, formatting,

etc. Also important is the fact that the user can quite possibly create the shapes in

a manner that is inconsistent with the format of the shapefile. This class must fix

these inconsistencies to adhere to the shapefile format.

As described in Section 2.1, the shapes contained in a shapefile are formatted

according to the format specification [13]. Taverns should not require the user to draw
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the shapes according to this format. Even though the format is not complicated, the

user need not learn the format in order to draw the shapes.

This Shapefile class is primarily responsible for managing a set of Shape classes.

The Shape class, described in the previous section, is responsible for the algorithms

performed on the shapes. This class does provide two vital functions: reading and

writing shapefiles.

What makes the reading and writing of shapefiles fairly complicated is the fact

that a shapefile may not necessarily contain the polygon type “shape” to which this

paper has been referring. The format supports a variety of object such as points,

lines, poly-lines, etc. Currently, Taverns only supports shapefiles that contain shapes

of type “polygon”.

With our Shape class implemented, reading a shapefile is fairly simple. The

reader need only read one shape at a time and store it in an instance of our Shape

class which will perform the appropriate functions such as fixing holes.

Writing shapefiles is a bit more tedious. Because the user may place the points

for each shape in any order, this class must first format all of the user’s work before

it can be saved. A copy of the created shapes is made so the user may resume work

without noticing all of the formatting that takes place during the save operation. The

following steps must be performed before the shapes can be saved:

1. Make every shape clockwise

2. For every shape, find all of the shapes inside of it. Shapes inside of other shapes
must be marked as holes.

3. For every hole shape:

(a) Make a copy of the hole shape

(b) Reverse the hole copy so it is now counterclockwise

(c) Associate this shape as a hole of the shape it is inside of

Now that these steps have been performed, all of the shapes are formatted ac-

cording to the specification. Lastly, the class will calculate the overall bounding box

of all the shapes. The data is now ready to be saved to the shape file. But as de-

scribed in Section 2.1, an index file into the shapefile must also be created. This is
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not complicated and this Shapefile class will create an index file for the newly created

shapefile.

Attributes Class

Attributes, though directly related to shapes, must be managed separately. Like

the Shapefile class, the Attribute class provides the important functions of reading,

writing and formatting.

As mentioned in Section 2.1, the attribute files store the data as mere text strings.

It is the header information that specifies what type of data each text string repre-

sents. Taverns currently does not perform any calculations that need to determine

whether a value is an integer type, floating type or string type. This makes loading

and displaying the data simple. But if calculations are to be added to Taverns during

later development, this Attribute class still stores all of the necessary information

needed in order to convert the text data to the appropriate data type.

While working within Taverns, the user assigns attributes to the created shapes.

The user has the ability to create alpha–numeric attributes allowing the creation of

text strings without restriction. This means when the attributes are saved, the header

data that determines what data type the attributes represent must be determined.

Attribute files support a wide variety of data types such as “Memos” and “Dates”.

However, Taverns only looks for three standard data types: integers, floats and strings.

Because the attributes are stored in a table (one row in the table corresponds to one

shape, and shapes may have more than one attribute), the algorithm will scan down

each column and determine what all of the values in the column should be. If all of the

text strings can be converted to integers, then a flag is set in the header information

for the row that it contains integer values. If one text string is found that cannot be

converted to an integer but can be converted to a floating point number, then the flag

is set that the column contains floats. If just one of the values is an alpha–numeric

string, then the flag is set that the column contains strings. Figure 4.11 shows the

process of this algorithm.
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T = Integer
From 0 → Number of Columns

From 0 → Number of Rows
If T is of type Integer

If value (row, col) cannot be converted to an integer
T = Float
Continue to next row

If T is of type Float
If value (row, col) cannot be converted to a float

T = String
Stop

Column data type = T

Figure 4.11: Determining attribute data types.

Sight Class

The “Sight” is not a complicated tool, but necessary for Taverns to be usable in a

virtual environment. A standard mouse cursor common to most desktop computers

is typically not available in a virtual environment. The mouse cursor is designed for

2D displays, quite contrary to the essence of a virtual environment. The Sight will

always follow the contour of the terrain which will make it very easy for the user to

see where shapes are created. Figure 4.12 shows a diagram of the Sight and an image

of how it will follow the contour of the terrain. The center point is what the user

will use to determine where points are placed while creating shapes. The surrounding

points help display the contour of the terrain around the location of the center point.

Figure 4.12: The Sight, general design and in action.
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4.2 User–Interface Prototype

Designing effective interfaces for a user is no small task. This section will describe the

attempts to make Taverns an expert user’s application while still holding to common

human–computer interaction practices [37].

We must look at Taverns as an editor: a shape editor. Like all editors, specific

tools are implemented to suit the purposes of that editor. The following two sections

describe new tools the user must utilize while working with Taverns within a virtual

environment, and editing shapes in general.

Taverns must be usable on both a standard desktop computer and in a virtual

environment. It is believed that the virtual environment will provide a bit more real-

ism than a desktop environment, thus the expert user will be able to more accurately

analyze the terrain. However, virtual environments tend to be very cumbersome and

expensive, so the option for running the application on a desktop computer is very im-

portant. Future sections describe the similarities and differences between interaction

with Taverns on a standard desktop computer and in a virtual environment.

The Sight

Section 4.1 has introduced the Sight and its implementation. The user will not see

how the Sight is implemented, but how it will behave. The Sight is necessary because

a mouse cursor common to desktop systems is not present in virtual environments.

And because Taverns is to be as portable as possible, using the cursor with one

system and the Sight with another creates inconsistencies that should be avoided.

Therefore, Taverns will hide the mouse cursor when running on desktop systems and

the user will create shapes with the Sight on both desktop systems and in the virtual

environment. The Sight is rendered to always follow the contour of the terrain so the

user can quickly and easily see where shapes are created.

The user can control the Sight in two ways. Taverns provides two ways be-

cause the terrain rendered is often very large, however the shapes need to be created
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with fine detail. Implementation of both fast and slow Sight motion through only

one method is rather tedious, but more importantly, it is difficult for the user to

understand exactly how the Sight will behave.

Whether running Taverns on a desktop or virtual environment, two methods will

be provided to move the Sight both slowly (incrementally) and quickly (accelerating).

If the user chooses to accelerate the Sight, it will begin slowly at first and the speed

will increase while the user holds down the controls. This is to move the Sight over

the large terrain quickly. When the user releases the controls, the Sight will decelerate

but at a higher rate than it accelerates. It is very important that the user does not

feel the Sight is out of control. The second method will move the Sight in small

increments which will allow shapes to be created with a high degree of accuracy.

Obviously the Sight shall move “forward”, “backward”, “left” and “right” but

these directions must be relative to the direction the camera is looking in order for

Taverns to be as intuitive as possible. One immensely popular computer game did

not take this into account when implementing one of their aerial weapons meant for

guiding munitions to the ground (Unreal Tournament 2004TM [17]). This has proved

horribly confusing and difficult to manage.

Editing Shapes

As mentioned, Taverns currently only supports shapes of type “polygon”. A polygon

is merely a set of points rendered in a simple connect-the-dot fashion. But as good

editors should, Taverns contains more metadata about the shapes the user is creating.

Taverns supports undo and redo operations for each shape the user creates. While

the user plots points for the shapes, a plotted point may be un-done or re-done. Undo

and redo operations are always important in editors and are no less important with

shapes.

Each shape has its own undo and redo history by merely storing a flag that

represents the “last” point of the shape. For example, if the user plots twenty points

for a shape and presses the undo command five times, the flag to the “last” point
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will be decremented five times and only fifteen points will be rendered to the screen.

The redo history is now implicitly stored with this flag, which can be incremented

with every redo operation up to the actual last point of the shape. Figure 4.13 goes

through an example of plotting several points, using the undo function to place one

of the points at a different location, then using the redo function to continue working

where the user last plotted a point. The arrow above the points P0-P9 is the flag

pointing to the “last” point.

1. Plot ten points:
↓

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

2. Undo five times:
↓

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

3. Plot a new point:
↓

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

4. Redo four times:
↓

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Figure 4.13: Plotting points undo and redo example.

After these steps, point P5 is replaced with the new point the user plotted. With

these undo and redo functions, the user can manipulate shapes easily and quickly.

Also, when the user chooses to save the shapes, the points after the “last” flag are

not saved to the shapefile. Remember from Section 4.1 that a copy of the shapes is

made and those shapes are truncated and formatted so the user may resume work

with the same undo/redo history for each shape.
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Desktop

A standard keyboard is all Taverns requires to run on a desktop system. But since

a mouse is so common with desktop systems, some of the keyboard commands may

also be sent through the mouse. Taverns is a professional application specifically

designed for expert users. This does not necessarily mean the keyboard commands are

numerous and difficult to learn, many professional and industry caliber applications

support keyboard commands. Advanced text editors are a prime example of powerful

applications meant for more professional expert users. VIMTM [7] for example is

designed to be purely keyboard based. UltraEditTM [19] is a wonderfully powerful

text editor that may be managed purely from the keyboard. However as mentioned,

because a mouse is so common, it will respond to input from the mouse as well.

Taverns is very much like a text editor, in fact when the user chooses to edit

an attribute, it will respond like a text editor by capturing key strokes and adding

characters to the attribute string appropriately. Taverns has kept the popular key

commands for standard operations. Common editor commands in both VIM and

UltraEdit that Taverns supports are listed below:

Ctrl+S Save
Ctrl+Z or ‘U’ Undo
Ctrl+Y or ‘R’ Redo

Figure 4.14: Common desktop editing commands Taverns supports.

Game engines have common commands for navigating in a 3D world, and be-

cause Taverns displays the data in 3D, the user must also have intuitive controls for

navigation. Common gaming navigation commands that Taverns supports are listed

in Figure 4.15:

In order to “look” or “turn” the camera up, down, left or right, the user may

press the up, down, left or right arrows respectively. However, since it is far more

common to look with the mouse in today’s PC games, Taverns supports mouse look
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‘W’ Fly Forward
‘S’ Fly Backward
‘A’ Fly Left
‘D’ Fly Right
‘C’ Move Down
Space Move Up

Figure 4.15: Common 3D navigation commands Taverns supports.

as well.

Taverns, as a shape editor, must allow the user to create and manipulate shapes.

Therefore, commands are required that are not standard with other applications. This

does not mean they need be complicated, just new with Taverns. The commands with

a brief explanation of their function are listed in Figure 4.16.

‘F’ Locate the Sight by positioning the camera over it
‘P’ Plot a point for the current shape
Tab Outline the current data layer shape and show its attributes
Enter Select one of the shapes the user has created to edit
Page Up View the next data layer in the list of loaded layers
Page Down View the previous data layer in the list of loaded layers
F1 Toggle the help menu on/off
F2 Toggle textured wire frame on/off
F3 Toggle wire frame overlay on/off
F4 Toggle follow terrain mode on/off
F5 Create a new shape and set focus to it
F6 Wait for input to select a shape for editing
F7 Wait for input to select one of the attribute columns
F8 Add a new column to the attribute table
F9 Edit the header of the current attribute column
F10 Edit the entry of the current attribute column
F11 Create debugging report for developers
F12 Take screenshot

Figure 4.16: Taverns specific editing commands.

Fast motion of the Sight is intended to be performed with the number pad, quite

often on the right hand side of a standard keyboard. However there are variations of
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keyboards and in particular, laptop keyboards are often designed without a traditional

number pad to save space. Figure 4.17 explains the characters that will move the

Sight.

‘8’ Accelerate forward
‘5’ Accelerate backward
‘4’ Accelerate left
‘6’ Accelerate right

Figure 4.17: Sight motion keys.

As mentioned previously, the user may use the mouse to move the Sight in small

increments to more precisely plot points for shapes. To a small degree, the user may

move the mouse quickly and the Sight will move a proportionally further amount,

but it is intended to be used slowly for higher accuracy when creating the shapes.

Virtual Environment

All of the implemented functions that make Taverns an interactive application on a

desktop system must also apply in a virtual environment. This makes the application

portable and equally functional on both systems. However, Taverns cannot be inter-

acted with in the same way on both desktop systems and in a virtual environment

because keyboards and mice, which are so common for desktop computers, are not

standard input devices for virtual environments. With this in mind, all of the func-

tions described in the previous section have been implemented to respond to multiple

devices which makes Taverns usable in a virtual environment. Most input devices

such as joysticks or joypads have a relatively small number of buttons, especially

compared to all of the possibilities keyboards and mice supply. This may result in

a steeper learning curve, but the accuracy gained while analyzing the terrain in the

virtual environment is a worthy trade off.

The biggest difference between the desktop Taverns and the virtual environment

Taverns is how the user will assign attributes to the shapes created. On the desktop
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version it is quite simple, Taverns can easily detect when the user has entered a

typing mode and Taverns will respond to keyboard input very much like a text editor.

This allows the user to easily enter arbitrary attributes. While running in a virtual

environment, Taverns cannot accept keyboard input thus attributes must be created

a different way. A common option is a virtual keyboard. The design of a keyboard

with all of the keys outlined are drawn on the screen and the user can move a cursor

restricted to the virtual keyboard and enter text. This is normally cumbersome and

another option more fine tuned to Taverns itself is proposed here.

The geographers who will use Taverns generally have some background informa-

tion about the terrain before they begin creating shapes. They also know the kind of

features they will be looking for in the terrain. Based on these assumptions, Taverns

requires the user to create a list of the attributes that may be assigned to the shapes

the user creates. Taverns will read the file of possible attributes and display them in

a menu when the user chooses to assign an attribute to a shape. The list of possible

attributes will be stored in memory so the user may alter the file and reload it during

runtime. Figure 4.18 shows an edited view of how the menu will appear in the virtual

environment.

The developers will continue to asses this method of assigning attributes and

strive for an optimal combination of fluidity and functionality as long as Taverns is

in development.

Screen Shots

The following are screen shots of the latest version of Taverns on a desktop system.

Some of the text may not display clearly so the reader may view the images at the

Taverns home page [23].

Figure 4.19 displays a simple shape and the points that compose the shape. It

is created on a detailed terrain landscape. Status text is shown on the top–left hand

side of the screen. Attributes for the shape are centered at the top of the screen.

Information about the current data layer is shown at the bottom of the screen.
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Figure 4.18: Example attribute list with Taverns in VR.

Figure 4.20 displays the same shape as the previous figure, but now a shapefile

layer is textured on the terrain. The shapefile texture is averaged with the terrain

texture from the previous figure so the user can more easily see features of the terrain

as well as the data the shapefile layer represents. From the shapefile layer itself, the

user can choose to see the attributes of the shape the Sight is located inside of. This

allows the expert user to view any number of data layers already gathered about the

terrain and use this information to extract more features.

Figure 4.21 is the same scene as Figure 4.20 but the terrain is drawn in wire

frame. The wire frame view allows the expert user to more accurately determine

where the slopes in the terrain are.
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Figure 4.19: Simple shape on a typical terrain texture.
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Figure 4.20: Simple shape on a data layer texture.
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Figure 4.21: Simple shape on a data layer in wire frame view.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Much collaboration between the developers and intended users has occurred with

Taverns on a desktop system. As quoted by one user, “Taverns rocks the house”.

This shows strong support for the future of Taverns. However, little user testing has

occurred with Taverns in a virtual environment. As mentioned in Chapter 2, Taverns

is a stepping stone for the larger Desert Terrain project, thus much collaboration with

the intended users must continue in order to ensure Taverns is a usable, reliable and

accurate application to ultimately become an asset in the Desert Terrain project.

The core elements of Taverns as described in Chapter 3 are now in place. The

author concludes that Taverns has successfully accomplished the intended functions

as listed in Section 3.1. The intended use cases as listed in Section 3.3 are operational

and may be performed in a manner similar to the functionality current editors provide

users. The developers have attempted to hold to strict human–computer interaction

techniques in order to ensure Taverns will conform to current software packages it is

meant to supplement. The implementation is stable and ready for the future work

items listed in the next section. With this solid foundation, Taverns has proven to be

a worthy supplement for current geographic information systems.
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5.2 Future Work

The future developers of this application are highly encouraged to review and consider

the advancement of Taverns based on the recommendations in the following sections.

Taverns has already proven valuable, implemented as a prototype application. With

the addition of the following features, it will soon become a standard.

Optimizations

Most of the functions implemented in this project may be optimized to a large extent.

The future readers are highly encouraged to reference rendering efficiency methods by

means of mesh simplification [25] and triangle decimation [33]. Rendering the terrain

more efficiently will allow for more fluid interaction as well as allow much larger data

sets to be viewed at one time.

The computational geometry functions described in Chapter 4 are vital for func-

tionality. Optimizing these functions will greatly increase the speed at which most

of the implemented algorithms are performed, for example, our texture making al-

gorithm. The algorithm for creating a texture from a shapefile has significant room

for optimization, but other methods still rely on the ability to determine whether a

point lies in a polygon or not. The simple function of determining whether or not a

point lies in a shape should be the first of all the current algorithms to be optimized.

Parallelization

Not only can many of the current algorithms be optimized, there is strong potential

for parallelizing them as well. For example, when the configuration class completes,

loading the data layers may be done in parallel which would greatly increase loading

time. Many of the functions that are performed on a shape may be parallelized

as well, for example finding all of the hole shapes for every shape. Also, virtual

environments are normally run by a multi–processor computer system. Utilizing this

hardware would be extremely advantageous.
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Robustness

Shapefiles are renowned for being “notoriously temperamental”. Creating generic

reading and writing functions for them is not easy due to the numerous possibilities

for error within the files. Also, because so many current GIS software packages

work with shapefiles, we must attempt to account for the intricacies of the output

from each application. The best way to find inconsistencies between our shapefile

functions and the large databases of GIS data is to simply test data layer after layer

in the application.

Similarly, future developers must continually check the output of Taverns and

the usability of created shapefiles in current GIS software. One may argue it is much

more important to create robust output because the purpose of Taverns is to produce

shapefiles that will be used in further experiments and simulations.

Interface Development

As mentioned in the previous section, a fair amount of user testing has occurred

with Taverns on a desktop system. Determining the usability of Taverns in a virtual

environment is still underway. If Taverns is to be used as a fluid, intuitive editor

in a virtual environment, future developers must continually get feedback from the

intended users to ensure Taverns will be an asset and not a hindrance.

Recent brainstorming has given rise to the idea of implementing speech recogni-

tion algorithms as a way of assigning attributes within the virtual environment. As

mentioned in Chapter 2, attributes assigned to shapes do not follow any particular

format. The expert geographer assigns attributes depending on the context of the

research study. The menu of possible attributes proposed in Section 4.2 is a pos-

sible method for assigning attributes, however well implemented speech recognition

algorithms would allow a multitude of attributes to be assigned, and perhaps more

importantly, would further immerse the user into the virtual environment. Should the

speech recognition prove reliable, the developers may extend its capability to support

a wide array of verbal commands related to terrain analysis.
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Regarding the user’s ability to view different data layers, the user may only scroll

through the list of loaded layers. In order to view an aerial photo and a shapefile

texture at once, our Layer Manager class simply averages the two images together.

This gives the user little control over how the data is viewed. Future developers

are encouraged to explore multi–texturing methods and increase the user’s control

regarding what data layers will be viewed and how they will be viewed.

Further Brainstorming

We have seen from Chapter 2 that one key part of the Desert Terrain project is

locating alluvial fans. These fans have common characteristics and future developers

may consider the possibility of implementing an algorithm to locate and create shapes

around potential alluvial fans.

Another option related to automating certain tasks would be to implement an

algorithm that will create an output shapefile based on the similarities and/or dif-

ferences of several input shapefiles. Expert geographers will use Taverns to perform

precisely this task themselves and years of experience goes into accomplishing this

task. However if certain parameters are passed to the algorithm that will determine

relationships between shapefiles and create output shapefiles based on these relation-

ships, it may prove to be an asset.

A significant amount of data about Mars has been gathered and plans are cur-

rently underway to begin a more thorough analysis of Mars with Taverns. Rendering

the surface to scale in a virtual environment will immerse the user into the an in-

credibly realistic rendition of Mars, so realistic in fact that the next level would be

to visit the planet itself.

Related to immersing the user in the virtual environment, the idea was mentioned

of actually being able to feel the granularity of the soil at different locations in the

terrain. Little research has been performed regarding methods and technologies that

could make this a possibility, but the idea furthers support for virtual environments

and ultimately immersing users ever more into the realm of virtual reality.
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