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Abstract

Determination of the minimal crossing number of a complete graph is an NP-

complete problem that has been attacked in various ways over the years with limited

success. Much previous work has focused on conjectured solutions that have been

verified only for small values of n, where n is the number of vertices in the graph’s

vertex set. The advent of more powerful computers and the ability to network multiple

computers into Beowolf clusters have led to renewed interest in exact solutions to

crossing number problems.

In this thesis, we introduce a new method for finding the minimal crossing num-

ber of complete graphs. Our algorithm lays down new edges independent of each

other to create minimal Kn graphs from minimal Kn−1 graphs, a technique we have

entitled Star Analysis. We validate our algorithm on small complete Kn graphs, then

demonstrate its efficiency in generating larger minimal Kn graphs up to n = 11. Fi-

nally, we extend our process to the generation of minimal Km,n bipartite graphs to

document its usefulness in a variety of graph family problems.
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Chapter 1

Introduction

The Minimal Crossing Number problem can be defined as the determination of the

minimum possible number of crossings required to connect a set of points in a plane

in some defined manner. It is a problem that has intrigued investigators since its

original description by Turán in 1944 [9]. Since the points and connections are easily

represented in graphic format, the Minimal Crossing Number problem has been most

commonly studied as a problem in graph theory.

A graph is a finite nonempty set of vertices, customarily depicted as points, along

with a set of unordered pairs of vertices called edges. [2] A complete graph, denoted

Kn, is one in which the edge set is complete, i.e. every vertex is adjacent (connected)

to every other vertex in the graph. When a graph is drawn in a plane, and the number

of vertices, n, exceeds four, then at least two of the edges must cross each other at

a point not represented by a vertex (Figure 1.1). The problem is minimizing the

number of these crossings as the number of vertices increases. A minimal Kn graph

is one that exhibits the minimal number of edge crossings possible for a graph of n

vertices.

Like many NP-complete problems, the Minimal Crossing Number problem is

deceptively simple and very easily stated, whereas its solution is complex. Addition

of a new vertex to a minimal Kn graph requires that connections be made between

the new vertex and each of the existing n vertices, minimizing the number of existing

edges that are crossed. How can one know where in the graph to place the new

vertex, and in what sequence and direction should the new edges be added? Very
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Figure 1.1: Minimal K5 Graph Demonstrating One Crossing

small complete graphs can be easily created by hand, but the complexity escalates

quickly with the number of vertices. Even with all the optimizations to be presented,

given a complete graph of size K7, modest in size relative to the real-world problems

in need of solutions, one must draw 76 graphs to exhaustively search all the possible

vertex placements and edge configurations that could be used to create a minimal K8.

Within a few more generations of graphs, manual solutions are out of the question.

From K8 to K9, 4,590 graphs must be drawn and from K9 to K10, 56,618 graphs

must be drawn [5]. Many weeks or longer of processor time are required to perform

an exhaustive search for this many graphs. Prior to the work presented here, the

situation was orders of magnitude worse.
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This thesis presents a novel method of generating minimal Kn graphs. Beginning

with previous work involving exhaustive search and proceeding through several levels

of optimization, we have arrived at an algorithm that allows efficient creation of all

possible minimal Kn graphs from minimal Kn−1. The algorithm is not specific to

complete graphs, so application to other graph families is possible.

The remainder of this thesis is broken down as follows: Chapter 2 provides a brief

set of pertinent definitions from graph theory, following which review of the literature

relevant to the Minimal Crossing Number problem is presented. Chapter 3 introduces

our algorithm, which we have entitled Star Analysis. Both an overview of the process

itself and a description of the underlying data structures and implementation details

are presented. Chapter 4 describes the results we have obtained applying the Star

Analysis algorithm to several crossing number problems. Finally, a summary and

suggestions for future work are found in Chapter 5.
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Chapter 2

Literature Review

2.1 Definitions

Several basic definitions from the field of graph theory were given in Chapter 1. We

will now provide the remainder of the definitions necessary for the discussions that

follow. Unless otherwise noted, all definitions are derived from [2].

Definition 1 The order of a graph is the cardinality of its vertex set, denoted n

Definition 2 The size of a graph is the cardinality of its edge set, denoted m

Definition 3 The degree of a vertex, v, is the number of edges incident with v,

denoted deg v. In the case of a complete graph, the degree is n-1 for all vertices. The

sum of the degrees of the vertices of a graph is 2m.

Definition 4 An n x n adjacency matrix is a representation of a graph of order

n in which an entry at position x,y is 1 if the vertices x and y are adjacent, otherwise

is 0. Zero entries occur along the main diagonal of the matrix since vertices are not

considered to be adjacent to themselves.

Definition 5 Two graphs are isomorphic if there is a one-to-one mapping of their

vertex sets that preserves adjacency. Isomorphic graphs therefore have identical ad-

jacency matrices.

Definition 6 A graph is k-partite, k ≥ 1, if its vertex set can be partitioned into

k subsets called partite sets, such that each element of the edge set of the graph
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connects a vertex Vi to a vertex Vj, i 6= j. For k = 2, such graphs are called bipartite

graphs (Figure 2.1). A complete k-partite graph, denoted Kn1,n2,n3,...,nk, is one

in which each vertex Vi is connected to every vertex in each of the other partite sets.

1 2

543

Figure 2.1: Complete Bipartite Graph, K2,3

Definition 7 A graph is planar if it can be embedded in the plane (or on the sphere)

with no edge crossings apart from those occurring at vertices. If it is embedded in the

plane, it is called a plane graph. A graph that cannot be embedded in the plane

(because of edge crossings) is referred to as drawn in the plane.

Definition 8 A region of a plane graph is a maximal portion of the plane for which

any two points may be joined by a curve A such that each point of A neither corre-

sponds to a vertex of the graph nor lies on any curve corresponding to an edge of the

graph.

Definition 9 The boundary of a region R of a plane graph consists of all points x

corresponding to the vertices and edges of the graph having the property that x can be

joined to a point of R by a curve, all of whose points that differ from x belong to R.

Definition 10 A region in an embedding is called a 2-cell region if any simple

closed curve in that region can be continuously deformed or contracted in that region

to a single point.
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Definition 11 An embedding is a 2-cell embedding if all the regions in the embed-

ding are 2-cell.

Theorem 1 [Euler’s Formula] If a graph, G, is a connected (essentially the same

as complete) plane graph with n vertices, m edges and r regions than the following

relationship holds:

n−m + r = 2

Proof of Theorem 1 can be found in [2], page 155. A consequence of Theorem 1

is that every two embeddings of a connected planar graph in the plane have the same

number of regions.

Definition 12 The crossing number of a graph, denoted cr(G) or ν(G), is the

minimum number of edge crossings among its drawings in the plane. Per Definition 7,

such a graph is nonplanar unless its crossing number is 0. (A subset of crossing

number problems considers the rectilinear crossing number, which has the added

requirement that each edge is a straight line segment [10]. These graphs will not be

considered further here.)

Definition 13 A minimal graph is one that exhibits the crossing number when

drawn in the plane.

Definition 14 A good drawing of a graph, G, is one in which:

• adjacent edges never cross

• two nonadjacent edges cross at most once

• no edge crosses itself

• no more than two edges cross at a point of the plane and

• the (open) arc in the plane corresponding to an edge of the graph contains no

vertex of the graph
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2.2 History of the Minimal Crossing Number

Problem

2.2.1 Initial Description

Credit for the original description of the Crossing Number Problem is generally given

to Paul Turán, based on his personal experience in a brick factory near Budapest

during World War II [9]. In the factory were kilns, where bricks were made, and

storage yards, where they were stacked. The former were connected to the latter

by rail tracks, forming what we now call a complete bipartite graph. Turán noticed

that problems often arose at the points where rails crossed, with trains jumping the

tracks and bricks falling to the ground. He mused that those problems and the extra

work they created could have been minimized had someone thought through the track

layout in advance to minimize the number of crossings. Turán subsequently delineated

his problem in lectures given in 1952 in Warsaw and Wroclaw, and it became known

as Turán’s Brick Factory Problem.

In the Warsaw audience was a mathematician named Zarankiewicz, who became

one of the first to take up the challenge. In 1954, he conjectured that the crossing

number of a complete bipartite graph is as follows [23]:

Conjecture 1 [Zarankiewicz] The crossing number of the complete bipartite graph

Km,n satisfies the equality

ν(Km,n) =
⌊

m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1

2

⌋
He noted that his conjecture was concurrently and independently discovered by Ur-

banik.

2.2.2 Early Work

Zarankiewicz’s conjecture was verified by Kleitman [12] for the case when min(m, n)≤

6, and by Woodall [20] for the case when m = 7, n ≤ 10. Unfortunately, the conjecture

was thrown into question in 1965/66 when both Kainen and Ringel noticed a flaw in
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Zarankiewicz’s paper, later reiterated by Guy [9]. The flaw was the assumption by

Zarankiewicz that among the m graphs K1,n that compose the graph Km,n, there will

always be two that do not contain a crossing. Zarankiewicz’s conjecture stands to

the present as an upper bound on the crossing number of a complete bipartite graph,

having been neither proven nor disproven for equality.

Guy continued to pursue the problem of Minimal Crossing Number of a complete

graph, introducing an upper bound in 1960 that persists to the present [8].

Theorem 2 [Guy] The crossing number of the complete graph Kn satisfies the in-

equality

ν(Kn) ≤ 1
4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
.

He went on to conjecture that equality holds for all n.

Conjecture 2 [Guy] The crossing number of the complete graph Kn satisfies the

equality

ν(Kn) = 1
4

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
n−2

2

⌋ ⌊
n−3

2

⌋
.

This conjecture has been proven for n ≤ 10, but remains to be shown for n > 10.

Guy has speculated privately that he now anticipates divergence from his conjecture

with larger n.

Surprisingly little work has been done on the problem of crossing numbers, con-

sidering its many applications in circuit design [13, 14], graphics [1], network config-

uration, etc. The explanation for this undoubtedly lies in the difficulty in making

further progress. This difficulty became more understandable in 1983, when Garey

and Johnson proved that the Minimal Crossing Number problem is NP-complete [7].

Their proof consists of transforming a known NP-complete problem, the Optimal Lin-

ear Arrangement problem, into the Minimal Crossing Number problem. They sug-

gested that the intractable nature of the Minimal Crossing Number problem meant

that further research should be directed toward inexact methods that only estimate
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crossing numbers. Indeed, subsequent research tended to focus on related problems

and subproblems and is difficult to synthesize into a coherent whole, whereas the

attempt to search further for exact results for crossing number problems was largely

abandoned.

2.3 Harris and Harris Algorithm

2.3.1 Introduction

In 1996, the first algorithm to calculate the exact crossing number of a complete graph

was proposed by Harris and Harris [11]. The algorithm is based on a tree structure,

using exhaustive depth-first search limited by branch-and-bound methodology. As it

is the starting point for all the work to be discussed below, we will examine it now in

some detail.

2.3.2 Edmonds’ Rotational Embedding Scheme

A key part of the Harris and Harris algorithm is Edmonds’ Rotational Embedding

Scheme [3]. The scheme is used to determine the planarity of partial graphs prior

to mapping to the tree structure. It is formally presented in [2], pages 196-197 as

Theorem 7.14, which will be excerpted here.

Let G be a nontrivial connected graph with V (G) (the vertex set of G)

= {v1, v2, . . . , vn}. For each 2-cell embedding of G on a surface there exists

a unique n-tuple (π1, π2, . . . , πn), where for i = 1, 2, . . . , n, πi : V (i) →

V (i) is a cyclic permutation that describes the subscripts of the vertices

adjacent to vi in counterclockwise order about vi. Conversely, for each

such n-tuple (π1, π2, . . . , πn), there exists a 2-cell embedding of G on some

surface such that for i = 1, 2, . . . , n the subscripts of the vertices adjacent

to vi and in counterclockwise order about vi are given by πi.

The scheme is best illustrated with an example, taken from [11]. Figure 2.2 dis-

plays a planar embedding of a graph. The counterclockwise permutations associated
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with each of the vertices are as follows:

π1 = (6, 4, 2) π2 = (1, 4, 3)
π3 = (2, 4) π4 = (3, 2, 1, 5)
π5 = (4, 6) π6 = (5, 1)

4

2

5

3

1

6

Figure 2.2: A Planar Embedding of a Graph

These permutations allow us to determine the edges of the graph, and thereby

the regions of the graph. As an example, we will use the permutations to determine

the edges of the region bounded by (1,2), (2,4), and (4,1). The edges are traced as

follows:

1) Start with edge (1,2).

2) From the permutation π2 determine which vertex follows 1; it is 4. There-

fore the second edge is (2,4).

3) From the permutation π4 determine which vertex follows 2; it is 1. There-

fore the third edge is (4,1).

4) From the permutation π1 determine which vertex follows 4; it is 2. This

yields edge (1,2), which was the original edge, so we are finished.

The graph in Figure 2.2 has four regions; three are obvious and the fourth is the

external region bounded by (6, 5), (5, 4), (4, 3), (3, 2), (2, 1), and (1, 6). Notice that

the external region must be traced counterclockwise in order for the permutations to

define it, whereas all the other regions are traced clockwise.
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Once the regions are identified and counted, Euler’s formula can be employed to

determine if a planar embedding exists. If Euler’s formula is not satisfied, we know

that one or more crossings occurred when the graph was drawn.

2.3.3 Description of the Algorithm

The Harris and Harris algorithm commences by taking the unconnected vertex set of

the graph and adding edges. After the addition of each edge, the Rotational Embed-

ding Scheme is employed to count the resulting regions, and then Euler’s formula is

used to test for planarity of the resulting partial graph. Edges continue to be added

until the partial graph is no longer planar, at which time the last edge is removed to

return to the last planar configuration. This process is repeated for every permuta-

tion of the vertices. The result is all the partial graphs possible from that vertex set

that have planar embeddings.

At this point the remaining search space is mapped onto a tree. The root of

the tree has a branch for each of the planar partial graphs created above. Starting

with the first branch of the tree, we begin the depth-first search process, building and

searching simultaneously.

Depth-first search is a tree traversal algorithm that searches as deeply as possible

into the tree for a solution before moving on to adjacent branches. Only after a

terminal leaf is reached, which represents a solution for that branch of the tree, does

the algorithm backtrack up to the previous division. Then, it again goes to the

deepest position of the adjoining branch before backtracking. In this manner, the

entire tree is exhaustively searched.

The added wrinkle of branch and bound provides one method of improving effi-

ciency. The current optimal solution is maintained as the search progresses, so that

whenever that optimum is exceeded, the algorithm searches no deeper in the current

subtree. Aborting the search prevents fruitless time spent exploring areas of the tree

known not to contain a new optimum while still exhaustively searching all viable

paths.
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Beginning with the first embedding, we again add edges to the partial graph.

This time, though, we know that each added edge must result in a crossing. Each

level further down into the tree we go without finding our terminal vertex represents

yet another crossing. As we progress downward, decisions must be made about which

region and edge to cross at each level. Once the requirements of a good drawing are

satisfied, a branch is created for every available region and edge combination we could

cross on our journey to the desired vertex. For each region and exit edge, we create a

new cross vertex at the point of the crossing. This allows the partial graph to remain

planar, although with one vertex that is not a part of the graph, and one edge that

is actually only an edge segment.

After the cross vertex is created, we check to see if we can connect from it to the

terminal vertex directly. If so, we have reached a leaf. We count the number of levels,

representing new cross vertices, and this value is the cost of reaching that vertex by

that path. If more than one vertex needs to be connected to complete this partial

graph, the cost is summed for each path and a starting optimum, or minimal crossing

number is established. This becomes the bound as we move on to explore the next

partial graph.

Once the tree has been exhaustively searched, we have determined the overall

minimal crossing number for the graph. There may be one or more embeddings

that result in that crossing number; discovering which of these are isomorphic, and

therefore not unique is a problem we will address below.

Again, an example serves to clarify the process. This example, taken from [11],

uses a K5 graph, the first complete graph that has a crossing number greater than

zero. This simple example has only one starting partial graph, shown in Figure 2.3. It

is the result of connecting edges while confirming after each addition that the graph

is still planar with Euler’s formula.

When we attempt to connect the final edge, from i to j, Euler’s formula tells us

that the graph can no longer be embedded in the plane; a crossing has occurred. We

backtrack and begin the depth-first search. Note that although other partial graphs
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j

i

R1

R2

R3

k

l

Figure 2.3: Partial Planar K5 Graph

could be drawn with differently numbered vertices remaining to be connected, they

are all isomorphic to this one.

Our next step is to connect all remaining edges, which in this example consists

of only one edge, i to j. Looking at Figure 2.3, we see three possible regions to cross

to which vertex i is adjacent, namely regions R1, R2, and R3. We begin by selecting

R1. R1 has 3 edges but the constraints of drawing a good graph prevent us from

crossing two of them, specifically the two incident with i. Thus edge kl is selected,

a cross vertex is created on this edge, and an edge segment is placed connecting the

cross vertex with i (Figure 2.4a). Next, we check whether the new cross vertex can

be connected with j while the graph remains planar. In this instance, it can and so

the edge segment is laid down and the edge from i to j is complete with one crossing

(Figure 2.4b). As there are no more vertices to connect, the graph is complete with a

crossing number of 1. The algorithm then backtracks and tests laying down an edge

through each of the other two regions. Although it finds two more ways to draw the

edge, it does not improve upon the crossing number of 1.
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Figure 2.4: Completing Final Edge of K5

2.4 Optimization of Harris and Harris

2.4.1 Parallel Implementation

Exhaustive search algorithms can become computationally expensive as the search

space grows. The Harris and Harris algorithm as presented above has only the branch

and bound limitation in place, so the next obvious step in its evolution was to improve

performance by further optimization.

The first method chosen was to implement the algorithm in parallel, reported by

Tadjiev and Harris [18, 19]. They reconfigured the algorithm to run on a network

of Pentium 133 machines running Linux, linked with PVM in a host-node format.

For simplicity, they chose to do a static partitioning of the search tree among the

processors. A static system has a data set that is completely defined prior to run-time

that can be evenly divided among the processors. Although the process ran faster in

parallel for all graph families tested, meaningful improvement in performance required

at minimum a K8. As one might anticipate, speedup was improved by increasing the

number of processors. Comparable results were seen with a Solaris/MPI system.
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2.4.2 Load-Balanced Parallel Processing with a Queuing
System

It became apparent during the work described above that the processors were not

finishing concurrently, the main drawback of a statically partitioned data set. One

can envision an unbalanced tree in which static partitioning does not result in an

even work load distribution among processors. Furthermore, a heterogeneous network

cluster, which is not uncommon, can result in load imbalance even when the work load

is evenly distributed. The next step then was to divide the work efficiently among

processors to ensure that no processor is sitting idle while others work. This problem

was tackled by Yuan, et al. using a generic work queuing system to provide dynamic

load balancing [21, 22].

Work queues can be implemented in various ways, each with its own pros and

cons. At one extreme is a central work queue managed by a master processor that

distributes jobs to slave processors as they finish working and request them. This

approach suffers from the delays inherent in having the entire system managed by a

single processor. Bottlenecks can occur if multiple slaves request jobs at once, and

the network load is heavy with job and control message passing. At the other extreme

is the decentralized system, in which local processors manage their own work queues.

The downside of this approach is its similarity to static partitioning.

The system created by Yuan et al. is a balance between these two extremes.

A master processor creates the jobs, defined as the smallest possible unit of work,

and places them on a central queue. A job is dispatched to each processor, which

places the job into its own local queue. In the course of performing its assigned

work, the slave creates additional jobs that are added to its local queue. Further

message passing occurs when a slave works through its job queue and becomes idle,

as it requests more work from the central queue. Alternatively, if the local queue

overflows, a user-defined parameter, as jobs are created and added to it, the slave

sends work back to the central queue for redistribution. The primary downside to

this approach, not surprisingly, is the amount of message passing network traffic it
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creates.

Several interesting results were found running the crossing number problem in

this parallel generic queuing system. Like a government bureaucracy, the more pro-

cessors that are used in the network, the more jobs that are created and the higher

the volume of network traffic, with the result being little or no improvement in run

time over a smaller parallel system [21]. Nonetheless, with an optimal number of

processors and optimal queue size, shorter run times were seen than without load

balancing.

2.4.3 Graph Isomorphism

As per Definition 5, we describe two graphs as isomorphic if there exists a one-to-

one mapping of their vertex sets that preserves adjacency. Numbering of vertices is

an arbitrary construct that allows us to define regions, but has no bearing on the

underlying graph structure. As one can imagine, larger graphs with many vertices,

some native and some crossing, can be created from a myriad of paths, which results in

graphs that not only have differently numbered vertices but that may look completely

different from each other when drawn. Many of these graphs will in fact be isomorphic.

Figure 2.5 demonstrates the difference between isomorphic and nonisomorphic graphs;

Figures 2.5a and b are isomorphic to each other, but Figure 2.5c is not isomorphic to

either a or b.

3

4

21

3

1

42

3

4 2

1

(a) (b) (c)

Figure 2.5: Comparison of Isomorphic and Nonisomorphic Graphs
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The search space can be significantly reduced by selecting only one member of

each isomorphic family to test for the next higher value of n. Table 2.1 displays

the relationship between the total number of minimal graphs and the number of

isomorphic families found for 5 ≤ n ≤ 10.

n 5 6 7 8 9 10
Graphs generated 12 4 76 20 4,590 56,618

Iso families 1 1 5 3 1,453 5,679

Table 2.1: Relationship Between Total Minimal Graphs and Isomorphic Families

Determining graph isomorphism is an intensive process [4]. One of the best

current methods uses a canonical labeling for each graph to be tested. Graph G is

isomorphic to graph H if and only if the canonical label for G is identical to the

canonical label for H. The most widely used algorithm for canonical labeling is called

NAUTY , standing for “No AUTomorphisms, Yes?” [15] Written by Brendan McKay,

the software package that implements the NAUTY algorithm has been modestly

described by its author as the “world’s fastest isomorphism testing program.”

2.4.4 Region Restriction

A further optimization was implemented by Fredrickson et al. [5, 6]. They added

another constraint to the definition of a good drawing: they specified that no region

of the graph should be crossed more than once by a single edge.

As an example, consider the graphs in Figure 2.6 below. Figures 2.6a, b, and

c meet the definition of a region restricted good drawing for placement of edge uv

and would be generated under the new algorithm. Figure 2.6d does not meet the

definition and would no longer be generated. Note that region restriction does not

prevent non-minimal graphs from being drawn, but it does eliminate an entire class

of graphs that cannot be minimal. Proof that restricting an edge from reentering a

previously entered region does not prevent any possible minimal graphs from being

generated can be found in [5].

To illustrate further, consider Figure 2.7. A branch of the search tree is created for
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Figure 2.6: Region Restricted Good Drawings of Edge uv (a,b,c) and Not Good
Drawing (d)

every possible path between u and v. Thus an edge will be begun or continued through

every available region at each level, as seen for the starting regions in Figure 2.7a.

Any edge entering a region adjacent to one it has already passed through after having

crossed a subsequent region (Figure 2.7b) will have more crossings than an edge that

entered that region directly (Figure 2.7c).

Fredrickson later summarized the optimization into a new definition of a good

drawing of a graph [5]:

Definition 15 Let

f : u = u0, e1, u1, e2, . . . , uk−1, ek, uk = v

denote the u− v path laid down in graph G where ei is an edge segment through one

region of G. Let H = G + f. The graph H is a region restricted good graph if every

region of H has at most two vertices of f on its boundary.

She then provided
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Figure 2.7: Possible Paths for Laying Down Edge uv

Theorem 3 [Fredrickson] Employing the definition of a region restricted good draw-

ing of a graph while creating minimal Kn from minimal Kn−1 does not eliminate any

possible minimal graphs from being generated.

The authors of [5, 6, 21] found that the substantial reduction in search space

resulting from tightening the definition of a good drawing (see Table 2.2) produced

order of magnitude improvements in run time up to K8. K9 did not complete running

after several weeks, and remained to be solved after further optimization. Additional

processors resulted in further run time improvements.

Vertices ν(Kn) Good Graph Restricted
(n) Good Graph
5 1 3 3
6 3 203 71
7 9 1,498,775 19,979
8 18 * 46,697,854

Table 2.2: Number of Jobs Required to Find ν(Kn) With and Without Region Re-
striction
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2.4.5 Radical Region Restriction

One final optimization was introduced prior to the work to be presented here. A

further restriction on placement of edges through regions, known as radical region

restriction, was presented in [5]. Radical region restriction is based on preliminary

analysis of the shortest path from u to v, in terms of the number of regions crossed.

It determines, for each of the n - 1 edges that need to be created, the minimal number

of regions that need to be crossed to complete the edge. The algorithm only follows

branches of the tree that do not exceed the minimum. Logically, crossing the fewest

number of regions results in the fewest number of edge crossings.

This refinement is illustrated in Figure 2.8. Four of the ten possible uv edge

placements for the given graph are displayed. Only Figures 2.8a and b have paths
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R1

R5R4

R3

R2
R6

(c)

R1

R5R4

R3

R2
R6

(d)

u

u

v

u

v

u

v v

Figure 2.8: Options for Placement of Edge uv

that cross the minimum number of regions (two) and therefore have the fewest edge

crossings (one). The other figures display paths that cross more regions (three), result

in two edge crossings each, and could not contribute to a minimal graph. Radical
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region restriction would prevent the creation of these paths.

When radical region restriction was used to generate minimal Kn graphs up to

K10, substantial reduction in running time was seen as compared with basic region

restriction (Table 2.3) [5]. Even with radical region restriction, minimal K10 required

approximately a week to generate owing to the large number of isomorphic K9’s it

had to start with (1,453).

Vertices ν(Kn) Region Radical Region
(n) Restriction Restriction
8 18 2 hr 36 min 5 min
9 36 >> 1 week 8 min
10 60 unknown ≈ 1 week

Table 2.3: Runtime for Region Restriction versus Radical Region Restriction

2.5 Bipartite Graphs

Before presenting the current work, we will briefly digress and consider bipartite

graphs. As mentioned earlier, the original description of the crossing number problem

involved a complete bipartite rather than a complete graph. The complete bipartite

graph representing Turán’s Brick Factory Problem can be visualized as in Figure 2.9,

adapted from Richter and Thomassen [16], where vertices 1, 2, and 3 represent the

brick ovens, and are the first partite set, and vertices 4, 5, 6, and 7, the second partite

set, represent the yards where the bricks were stacked for storage.

This representation can be redrawn as a minimal graph (Figure 2.10) that has

a crossing number of 2. It is clear from these two representations of K3,4 that the

specific drawing in the plane is critical with respect to crossing number, and may not

be immediately obvious, even for small m, n.

Bipartite graphs are useful in VLSI routing simulations [17], and might be of

value in any situation where interconnections occur between two groups of nodes,

but not within the groups, such as electrical wiring for example. A discussion of the

relations between the crossing numbers of complete graphs and complete bipartite
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Figure 2.9: Complete Bipartite Graph K3,4 Illustrating Turán’s Brick Factory Problem
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Figure 2.10: Minimal Complete Bipartite Graph K3,4

graphs can be found in [16].

There are several interesting properties of bipartite graphs, summarized by Woodall

in his work confirming Zarankiewicz’s conjecture for m = 7, n ≤ 10 [20]. These are

given in the following theorems:

Theorem 4 [Woodall] Every G = Km,n with cr(G) = k contains a drawing of Km−1,n

with a number of crossings cr ≤ k(m− 2)/m.

Theorem 5 [Woodall] If m is even and the Zarankiewicz conjecture holds for Km−1,n,

then it holds for Km,n.
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Theorem 5 allows us to limit our consideration to graphs where both m and n are

odd.

Minimizing the crossing number of a complete bipartite graph is a sister problem

to that of the crossing number of a complete graph. It is desirable that any solution

to the crossing number problem be applicable to the bipartite family of graphs as

well. Preferably, a general solution applicable to many graph family problems could

be found.
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Chapter 3

Star Analysis

3.1 Introduction

All the refinements introduced up to this point resulted in a system that quickly finds

minimal graphs up to K9, and finds K10 minimal graphs in a runtime of approxi-

mately one week. Above K10, the runtimes are anticipated to increase drastically.

Generation of minimal K10 requires that the process be run on fourteen hundred and

fifty-three different (i.e. nonisomorphic) minimal K9 graphs, each of which contains

sixty-five regions. Generation of minimal K11 begins with five thousand six hundred

and seventy-nine nonisomorphic minimal K10 graphs, each with 97 regions. So the

quest for optimization of the process continues.

A brief recap of the current state of the algorithm will facilitate the discussions

that follow. Minimal Kn graphs are created from representatives of each isomorphic

family of Kn−1, beginning with K5. As minimal K5 only has one isomorphic family,

only a single so-called “feeder” graph is needed to progress to minimal K6. The

algorithm begins by taking the feeder graph and numbering its vertices. Native

vertices, those that are in fact in the graph’s vertex set, are numbered from one to

five. Number six is reserved for the new vertex to be added, and number seven is

used to identify the single crossing vertex ( ν(K5) = 1 ).

The next step is to place vertex six into each of the eight regions of minimal K5.

This creates eight starting partial graphs, one of which is shown in Figure 3.1.

For each, a preprocessing step makes connections between vertex six and the
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Figure 3.1: K5 to K6: K5 Graph With New Vertex 6 Placed

native vertices bounding the region in which it was placed; in other words, any con-

nections that can be made without new crossings (Figure 3.2). Any connections not

5 1

2

43 7

6

Figure 3.2: K5 to K6: Initial Connections

able to be completed directly are placed on an edges-to-add list. The partial graphs

are then fed into the parallel processing system.

The parallel system begins by reading in all the partial graphs and edges-to-add

lists. The master processor packages each pair of one graph and its associated list into

a “job” packet and enqueues it on the master queue. It then distributes jobs to each of

the slaves via MPI. Edges are created one segment at a time, where an edge segment

is that portion of an edge that crosses a single region. All possible region passages,



26

within the bounds of the radical region restriction definition of a good drawing, are

tested. When an edge segment is laid down, it terminates on one of the edges of the

region it has crossed, creating a new crossing vertex. After creating the segment and

crossing vertex, the processor looks for the terminal connecting vertex, based on the

edges-to-add list, in the new region across the crossing segment. Only the specific

vertex being sought by that job will be connected to complete the edge. If that vertex

is not found in the boundary of the new region, the processor packages the new partial

graph into a job packet and places it on its own work queue. If a region has, say, three

legal region-bounding edges to cross, three new jobs will be created and enqueued,

each with one new edge segment and one new crossing vertex, as a result of following

each path. Thus as multiple segments are placed, the number of job packets in the

work queue grows. If the number exceeds a user-defined limit, excess packets are sent

back to the master for redistribution. When all job queues are empty and all edges

complete, the process terminates. The completed K6 graph with (a) and without (b)

crossing vertices labeled is shown in Figure 3.3.
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98
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5 1
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43
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Figure 3.3: K5 to K6: K6 Complete

A key feature of the process is a preliminary step that provides the bound for the

search. As described in Section 2.4.5, we want to take only those paths that are less

than or equal to the length of the shortest possible path across the regions to each

vertex. This number is determined by a scan of the graph before any edge segments

are laid down. Nonetheless, all possible graphs are then built up to the point at

which the minimum path length is exceeded. Building and then discarding all these

nonminimal partial graphs generates a tremendous amount of extra, unnecessary
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processing, enqueuing, dequeuing, and message passing. We reasoned that the process

could be expedited by not building any graphs at all, but rather by simply identifying

the shortest paths to each vertex. By saving all paths, we would have the added

advantage of identifying possibly important nonminimal paths for further study. We

could then selectively choose which graphs to build based on criteria we could change.

Eliminating all the laying down of edge segments also allows us to dispense with the

parallel system as it currently exists, along with its massive overhead.

3.2 Overview of Algorithm

The process of Star Analysis begins similarly to its predecessor. Representative graphs

from each isomorphic family of Kn−1 are taken by a preprocessing program and pre-

pared for evaluation by vertex numbering and inserting a new vertex, n, into each

region of each representative graph. As opposed to the previous approach, direct con-

nections are not made at this time, rather all edges are placed on the edges-to-add

list.

The second program in the Star Analysis module is run once for each feeder graph

by a calling script. In each iteration, Star Analysis receives a graph in the form of a

Region List (described below), the edges-to-add list, and the region number in which

the new vertex should be placed. It examines all possible paths to connect the new

vertex to each of the existing ones, placing the paths in a Path List. The completed

Path List with all paths is saved to a file. Paths are created independently of each

other and in no particular order.

A third program in the module generates the actual graphs. Again, a calling

script is employed, which can be varied to select minimal paths only, minimal-plus-

one paths, or any desired combination. Graphs resulting from each of the regional

vertex placements that meet the chosen criteria are created. The graphs are again

represented in the form of region lists, which are saved into files.

The next step is a program that takes the Region List representations of the

graphs and converts them into adjacency matrices. Adjacency matrices are required
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by the NAUTY program, which determines isomorphism among them and sorts them

into isomorphic families. The final step is to pluck a representative of each isomorphic

family from the sorted graphs and create files for the Kn to Kn+1 run.

3.3 Data Structures

3.3.1 Region List

The Region List class is adapted from that used previously by [21], modified to

function in the current environment. The Region List is constructed as a list of lists,

where each sublist represents a single region of a graph. Individual regions are defined

by the vertices along their boundaries. The Region List class provides a wealth of

functionality for dealing with a region list. It facilitates adding and deleting regions or

vertices within regions, examining regions for the presence of specific vertices, adding

edges to a graph and updating the adjoining regions, and searching for regions based

on a variety of parameters. An example of a starting K5 graph with its Region List

representation is shown in Figure 3.4

R1 : 1  2  7

R2 : 1  7  4

R3 : 7  2  5

R4 : 4  7  5

R5 : 1  4  3

R6 : 4  5  3

R7 : 5  2  3

R8 : 3  2  1 

5

1 2

4

3

7

6

R1 

R2 R3

R4
R5

R6

R7

R8

Region List

Figure 3.4: A K5 Graph with New Vertex 6 in Region 7 and its Associated Region
List
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3.3.2 Distance Tree

The program that analyzes the graphs for shortest paths is based on an object-oriented

structure we have entitled a Distance Tree. A Distance Tree class object is a full tree;

that is, each level of the tree is complete, and it is built breadth-first.

The tree is constructed of TreeNode class objects. A TreeNode object consists of

five data members: a pair of vertices, representing an edge segment of the graph; a

region number, representing the region that will be entered upon crossing the afore-

mentioned edge; a vertex number, representing an end vertex if one is found in the

region; a pointer that points to the parent node for back tracing when the path is

complete; and an array of pointers pointing to nodes at the next level of the tree.

The root of the tree represents the newly placed vertex; its TreeNode, at Level 0,

has edge values {0,0}, a region value representing the region it is in, an initial vertex

number of 0, a NULL parent pointer and a list-of-pointers pointer for creating the

downward branches of the tree, as yet unassigned (Refer to Figure 3.5). Once this

node is created, the program reads through the edges-to-add list to see if any edges

can be completed without crossings. Any such edges are completed by updating the

vertex value in the TreeNode to the number of the edge end vertex. The node is then

used as a template to create a PathNode to be added to the Path List, described

below. At the root level, the path to be added to the Path List as a sublist consists of

a single PathNode. Any completed edges are removed from the edges-to-add list, and

the program checks whether edges remain to be added. At the root level, there will

always be additional edges to add since no crossings have occurred yet, so we proceed

by adding the current region to a restricted region list and dynamically allocating

memory for TreeNodes at the next level. TreeNode pointers point to new branches

for each exit edge from the region, since all exits are legal from the root region.

At the next tree level, Level 1, a node is created for each new TreeNode pointer,

as seen in Figure 3.5. These are initialized with the edge that was crossed leaving

the starting region, the new region that was entered, an initial vertex number of 0,
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Figure 3.5: Snapshot of a K5 to K6 Distance Tree After Creating Level 1

a parent pointer pointing to the root node, and a list-of-pointers pointer as before.

Once again we check for edges that can be completed, moving from node to node at

the new level and scanning the edges-to-add list. One important difference, beginning

with this level and continuing with all others, is that edges are not removed from the

edges-to-add list until all nodes on the level have been visited. This is because all

shortest paths to the vertices must be obtained, and all paths on the same level will

have the same number of crossings, so no node further across on the level should be

prevented from making a connection to a terminal vertex just because an earlier one

already connected to it. If an edge can be completed, we create a path to attach to the

Path List consisting of two PathNodes linked together; one based on the TreeNode

at this level, and one based on its parent, obtained by following the parent pointer.

At the end of the level, when all nodes have been visited, the edges-to-add list is

updated. If the edges-to-add list is not empty, all the regions on the current level

are added to the restricted region list, and nodes are dynamically allocated at the

next level. New nodes are created for all edges that can be legally crossed from each

current region, which are the ones that lead to regions not found on the restricted

regions list.
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This process continues, with new levels and nodes being created, until the edges-

to-add list is empty, and all paths have been transferred to the Path List. A final point

is that the restricted region list is not updated until after each level is complete, since

it is both possible and legal for two edges to enter the same region at the same level

from different directions. A potential problem arises if these edges cross before exiting

the region, which will be dealt with when the graphs are constructed. Restricting

paths from entering regions that have been entered at a higher level of the tree does

not result in loss of any minimal paths, since all possible exits from that region have

already been explored at the higher level; repeating those paths further down the tree

only leads to longer paths with more crossings. Distance Tree region restriction can

thus be defined as follows:

Definition 16 Given a Distance Tree as described, a Distance Tree Region Re-

striction states that once one complete level of a Distance Tree is constructed, no

region on that level may be visited by any branch of the Distance Tree at any later

level.

which then leads us to a new theorem:

Theorem 6 In generating a Distance Tree for minimal Kn from minimal Kn−1 as

described, the use of Distance Tree Region Restriction does not eliminate any possible

minimal graphs from being generated.

The minimal crossing number for this graph is calculated starting with ν(Kn−1),

which is passed to the program as a parameter. Each time a path is completed through

the tree and traced back for transfer to the Path List, the number of levels is counted

and cumulatively added to the starting crossing number (for n - 1), since each level

represents one crossing. When all paths have been created, ν(Kn) is the cumulative

result. Note that with respect to crossing number, it doesn’t matter how many times

a vertex is found on a given level; each vertex only has a path to it counted once, and

after being removed from the edges-to-add list, will never be sought at a lower level.
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3.3.3 Path List

As mentioned, a Path List is composed of PathNodes, which are created based on

corresponding TreeNodes as the path is traced from leaf to root. The Path List is

actually a list of lists, where each individual sublist represents one path from the new

vertex to an original native vertex.

A PathNode class object consists of three data members: the edge crossed by

this segment of the path, the region crossed by this segment of the path, and the

terminal vertex, if any, found in this region. All PathNodes in a single path will have

a terminal vertex of 0 except the last one. When linked together into a sublist, this

provides the entire path for the edge from the new vertex n to an original vertex i.
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Figure 3.6: A K5 Graph with Completed Path List

When complete, the Path List contains all of the sublists for all of the paths from

n to i (Figure 3.6). Prior to saving them to a file, the sublists are sorted so that all

the paths to a single vertex, i, are listed together, and the sublists proceed from i = 1

to i = n− 1.
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3.3.4 Kn Graph

A Kn Graph is not a unique data structure, but simply an instance of a Region List.

It is created by starting with the input Kn−1 Region List and inserting a set of new

paths from the Path List, one for each original vertex. The appearance of the new

paths radiating out from the newly added vertex to various points of the graph in

a star configuration is what led to the Star Analysis moniker (Figure 3.7). Graphs
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Figure 3.7: K7 Path Overlays on Minimal K6 Demonstrating Star Configuration

can be built from all combinations of minimal paths or from some other subset of the

Path List.

Paths are added one by one in the reverse order from which they were created,

starting from the terminal vertex and proceeding back to the newly inserted vertex.

Edge segments are laid down sequentially in the order they occur in the Path List,

with the graph regions updated after each addition. Each update requires that the

crossed region be split into two new regions by the newly laid segment, and the graph

is amended to reflect this. Since these region updates create a partial graph that may

not match the Path List of paths that are added subsequently, two look-up tables are

maintained to associate old edges and old regions with new ones.

When one path from each of the n − 1 vertices to the nth has been added, the

resulting graph depicts Kn with crossing vertices still in place to keep it planar. For
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purposes of drawing the actual Kn Graph, the crossing vertex numbers are removed.

Completed graphs are saved to a file for further processing into isomorphic families.

We mentioned earlier one potential problem that can arise when paths are laid

down totally independent of one another. That is the situation where two independent

edges enter a region and make an illegal crossing midregion before exiting in different

directions (Figure 3.8).

1 2

3

7 R1

R2
R3

R4

R5
R6

8

9

45

6

conflict

Figure 3.8: Demonstration of a Conflict Between Two Independently Constructed
Paths

The region and edge look-up tables prevent these graphs from being created, as

seen in the following example. When edge {4, 7} is created (Figure 3.9, solid line),

the graph’s Region List is updated to reflect new regions R7, R8, and R9. The region

look-up table adds R7 as a subset of R2, R8 as a subset of R4 and R9 as a subset of

R6. Similarly, the edge look-up table adds the entries shown to keep track of the new

legal subsets of edges that were crossed. When the program attempts to lay down

edge {5, 7} by the second path (Figure 3.9, dashed line), it encounters edge {12,11},

which is not a legal subset of the expected edge in its PathNode, {3,8}. Therefore,
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the graph is thrown out as an illegal graph. The other alternative path from 5 to 7

(Figure 3.9, dash-dot line), is legal because it finds edge {11,6} as a subset of {8,6}

and edge {1,10} as a subset of {1,8}. For the purpose of defining an edge, the order in

which the vertices are specified is not critical. In this example, the legal edge passes

through regions whose names designations have not changed, so the region look-up

table is not needed.

1 2

3

7 R1

R2
R3

R4

R5
R6

8

9

45

6

Look-up Tables

Edge         Legal Alternatives

{1,8} {1,10}, {10,8}

{8,6} {8,11}, {11,6}

{9,3} {9,12}, {12,3}

Region      Legal Alternatives

R2                   R7

R4                   R8

R6                   R9

(after first new path laid down)
10

11

12

R7

R8

R9

Figure 3.9: Resolution of Path Conflict

3.4 Example: K6 to K7

We will now step through the process of building a K7 graph from a minimal K6 to

illustrate the entire algorithm. We begin with an instance of a minimal K6 graph

with a new vertex 7 inserted into region R9 (Figure 3.10). This graph, encoded as a

Region List, is passed to the Star Analysis program, along with an edges-to-add list,

and the identity of the region where the new vertex should be placed, R9. The root

TreeNode, Level 0, is created as shown in Figure 3.10, with values of {0,0} for the

edge variable, since no edge was crossed; 9 for the region; 0 for the vertex initially;

and the pointers.

The first step is to connect any vertices on the edges-to-add list that exist in the



36

R1 R6
R5

R14 R4
R7

R3

R11

R12R2

R8 R13
R9

4 2

3

8

10 9

1 5

6

7

R10

Edges to Add

{7,1}

{7,2}

{7,3}

{7,4}

{7,5}

{7,6}

Restricted Regions

Root

Edge = {0,0}

Region = 9

Vertex num = 0

Parent ptr Ø

List of pointers ptr

Level 0

Ø

Path List

Figure 3.10: Starting to Grow K7 From K6, With Vertex 7 Placed and Edges-to-Add
List

current region. Scanning the edges-to-add list, we find {7,3}. The vertex value in

the TreeNode is updated to 3. A PathNode is created and added to the Path List, as

a path of one step, containing the following values (copied from the TreeNode): {0,

0} for edge, 9 for region, and 3 for vertex (See Figure 3.11). The TreeNode vertex

value is returned to 0, and we resume scanning the edges-to-add list, where we find

{7,6}. The process of creating a PathNode is repeated, and it is added to the PathList

(Figure 3.11). No further vertices are found on the edges-to-add list, so we remove

edges {7,3} and {7,6}, and then allocate memory for TreeNodes at the next level,

Level 1 (Figure 3.12). We are done with this level, so we place R9 on the restricted

region list.

Region R9 has three edges on its boundary. Since there are no regions other

than R9 on the restricted region list, we create nodes that cross each of these edges.

The nodes are seen on Level 1 of Figure 3.12, with data values assigned. We inspect

the remaining edges-to-add for any that can be added directly in any of the three

regions. We find vertex 2 in R12 first, and update the vertex value to 2 in our

TreeNode. We create a new path on the Path List, consisting of two PathNodes
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Path List

Edge = {0,0}

Region = 9

Vertex = 6

Edge = {0,0}

Region = 9

Vertex = 3

Figure 3.11: Path List at the End of Level 0

Edge = {6,3}

Region = 13

Vertex num = 0

Parent ptr

List of pointers ptr Ø

Edge = {6,9}

Region = 11

Vertex num = 5

Parent ptr

List of pointers ptr Ø

Edge = {9,3}

Region = 12

Vertex num = 2

Parent ptr

List of pointers ptr Ø

Edge = {0,0}

Region = 9

Vertex num = 0

Parent ptr Ø

List of pointers ptr

Root

Level 1

Level 0

R1 R6
R5

R14 R4
R7

R3

R11

R12R2

R8 R13
R9

4 2

3

8

10 9

1 5

6

7

R10

Edges to Add

{7,1}

{7,2}

{7,4}

{7,5}

Restricted Regions

R9

Figure 3.12: Continuing to Grow K7 From K6

as shown in Figure 3.13 by tracing backwards using the parent pointer. Moving on

across the level, we find vertex 5 in R11. Another path is created (Figure 3.13). No

further paths can be completed on this level, so we remove {7,5} and {7,2} from our

edges-to-add list and add regions R11, R12, and R13 to the restricted regions list.

The next level of nodes, Level 2, is created, shown in Figure 3.14. For clarity, only

TreeNodes that result in vertex connections are shown. Since all remaining vertices

are connected on this level, none of the TreeNodes not shown here lead on further
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Path List

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {9,3}

Region = 12

Vertex = 2

Edge = {0,0}

Region = 9

Vertex = 6

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {0,0}

Region = 9

Vertex = 3

Edge = {6,9}

Region = 11

Vertex = 5

Figure 3.13: Path List at the End of Level 1

down the tree.

Edge = {6,3}

Region = 13

Vertex num = 0

Parent ptr

List of pointers ptr

Edge = {6,9}

Region = 11

Vertex num = 5

Parent ptr

List of pointers ptr

Edge = {9,3}

Region = 12

Vertex num = 2

Parent ptr

List of pointers ptr

Edge = {0,0}

Region = 9

Vertex num = 0

Parent ptr Ø

List of pointers ptr

Root
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R1 R6
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Region = 3

Vertex num = 4

Parent ptr

List of pointers ptr Ø

Edge = {6,10}

Region = 8

Vertex num = 1

Parent ptr

List of pointers ptr Ø

Edge = {10,3}

Region = 2

Vertex num = 4

Parent ptr

List of pointers ptr Ø

Edge = {5,6}

Region = 10

Vertex num = 1

Parent ptr

List of pointers ptr Ø

Level 2

Figure 3.14: Completed Distance Tree for Vertex Placement in Region 9

Scanning across the row, we see that vertices 1 and 4 are both encountered on

this level via two different paths each. PathNodes are created and the paths are

traced back for all four of these terminations. At the end of the level, edges {7,1}
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and {7,4} are removed from the edges-to-add list, which is now empty. The final step

is to sort the Path List so that the vertices are in order, shown in Figure 3.15, and

save the Path List to a file.

Edge = {6,3}

Region = 13

Vertex = 0

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {6,10}

Region = 8

Vertex = 1

Edge = {6,9}

Region = 11

Vertex = 0

Edge = {5,6}

Region = 10

Vertex = 1

Edge = {3,10}

Region = 2

Vertex = 4

Path List

Edge = {3,2}

Region = 3

Vertex = 4

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {9,3}

Region = 12

Vertex = 2

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {0,0}

Region = 9

Vertex = 6

Edge = {0,0}

Region = 9

Vertex = 0

Edge = {0,0}

Region = 9

Vertex = 3

Edge = {9,3}

Region = 12

Vertex = 0

Edge = {6,9}

Region = 11

Vertex = 5

Edge = {6,3}

Region = 13

Vertex = 0

Figure 3.15: Completed Path List for New Vertex Placement in Region 9

After all the input graphs have been evaluated, one for each region assignment

of the new vertex from each isofamily, and all the Path Lists have been saved, we can

begin to build graphs. Let’s assume we have reopened the Path List generated above,

along with the starting K6 graph from Figure 3.10. Our first graph will be created

by selecting one edge for each terminating vertex, in this case the first, third, fourth,

fifth, seventh and eighth paths. The program is currently written to cycle through all

combinations of shortest paths to create a graph for each combination, but for this

example, one will suffice. Each edge back to vertex 7 is created, segment by segment.

After each addition, the Region List representing the Graph is updated to reflect

the new region boundaries, and the look-up tables are updated to reflect the region

and edge divisions. When all edges have been added, the Region List/Graph looks

like Figure 3.16. The crossing vertices are left numbered to keep the graph planar

and provide region boundaries. It is again saved, to be sent onwards to NAUTY for
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isomorphic family assignment.
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Figure 3.16: Completed K7 Graph With Crossing Vertices Labeled
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Chapter 4

Results

4.1 Complete Graphs

The Star Analysis process represents a total departure from the exhaustive search

method. Beginning with Harris and Harris and progressing up to this point, each

improvement built upon the work that had gone before without changing the un-

derlying algorithm, apart from optimizing the search space. With Star Analysis, we

started from the ground up, so our first concern was assuring that the process worked

correctly. Therefore, we began our Star Analysis test runs on the complete Kn graphs

generated previously by the processes described in Chapter 2. Recall that graphs up

to n = 9 were generated by the parallel processing method with basic region restric-

tion. K10 graphs were generated with radical region restriction, the most optimized

system prior to Star Analysis. By repeating the process using the Star Analysis mod-

ule, we would be able to confirm that the same number of total graphs, regions per

graph, and isomorphic families were being generated. We also of course confirmed

that the same crossing numbers were obtained (Table 4.1). “Region Restriction” in

the table refers to either basic or radical, depending on data availability.

All values in Table 4.1 are exact, except for the value for K11 total graphs, which

was estimated as follows. All possible legal graphs were built for the first ten isofam-

ilies, then the number of resulting graphs was compared with the number of possible

path combinations from which they were created. Recall that not all path combi-

nations lead to legal graphs, and the number of illegal paths goes up rapidly as the



42

n 5 6 7 8 9 10 11
Total Graphs

Region Restriction 12 4 76 20 4,590 56,618 7.1B (est)
Star 12 4 76 20 4,590 56,658 *

Iso Families
Region Restriction 1 1 5 3 1,453 5,679 *

Star 1 1 5 3 1,453 5,679 *
Number of Regions
Region Restriction 8 14 25 40 65 97 *

Star 8 14 25 40 65 97 146
Crossing Number
Region Restriction 1 3 9 18 36 60 *

Star 1 3 9 18 36 60 100

Table 4.1: Comparison of Results with Region Restriction and Star Analysis for Kn

(* = did not complete running)

graph size increases. At the K11 level, approximately 72% of path combinations are

legal. The total number of path combinations for all isofamilies was then determined.

The total number of graphs was estimated to be the same percentage (72%) of the

total path combinations as was found for the first ten isofamilies.

A minor discrepency occurred at K10; the same number of isomorphic families

and regions were found, but there was a slightly greater number of total graphs

generated with Star Analysis than with Parallel/Region Restriction. This discrepency

remains unresolved, but we are reviewing the graphs generated by Star Analysis to

see where the extra graphs occur. This issue does not affect the progression from K10

to K11, since all isomorphic families are available to provide feeder graphs, but should

nonetheless be resolved.

Table 4.2 shows the timing results of these test runs as compared with the results

from parallel processing/radical region restricton from [5]. Time approximations for

Star Analysis are based on the processes of Path List generation, crossing number

determination, and building all possible minimal grafts, with the exception of K11,

where graph building is not included. Radical Region Restriction times do not include

running through isomorphic testing, so that portion of the time is excluded from Star
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Analysis as well. Also bear in mind that Star Analysis is running on a single processor,

whereas Radical Region Restriction is running in parallel on multiple processors.

n 8 9 10 11
Radical 5 min 8 min 1 week *

Star < 1 sec 27 sec 108 min 62 hr

Table 4.2: Runtimes to Generate Minimal Kn

(* = did not complete running)

For the larger values of n, NAUTY became the rate-limiting step in the Star

Analysis process. We were able to generate the Path Lists and obtain the value for

minimal crossing number relatively quickly. Table 4.3 shows the approximate times for

all the processes in Table 4.2 plus isomorphic testing by NAUTY . NAUTY is reputed

to be the fastest iso-testing program available, but improvements in processing time

here would be most welcome.

n 8 9 10 11
Runtime 3 sec 12 min 62 hr pending

Table 4.3: Star Analysis Runtimes With Isomorphic Testing By NAUTY

We discovered one interesting and, to our knowledge, not previously reported

phenomenon as we progressed from n = 5 to n = 11. In all cases when a Kn−odd

graph was grown from the previous K(n−1)−even, a minimal graph could be obtained

with new vertex placement in every region. This was not the case for any instance of

K(n−1)−odd to Kn−even. In other words, there were one or more regions in all K(n−1)−odd

graphs that did not grow any minimal Kn−even graphs when the new vertex n was

placed in them. We don’t have an explanation for this phenomenon, but feel it merits

further investigation.

Finally, we present the results from a test of the crossing number of a K11 graph.

The crossing, ν(K11), of 100 verifies Guy’s Conjecture for n = 11. A single instance

of a minimal K11 graph is shown in Figure 4.1.
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11

Figure 4.1: One Instance of a Minimal K11 Graph [J. Fredrickson [5]]

4.2 Complete Bipartite Graphs

One of our objectives in building the Star Analysis module was to create a system

that could be generally applied to multiple graph families. From the perspective of

Star Analysis, it is merely creating paths based on the Path List delivered to it. It

neither knows nor cares whether those paths are generating a complete graph, a less-

than-complete graph, or a graph of an entirely different type. In order to demonstrate

proof of concept, our second series of tests were run to grow complete bipartite graphs

and determine their crossing numbers.

One adjustment that was required to switch from complete graphs to complete

bipartite graphs was that the program-calling scripts had to be revised in order to

create, for example, edges-to-add lists that were specific to the new format. The

process was run first for a family of bipartite graphs, K3,3 through K3,10. The starting

K3,2 graph was generated by hand and the starting input file was created manually.

Thereafter, the scripts took over and ran each family member in succession, progress-
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ing from n = 4 to n = 10. No modification of the actual Star Analysis program was

required. In order to minimize running time for this trial, we did not generate all

isomorphic families above K8.

The results of the first test are shown in Table 4.4. All crossing numbers match

those previously reported, as well as confirming Zarankiewicz’ conjecture.

n 3 4 5 6 7 8 9 10
Crossing Number 1 2 4 6 9 12 16 20

Table 4.4: Crossing Numbers Found by Star Analysis for K3,n

Interestingly, the phenomenon described for Kn−even growing to Kn+1−odd graphs,

in which minimal graphs were found with new vertex placement in every region, was

also seen growing bipartite graphs. In the bipartite case, the situation was a bit more

complicated. Given Km,n, minimal graphs could be created when progressing from

n-odd to n-even when m was held constant, irrespective of whether m was odd or

even. In other words, for a family of graphs such as the K3,n family seen in Table 4.4,

every other generation, specifically when n was odd, consisted of graphs in which new

vertex placement in each region resulted in minimal graphs in the next generation.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

We have presented a new approach to the generation of minimal graphs based on

analysis of independent paths between vertices. Our process grows minimal Kn graphs

from minimal Kn−1 with a process we have entitled Star Analysis. Using minimal Kn−1

as a template, independent shortest paths are created from newly added vertex n to

each of the original n− 1 vertices. Uncoupling the process of shortest path creation

from graph drawing efficiently determines the minimal crossing number of the graph

without the overhead of lengthy procedures to lay down edge segments. Graphs to be

drawn can then be selected from the resulting Path List, and only desired graphs are

drawn, as opposed to previous methods where all possible graphs were drawn until

they exceeded the minimum. The result of eliminating the unnecessary partial graph

drawing is a substantial reduction in processing time. All other optimizations with

respect to restriction of regions through which paths are drawn are maintained in the

current system and contribute to the improved results.

Prior to this work, the largest confirmed minimal crossing number was for com-

plete graphs of order 10. We have confirmed that the minimal crossing number for

K11 is 100, which satisfies Guy’s conjecture. We are eager to pursue graphs of higher

order to see if the conjecture holds for n > 11.

We have also shown that our Star Analysis process can be applied to other

families of graphs. Specifically, we have used it to generate minimal bipartite graphs.
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As in the complete graph family, these graphs are grown from minimal Km,n−1 to

minimal Km,n. We have been able to confirm Zarankiewicz’ conjecture for graphs as

large as K7,5 to date.

5.2 Future Work

We have come a long way since the original algorithm for finding the minimal crossing

number of a complete graph was devised [11], but much work remains. Despite all

optimizations, creating minimal graphs of large n remains a formidable challenge.

Further optimization of the process is clearly required to progress on into uncharted

territory.

The first obvious optimization is to return to parallel processing. We believe that

with the current method, we can eliminate the queuing system and all its message

passing overhead. The reason for this is that the Star Analysis module is well suited

to static partitioning. Previous search methods either statically divide the search

space among processors, resulting in unbalanced search trees and their corresponding

unbalanced processor loads, or split creation of individual graphs among processors,

resulting in huge overhead. Star Analysis allows Path Lists to be created for individual

graphs independent of each other. Each processor can be assigned a single graph from

one isomorphic family to process, and the processing time should be roughly the same.

Using multiple processors should improve processing time sufficiently to progress to

higher order graphs, n > 11.

A second optimization is suggested by the finding we described in Chapter 4 that

when growing minimal Kn for odd values of n, minimal graphs can be created with

new vertex placement in every region of Kn−1, whereas that is not the case creating

minimal n even graphs. Further analysis of this phenomenon, if it persists with

increasing n, might reveal a way to eliminate regions from consideration in placement

of the new vertex, further reducing the search space. It is also possible that other

features of graph substructure might lend themselves to similar optimizations.

Another avenue of exploration suggested by the above involves the case of graphs
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that are locally but not globally minimal, in other words, graphs that are minimal

based upon the chosen region for vertex placement, but that do not generate the global

minimal crossing number. Further analysis of these graphs could provide insight

into the substructural arrangements of minimal versus non-minimal graphs, perhaps

providing further opportunities for search space reduction.

Finally, the question remains whether it is possible to generate minimal Kn from

non-minimal Kn−1. All the minimal Kn graphs created by Star Analysis are grown

from minimal Kn−1. It is theoretically possible that some minimal graphs are therefore

not being generated by our system. One approach to this problem is to take all the

minimal-plus-one Kn−1 paths created by Star Analysis, use them to generate graphs,

and then create a Kn Path List. We can then discover if any of the paths so generated

achieve the previously determined minimal crossing number. It is our belief that no

such graphs will be found, but this remains to be proven.
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