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Abstract

Wildfire spread model output is used to make important and oftentimes expen-

sive decisions. This thesis presents “VFire - Virtual Fire in Realistic Environment”

an application and more importantly a framework for visualizing wildfire simulations

in immersive environments. VFire will allow its users to visualize wildfires from per-

spectives and positions, which are normally too dangerous. Recent developments in

graphics and virtual reality technology allow us to achieve this goal. It has recently

become possible to visualize wildfire simulations in more realistic and immersive ways

than has ever been achieved. To this end, VFire is an immersive visualization appli-

cation that aids in wildfire training and data analysis endeavors and also a framework

with which future wildfire applications can be developed.
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Chapter 1

Introduction

Wildfires are very unpredictable. It is difficult to determine exactly where and when

a wildfire will happen next, and it is even more difficult to determine how a wildfire

will spread with absolute precision. It is the unpredictability of wildfires that make

them so dangerous. It is this reason that so much time and money is spent researching

wildfire behavior. A large focus of this research effort is spent on the development

of computational models of wildfire. However, visualization of these models’ out-

puts has been quite limited. Even less research has been undertaken on immersive

visualization. There are many advantages to modeling the spread of wildfires.

Spread models can be used to develop plans to fight fire, initiate more predictable

prescribed burning and also predict the risk involved if a wildfire occurred in a certain

area. Determining how much risk there is to an area’s inhabitants and their property

can be used to spend money appropriately and devise a proactive plan for evacuation

and fire fighting. Kyle Canyon in Southern Nevada is good example of a high danger

wildfire zone. In the event of a wildfire, it would be very difficult, if not impossible,

to evacuate its citizens and would most likely end in a high fatality rate. Many

management decisions rely on the results of wildfire spread model simulations. It is

important that these models, to some degree, accurately predict the spread.

Validating these models is difficult without the wildfire actually happening and

comparing the results. Visualization of the wildfire model output in an immersive

environment can be used to validate its output against environmental factors such

as terrain slope, fuel moisture, wind vectors and weather conditions. It can also be
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used to compare model outputs against video footage or a visual recreation of the

scene from collected data. This is only a single but important reason for visualizing

wildfire model output. Visualization of these model outputs can be used to better

train firefighters and fire management and aid in burning more predictable prescribed

fires.

Burning a wildfire for the purpose of training is dangerous and costly. Virtual

reality technology makes it possible to recreate wildfire scenarios with more realistic

results then previously possible. Recreating a wildfire or using model output can be

used to train fire managers and firefighters and aid in the development of plans and

precautions. With the development of a real-time wildfire simulation, it would be

possible to run through several virtual scenarios very quickly. This could be used to

better determine what precautions to take while burning a prescribed fire.

The remainder of this thesis is structured as follows: Chapter 2 is a discussion of

material relevant to understanding the wildfire and immersive environments, Chap-

ter 3 describes work related to VFire, Chapter 4 presents an overview of the VFire

framework, applications, purpose and goals and Chapter 5 covers the requirements

specification and software modeling design. The implementation of a prototype ap-

plication is covered in Chapter 6, and conclusions and future work are presented in

Chapter 7.
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Chapter 2

Background

2.1 FARSITE and Wildfire

FARSITE is a well-established fire behavior and growth simulator developed by the

USDA Forest Service. It is used by fire analysts from most federal and state fire

management agencies [50]. Its importance and widespread use among fire profession-

als was a critical factor for choosing to visualize its simulation output. FARSITE

incorporates existing models of surface fire, crown fire, point-source fire acceleration,

spotting and fuel moisture to calculate the spread of fire on a landscape [13]. These

various models are used to propagate vectors of fire parameter polygons. Intervals

of these expanding polygons are interpolated to generate raster data that describe

fire behavior. Table 2.1 presents the file extensions and a descriptions of FARSITE

outputs used for visualization. The raster data outputs are stored in ESRI ascii files,

of which six of the outputs are of importance to visually constructing the wildfire

scenario. The FARSITE simulator uses data that describes the topography, weather

and fuel as inputs.

The behavior of wildfire is controlled by a variety of factors of which topography,

weather and fuel are of the greatest influence. A critical factor to understanding

wildfire growth is the shape a wildfire burns under uniform conditions. The FARSITE

model uses an ellipse as the basis for the shape of wildfire growth, and factors such

as wind and terrain slope cause the variations. The vector based approach used in

the FARSITE model overcomes problems associated with cellular and fractal based
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Output Type Ext. Units Description

Time of Arrival .toa hours The time the wildfire
reaches a location (cell) on
the landscape.

Fireline Intensity .fli kilowatt per me-
ter

The amount of heat pro-
duced by the fire front di-
rectly related to heat trans-
fer.

Flamelength .flm meter Length of flames when fire
is at full rate of spread.

Rate of Spread .ros meters per min. The fastest, constant speed
reached by the fire front.

Spread Direction .sdr 0-359 degrees az. The direction of fire spread.
Crown-No Crown .cfr 1=surface,

2=passive,
3=active

States whether there was a
crown fire at a given cell and
the type of crown fire.

Table 2.1: Visualizable FARSITE outputs

methods. A description and comparison of other wildfire growth shapes and methods

can be found in [13]. Los Alamos has applied the FARSITE model in a real-time

simulation of wildfire [56], which has many applications for training and data analysis

purposes.

2.2 Remotely Sensed Data and Geospatial infor-

mation

Reconstructing real world landscapes and wildfire scenarios requires the use of re-

motely sensed data and geographic information systems (GIS). Several different types

of information are useful for accruately visualizing a realistic landscape not only in-

cluding digital elevation models (DEMs), fuel load data and satellite images, but also

physical features of the landscape such as roads and buildings. Data (e.g. elevation

and images) are usually saved in raster data files such as ESRI Ascii(Grid), GeoTiff

or Binary Terrain formats. The geospatial information available in the ESRI Grid

format is shown in Table 2.2. Vector information can be used to describe features
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such as roads and other boundaries in shape file formats. Geospatial information

is often included in these data formats and can be used to place the information in

physical space on the Earth. Consideration of geospatial information associated with

remotely sensed data is crucial to its accurate visualzation.

Header Entry Description

NCOLS The number of columns.
NROWS The number of rows.
XLLCORNER The position western edge

of the data.
YLLCORNER The position southern edge

of the data.
CELLSIZE The resolution of the cells of

the data.
NODATA VALUE Denotes that there is data

missing at a cell.

Table 2.2: The ESRI Ascii(Grid) format.

Before this data can be visualized, the coordinate systems and method of pro-

jection must be considered. Coordinate systems associated with the Earth generally

use latitude, longitude and possibly elevation; however, coordinates may correspond

to different points on the Earth’s surface depending on the model used. The simplest

model would assume the earth is a perfect sphere, but this is generally not adequate.

More complicated models use reference datums such as the World Geodetic System

of 1984 (WGS84) which have more accurate measurements of the Earth. Projection

is the process of converting data measured on the Earth, a three-dimentional surface,

and mapping it to a two-dimentional surface such as a map or raster data file. Dif-

ferent types of projection methods are suitable for different uses and different types

of data. To visualize DEM data the method of projection is necessary to reverse this

process so that it can be visualized in three dimensions.

The majority of the data for this project is described using raster data formats.

The Geospatial Data Abstraction Library (GDAL) [14] is a software package used

to open and process these formats. This software package has tools for resizing and
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cropping raster data, and also can be used to convert the data between different co-

ordinate systems and projections. This is especially important for terrain algorithms

and graphics hardware that put size constraints on the sizes of the elevation data and

textures.

2.3 Virtual Reality

Virtual Reality (VR) as it relates to this project is the use of hardware and software

technologies to allow users to view and interact with computer-simulated environ-

ments. The goal of VR is to mentally immerse a user within these environments

through different types of sensory feedback. Sight (visual) is the type of sensory

feedback most important to this project. Other types of sensory feedback are aural

(sound), touch (haptic) and smell (olfactory). The broad definition of VR includes

the visualization of a 3D world on a desktop computer because this can and often

creates a sense of immersion. However, the specific definition used in this project

involves visualization on stereoscopic displays and interaction captured by tracking

systems, because these technologies offer many advantages over desktop systems. The

source of these advantages is through the support of depth cues not achievable on

desktop systems. This a very brief overview of a very broad topic, more information

about VR, depth cues, immersive displays and input devices can be found in [43].

2.3.1 Depth Cues

Depth cues are the important information a viewer uses to discern distances between

objects in a scene. The more depth cues a system can support, the more potential for

immersion is possible. Monoscopic, stereoscopic and motion depth cues are impor-

tant to VR systems. Monoscopic depth cues are achievable on both immersive and

desktops systems. These can be seen in a single static image of a scene, and can be

drawn from image features such as size, shading and occlusions. Stereoscopic image

depth cues are the differences determined between the images obtained by each eye

(left and right images). Motion depth cues can be seen when a viewer changes the
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relative position between them and an object. Figure 2.1 gives an example of the

use of motion depth cues in an immersive system through the use of a head tracking

system that updates the system to the position of the viewer’s head. The viewer can

gauge the distance of an object based on how fast an object passes by when they

change perspective. Closer objects appear to move faster than farther ones. A 3D

desktop environment is only able to provide monoscopic depth cues, but an immer-

sive system with stereoscopic displays and head tracking can simulate all depth cues

discussed. The addition of these depth cues allows for an experience closer to reality,

making such an environment suitable for training applications. Improved data analy-

sis and model validation also becomes possible because of the addition of extra depth

information allowing for better accuracy and throughput.

Figure 2.1: User moves their head to view other side of object [43].

2.3.2 Stereoscopic Displays

Rendering and displaying the viewpoint of each eye on a stereoscopic display allows

the viewer to view stereoscopic depth cues. The two main types of displays for

stereoscopic visualization includes head mounted displays (HMD) (Figure 2.2) and

projected displays. Head mounted displays use two small, lightweight screens attached

to the users head occluding the outside world. The occlusion of the outside world can
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Figure 2.2: A Head Mounted Display (HMD) [43]
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result in a diminished sense of immersion because the viewers cannot view themselves

within the world. HMDs also suffer from latency issues where the rendering is not

able to remain responsive as the user changes the orientation of their head. Multi-

screen projection-based systems (Figure 2.3) solve these problems, but they are much

more expensive.

Figure 2.3: A multi-screen projection system.

Achieving stereo on projection-based displays can be done in several ways. Stereo

can be achieved passively through the use of two different projectors, polarized filters

and viewing glasses. On passive display systems, the left and right eye perspective

are rendered on separate projectors with each having different polarized filters corre-

sponding to the left and right eyes of the polarized viewing glasses. Another method,

called active stereo, uses a single high-speed projector and shutter viewing glasses.

The left and the right eye perspectives are delivered using temporal multiplexing,

that is, each eye is rendered separately at different times, and the shutter glasses only

allow the eye to view the scene.

Other crucial factors related to immersiveness are field of view and field of regard.

Field of view (FOV) is the angular width that a display can cover. HMDs in general

have less FOV than multi-screen projected displays with three screens or more. Pro-
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jected displays can cover the overlap between the FOV of each eye resulting in better

stereo. Field of regard (FOR) is the amount of the surrounding scene a system can

display around the viewer. HMDs are capable of displaying 100% of a viewer’s FOR,

and more expensive 6-wall projection-based systems can also display 100% of viewer

FOR.

2.3.3 Head Tracking and Input

Different types of display systems provide the ability to show stereoscopic depth cues

which is important for objects closer to the user. Tracking the viewer’s head position

and more importantly orientation, provide the viewer with the motion-based depth

cues. Orientation is particularly important for HMDs because this controls what is

being rendered on the displays. Orientation is less important for a projection-based

system because the system is constantly displayed from all directions. Position is used

to render the scene from the viewer’s point of view allowing them to inspect objects

by simply changing the position of their head exactly as they would in a real world

environment while wearing a head tracking device like the one shown in Figure 2.4a.

The wand shown in Figure 2.4b is a common type of input device with virtual reality

systems.

a. b.

Figure 2.4: Intersense head tracking (a) and wand (b) input system. [21].

2.3.4 VR Hardware: Render and Update Loops

Multi-screen display systems require specialized hardware unlike HMDs, which can

use hardware similar to desktop PCs. Multi-screen display systems require multi-
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ple graphics pipes to keep real-time frame rates. The goal is to keep performance

independent of the number of screens a system contains. A 6-wall system should

have comparable performance of a 4-wall system if driven by similar hardware. Two

configurations exist for achieving this goal. Shared memory systems with multiple

graphics pipes and more recently cluster-based systems.

Shared memory systems support a single large memory image across all proces-

sors. Figure 2.5 shows a typical layout of a shared memory visualization system. On

these systems a process is used to render each screen independently and one to many

processes are used to update the simulation. Rendering each screen in parallel offers

performance, which is independent of the number of screens in the system. Perfor-

mance is further increased by allowing the simulation and rendering to run in parallel.

The idea is to run as much of the update and rendering computation in parallel as

possible, but because they are accessing the same data, the update writing and the

rendering reading must be locked.

Cluster-based solutions run the simulation and rendering code on a node for each

screen in parallel, and a head node keeps the simulations in sync as shown in Fig-

ure 2.6. It is also possible on these systems to run the rendering and simulation code

in parallel for increased performance if multiple processors are available. The shared

memory solution has the disadvantage of requiring expensive specialized hardware to

support multiple graphics cards. High performance available commodity hardware

can be used in cluster-based systems with a fast interconnect.

2.3.5 Virtual Reality Toolkits

VR systems contain specialized input and tracking hardware. They also contain spe-

cialized screen and computational hardware configurations making writing software

for these systems a monumental task. The hardware configurations for these sys-

tems can vary drastically between different organizations requiring software to be

changed for each of these systems. VR toolkits attempt to abstract these differences

so that applications can be written once and run on all of these systems. The large
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Figure 2.5: The architecture of a shared memory visualization system.
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Figure 2.6: The architecture of a cluster-based visualization system.
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difference between VR toolkits is the type of input hardware and computational con-

figurations they support. William R. Sherman’s FreeVR [42] supports a variety of

input and tracking systems such as common desktop game pads all the way to high

end tracking systems such as InterSenses IS-900TM, but only supports shared memory

systems. FreeVR is a free and open source alternative to VRCO’s CAVELib [52], one

of the original VR toolkits. VRUI [25] and VR Juggler [20] supports similar tracking

hardware and also support cluster-based systems.

2.4 Scene graphs

A scene graph is a high level data structure abstraction around lower level graphics

libraries for the purpose of organizing and optimizing rendering. The definition of

scene graph has also become ubiquitous with describing software packages that use

the data structure. These software packages often offer more than just optimized

rendering, but also include support for loading scene content. Scene graphs offer

many benefits over traditional low level graphics libraries such as rapid development

and scene optimization.

Scene graphs use many optimizations to speed up rendering. Many of these offer

different types of culling which quickly determine visibility of geometry and reduce

the amount of triangles which need to be rendered. Frustum culling removes geometry

outside of the viewers point of view. Occlusion culling removes geometry which is not

visible because it is behind other geometry in the scene. Small feature culling removes

geometry smaller than a particular amount of screen space in pixels. Scene graphs also

reduce the amount of expensive state changes such as changing shaders, textures and

other rendering states. They also often implement lazy state updating, which only

updates states that are not already set. Optimization traversals run at initialization

time can optimize a scene graph data structure and the geometry contained within.

These optimizations include organizing the scene graph into an octtree for optimized

frustum culling or organizing triangle based geometry into optimized triangle strips.

High level abstractions around often tedious tasks such as texturing and content
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loading make scene graphs excellent tools for rapid development of applications. Even

when it is necessary to write code in the lower level graphics libraries, scene graphs

provide tools which make this easier and often results in faster code.

Although there are many scene graphs, few are open source and suited to the

development of virtual reality applications. Support for multi-pipe rendering is a

fundamental feature necessary for rendering on a shared memory system. This sup-

port includes management of OpenGL objects (Texture object, Vertex buffer object,

etc.) and a data protection mechanism. Data protection is often domain specific and

a generalized approach cannot achieve equivalent performance. Both OpenSG [33]

and OpenSceneGraph [32] are two scene graphs that meet this criteria. OpenSG

implements a system which allows the scene graph to be transparently shared across

multiple machines in a cluster or several processes on a single machine (details about

the implementation of this system can be found in [37] and [40]). OpenSceneGraph

does not have the ability to share the scene graph data structure, and must be pro-

tected using an external locking mechanism or the rendering and simulation update

must be done sequentially. Both of these scene graphs share similar structure and

function to SGI’s Performer [38].

2.5 Fire and Smoke Visualization

Creating realistic, real-time fire and smoke is a very difficult problem. Massive

amounts of research hours have been spent realistically rendering these phenomenon.

Although there are several different methods, very few lend themselves to real-time

rendering, and even fewer are computationally efficient enough for the scale required

for rendering entire wildfires. In general, these algorithms fall into two categories:

volumetric and particle based systems.

Volumetric based fire and smoke use fast fluid systems and properties of combus-

tion to change the color and opacity of voxels. These methods have proved to render

the most physically accurate and realistic results; however, volumetric methods are

computationally expensive. Current research has shown that volumetric rendering
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can be used to render fire and smoke efficiently enough for real-time, and its per-

formance scalability looks promising [15]. Volumetric methods also have the added

advantage of being implicitly efficient when calculating collisions with objects within

the environment. They do not have the clipping artifacts associated with planar

billboards collision with three-dimensional objects.

Particle based systems use particles to represent localized behavior within a fire.

Reeves is the first fundamental work with representing natural phenomenon using

particle systems [36]. An example of fire behavior visualized with a large numbers of

particles can be seen in Figure 2.7. Representing localized fire behavior with smaller

single point particles is often inefficient and it is difficult to accurately represent fire

and smoke in real-time as in Figure 2.8.

A better and often more accurate alternative is to represent this localized behav-

ior with animated sprites [58]. These sprites can be produced via offline, non-real-

time rendering using an accurate, physically based method. Sprites are then mapped

on to viewer faced two-dimensional billboards. Using animated sprites allows us to

represent fire accurately using a small number of particles. It also becomes much

more feasible to control these sections of fire behavior using a realistic, physically

based model in real-time. A real-time fire simulation then could control behavior

through varying the color and stage of animation of a particle local to the region.

Particle-based systems historically suffer from hard edged artifacts in the event of

collision with three-dimensional meshes. Current research has discovered a solution

to this problem; however, it remains too inefficient to represent large particle systems

associated with large wildfires [47].

2.6 Terrain Visualization

Wildfires can spread over large areas of land, large enough that they may not fit into

memory and may be too large to view in real-time. To portray a scene accurately

and increase the immersiveness of an application, higher detailed terrain height maps

and textures are necessary. Terrain data are commonly depicted as height map data
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Figure 2.7: Particle fire using millions of particles [12].

Figure 2.8: Sprite-based fire using volumetric textures [29]
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in a variety of raster data formats including image formats and digital elevation

models; however, height map data are usually not directly rendered. This data is

first tessellated before it is rendered and large data height maps result in meshes with

millions of triangles. Rendering these higher resolution datasets is simply not possible

using brute-force algorithms.

Several algorithms have been developed to increase the resolution and the visible

detail of terrain. Instead of rendering the terrain at full detail with millions of triangles

as with the brute-force methods, these algorithms optimize the visualization of these

datasets by removing unnecessary detail. In general, there are two ways of completing

this task. First, detail can be removed by optimizing the height field by removing

unnecessary detail independent of the users position [1, 16]. Flatter, less “rough”

areas can be represented with fewer triangles. This detail would not be noticeable

regardless of the distance the user views that particular location on the terrain. View-

dependent methods reduce the amount of detail based on the view and location of the

viewer’s position. The idea behind these methods uses the assumption that the viewer

is less likely to notice detailed features of the landscape as distance increases. Higher

detail is used to represent the terrain closer to the user, and data are progressively

simplified as the distance increases [19]. The combination of these two methods allows

computers to visualize larger and more detailed datasets.

Initial work with algorithms using the second method focused on optimizing the

view-dependent mesh on a per vertex level. The goal was to represent the terrain

with an optimal mesh with a minimal amount of detail as possible without visual

degradation. The process of optimizing the mesh per frame, known as continuous

level of detail (CLOD), is a processor intensive task. An example of terrain using the

Real-time Optimally-Adapting Meshes (ROAM) CLOD algorithm is shown in Fig-

ure 2.9. This algorithm tightly tessellates the mesh on a per vertex level. These were

good methods for the less powerful graphical processing units (GPU) of the time. As

GPUs grew to maturity and their power increased many orders of magnitude, central

processing time became the bottleneck and these algorithms became less ideal. Algo-



19

Figure 2.9: Terrain simplified using the ROAM algorithm [9].

rithms started to simplify the terrain using groups of vertices rather than per vertex

computations increasing terrain performance and details to new levels. Figure 2.10

shows the GeoMipmaping algorithm which simplifies the terrain using patches rather

than per vertex. To further increase performance, offline tessellation of terrain groups

has removed the CPU as a bottleneck completely. Figure 2.11 shows the Chunked

LOD algorithm which is a cross between the first two algorithms. Patches of vertices

are simplified offilne using a per vertex algorithm.

View-dependent algorithm’s progressive reduction of detail can lead to a conse-

quence called “popping”. This is when the user is able to view the changes in the

level of detail as the viewer moves around through the landscape. This problem has

been amplified with the development of GPU-friendly algorithms, which treat the

terrain as fewer and larger sections. A simple solution for decreasing this visual er-

ror is to extend the distance which higher detailed data is displayed. However, this

increase in detail also means less performance. Another solution is called geomorph-

ing, which linearly interpolates between the height values of a higher level of detail

to the lower detail representation. In this way, popping can be minimized without

having to increase the displayed level of detail. Geomorphing processing moved more
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Figure 2.10: Terrain simplified using Geometrical Mipmapping [59].

Figure 2.11: Terrain simplified using Chunked LOD [49].
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work back on the CPU to process the smooth transitions between levels of detail [62].

With the advent of shaders, this processing can be moved to the GPU through the

implementation of a vertex shader.

Another consequence of group oriented algorithms is the appearance of cracks

between the different groups. These cracks appear when different groups are display-

ing different levels of detail. One solution is to fill the cracks with a “skirt”. A “skirt”

is a wall of polygons attached to the edges, below each patch of terrain as shown in

Figure 2.12. The advantage of a “skirt” is that it only has to be calculated once re-

gardless of the level of detail of its neighbors. This means it can be calculated offline

when the terrain is being tessellated. The other solution is to fill the cracks with a

“ribbon”. A “ribbon” directly fills in the gap between adjacent tiles with a group

of triangles, shown in Figure 2.13. The outside layer of triangles in higher detailed

patches are adapted to lower detailed neighboring patches. This results in a perfectly

smooth mesh; however, this is at the cost of extra computation. “Ribbons” must be

recalculated when a patch or its neighbors change to a different level of detail.

Figure 2.12: “Skirts” hide cracks between adjacent tiles.

Multi-screen systems bring a whole new set of problems to terrain rendering.

View-dependent terrain algorithms depend on the status of the perspective matrix to
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Figure 2.13: “ribbons” hide cracks between adjacent tiles.

simplify the terrain. The current status of the perspective matrix is not known until

a screen is rendered. In a virtual reality system it must be calculated per screen and

per eye. Having a single copy of the terrain is not feasible because each screen must

protect the terrain data as it is modified, resulting in decreased performance. Each

screen must wait for its turn to modify the terrain. A possible solution is to have a

local copy of data for each screen to render the mesh; however, this may lead to visual

inconsistencies between multiple screens. This may be further amplified by terrain

level-of-detail algorithms, which assumes a symmetrical frustum, because a skewed

frustum is used to correctly project a scene according to the viewer’s head position

and the offset of their eyes.

2.7 Vegetation Visualization

2.7.1 Placement and Vegetation types

A crucial step to visualizing realistic landscapes is correct placement and sizes of

different types of vegetation native to an area. Experts often have an intimate knowl-

edge of the locations they are visualizing, and correct placement of the trees allows for

more accurate visualization as well as increasing intellectual immersion. If vegetation
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is placed incorrectly, it will be hard to prove the validity of the rest of the visualization

to the expert. Vegetation types, sizes and placement can be determined from pub-

licly available information and remotely sensed data. Forest Inventory and Analysis

(FIA) data are often used to reconstruct forest landscapes [54, 55, 61]. An example

visualization of a forest area constructed from FIA data is shown in Figure 2.14. FIA

data are publicly available and free for areas within the United States (US). Fuel

load data [41] used as inputs to FARSITE, along with an expert’s knowledge of veg-

tation types can be used to correctly reconstruct the visual forest ecology. Another

possiblilty is to use satellite images directly to determine vegetation densities [6, 22].

Possibly more information such as type and approximate size can be determined from

higher resolution data.

Figure 2.14: Vegetation placed according to FIA data [54].

2.7.2 Rendering Vegetation

Rendering a large, dense forest of trees in real-time is a difficult problem. This

problem is intimately related to the rendering of each individiual tree because it is

necessary to reduce the rendered detail as its distance is increased from the viewer.
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Hardware is not currently powerful enough to render an entire forest of trees at full

detail.

Billboards and impostors are used to render trees far enough for the viewer while

still maintaining visual integrity. Billboards are a common method of rendering veg-

etation in real-time applications, because this allows for the rendering of vast, dense

forests. However, up close billboards do not have sufficient detail to maintain immer-

siveness, especially when displayed on a stereoscopic dipslay. Borse and McAllister

describe a method of efficiently rendering vegetation using billboards that also shows

suitable visual results in stereo environments [4]. Distant vegetation can be repre-

sented by impostors, which are billboards generated on-the-fly, allowing for views

from all perspectives while representing trees with minimal polygons [23].

Other methods use volumetric vegetation to render large, dense forests [8] or use

ray-casting and vegetation cover data to give the appearance of trees [27]. These

methods give good results for viewing forests from an aggregate perspective, but are

not visually adequate for up-close views. Even when a user is adjacent to vegetation,

it is not feasible to render the leaves and details of vegetation using polygons. These

can be rendered using high-detail billboarded sprites, which give good visual results

as well as being efficient [60]. Rendering individual trees is also related to an overall

data structure for rendering large numbers of vegetation such as a quad tree, which

can be used for fast visibility testing as well as resource management.

Obtaining realistic models for visualizing vegetation is usually done in two ways:

images and algorithmically. The most accurate results can generally be obtained

through reconstruction from images either through the use of algorithms [35] or an

artistic recreation. Other methods use computational models to reconstruct the ge-

ometry of different types of vegetation [57].
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Chapter 3

Related Work

A large amount of work has been the focus of developing computational wildfire mod-

els for the purpose or training, planning and analysis. However, immediate efforts to

visualize this data have been quite limited. These visualizations are traditionally two

dimensional or use graph output. The FARSITE application has a two-dimensional

view (Figure 3.1) and also a limited three-dimensional view. These views are tra-

ditionally overhead and used to view the entire landscape. This is good for data

analysis, but somewhat limited for training and planning where a higher sense of

immersion is more beneficial. Higher information throughput is also possible for the

purposes of model validation and data analysis because of the increase in depth cues

and the extra third dimension. Virtual environments have proven useful especially

for firefighting training applications.

Much work exists for visualizing fire for the purpose of training and analysis.

However, little of this work has been done to visualize fire and wildfire in an immersive

medium. A good amount of work has been spent visualizing computational models for

in-building fires [5, 17]. The application of virtual environments and realistic spread

models for application in firefighting training scenarios can be seen in [24] and [48];

however, the models and fire visualization are not applicable to outdoor, large-scale

fires.

Los Alamos developed a tool for the visualization of wildfire data; however, both

their model and visualization ran slower than real-time [2, 28]. This work explores

the applicability of visualization of wildfire to training, and describes the graphical
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Figure 3.1: 2D FARSITE visualization output for Kyle Canyon, Nevada scenario.
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elements necessary for visually reconstructing wildfire scenarios. Similar work uses

GIS data to reconstruct forest landscapes and wildfire scenarios, but does not explore

the immersive aspects [61]. They chose to implement their own elliptical wildfire

spread model based on the Huygens principle of wave propagation, and they localized

fire behavior using the Rothermel’s model. They are able to achieve real-time frame

rates on a desktop system using a custom forest level-of-detail system and wildfire

spread model. Their paper did not address the validity of their wildfire spread model,

and did not address the application or complexities of their application in an virtual

environment.

The complexities of virtual reality, wildfire visualization, and scenario reconstruc-

tion are many. Previous work fails to encapsulate these complexities. This project

also addresses the software engineering side of building this type of application. It

is important to consider the functionality the system must support to building a

complete and reusable framework.
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Chapter 4

Complexities of Wildfire
Visualization

VFire: Virtual Fire in Realistic Environments is a project with the goal of visualizing

actual and simulated wildfire data of real physical locations using immersive systems

and technologies. Managing scene and data complexity is a large overall theme of

the VFire framework. The initial work exploring the requirements and the software

methodologies behind the framework are presented in [18]. Mangaging this complexity

will allow for the development of wildfire visualization applications, which visualize

different wildfire models on different types of immersive hardware. The complexity

and large datasets involved in the visualization of wildfire is considerable [34]. These

complexities are compounded by the use of immersive systems with their specialized

hardware and exotic input devices. [44] describes these complexities and how they

were solved. This work has been integrated into the VFire framework.

Frequently, wildfire can cover large landscapes many times beyond the current

computational and memory capacity of current visualization hardware. Each graph-

ical element such as terrain, vegetation and fire is associated with a large dataset,

either describing the landscape or driving the simulation. Each one of these elements

has its own challenges and performance bottlenecks. The DEM and satellite images

describe the terrain. The fuel load data is used to construct the vegetation environ-

ment. The wildfire is spread according to FARSITE outputs. The project goal is

to achieve real-time visualization of wildfire that covers vast landscapes, and each
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element must be managed to maintain visual fidelity and run in real-time.
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Chapter 5

VFire Software Specification and
Design

Chapter 2 introduced the complexities and the application of wildfire visualization.

Managing computational and data complexity is a worthwhile problem, but it is only

useful if it is presented to the developer in an accessible and flexible interface. The

framework should provide an interface that requires less time and learning curve than

developing a similar application from scratch. A rigorous understanding of the goals,

requirements and functionality of the system is necessary for building a complete and

easy to use framework.

This chapter presents a formal understanding of the goals, requirements and

use cases. The requirements represent the basic features of a prototype application

and the framework, and also the technologies needed to support them. The use

cases describe the basic functionality of the system. More detailed descriptions of

the overall system and subsystems are presented later in this chapter. The software

engineering practices and principles used to develop VFire can be further understood

in [3], [10] and [45]. It is the aim of this chapter to provide you an understanding of

the structure and methodology behind the VFire framework, and how this supports

the development of a prototype application.
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5.1 Framework Goals

First, the framework has the ability to visualize the different graphical elements of

a wildfire scenario. It must allow for different implementations of these elements

to plug into the system because there are many different ways to visualize these

elements. For instance, there are many different implementations and algorithms

used to visualize fire and smoke, including volumetric and particle based systems.

Each of these methods has their strengths and weaknesses, and future methods will

improve upon these. Therefore, the goal is to accommodate these different and future

implementations.

Time constraints and differences in expertise require many developers to work on

the project in parallel. Another underlying goal is to allow for developers to build the

different subsystems in parallel and add incremental improvements without affecting

the entire application. Modular design and specification will prevent difficulty when

integrating these different components developed by different individuals or groups.

VFire is a large and complex piece of software that will require many people to work

on several different components over many iterations of the project.

The previous goal also encapsulates code reuse because this object-based system

maintains modular code, and can be reused to build different wildfire applications.

This is important for building wildfire applications with different purposes and hard-

ware requirements from previously implemented components.

A main idea behind the framework is to keep the data structures and the logic

used to update these data structures together in a modular component. These mod-

ular components are linked together into different hierarchal structures to represent

different relationships with one another. An example of this goal is to facilitate the

development of different modules for the many ways of rendering fire or smoke and

allow them to be easily added to a wildfire application. This type of implementation

change of a single part of an application should require only very little or no changes

to the rest of the application.
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5.2 Hardware Support

Virtual reality hardware and toolkits are constantly evolving in drastic ways. Unlike

PCs, virtual reality hardware changes are fundemental and architectural. Currently,

two types of architectures are used in VR shared memory and cluster based systems.

Drastic software changes are needed to take advantage of these hardware changes.

The framework should be setup in such a way that minimizes these changes but also

takes advantage of the underlying hardware.

These modular components make a clear distinction between the display updating

and syncing of the data. This is important to the types of systems that require or

might benefit from this type of distinction. This separation is not commonly seen

in computer graphics; it is not uncommon to see data structures modified inside

the display thread. Multi-screen VR systems require this separation because they

have multiple display threads. To keep congruency across multiple displays, data

cannot be modified in the display threads. This type of separation can also lead

to increased performance on systems with multiple processors through coarse-grain

multiprocessing; that is, updating and display logic can be run in parallel. It is

often possible to write update logic so that it can run in parallel with display code

only locking during data synchronization. A goal of this framework is to enforce

this policy that distinguishes data display from data update. The idea is to have

generic components for everything that makes up the system. Each of the components

implement an interface that allows that component to interact with the rest of the

system. This distinction also facilitates shared memory and cluster based systems.

To achieve high performance, the amount of display and simulation computation

run in parallel should be maximized. Abstraction of dynamic graphical elements into

several steps is necessary to achieve this goal. The processing of each element is broken

into three stages: 1) rendering the code which displays the element; 2) updating the

simulation code; and 3) synchronizing and maintaining congruency between the first

steps. The first two steps are run in parallel modifying an independent copy of the
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data and the last step synchronizes the two copies. This uses the assumption that

the simulation code in step 2 is non-trivial and would require more time than syncing

the data in step 3. OpenSG provides a similar, more generic mechanism; however, a

generic solution is not always possible and a higher frame rate is better with some

specialization.

5.3 Requirements

Before the rest of the system can be described, a basic understanding of the func-

tionality and features need to be outlined (Table 5.1). This is the crux for the design

of the rest of the system. These features were conceived through domain knowledge

and input from the scientists that will use the system.

F01 V-Fire shall display a visual indicator of the wildfire spread.
F02 V-Fire shall display the terrain features of the landscape.
F03 V-Fire shall display the vegetation ecology of the landscape.
F04 V-Fire shall display fire and smoke controlled by simulation data.
F05 V-Fire shall allow the user to start the simulation.
F06 V-Fire shall allow the user to freeze the simulation.
F07 V-Fire shall allow the user to restart the simulation.
F08 V-Fire shall allow the user to change the simulation time scale.
F09 V-Fire shall allow the user to navigate the landscape.
F10 V-Fire shall allow the user to load different landscapes.
F11 V-Fire shall allow the user to load different wildfire scenarios.
F12 V-Fire shall display the current progress of the simulation.
F13 V-Fire shall display the current time scale setting.
F14 V-Fire shall display the file name of the current landscape scenario.
F15 V-Fire shall display the file name of the current wildfire scenario.
F16 V-Fire shall display the current location landscape.
F17 V-Fire shall display the current orientation using a 3D compass.
F18 V-Fire shall set the users location to the point of ignition.

Table 5.1: Functional requirements for the VFire prototype application.

Non-functional requirements (Table 5.2) show the supporting technologies, soft-

ware features and most importantly outline the major features supported by the

framework. This largely controls the interface and features presented to the devel-
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N01 V-Fire shall use the OpenSceneGraph (OSG) library and C++.
N02 V-Fire shall implement modular components for visual elements.
N03 V-Fire shall support varying implementations for visual elements.
N04 V-Fire shall allow visual elements to be used with all simulation types.
N05 V-Fire shall maintain independence from windowing/VR toolkit.
N06 V-Fire shall maintain high temporal fidelity.
N07 V-Fire shall support different types of wildfire simulations.
N08 V-Fire shall separate rendering, updating and syncing.
N09 V-Fire shall place vegetation using fuel load data.
N10 V-Fire shall use digital elevation data to describe the terrain.
N11 V-Fire shall use a satellite image for texturing the terrain.
N12 V-Fire shall implement the Chunked LOD algorithm for terrain.
N13 V-Fire shall use the OpenThreads library for data protection.
N14 V-Fire shall abstract OSG for pure OpenGL programming.
N15 V-Fire shall support both real-time and data driven simulations.
N16 V-Fire shall implement particle-based fire and smoke.
N17 V-Fire shall use FreeVR library for prototype application.

Table 5.2: Non-functional requirements for the VFire framework.

oper.

5.4 Use Cases

The functionality provided to the end user is shown through use cases (Figure 5.1).

These are developed using the functional requirements. Only functional requirements

representing major features visible to the user are represented as use cases. There

are two major actors that influence the VFire system. The user provides input and

visualizes the simulation output. Time controls the update of the simulation, and

animates user navigation and tools as a direct result of user input.

5.5 Modeling and Design

This section describes the structure and design features of the main VFire Visualiza-

tion System. This includes the main system used to build visualization trees and the

utility functionality used to interface the visualization system.
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Figure 5.1: Use cases for the VFire prototype application.



36

5.5.1 Main Class Hierarchy

Figure 5.2 shows the inheritance hierarchy of the visualization system. This main

system of classes is used to build visualization trees which describe a wildfire scenario.

It’s aim is to be flexible and extensible for further development and refinement of

wildfire applications.

Figure 5.2: The main system structure of the VFire system.

Base Class

All memory managed objects are derived from this class. This class is responsible

for keeping reference counts of the object, and it is deleted when no longer in use.

This is important with data that are shared across multiple objects because these data

should only be freed when the last object using it is also freed. Other management

features such as the type name and a unique identifier are stored in this layer. These

data can be used for runtime type determination and resource management.

Asciireader Class

This class is used to read and mange data read from ESRI Grid files. More
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specifically this is used to read FARSITE outputs and DEM data. Currently this

reads all data from the file into memory because the data are stored in an ASCII

format, and cannot be randomly accessed. For datasets larger than the available

amount of memory, the ASCII data would need to be converted to a binary format

so that it could be paged in and out of memory.

Element Class

All objects that are visualized in a scene are derived from this class. This not only

includes objects that are part of the wildfire scenario such as terrain and vegetation,

but also graphical user interface objects. Graphical elements derived from this class

display the scene. These are equivalent to nodes in a scene graph, but differ in several

ways. An element itself can encapsulate an entire scene graph, not just a single node.

It also provides the mechanism to update its scene graph data to reflect the current

state of the simulation.

This mechanism is used to update the sub-scene-graph contained within the

element. Data and the logic used to update the scene graph can be separated from

the graph itself. This is important because the scene graph cannot be changed while it

is being rendered. Because an element has a local copy of data, the rendering thread

can display the scene graph while the scene is being updated. The scene graph and

the local copy of the data are synchronized at the end of each frame.

Because each display element is a modular thread-safe object, they can be easily

be added to different simulation types and configured to develop different applications.

The Element Class provides an interface and does not display or update anything. It

is the job of the derived class to provide the structure, interface and implementation

of more specific behavior.

Terrain Class

The Terrain Class provides a generic interface for the implementation of different

terrain rendering algorithms. The interface enforces functionality that allows other

objects to obtain elevation and geospatial information. Elevation information is used

to place objects correctly on top of the terrain and used for collision. Collision
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detection is used to keep dynamic objects such as the user from falling through the

terrain. Geospatial information is used to align other objects in the scene such as

vegetation.

Two different implementations of the Terrain Class are currently implemented

in the VFire system. The first implementation encapsulates the rendering of OSG

terrain databases produced by the “osgdem” utility. The current implementation uses

the Chunked LOD algorithm. The terrain interface allows different implementations

to be substituted without having to modify the rest of the system.

Vegetation Class

This class does not provide an interface, but rather provides the functionality

to load vegetation databases produced by the “makevegqt” utility. The database

files are structured so that vegetation data can be paged into memory. The Vegeta-

tionRenderer Class is used to provide the implementation to render vegetation. The

vegetation renderer is provided the locations, size, and types from the Vegetation

Class. It is also responsible for optimizing rendering by only providing information

for visible vegetation. Visibility testing is accelerated by the quadtree organization

of the vegetation database.

ParticleEffect Class

The ParticleEffect Class provides a wrapper around the OSG particle system.

The particle system implementation used by OSG modifies data in rendering the

loop. This class separates the particle update code from the rendering implementa-

tion. The creation of a custom particle system in OSG is a lengthy and complicated

process. This process is simplified through this interface, and custom particle effects

can be created by inheriting from this class. Particle-based fire and smoke used in

the prototype application implement the functionality of the ParticleEffect Class.

Simulation Class

The Simulation Class is the root node of the simulation tree and is the boiler

plate interface between the simulation visualization and the user interface. This

class supplies the functionality outlined by the functional requirements. Elements are
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added to the simulation to visualize its state. Every element added to the simulation is

provided access to it. It acts as a centralized database for the state of the simulation.

The defined interface is important because it must support different types of wildfire

models without having to require changes to the graphical elements.

A purely generic simulation interface is ideal for flexibility but can lead to com-

promises in performance. Understanding the output provided from the different types

of wildfire models is needed to achieve both flexibility and performance. A specific

assumption is made about the types of data outputted from these models. Data are

either grid based or vector based. This directly corresponds to the type of file formats

these could be stored in Section 2.2. Understanding of this data is important to ef-

ficiently determine when visual objects such as vegetation and buildings are ignited.

With grid-based data, pointers to objects can be efficiently placed in corresponding

simulation data cells within the same location. Vector-based data can be used to

determine which objects are on fire using point-polygon tests. This could be a slow

process using a brute-force method of whether objects are within the fire front. The

SpatialDivisionTree class optimizes visual objects into a spatial hierarchy accelerating

this process (Figure 5.3). FARSITE simulation output is visualized using the FAR-

SITESimulation implementation of the Simulation Class. FARISITE uses grid-based

data. Flammable objects are added to the internal representation of the FARSITE

grid data within the implementation of this class when attached to the simulation as

shown in Figure 5.4.

5.5.2 Simulation Graph

The visualization system described in Section 5.5.1 is used to build simulation graphs.

This system describes the scenes visual object as well as the the current state of the

simulation (Figure 5.5). All of the connected graphical elements attached to the graph

have access to the simulation (always the root node). These elements then update

their visual appearance to the current state of the simulation. In this way, elements

are modular, and can be attached to different types of simulations (e.g., data driven
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Figure 5.3: Spatial divisions minimize the number of polygon-point tests.
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Figure 5.4: Vegetation placed in cells of grid data (e.g. FARSITE outputs).
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Figure 5.5: An example of a simulation graph used in a typical visualization.

or real-time).

5.5.3 Utility Class Functionality

The previous section described the main functionality for visualization of wildfire.

The utility classes covered in this section are important for interfacing the system to

different toolkits and data file types. Figure 5.6 describes the aggregation relation-

ships between the main visualization system and supporting utility classes.

PassiveView Class

The PassiveView Class provides the interface between OSG and the VR or win-

dowing toolkit (6.1). This class inherits from the osg::SceneView class responsible for

setting up the OpenGL pipeline for rendering a scene graph. The PassiveView re-
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Figure 5.6: Utility classes for the VFire system.

moves buffer clearing, viewport adjustment and perspective matrix calculations from

osg::SceneView.

ConfigReader Class

The ConfigReader Class is used to read simulation configuration files. Configu-

ration files provide the file location of landscape and scenario data used to construct

a wildfire visualization. These files are also used to store simulation settings and user

preferences.

ResourceManager Class

The resource manager manages textures, models and simulation data. Con-

structing a wildfire simulation often results in reusing resources such as textures and

models. Once in memory, these resources can be used by several different objects

simultaneously reducing memory requirements and improving performance. The Re-

sourceManager Class loads resources from file when necessary, and share a copy when

already in memory. It is also responsible for removing the resource from memory

when not in use anymore. The ResourceLoader Class provides an interface through

which different types of resources are loaded. These resource loader implementations

are used by the ResourceManager to load different types of resources.
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Chapter 6

VFire Prototype

The first test and milestone of the VFire framework is the development of a proto-

type application used to visualize FARSITE outputs. The first step for building this

framework and prototype application is the integration of OpenSceneGraph (OSG)

and FreeVR. The VFire framework is built on top of OSG, and is heavily reliant on

its features and optimizations. FreeVR provides the interface to the current immer-

sive hardware setup. It should be noted that the VFire framework can be used with

other VR toolkits, and porting requires minimal effort. The next phase includes the

development of each graphical element used to visually reconstruct the landscape and

wildfire scenario. Each graphical element of the scene strives to minimize its impact

on the performance of the visualization. The goal was to section off as much work

to the graphical processing unit as possible, and leave the CPU time available for

visualization to other elements and simulation code. The following systems manage

and minimize their use of system resources using level-of-detail algorithms specific

to their data and visualization domain. The management of resources also allows

the system to view landscapes that are larger than the available amount of system

resources.

6.1 FreeVR and OpenSceneGraph Integration

VFire is built using open-source libraries including FreeVR and OSG libraries. The

FreeVR virtual reality integration library is a cross-display VR library with built-
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in interfaces for many input and output devices. It allows programmers to develop

on a standard desktop machine, with inputs and display windows that simulate a

projection or head-based immersive system. The OpenSceneGraph library is used

to help with scene rendering. OSG allows 3D objects to be hierarchically organized

within the environment, and also provides a system that optimizes the rendering

through the use of various culling and sorting techniques.

FreeVR works well with lower level graphical rendering libraries including OpenGL.

However, when interfacing a VR integration library with high level rendering libraries,

there are many issues that need to be addressed. Four major issues are: 1) dealing

with the perspective matrices, 2) memory allocation, 3) multi-processing, and 4) win-

dowing and input device interfacing. A software interface between FreeVR and the

SGI Performer scene-graph library already existed; therefore, the implementation of

a similar FreeVR-OSG interface would be possible. Performer itself was avoided due

to its closed-nature and expected lack of future support. OpenSG is open source, but

did not support performance critical graphics hardware features.

OSG maintains control over the perspective matrices as with most scene graphs

in order to handle culling and optimizations. FreeVR, as with most VR integration

libraries, needs to set the perspective matrices for each screen such that it is current

for the ever-changing position of the user. The first solution to address this conflict

resulted in an implementation of a version of the FreeVR library that integrates OSG

calls within the section that calculates perspective matrices. After making the per-

spective calculations, it adapts the matrix for the OSG coordinate system and copies

it into the OSG context. Another implementation resulted in the development of a

“passive” viewport derived from osg::SceneView, a wrapper around OSG’s rendering

system. This implementation removes buffer clearing (color and depth), perspective

matrix calculations and viewport control from OSG, and updates its internal state

according to FreeVR. This improves on the first method through better access and

locking of the scene graph, and does not require a special implementation of FreeVR.

The second major entanglement between FreeVR and OSG is memory allocation.
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In order to render to multiple screens in independent processes or threads, along with a

separate process for simulating the world’s dynamics, FreeVR has memory allocation

routines that provide access to data shared between all the processes. Because the

internal memory allocation within OSG is opaque to the programmer, a version of

FreeVR that uses Pthreads is used. The use of Pthreads causes all allocated memory

to reside in a common shared space. Another option would be to overload C++

memory operations to use FreeVR’s shared memory system; however, this would

require modifying the entire OSG system, and make using the most current version

a difficult task. There were also no performance benefits from using shared memory

and full-weight processes.

OSG is somewhat based on the efforts of the Performer library. Specifically, it

uses multiple traversals to handle different aspects of the rendering process to allow

for multiprocessing and other efficiencies to be implemented. The three traversals

implemented in OSG are the update (simulation) traversal, the cull traversal and the

draw traversal. Ideally, traversals would operate in parallel as opposed to sequen-

tially, allowing for course-grain parallelism. Performer double buffers the scene graph

to allow this pipelining to work without corrupting the scene-graph. The update

traversal modifies its copy of the scene graph while the rendering traversal renders

the other copy. The rendering traversals are read-only operations allowing multiple

viewports to rendering in parallel.

Two major differences between the OSG implementation and Performer are 1)

OSG does not double-buffer the scene-graph or have an implicit data protection mech-

anism, requiring the update traversal to avoid making changes to the scene graph

while a cull traversal is in progress, and 2) because many people contribute new node

types to the open-source OSG, there is no strict enforcement of the rule preventing

scene-graph modifications taking place outside the update traversal. Neither of these

issues is typically a concern for desktop applications running on a single CPU system,

but for multi-screen immersive systems, they are problematic.

To address these implementation issues, the scene-graph must avoid changing
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shared data or maintain its own copy of the data when the multiple-renderings are

taking place. FreeVR provides a semaphore-based locking/barrier system that was

used to exclude writes to the scene-graph data during culling. Furthermore, specific

node-types (e.g., the particle system node) used the culling traversal to make addi-

tional modifications to the scene-graph. The update code in these node-types has

been separated and locked. The end result is a system that works satisfactorily, but

the addition of each barrier results in lower frame rendering rates.

The fourth issue that needed to be addressed to make OSG work with FreeVR was

the handling of window and input operations. In addition to perspective calculations,

windowing and input interfaces are the core of what FreeVR provides. Therefore,

little of the features OSG provides in these areas are required or used. Fortunately,

the OpenSceneGraph system has separated these functionalities into the companion

OpenProducer library. Due to this separation, the job of interfacing with FreeVR

was made easier since FreeVR was allowed to handle this task without the need of

going through the extra layer.

6.2 Terrain Implementation

In the first implementation of the terrain, the Geometrical Mipmapping [59] algo-

rithm was used. This enabled the system to visualize terrain datasets much larger

than brute-force methods; however, it required that the entire dataset be loaded into

memory. This algorithm would result in a complex memory management system.

Chunked LOD, although reducing CPU usage over previous methods, still could be

improved. Thatcher Ulrich’s Chunked LOD algorithm [49] offers several advantages

including higher triangle throughput, low CPU usage and implicit memory manage-

ment. This method, unlike Geometrical Mipmapping, requires offline tessellation of

the elevation data. Chunked LOD uses two quad tree structured files at runtime.

The first contains the geometrical description of the terrain (chunk file, .chu), and

the other contains data used to texture the terrain (texture quad tree file, .tqt). The

quad tree structure represents higher detail further down the tree, the highest level
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of detail resides in the leaves of this tree. This structure allows terrains larger than

the available memory (Figure 6.1) to be visualized because lower detail data near the

top of the tree requires less memory space.

The Chunked LOD implementation is a port of Thatcher Ulirch’s algorithm to

work in OSG, originally created by Vladimir Vukicevic [53]. Several modifications

were made to increase performance, portability and adapted to work on a VR system.

Geometry for terrain tiles is tessellated offline, and does not change on a per frame

basis, making it a great candidate to be placed in high performance video memory.

Geometry was placed on the graphics hardware using OpenGL Vertex Buffer Ob-

jects [31, 46] with the GL STATIC DRAW flag. Portability was increased by porting

the Nvidia Cg [30] geomorphing shader to OpenGL Shading Language (GLSL) [39]

prompted by the unavailability of an Nvidia Cg implementation on the available

SGI Prism visualization system. Chunked LOD is a view-dependent algorithm that

requires data changes while rendering. This is a problem on a multi-screen system

because the perspective matrices are different for each screen. This problem was over-

come by providing each rendering process with its own copy of the terrain. Visual

inconsistencies are not noticeable because Chunked LOD does not require a sym-

metrical frustum, and uses section-based refinement of the terrain mesh. The first

copy of the terrain is used for collisions. The geometrical mipmapping algorithm also

required separate data per screen because of the view-dependent refinement of the

mesh. This is simplified through an OSG mechanism which provides a per context

data structure for the management of per screen data.

6.3 Vegetation Implementation

The vegetation system is responsible for placement, rendering and updating the

burned status of vegetation. Currently, there are two different placement systems,

each having its advantages and disadvantages.

The first method places vegetation at runtime using the fuel type data, and uses a

ray casting method to determine its placement on the terrain. To maintain real-time
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Figure 6.1: 700 MB, 1-meter satellite image terrain visualization in VFire system.
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frame rates, the trees at sufficient distances are not rendered, which is a disadvantage

of having visual artifacts as the vegetation appears and disappears. This could be

minimized by fading vegetation from complete transparency to being fully opaque.

This method is useful for rendering smaller areas because all the vegetation can be

loaded in memory at once. This simplifies the algorithms to determine whether

vegetation is under combustion. Ray casting against terrain at runtime leads to

vegetation that are not always correctly placed on the terrain. To correct these visual

inconsistencies, vegetation must be placed according the the highest level-of-detatil

on the terrain. This is not feasible at runtime because the Chunked LOD algorithm

does not force the loading of higher level-of-detail tiles in order to maintain real-time

frame rates. The highest level-of-detail terrain data can be requested, but the loading

thread cannot be guaranteed to return the data promptly.

The second method also uses the fuel type data to place vegetation, but places

them offline and uses the chunk file to place them correctly on the terrain. Because the

utility is run offline, it can collide with the highest level-of-detail data. The vegetation

utility uses the fuel load data input from FARSITE, and an expert’s knowledge of

the location to determine what types of vegetation are native to a location and their

positions. The vegetation position, type and other values are placed in a file organized

as a position quad tree. This has several advantages. Each level of the quad tree can

represent different levels of detail of an area, meaning that each level further down

the tree contains more trees then the previous levels. The leaves of the tree contain

the highest number of trees. This method allows for the possibility of visualizing

much larger forest; however, it comes at the cost of easily finding burnable locations.

A formal heuristic was not developed to determine the transitions between levels of

detail. The current implementation only displays trees in the leaves of the quad-tree

at the highest level of detail, and distant trees are simply not displayed. This method

reduces the overall amount of trees that can be used to represent a forest; however, it

does not suffer from the visual artifacts of vegetation appearing from nowhere. The

quad-tree organization of the file allows vegetation to be paged in from file if the
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current number of trees is too large for the memory resources of the hardware.

It is possible for scenarios to have hundreds of thousands of pieces of vegeta-

tion (Figure 6.2). Rendering this much vegetation is a non-trivial problem. Vege-

tation is grouped into GPU-friendly sized batches and rendered together. The size

of batches can vary widely based on the type of hardware a system has. Rendering

too many groups, even if they contain very few polygons, will slow the frame rate

considerably. This increases the amount of vegetation able to be rendered, but has

the limit of only being able to process vegetation in groups. The vegetation is also

organized into a quad tree data structure to speed up culling. Pixel error is used to

determine when trees should not be displayed anymore. In general this is when the

size of the rendered vegetation is smaller than a few pixels of screen space. Processing

vegetation individually allows the system to change the appearance of vegetation as it

burned, which results in slow rendering speeds. A compromise is to use instancing [7]

to draw and process vegetation nearer to the viewer and process distant vegetation

using groups.

6.4 Wildfire Implementation

Visualization of the wildfire is driven directly from the FARSITE simulation data

using particle-based fire and smoke. Sprite-based particle systems can accurately and

realistically represent fire with very few particles, and makes it possible to render

fires at the scale of wildfire. This is the reason VFire implements particle-based fire

and smoke as shown in Figure 6.3. The visual complexity of particle systems can be

reduced progressively as the distance increases from the user; however, the physical

properties of all particles must be calculated. Such a system has not currently been

implemented, but is necessary to reduce the number of rendered particles. This is

often a bottleneck because the amount of sprites necessary to render a wildfire quickly

reaches the maximum fillrate capacity of the GPU.

Currently, only the time of arrival data is being used; a cell is ignited when the

simulation time is equal or greater than the time for the cell. The method used before
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Figure 6.2: 150,000 billboard trees visualized in VFire system.
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Figure 6.3: Sprite-based fire used in VFire system.

spread a convex hull around the cells under combustion at a given time. However,

this had several limitations. It did not precisely describe the detailed surface of the

fire front, and could not properly show spot fires. Time of arrival is the most crucial

because it allows the visualization of the wildfire spread. Other outputs are crucial

to increasing the accuracy of the visualization, and present all available information

from the simulation. Spread direction and rate of spread can be used to estimate the

spread of fire across vegetation within the space of the cell without increasing the

resolution of the FARSITE simulation. Fireline intensity, flame length and crown-no

crown data can be used to control the visual appearance of fire, and provide further

data to the physics calculations for individual fires.
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6.5 Visualization Hardware

VFire currently runs on our immersive visualization hardware that includes both a

four-screen CAVETM-like Fakespace FLEXTM [11] display and a single-screen Visbox-

P1TM [51]. The FLEXTM display is driven by either a SGI PrismTM or quad AMD

OpteronsTM using four outputs of an NVIDIA Quadro R© FX 4500 X2, both with

four active-stereo capable graphics channels. The Visbox display is driven by a dual

OpteronTMusing both outputs of an nVidia GeForce 6800GT card to drive two pro-

jectors producing a passive stereo output.

Our FLEX uses an Intersense IS-900TM with wireless head and wand units for po-

sition [21]. The Visbox-P1 uses two forms of tracking. The first form is an Ascension

Flock of Birds R© which is used to track a standard multi-input gamepad controller as

part of the hand interface. A proprietary infrared video system wirelessly tracks the

user’s head position using image processing.

6.6 Kyle Canyon Scenario

The prototype system was developed using terrain and fire simulation data of a wild-

fire scenario in Kyle Canyon, Nevada (Figure 6.4). The scenario is constructed from

remote sensed data including digital elevation model data, a satellite image, fuel load

data and FARSITE outputs. Kyle Canyon, Nevada is constructed from a 981x728

cell DEM file with 10 meter spacing between sampling values. A 1-meter resolution

satellite photograph is overlaid on this nearly 10km x 10km region. The FARSITE

simulation operates on a grid of 287x203 cells that are 30 meters by 30 meters. This

cell size corresponds to the fire load (i.e. vegetation) data that is provided as an input

to both FARSITE and the VFire visualization systems. Provided adequate data for

a location, the application can be easily extended to other locations and scenarios.

A typical wildfire will cover less than 100 acres (0.4km2), easily covered by our

Kyle Canyon data. The Kyle Canyon scenario covers a 10km by 10km test range,

approximately 25 million acres, which is a good experimental size demonstrating the



55

Figure 6.4: Wildfire spreads across the terrain engulfing vegetation.

scalability of the implementation. The terrain and vegetation system can easily cover

scenarios of this size; however, the wildfire system is still the limiting factor.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Wildfire can spread over large amounts of area producing equally large datasets. This

thesis has introduced methods that can manage and visualize these datasets interac-

tively. Abstraction of the rendering and simulation computation results in modular

code that allows for the integration and optimization of different implementations

for rendering elements of a scene. They also take advantage of different hardware

configurations used to drive virtual reality systems.

VFire adds considerable effort to previous related endeavors. Other works are

more specialized and do not focus on determining interfaces to allow for code reuse

and different wildfire simulation types. The VFire project allows for reconstruction

of realistic landscapes from remote sensing data as with [61] and [28]. However, the

VFire project encapsulates this similar functionality into a framework so that the

research in this project can be expanded and reused with other similar projects and

support different computational wildfire models. It also addresses the complexities of

virtual reality environments to allow wildfire visualization to gain from the benefits

of these systems.

Visualization of computational wildfire models has many applications. A pro-

totype visualization system has been implemented using the VFire framework based

on requirements and solution decisions described in the previous chapters. Initial

response from state wildfire agencies has been positive. The result of which is the
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further development and refinement of the VFire framework supporting the require-

ments of these agencies.

7.2 Future Work

Developing an immersive and realistic wildfire visualization is a non-trivial task that

encapsulates many difficult problems across many disciplines in computer science and

wildfire analysis, from algorithmic optimizations to computer graphics and computer

vision. This section is for the future developers of the VFire project. The framework

has been successfully used to develop an introductory wildfire visualization tool. A

main goal of this project was to develop a framework for the future advancement of

the project.

Real-time Wildfire Simulations

The central focus of future work is improving the computational wildfire model

and its visualization. Integration of more FARSITE model outputs would be a logical

stepping stone and would significantly improve the visualization. FARSITE simula-

tions require several hours making it impractical for adjusting simulation parameters

during visualization sessions. Integration of a real-time wildfire simulation would

be advantageous for using VFire for training and burning more predictable pre-

scribed fires. This could include the development of a scaleable, parallelized version

of the FARSITE model, or integration of the Los Alamos work using the FARSITE

model [56]. Users could then adjust or add ignition points, change weather param-

eters, and change fuel data during a simulation and receive immediate feedback.

Integration of such a system would ultimately result in a more comprehensive user

interface.

Interface Improvements

The integration of a real-time wildfire model would significantly change the re-

quirements of the project. Refinement of the requirements should be a formal process

with significant input from wildfire agencies. Currently, no graphical interface has

been developed because the requirements are somewhat limited and the focus has
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been on the development of supporting technologies. VRUI [25] is a VR toolkit that

also provides a comprehensive toolkit for developing user interfaces for use with im-

mersive applications. There are significant advantages for using immersive systems

to visualize wildfire computational models; however, a formal study has not been

developed to support a quantitative or qualitative measure of these advantages. A

usability study would be a fundamental element for testing the requirements, but also

discovering new and beneficial functionality.

Weather effects

Visualizing all aspects which affect wildfire is crucial to accurate and realistic

visualization. Weather is a large factor when determining how a wildfire will burn.

Visualizing this behavior would undoubtedly increase the immersiveness of the ap-

plication. Realistic visualization of this phenomena would be beneficial for training

purposes. Less realistic visualization such as vector fields for wind or other graphical

indicators would be useful for data analysis and model validation.

Vegetation Placement

Accurately recreating the vegetation ecology is essential for wildfire visualization

because fuel (vegetation) is a crucial element in determining how a wildfire will burn.

Remote sensed data, more specifically satellite images are used to determine land

cover and landscape ecology. These studies are usually very coarse scale classifying

the landscape by 1km2 patches. As GIS and remote sensing technologies advance,

higher resolution data are becoming more common and available including, 0.5m res-

olution satellite images. This advancement with the integration of fuzzy systems and

computer vision algorithms could be used for accurate placement and type determina-

tion of vegetation. These data could also be used to reconstruct urban environments

by correctly reconstructing and placing buildings. Another solution for placing veg-

etation could use highly available Forest Inventory Analysis data [55]. Urban areas

could also be constructed using a visual editor and artist recreation of buildings. An

automated method holds many advantages and would be useful for larger areas.
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Fire and smoke model

Visualization of fire and smoke is the current limiting factor for the performance

and size of the wildfire visualization. Improving the scalability of the fire and smoke

visualization is necessary for the integration of more computationally expensive phys-

ically based simulation of individual fires. Very little work has been spent on scaleable

rendering of realistic real-time fire and smoke with applications large enough for the

scale required for wildfires. Current work only considers single or small scale fires

over small objects. The complexity of realistically visualizing a single fire can quickly

use the entirety of a computer system’s resources. The creation of a specialized LOD

system will further optimize the fire rendering system to support larger wildfires.

Burning vegetation and buildings

FARSITE data controls the spread of the fire front across the entirety of the land-

scape but does not control the propagation of fire on individual pieces of vegetation

or buildings. Currently, fires are assumed to be crown fires and smaller more precise

behavior is not considered. Computationally this is an expensive problem even for a

single small object [26, 63]. A method of fire propagation scalable enough for wildfire

would be need to be developed.
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