

University of Nevada, Reno

RAIN and NCS 5 Benchmarks

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science

by

Milind A. Zirpe

Dr. Frederick C. Harris, Jr., Thesis Advisor

December, 2007

We recommend that the thesis
prepared under our supervision by

MILIND A. ZIRPE

entitled

RAIN and NCS 5 Benchmarks

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Frederick C. Harris, Jr., Ph.D., Advisor

Bobby D. Bryant, Ph.D., Committee Member

Philip H. Goodman, M.D., Graduate School Representative

Marsha H. Read, Ph. D., Associate Dean, Graduate School

December, 2007

THE GRADUATE SCHOOL

 i

Abstract

 The primary objective of the Brain Computation lab at University of Nevada, Reno is

to discover principles and develop models of social intelligence in an artificial agent, with

biology as basis. To help with this aim, a complex and relatively biologically realistic

spiking neural network simulator was developed. This is the NeoCortical Simulator

version 5 (NCS 5) which is capable of efficiently simulating large neural networks (more

than 10,000 cells and 1,000,000 synapses) using a parallel cluster. The work done in this

thesis develops neural network models which exhibit the principle of background activity

present in a live biological brain using NCS. The principle of Recurrent Asynchronous

Irregular Network (RAIN) might provide a basis for developing more advanced human

aspects of memory, learning, consciousness, and pattern recognition and various other

application fields. Furthermore, benchmarks were done to test neural networks used in a

Virtual Social Robot (VSR) loop. Results of these benchmarks showed capabilities of our

cluster and current software which would prove vital for future upgrades and design of

neural network models using NCS.

 ii

Dedication

This work is dedicated to my parents: Arvind and Latika. I would not be here without you

and your help. I am eternally thankful to you.

 iii

Acknowledgments

 Thanks to Dr. Philip H. Goodman for giving this marvelous opportunity to work and

be a part of the Brain Lab and being patient. He has been a lighthouse in a dark night

helping me in all aspects of my work at the lab.

 Thanks to Dr. Frederick C. Harris, Jr. for accepting to be my advisor and showing a

lot of patience. His guidance and suggestions have been invaluable to me.

 Thanks go out to Dr. Bobby D. Bryant who agreed to be on my committee in a time of

need.

 I would also like to thank, James King and James Frye for helping me out with the

NCS 5 code, Rich Drewes for giving technical advice and help with NCS 5, John Kenyon

for managing Cortex, Sermsak Buntha, Dr. Quan Zou and Dr. Monica Nicolescu.

 I would also like to thank Office of Naval Research for their support of Brain

Computation Lab (ONR Grant # N00014-07-1-0018).

 iv

Contents

Abstract i

Dedication ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables viii

1. Introduction 1

2. Background 3
2.1. Brief Overview of Biological Concepts ……………………………………….... 3
2.2. The NeoCortical Simulator (NCS) …………………………………………….... 8

2.2.1. History and Overview of NCS .. 9
2.2.2. Enhancements and Applications ... 19
2.2.3. Using NCS 5 ... 23
2.2.4. Structure of NCS 5 Input File ... 25

2.3. Modeling Intelligence .. 27
2.3.1. Artificial Intelligence ………………………………………………….... 28
2.3.2. Artificial Neural Networks (ANNs) …………………………...………... 29

3. RAIN - Recurrent Asynchronous Irregular Network 32
3.1. Overview .. 32
3.2. Initial Neural Network Model ... 33
3.3. Recalibration of Initial Neural Network Model ... 38

3.3.1. Coding ... 39
3.3.2. Recalibration and Initial Results ... 39
3.3.3. Final Setup .. 45

4. Benchmarks for NCS 5 and Brainstem 47
4.1. System Setup ... 47

4.1.1. Hardware and Software Involved ... 47
4.1.2. Setup ... 49

4.2. Procedure ... 50
4.3. Tests Design ... 51

 v

5. Results 54
5.1. RAIN .. 54
5.2. Benchmark Results .. 63

5.2.1. Test 1 ... 64
5.2.2. Test 2 ... 67
5.2.3. Test 3 ... 70
5.2.4. Test 4 ... 73
5.2.5. Graphs ... 76

6. Conclusions and Future Work 84
6.1. Conclusions .. 84
6.2. Future Work ... 86

Bibliography 88

 vi

List of Figures

Figure 2.1 A typical Neuron ... 4
Figure 2.2 Action Potential ... 5
Figure 2.3 A Synapse .. 6
Figure 2.4 Performance result of a parallelized NCS 2 .. 11
Figure 2.5 Communication scheme of NCS 3 using Message Bus object13
Figure 2.6 Simulated voltage response to step current from 150 to 300 pA 14
Figure 2.7 Latest optimizations to NCS achieve speedup closer to ideal 17
Figure 2.8 Architecture of BCS loop with Single Socket Server concept 20
Figure 2.9 Pipe-Line model of Brainstem ... 21
Figure 2.10 The BRAIN section of a sample NCS input (.in) file 26
Figure 2.11 A representation of a simple 3-layer feed-forward ANN with 4 inputs, 5
hidden nodes, and 1 output ... 30

Figure 3.1 Alpha and Beta waves ... 32
Figure 3.2 A typical RAIN activity ...33
Figure 3.3 EPSG and IPSG synaptic waveforms with 5 ms and 10 ms time constants,
respectively ... 37
Figure 3.4 Architecture of the neural network built in NCS 5 .. 38
Figure 3.5 Few cells from E2 cell group indicating network has failed to produce any
spikes ...40
Figure 3.6 Few cells from E2 cell group representing continuous firing (spiking) state of
the network ..41
Figure 3.7 Recalibrated architecture of the neural network built in NCS 5 42
Figure 3.8 A voltage report of few cells from E2 cell group with initial burst of spikes . 42
Figure 3.9 Histogram of binomial distribution algorithm for E2 to E2 self connections . 43
Figure 3.10 Typical voltage report plot of E2 (subset of all cells from cell group E2) 44
Figure 3.11 Membrane voltage tracings for first 2 cells in E2 obtained using Neuroplot 45

Figure 4.1 Schematic representation of benchmark system setup 49

Figure 5.1 Membrane voltage tracings for first 4 cells in E2 ... 54
Figure 5.2 Voltage report plot of whole cell group E1 for final setup 55
Figure 5.3 Voltage report plot of a few cells from cell group E2 for final setup 56
Figure 5.4 Voltage report plot of a subset of cell group I for final setup 56
Figure 5.5 Firing rates for various combinations of excitatory and inhibitory synaptic
conductance ... 57
Figure 5.6 Firing rates for various combinations of excitatory and inhibitory synaptic
conductance (E1 cell group) ... 58
Figure 5.7 Firing rates for various combinations of excitatory and inhibitory synaptic
conductance (E2 cell group) ... 58

 vii

Figure 5.8 Firing rates for various combinations (I cell group) .. 59
Figure 5.9 Types of network activity .. 59
Figure 5.10 A plot from Analyze Raster MATLAB script for a subset of cells from E2
showing that RAIN activity is present through out a 20 second simulation 60
Figure 5.11 Slow wave oscillations in cell group E1 .. 61
Figure 5.12 Re-normalization of synaptic weights due to Hebbian learning 62
Figure 5.13 Test 1 vs. Test 2 ... 77
Figure 5.14 Test 3 vs. Test 4 ... 78
Figure 5.15 Test 3 - 10% vs. Test 3 - 1% ... 79
Figure 5.16 Test 4 - 10% vs. Test 4 - 1% ... 80
Figure 5.17 Comparison of real time behavioral response ... 81

 viii

List of Tables

Table 5.1 (a) Results for 2 cell group neural network model ... 64
Table 5.1 (b) Results for 2 cell group neural network model (continued) 64
Table 5.2 (a) Results for 32 cell group neural network model ... 65
Table 5.2 (b) Results for 32 cell group neural network model (continued) 65
Table 5.3 (a) Results for 2 cell group neural network model ... 66
Table 5.3 (b) Results for 2 cell group neural network model (continued) 66
Table 5.4 (a) Results for 32 cell group neural network model ... 66
Table 5.4 (b) Results for 32 cell group neural network model (continued) 67
Table 5.5 (a) Results for 2 cell group neural network model ... 67
Table 5.5 (b) Results for 2 cell group neural network model (continued) 67
Table 5.6 (a) Results for 32 cell group neural network model ... 68
Table 5.6 (b) Results for 32 cell group neural network model (continued) 68
Table 5.7 (a) Results for 2 cell group neural network model ... 68
Table 5.7 (b) Results for 2 cell group neural network model (continued) 69
Table 5.8 (a) Results for 32 cell group neural network model ... 69
Table 5.8 (b) Results for 32 cell group neural network model (continued) 69
Table 5.9 Results for 2 cell group neural network model ... 70
Table 5.10 Results for 32 cell group neural network model ... 70
Table 5.11 Results for 2 cell group neural network model ... 71
Table 5.12 Results for 32 cell group neural network model ... 71
Table 5.13 (a) Results for 2 cell group neural network model ... 71
Table 5.13 (b) Results for 2 cell group neural network model (continued) 71
Table 5.14 Results for 32 cell group neural network model ... 72
Table 5.15 (a) Results for 2 cell group neural network model ... 72
Table 5.15 (b) Results for 2 cell group neural network model (continued) 72
Table 5.16 Results for 32 cell group neural network model ... 73
Table 5.17 Results for 2 cell group neural network model ... 73
Table 5.18 Results for 32 cell group neural network model ... 74
Table 5.19 Results for 2 cell group neural network model ... 74
Table 5.20 Results for 32 cell group neural network model ... 74
Table 5.21 Results for 2 cell group neural network model ... 75
Table 5.22 Results for 32 cell group neural network model ... 75
Table 5.23 Results for 2 cell group neural network model ... 75
Table 5.24 Results for 32 cell group neural network model ... 76

 1

Chapter 1

Introduction

 The Nervous system of a living organism is by far the most complex system. This is

very true in case of mammals and especially humans. Even today, we are in the process

of understanding the detailed anatomy of the Human Nervous system and are far from

completion. But the real major challenge is to learn how it actually functions. The Brain

is the core of a Nervous system with more than 100 billion neurons in an adult human

[63, 71] and about 10 to 50 times more glial cells [6]. There have been a lot of

discoveries and breakthroughs in this regard, yet we still know so little about the

functioning of this magnificent organ.

 The term Artificial Intelligence (AI) was coined in 1956 by John McCarthy [25, 62].

Artificial Intelligence is the study and design of intelligent agents, where an intelligent

agent is a system that perceives its environment and takes actions which maximizes its

chances of success [59]. But after a few decades more and more people are realizing that

AI has a lot of limitations and we possibly cannot hope to create a truly human-like

intelligent agent anytime soon in the future.

 As an alternative to AI, there has been a biological modeling approach to this

problem. In this approach, the biological nervous system is simulated with the help of

computers and simulator software to produce biologically realistic spiking neural network

simulations. NEURON [13] and GENESIS (The GEneral NEural SImulation System) [9,

22] are among the first simulation environments. They offer single neuron and small

 2

realistic neuron network and synapses simulation abilities. The Brain Computation Lab at

the University of Nevada, Reno, under the direction of Dr. Philip Goodman, undertook a

project for designing relatively realistic biological neural networks which would allow

simulation of large networks (more than 10,000 cells or neurons and 1,000,000 synapses)

quite efficiently [10]. The result was a simulator program called NCS (NeoCortical

Simulator) [12].

 This thesis researches the principle of simulation of background activity in a

biological brain using NCS version 5 (NCS 5). In addition, a series of benchmark tests

were performed to evaluate the performance of NCS 5 (the latest version of NeoCortical

Simulator) on our cluster [7]. A series of other benchmarks, based on the benchmarks in

this thesis, have been planned for other hardware systems.

 The rest of this thesis is structured as follows. In Chapter 2, we review some basic

biological concepts in brief. They are necessary to understand NCS 5 neural models

written in “input” (*.in) files. Then we will review NCS itself by taking a look at its

history, structure of the input file, usage, and applications. We will then take a brief look

at neural modeling. And finally we’ll have our first look at the concept of Recurrent

Asynchronous Irregular Network (RAIN). Chapter 3 explains how RAIN is actually

created, from initial neural model to its evolved version conducive for RAIN activity. In

Chapter 4, we will take a look at benchmark tests done for NCS 5 and Brainstem [58].

System setup, Procedure and Tests Design are explained. Results are discussed in

Chapter 5. RAIN and Benchmark tests results are discussed here. Finally, Chapter 6

discusses conclusions and interesting future work based on RAIN.

 3

Chapter 2

Background

 We need to familiarize ourselves with biology that NCS (NeoCortical Simulator) has

modeled. This chapter presents a review of basic biological concepts from the perspective

of modeling mammalian brain networks, information about the simulator NCS, and

neural modeling.

2.1 Brief Overview of Biological Concepts

 A mammalian brain is composed of several different types of complex structures. Our

structure of interest is the cortex, where cognition and related functions takes place [31,

40]. Essentially, the cortex is a highly convoluted thin sheet of large number of cells

(neurons) and their various associated structures. The cortex sheet is quite large

compared to the space available in brain. Nature has found a means of fitting cortex by

folding it in three dimensions, which helps in conserving space and also reduces inter-

cellular distances leading to efficient use of neural wiring material, required to form

communication connections among neurons.

Neurons

 The brain consists of a basic type of cell called as neuron. The number of neurons in

an adult human brain is very large (more than 1011) and there are various types [63, 71].

Another type of cell, called glial cells are also present. There are various types of glial

 4

cells. Neuroglia cells do not conduct nerve impulses, but instead, they support, nourish,

and protect the neurons. They are far more numerous than neurons [6] and, unlike

neurons, are capable of mitosis. Neurons, or nerve cells, carry out the functions of the

nervous system by conducting information via nerve impulses. They are highly

specialized and amitotic [60]. This means that if a neuron is destroyed, it cannot be

replaced because neurons do not go through mitosis. Figure 2.1 shows a typical neuron

structure.

Figure 2.1 A typical Neuron. [3]

 A typical neuron consists of a cell body (soma) with a nucleus and numerous

structures called dendrites which expand from the soma. Surfaces of dendrites primarily

exchange chemical information with other neurons via synapses. An axon is a long

dendrite different from all others. The purpose of an axon is to transfer electro-chemical

signals to other neurons, sometimes over a long distance. The axon is protected by a

 5

myelin sheath, which helps in electro-chemical signal transmission. The exchange of

information (essentially a spike) to other neurons happens between the end of axon

(which is shown as axon terminal) and dendrites with help of synapses [60].

Action Potential

 Figure 2.2 gives a schematic representation of action potential.

Figure 2.2 Action Potential. [4]

 Each neuron is connected by axons, dendrites and synapses to a number of other

neurons, typically about a thousand. Neurons maintain a small electrical potential,

normally about -70 mV in their soma, due to the interactions of channels in their cell

walls with ions in the intercellular fluid [60]. This voltage continually changes in

response to external inputs, primarily stimuli received from incoming synapses. When the

 6

voltage reaches a critical threshold (spiking threshold), these ion channels cause an

abrupt rise and fall in the cell voltage. This is called an action potential (AP) or “a spike

firing.”

Synapse

 Each of the 100 billion neurons has on average 7,000 synaptic connections to other

neurons. It has been estimated that the brain of a three-year-old child has about 1016

synapses (about 10 quadrillion). This number declines with age, stabilizing by adulthood.

Estimates vary for an adult, ranging from 1015 to 5 x 1015 synapses (which is 1 to 5

quadrillion) [28]. Figure 2.3 shows a synapse.

Figure 2.3 A Synapse. [2]

 7

 As seen from the figure, a synapse mainly consists of three structures:

1. Axon terminal of a pre-synaptic neuron which has vesicles containing

neurotransmitters, mitochondria, and other cell organelles.

2. A synaptic cleft or small tiny gap between pre- and post-synaptic neurons.

3. A dendrite of a post-synaptic neuron which has receptor sites for accepting the

neurotransmitters.

 As mentioned before, information is passed from one neuron to another in form of a

spike which is caused by an action potential. A synapse is the structure which actually

makes this possible. A synapse is a very tiny gap between the axon ending of one neuron

and the dendrite of the next neuron [44]. The neuron which sends information is called

pre-synaptic neuron and the receiving neuron is called the post-synaptic neuron.

 When the action potential reaches the axon ending, it causes tiny bubbles of chemicals

called vesicles to release their contents into the synaptic gap [60]. These chemicals are

called neurotransmitters. These sail across the gap to the next neuron, where they find

special places on the cell membrane of the next neuron called receptor sites. The

neurotransmitter acts like a little key, and the receptor site like a little lock. When they

meet, they open a passage way for ions, which then change the balance of ions on the

outside and the inside of the next neuron. When the spike pulse reaches the destination

cell, it combines with the inputs from all the cell’s other incoming synapses, which in

turn may cause the destination cell to fire and the whole process starts over again.

 Some types of synapses change their behavior over a period of time, in response to

these action potential inputs. This process has been defined as Hebbian Learning [42]. In

positive learning, a neuron’s response to incoming spikes is increased gradually

 8

depending upon the timing and number of spikes received in past. On the other hand, if a

neuron’s response decreases gradually after receiving spikes, it is called negative

learning.

Columns and Layers

 Conceptually the human cortex is organized horizontally into columns [56], which are

localized regions of high neural connectivity. From the size of the cortex and the typical

size of a column, it can be estimated that there are about 2×106 columns in humans [43].

There may be more if the columns can overlap [66]. The cortex is further divided

vertically into layers that are distinguished by variations in the types of neurons. Most of

the cortex has six of these layers; the hippocampus has only four. It should be noted that

columns and layers are not in any sense separate organs; they are distinguished

anatomically only as patterns of cell distribution and connection. In context of NCS, they

are used in the input file constructs that define a particular brain model and for

organizational purposes. By themselves they have no function (i.e. behavior) that can be

modeled.

2.2 The NeoCortical Simulator (NCS)

 The NeoCortical Simulator (NCS) has been developed at the Brain Computation

Laboratory (BCL) [10], under the direction of Dr. Philip Goodman, at the University of

Nevada, Reno (UNR). Over a period of about 10 years, NCS has undergone many

transformations and revisions. This section details those changes. We will also study the

 9

structure of the input file and how to use NCS. At the end of this section, some

applications of NCS used in experiments and projects are discussed.

2.2.1 History and Overview of NCS

 Over the years research has been going on utilizing AI approaches for the generation

of a socially intelligent entity. Nature served as an inspiration for some of these

approaches to reach to try to achieve an efficient solution [36, 37, 38]. Current

technology has limitations for using actual organic material for such architecture. The

next best alternative is to use silicon-based computational devices (viz. computers). Thus

a software simulator was created, which would model biologically realistic large spiking

model of cell networks mimicking the activity present in cortex. The simulator would be

able to model the neo-cortex, the hippocampus, and other structures with a fair degree of

complexity. This simulator was the NeoCortical Simulator.

 Humans have a large amount of the cortex termed “neo-cortex” (new cortex) which is

lacking in other mammals (and animals). Debate is going on whether this neo-cortex is

indeed the key to the intelligence in humans. Hence the simulator was named as

NeoCortical Simulator. NCS was made accessible to the outside world in 2000.

The First Two Versions of NCS

 Development of the first version of NCS began in 1997 by Philip Goodman in

collaboration with Henry Markram, currently the co-director of “Brain Mind Institute” at

École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland, and

Thomas McKenna (Neural Computation Program Officer at the U.S. Office of Naval

Research) with MATLAB [41, 51] as the programming environment [24]. At the same

 10

time there were important discoveries made with regards to synaptic plasticity and

connectivity [53, 54] which helped in the design of NCS.

 This first version of NCS (NCS version 1) used a template of Action Potential (AP)

spike waveform (as shape of these waveforms have less variation) which was efficient.

Cell membrane dynamics and calcium dependent AHP channels, voltage dependent A- &

M- channels (ion channel dynamics) were also modeled to compute a spiking network

along with implementation of synaptic delay [29, 45]. Using published results from

Henry Markram and others [65], changes in short-term synaptic dynamics and long-term

Hebbian regulation of synaptic efficacy were also added.

 Initial promising results led to funding by Office of Naval Research (ONR) in 1999

[38]. This helped in collaboration with other professors from UNR. The MATLAB

version of NCS was slow and serial (i.e. it could not be distributed to run on multiple

nodes in parallel), limiting the number of cells and synapses that could be simulated in a

network. Due to this a need for a more efficient simulator was felt. This led to the

development of the first C version of NCS.

 In 1999, Ali Etezadi-Amoli programmed the C version of NCS – NCS version 2 [29].

This was a direct implementation of NCS 1 with no major additional features. Gain in

performance was about an order of magnitude over NCS 1. Another student, Keith

Wesolowski made improvements to the code and added parallelism to NCS 2.

Experiments were carried out to test the performance of NCS 2 on multiple CPUs. A 20

node Beowulf cluster (450 MHz Pentium CPUs) was used. During experimentation, size

of the network was increased from 100 cells to 1000 cells and number of CPUs was

 11

increased from 1 to 10 CPUs. Further increase in CPUs did not provide a marked gain in

runtime of NCS.

 Figure 2.4 shows the performance result of increasing the number of nodes for a 1000

neuron simulation. The large difference between ideal and actual results was due to slow

switching across Ethernet. A Myrinet switch and faster CPU nodes were added later on.

Further addition of features followed.

Figure 2.4 Performance result of a parallelized NCS 2. [38, 45]

 12

NCS Version 3

 In 2000, there was a major overhaul of the NCS code [72]. This was the first C++

version of NCS – NCS version 3 and aimed to utilize object-oriented design to improve

code performance and organization [74, 73]. Relationships between neuronal properties

were broken down into corresponding objects. This accomplished two objectives. Since

objects were fully encapsulated, different implementations could be swapped in and out

without the need of changing large portions of code. This allowed quick mathematical

and algorithmic changes to NCS code. The other objective was to have better code

organization by abstracting various biological concepts. It was made sure that this version

of NCS was generalized for future improvements and capable of running more efficiently

on a parallel system.

 NCS 3 used MPI standard parallel libraries for distributing an NCS simulation over a

cluster of CPUs. MPI is still used in NCS 5, for communication of spike messages

between cell groups via the Message Bus. Cells were split up equally across the nodes

with no intention of keeping cell groups together, although load-balancing algorithms

were anticipated to be included in the future [45]. A Message Bus object was used to co-

ordinate communication flow between objects on and off a node. Timing and

synchronization of simulations to prevent deadlock and starvation were thus handled.

Figure 2.5 shows the major components of NCS 3 interacting with Message Bus object.

 New hardware was acquired to increase performance and network simulation size

[36]. This was the Cortex cluster consisting of 30 dual Pentium III (1 GHz) processor

nodes with 4 GB installed RAM per node. A Myrinet switch was also installed for faster

network message packet switching. Introduction of a Myrinet switch improved

 13

simulation performance a great deal. Currently, Cortex has 200 CPUs consisting of

Pentium and AMD processors.

Figure 2.5 Communication scheme of NCS 3 using Message Bus object. [72]

 Experiments were performed using NCS 3, to use channel structures within cellular

compartments so as to reflect accurate dynamics of the inter-neuronal GABAergic

systems [50]. Previously published in vitro responses taken after applying one second

current steps from 50 to 350 pA were replicated by combining channels properly. Figure

2.6 gives the results by NCS 3 in replicating the behavior of various neurons: classic non-

accommodating (cNAC), classic accommodating (cAC), bursting non-accommodating

(bNAC), bursting accommodating (bAC), delayed non-accommodating (dNAC), delayed

accommodating (dAC), classic stuttering (cSTUT), and bursting stuttering (bSTUT) [50].

 14

Except for “stuttering” types, the behaviors were relatively robust under a two-fold

variation in strength for a single somatic cell [45].

Figure 2.6 Simulated voltage response to step current from 150 to 300 pA. [50]

(A) cNAC (B) cAC (C) bNAC (D) bAC (E) dNAC (F) dAC (G) cSTUT (H) bSTUT

 15

NCS Version 4 and NCS Version 5

 It was found that NCS 3 still had some scope for improvement. C language seemed to

be more efficient for some functionality than C++. Thus, there was another change to

optimize NCS, this time, almost all the C++ object oriented features were replaced by a

more compact C code. Simulation functionality was expanded and further speed and

performance optimizations were done [37].

 These changes were done during 2001 [32, 29]. Those efforts lead to a new release of

NCS 3 in 2003. Subsequently NCS version 4 (in 2003-2004) and NCS version 5 (later in

2004) followed with elimination of errors and bugs from the code and further

optimization.

 Previous NCS versions worked with point neurons (i.e. only a soma and a

compartment) only. The new revisions of NCS permitted complex cells consisting of

numerous compartmental structures (dendrites, spines and axons) to be created. The

neuron model could also be designed and placed in a three dimensional space. For

example, synapses present along closely spaced objects had a higher probability for

forming connections. Similarly, action potentials would travel faster to closer

destinations. The state of a brain (neural network) could now be saved and loaded back.

This helped to preserve and reuse (for future simulations) synaptic dynamics that were

induced by Hebbian learning during an earlier simulation.

 Many more optimizations were made to NCS. Load balancing in NCS 3 used number

of cells as a decisive factor in even distribution of the network over the cluster. There was

a risk that some processors in the cluster were being overworked while others stayed idle,

creating a need for improved load balancing techniques [32, 33]. The newer methods also

 16

considered the number of synapses along with number of cells during distribution step of

simulation setup. This made sense, as synapses were involved in message passing and

had dynamics of their own which needed to be computed at each simulation time tick.

Synapses also required a large share of the memory needed for brain simulation.

 The connection process was optimized, reducing time taken in brain initialization.

Earlier versions checked all possible connections during construction of the brain and

then checked the probability (specified in the input file) of that connection being created.

The time complexity for this approach was O(n2), where n represented the total number

of cells in the network (or networks) that was being connected. The new version looked

at desired number of connections first. Based on the required number of connections, it

choose available cells randomly and created a connection between them. This algorithm

approached O(n) complexity during execution. The other major optimization was to

reduce the Message Bus load to produce less overhead. This was done by reducing

message size, enabling the message packets to reach their destination quickly [45]. Figure

2.7 displays the results of optimizations to NCS in the parallel environment. The inset

gives the same plot but on a logarithmic scale.

 Various other biological experiments were performed with this new version of NCS.

One set of experiments looked at how information maybe encoded using spike-timing

and membrane dynamics of biological neurons [49, 50]. These experiments made

comparisons with artificial neural networks (ANNs) to show that biologically based NCS

was more robust and flexible and could utilize multiple sensory modalities requiring

pattern recognition, speech comprehension, and path planning as humans could.

Decomposed audiovisual recordings were given as input to laboratory derived parameters

 17

for synaptic and membrane dynamics. These results were later on used in development of

CARL [45].

Figure 2.7 Latest optimizations to NCS achieve speedup closer to ideal. [32]

 Another experiment [61] examined intra cortical and cortical-sub cortical “network of

networks” involved in emotion, attention, sensory association, memory, reward, motor

planning and theory of mind. This experiment tried to comprehend how these modules

interact with each other, using NCS as a platform for experimentation. Using existing

research parameters, models of 1,000 to 1,000,000 neurons were built which would

reproduce and sustain auditory patterns with stability. A large inter-connected network

resulted as the number of synapses was close to 600 million [45].

 18

NCS Today

 There have been some changes and bug fixes to NCS 5 since it was first released, but

no major changes. As of 2005, NCS has all of the following functionalities implemented

[24].

• Compartments: sampling frequency and membrane compartmental realism

sufficient to capture biological response properties, arbitrary voltage- and ion-

sensitive channel behaviors, and multi-compartmental models distributed in 3-D

(dendritic, somatic and axonal systems).

• Synapses: short-term depression and facilitation [52], augmentation [70] and

Hebbian spike-timing dependent plasticity [54].

• 3-D Connectionism: a layout to easily allocate neurons into sub-network

groupings, layers, column, and sheets separated by real micron- or millimeter

spacing, with realistic propagation distances and axonal conduction speeds.

• Parallelism: an inherently parallel, efficient method of passing messages of

synaptic events among neurons.

• Reporting: an efficient way to collect, sample and analyze selected

compartmental and neuronal behaviors.

• Stimulation: ability to (a) specify fixed, standard neurophysiological stimulation

protocols, (b) port signals from an external device, (c) export neuronal responses

and await subsequent replies from external systems (e.g., dynamic clamps, in

vitro or in vivo preparations, robotic emulations). Normally a stimulus is specified

in the form of spike or firing probabilities.

 19

• Freeze/resume system state: the ability to stop a running simulation and

hibernate all hardware and software parameters into a binary file, for unpacking

and resuming in later experiments.

• Command files: simplicity in generating and modifying scripts.

 There are still many discoveries to be made in both biological and computer based

artificial intelligence fields. NCS can be enhanced with new useful discoveries in

biology. Biologists can perform experiments which might only be possible in a

simulation environment, using NCS. With the help of new discoveries, both fields can

accelerate to their respective goals of understanding the nervous system and creating the

first artificial “humanly intelligent” social being.

2.2.2 Enhancements and Applications

Enhancements to NCS version 5

 There have been a few major enhancements to NCS. One of the enhancements

developed by Rich Drewes as his thesis work is a Python [16] based environment (and

library) for creating, editing, submitting and analyzing simulations – called Brainlab [29].

As the brain model becomes large and complex, it becomes increasingly difficult to use a

simple text editor. More often than not, these types of models involve repetitive patterns

of inter-connecting brain objects. So, if there is an error in the input file, it might be

tedious to find it. There is a facility in NCS for distributing the brain model code over

multiple files and then using “INCLUDE” command to link those files. But it still is not

easy. This is what the Brainlab was created for.

 James King was responsible for maintaining NCS 5 code in 2004-2005. His thesis –

“Brain Communication Server: A Dynamic Data Transferal System for A Parallel Brain

 20

Simulator” (BCS) is an interface between NCS 5 and external programs [45]. It allows

programs to communicate and send stimulus (data) and control signals to NCS 5. BCS is

based on the concept of Single Socket Server (SSS). It is suitable for large simulations

and communicating with many client programs, as it uses just a single port for each of

those clients. In SSS, the external client program uses just a single socket to communicate

with NCS via BCS. Reader and writer threads can be created for receiving and passing

reports and stimulus, respectively, to NCS. This has been used by many other researchers

in their experiments including in this thesis work [34, 45]. Figure 2.8 shows the design of

Single Socket Server. Clients are connecting through a single port and the data objects

(A, B, C and D) are managed by the server.

Figure 2.8 Architecture of BCS loop with Single Socket Server concept. [45]

 James King also introduced numerous feature enhancements such as the efficient use

of multi-compartment neuron models, synaptic augmentation property of cortex, changes

 21

in the way NCS 5 creates some reports, ability to turn Hebbian learning on or off and an

event section with the ability to load synaptic USE values from a file at a pre-determined

point of time in a simulation [10].

 Figure 2.9 describes the pipe-line model of Brainstem. Using the BCS (Brain

Figure 2.9 Pipe-Line model of Brainstem. [58]

 22

Communication Server mentioned earlier, developed by James King for his thesis),

Qunming Peng developed “Brainstem: A NeoCortical Simulator Interface for Robotic

Studies” as his thesis work [58]. Brainstem is a program which co-ordinates

communication between AIBO (an entertainment robot dog from SONY) and NCS 5

through BCS (also known as VoServer) [10]. This work was done in an effort to

complete the loop between an autonomous physical agent (AIBO) and its thinking brain.

Applications

 Numerous experiments and research projects have been performed using NCS. The

majority of them are listed below:

• James Maciokas and other researchers used NCS to perform experiments on a

hypothesis regarding entropy change in multimodal sensory integration and

information transfer. This was done during 2002-2003 [48, 49].

• A web-based GUI environment was created by Waikul and colleagues in 2003

[69]. The environment had an editor for creating and modifying NCS input files

and submitting those brain models for simulation.

• The first NCS-Robotics loop was completed and demonstrated by Juan Carlos

Macera in 2003 [46, 47]. It consisted of a hierarchical robotic system (CARL)

communicating with NCS for audio and video stimulus processing using

Spectrogram and Gabor filters respectively.

• In 2004, Jake Blake and collaborators worked on speech perception which was

simulated in a biologically realistic model of auditory neo-cortex [21].

• Brian Opitz in 2004 studied the effect of selective removal of channels from

simulation on information transfer in a spiking neural model [57].

 23

• Rich Drewes along with fellow researchers experimented using a genetic

algorithm to evolve a network model for evolutionary autonomous agents for

performing a delayed-matching memory task using a neural network with layer-

structured visual cortex [29, 30].

2.2.3 Using NCS 5

 At this point we are going to look at a basic method of using NCS in a Linux

environment. We will begin with getting the source code, all the way to analyzing a

simple report in MATLAB. Obviously there are a lot of ways in which NCS could be

used. For example, Python based Brainlab, web-based environment, scripted pre-

processor, automating input file generation and batch submission (by having a template

input file and replacing tokens to create networks with slightly different parameters), etc.

 The first step is to get latest working NCS source code. We use Subversion (SVN) for

maintaining the source code and documentation. Source code may be obtained in two

ways. A person can either get an account on the Cortex cluster with consent of

responsible people in the BCL or get the source code straight off of the internet here [12].

In case of the former method, after getting an account setup on Cortex we use SVN to get

the source code as follows –

svn co file:///home/svn/repository-new/ncs5

Doing this we obtain a directory named ncs5 with source code for the simulator and

documentation.

 The next step is to compile the source code, which may be tricky. We need the

compatible version of MPICH. Currently we are using MPICH version 1.2.7p1. The

Makefile situated in ncs5 directory has a host of options (switches and flags) for various

 24

facilities. For a normal simulation those options would remain as they are. Only in case

of special requirements would one change them. We need to check that the path to

MPICH directory in the Makefile is correct. After everything is setup, we are ready to

compile NCS version 5. Simply type in make and that should create an NCS 5 binary.

 The next step is to create a brain model in an .in (input) file. If a job scheduling

software is available for your cluster you can proceed to use it as you would for any other

program binary. NCS can either be executed using MPICH (to run on multiple CPUs) or

as a normal executable to run on the local machine. A sample command would look like

this –

/opt/mpich-1.2.7p1/bin/mpirun –nolocal –np 16 –machinefile mach16.mpi ncs5/ncs5pe

sample.in

where, mpirun is the MPICH program, –nolocal is a switch for MPICH and indicates not

to run the simulation on the current node (or machine, which might head node of the

cluster normally), –np 16 means that the number of processor to use for the simulation

are 16, –machinefile mach16.mpi gives the name of the file which has a list of names of

the machines to use (this should have a list of machines consisting at least 16 CPUs in

total), ncs5/ncs5pe is the name of NCS 5 executable along with its location, sample.in is

the neural network input file.

 Now the simulation is running and depending upon the input file we will get result in

form of reports. A common report is the voltage report for a cell group consisting of

either 1 or multiple cells. The report file has membrane voltages present in it for each

simulation time tick (i.e. for each step of thinking brain). In the above scenario, these

report files are created on the cluster and need to be copied to a local machine for

 25

analyzing in MATLAB. Neuroplot [14] is an excellent tool for such analysis purpose.

This completes a simple guide for using NCS to simulate neural networks.

2.2.4 Structure of NCS 5 Input File

 The structure of the NCS 5 input file is simple. It is based on a hierarchical structure

of sections (or objects). NCS has objects representing biological structures, like a neuron,

synapse, compartment, etc., which are used to mimic their behavior using the right

combination of parameter values. We will not be going into details of the file structure,

but just look at a couple of sub-sections and get a feel for the structure. The extension of

input file is .in and hence is also called as an .in file in general usage. We will be

observing that convention from here on.

 There are keywords in NCS and generally all of them appear in upper case. The .in

file consists of a number of sub-sections. The sub-section starts with a line containing its

name in all upper case letters. The end of a sub-section is denoted by a line having the

same name that appears at its start, but with a prefixed string – END_. The first sub-

section in an .in file is BRAIN section. It is the top-most section in the hierarchy of the

brain structure. Global parameters and other basic sub-sections are referenced in this

section. A sample BRAIN section is show in Figure 2.10.

 The TYPE name gives a name for the network model and JOB describes a name for

the execution run. SEED is used by the Random Manager and is used by other sub-

sections too (wherever applicable) if a local seed is not present. References to other sub-

sections can also be seen. COLUMN_TYPE, STIMULUS_INJECT and REPORT are

sub-sections defined after the BRAIN section definition. The sections essentially contain

key-value pairs. Keywords of NCS are the keys and values or section (object) names are

 26

there values. CONNECT keyword is used to connect two cell groups in the network

using a SYNAPSE object (here synEE_V2).

BRAIN
 TYPE AIBO
 JOB proto7
 FSV 1000
 DURATION 1.5
 DISTANCE NO
 SEED -51
============== this is a comment =================
 COLUMN_TYPE AIBOStim_1
 COLUMN_TYPE AIBOStim_2
 STIMULUS_INJECT AIBOStim_inj_E1_AIBO_1
 STIMULUS_INJECT AIBOStim_inj_E1_AIBO_2
 REPORT L1_E1_Voltage
 REPORT L2_E1_Voltage
 CONNECT
 AIBOStim_1 AIBOStim_layer_1 E1 somaE
 AIBOStim_2 AIBOStim_layer_2 E1 somaE
 synEE_V2 0.10 0
 CONNECT
 AIBOStim_2 AIBOStim_layer_2 E1 somaE
 AIBOStim_1 AIBOStim_layer_1 E1 somaE
 synEE_V2 0.10 0
END_BRAIN

Figure 2.10 The BRAIN section of a sample NCS input (.in) file.

 Now we will discuss the basic hierarchy found in the .in file. BRAIN is the top-level

section in an .in file. A BRAIN section consists of COLUMN objects which in turn

consist of LAYER objects. LAYER further has CELL objects, which themselves consist

of COMPARTMENT objects. In the hierarchy mentioned above, there can only be one

BRAIN section, but other sections or objects can be one or multiple. A CONNECT

statement can be used for connecting cell groups visible from a given sub-section. For

example, to connect cell groups in the same layer, we can have CONNECT defined in

that LAYER section definition. But if the cell groups to connect are located in different

 27

layers present in different columns, then the CONNECT statement needs to be defined in

the BRAIN section, as seen in Figure 2.10.

 Normally object names are defined in the TYPE keyword of their respective section

definition. For example: AIBOStim_1, L1_E1_Voltage, in Figure 2.10. Another thing to

note is that NCS interprets everything after # character, until an end of line is detected, as

a comment. A comment is a line used by modelers for their documentation purposes and

is not processed by NCS simulator.

 We can define different sections in different .in files and use the keyword INCLUDE

along with the .in file name. A thing to remember is that the .in file with BRAIN section

is the main file. So while simulating a network, only the .in file containing the BRAIN

section should be given as a parameter. Other .in files should either directly or indirectly

be included in that main file.

 This concludes the section which briefly explains the structure of an NCS brain model

input file. For further information, NCS documentation is located on the BCL webpage

[10] along with a complete sample .in file.

2.3 Modeling Intelligence

 Modeling intelligence successfully has proven to be a bigger challenge than

anticipated earlier. That is why we still see practical social robots only in movies like

Artificial Intelligence: AI and I, Robot. There have been various approaches towards this

problem. Earlier efforts resulted in the field of Artificial Intelligence. Due to the

 28

shortcomings in AI [25], a shift in thinking resulted in Artificial Neural Networks and

Biological Neural Networks.

2.3.1 Artificial Intelligence

 As discussed earlier, the term Artificial Intelligence (AI) was created in 1956 [25, 62].

AI was the next step in automation of various specialized and daily tasks. AI has

applications in fields of Pattern recognition, Computer vision, Virtual reality, Diagnosis

of various kinds, Game theory, Strategic planning, Natural language processing, Non-

linear control, Robotics, and many more.

 The earliest AI systems were the Expert systems. Inference engines with forward and

backward reasoning were the basis for these systems. Classifier based systems are

another variety of AI systems involving supervised learning. Classifiers are basically

functions that can be tuned for certain problems according to some examples (which in

fact are patterns of some form). Conventional AI involves methods from Machine

Learning [55] involving formalism, search, planning, optimization, logical inference, data

mining, and statistical analysis to name a few. It consists of mainly following methods:

• Expert Systems which reason to reach a conclusion. They can analyze large

amounts of information and provide a conclusion for the same [75].

• Case based reasoning organizes a set of problems and answers in form of cases.

When a problem is presented to a case based system, it searches through its

database of cases and picks an exact or closely related case and provides its

solution with some modification if needed [76].

 29

• Bayesian network (belief network) use a probabilistic graphical model

representing a set of variables and their respective probabilistic independencies

[77, 78].

• Behavior Based Artificial Intelligence is a technique for building AI systems

modularly by decomposing of intelligence into modules [79, 80].

 The major problem with AI systems is that they are not generalized enough to handle

real world scenarios which are fuzzy and full of noise. More often than not, they are

deigned to work in a controlled environment which is far from real world interactions.

Due to these shortcomings there have been on and off views of the field and AI winters,

meaning general pessimism resulting in reduced funding research in AI and termination

of serious research [25]. There have been two instances of such scenarios, first from

about 1974 – 1980 and second from 1987 – 1993. Never the less, field of AI continues to

move on with funded projects happening every now and then. There is still optimism

about the field.

2.3.2 Artificial Neural Networks (ANNs)

 An Artificial Neural Network (ANN, also known as Simulated Neural Network) is

mathematical computational model based on biological neural networks [20]. It consists

of an inter-connected group of artificial neurons which essentially sums its inputs and

applies a transfer function (normally a sigmoid) on it. These model actual biological

neurons at a very high level of abstraction and hence are termed as Artificial Neural

Networks. Biological Neural Networks are made up of biologically realistic neurons [81].

An ANN traditionally finds applications in regression analysis, classification, data

 30

processing and mining, etc. which are very broad fields. They are now often used as

controllers too. Figure 2.11 shows a simple example of a 3 layer feed-forward ANN.

Figure 2.11 A representation of a simple 3-layer feed-forward ANN with 4 inputs, 5

hidden nodes, and 1 output. [1]

 An ANN simply defines a mathematical function. Learning happens in form of

supervised, unsupervised, and reinforcement learning. There are various types of Neural

Networks. Some of them are Feed-forward neural network (FNN), Radial basis function

network (RBFN), Hopfield network, Recurrent Neural Network (RNN), and Associative

neural network (ASNN). Each one has its area of application. RBFNN are universal

function approximators [83, 84]. RNN allow internal state and have been used as

universal Turing machines [85]. Most of these networks do not provide sufficient level of

complexity and generalization for a socially interactive intelligent agent.

 31

 Spiking Neural Networks are more closely based on biology. Besides having neuronal

and synaptic states, they incorporate the concept of time into their operating model.

Neurons in these models only fire when the membrane potential of neuron reaches the

firing threshold. When this state is reached, the neuron fires and sends a spike to all the

neurons it connects to, via synapses. This spike, depending upon synapse and other

parameters, may induce a spike in the following connected neuron. Information may be

encoded in form of frequency of firing or timing of actual spikes which makes Spiking

Neural Networks attractive to use as basis for further experimentation.

Role of NCS

 NCS has been based on Spiking type of neural networks. NCS allows for biologically

realistic spiking neural networks. Details about NCS have already been discussed in

Section 2.2. Using NCS we attempt to develop a principle which is based on the human

neural system. Although the task at hand seems impossible as we know so little about

human biology, with help of artificial simulation and ongoing biological explorations, we

will achieve that principle in the near future. This thesis addresses a plausible first step in

this principle and also looks at the performance of NCS models for real time response.

 32

Chapter 3

RAIN – Recurrent Asynchronous Irregular

Network

3.1 Overview

 There is a presence of ongoing activity in a human brain as long as the human is alive.

This activity can be quantified by Electroencephalography (EEG) [8], which is a tracing

of electrical activity occurring in the brain, recorded by placing electrodes on a human

scalp. This electrical activity has been classified into different types of waves. All these

waves are mostly oscillating between 1-20 Hz when recorded over a scalp [23].

 Figure 3.1 shows a sample of alpha (7 to 12 Hz, associated with a relaxed awake state)

and beta (13 to about 20 Hz associated with an active concentration state) waves [15].

Figure 3.1 Alpha and Beta waves. [5]

 RAIN is an acronym for Recurrent Asynchronous Irregular Network first coined by

Philip Goodman at the Brain Computation Lab. In simple terms, RAIN represents a

 33

spiking activity exhibited by an NCS neural network, firing in a pattern which is

recurrent, asynchronous and irregular. This activity is similar to the random “noise”

activity seen in an EEG of human brain. Hence this is an attractive paradigm for further

experimentation of modeling human intelligence and memory. Figure 3.2 shows an

image depicting RAIN activity (about 16 Hz) obtained using NCS 5 with a 4000 integrate

and fire (IF) neuron network model.

Figure 3.2 A typical RAIN activity. [24]

3.2 Initial Neural Network Model

 Several of us were working on the concept of modeling Neocortical Lock and Keys to

implement an information encoding scheme resulting in a memory model which can learn

using spike timing dependent plasticity (STDP) [27]. During this time (late March 2006),

we were invited to be a part of a review paper about biologically realistic simulators [24].

 34

To have credibility, the invited simulators needed to demonstrate certain abilities enlisted

by benchmark models based on a paper by T. P. Vogels and L. F. Abbott [68].

 The benchmark model we chose for NCS 5 was for neural network models based on

integrate and fire (IF) neurons with conductance based (COBA) synapses (COBA model

of T. P. Vogels and L. F. Abbott [68]). The model consisted of a network of excitatory

and inhibitory neurons, connected via conductance-based "exponential" synapses

(instantaneous rise, exponential decay). For sufficiently large size network (more than

4000 neurons), this model displays self-sustained irregular states.

 Details and a brief description of the parameters are as follows [68]:

• Total number of neurons in the network is 4000 with a 4:1, excitatory to

inhibitory ratio.

• Area of cell (neuron) is 20000 µm2, ignored in our case since we chose not to

have distance in the model.

• Neuron membrane time constant equals 20 ms. In NCS 5; this parameter

(TAU_MEMBRANE) along with R_MEMBRANE is used to calculate

membrane capacitance [82].

• Specific capacitance of 1 µF/cm2 was achieved by adjusting R_MEMBRANE

value [82].

• Leak conductance should be 5e-5 S/cm2. It is used to calculate the leak current

when the compartment updates its membrane voltage in absence of a voltage

clamp. This is used in conjunction with leak reversal.

• Leak reversal is supposed to be -60 mV.

• Synapse parameters:

 35

o Excitatory conductance = 6 nS.

o Inhibitory conductance = 67 nS.

o Excitatory reversal potential = 0 mV.

o Inhibitory reversal potential = -80 mV.

o Excitatory time constant = 5 ms.

o Inhibitory time constant = 10 ms.

• Connectivity parameters: random connectivity, with probability of connection as

2%.

• A random stimulation during initial 50 ms is needed to set the network in active

state.

• IF model used:

o Firing threshold is -50 mV. When the compartment's membrane voltage

reaches threshold, it begins a spike shape (i.e. the neuron fires).

o Reset voltage is -60 mV. In NCS 5, this is represented as VMREST in

COMPARTMENT section [82]. It represents the starting voltage of the

compartment. When the compartment is at rest, it is at this voltage level.

o Compartment refractory period is 5 ms and it is clamped at reset voltage.

Building the Model for NCS 5

 Apart from looking at benchmark model specification, we also looked at the source of

benchmark models, the paper by T. P. Vogels and L. F. Abbott [68]. The following were

the major details of parameters in our model and the modified parameters from above

initial specification:

 36

• As per the paper [68], we created three cell groups in the network, E1, E2 and I.

E1 had 33 excitatory cells, E2 has 7967 excitatory cells and cell group I has 2000

inhibitory cells. Thus the network had 10,000 neurons in total.

• All the cell group combinations were connected (viz. E1-E1, E2-E2, E1-E2, E2-

E1, E1-I, I-E1, E2-I and I-E2), except for self connections in I.

• As mentioned earlier since we chose not to include distance in our model, area of

cell has been ignored.

• With respect to synapse parameters: excitatory time constant and inhibitory time

constant, NCS 5 has a facility for specifying that in form of values in a text file.

This file is defined in section of synaptic waveform known as SYN_PSG [82].

The time constants of 5 ms and 10 ms for FSV of 10,000 have been plotted in

Figure 3.3 as EPSG and IPSG, respectively [82].

• FILE_BASED type of stimulus in NCS 5 was used. This required a file with

values (1.0, meaning 100% probability of firing) representing stimulus. A pure

random Poisson type of stimulus was used [82].

• Compartment refractory period is implemented by the SPIKESHAPE section

[82]. In NCS, there is a concept of Frequency of Sampling Value (FSV). It is used

in scaling the duration of simulation (in terms of time ticks, or the time steps of

Do Think loop of brain). E.g.: If duration in .in file is set as 2.4 seconds and FSV

is 1,000, then the total time ticks would be multiplication of duration and FSV

which is 2,400 time ticks. So in our case, FSV is set at 10,000 and refractory

period is 5 ms or 0.005 seconds. So the number of values in the spike shape

waveform are 50 (0.005 * 10,000 = 50). NCS ensures that when a spike occurs,

 37

this spike shape values are used to represent the compartment voltage for 50 ticks.

So for this period of 50 ticks, only one spike is present and hence the refractory

period for the compartment is enforced.

Figure 3.3 EPSG and IPSG synaptic waveforms with 5 ms and 10 ms time constants,

respectively.

 Figure 3.4 represents the 10,000 neuron architecture. This is based on the initial

configuration parameters from T. P. Vogels and L. F. Abbott paper [68].

 38

Figure 3.4 Architecture of the neural network built in NCS 5.

3.3 Recalibration of Initial Neural Network Model

 Various parameters were tuned in the process of generating RAIN activity. The ones

worth mentioning are synaptic conductance (both excitatory and inhibitory), synaptic

delay, synapse absolute use and connection probability. Also along the way, few changes

were made to NCS 5 code to meet desired setup for this particular project. The first such

change was commenting out a switch (or a flag to the compiler) statement in the NCS 5

make file, CFLAGS += -DSAME_PSC. This flag forced the simulator to use same

synaptic waveform file for both excitatory and inhibitory synapses, causing both synapse

types to have the same time constant of 5 ms. This was discovered during an initial

experiment.

 39

3.3.1 Coding

 Synaptic conductance was the most changed parameter. There was a need to explore

ranges of combinations of excitatory and inhibitory synaptic conductance. This type of

experiment only had change of synaptic conductance values across a number of .in files.

Python scripts were written and used to generate the large number of input files which

were identical except for the synaptic conductance. A template .in file was read in by the

script and performed parameter replacement. Python scripts were also used in

orchestrating the automated execution of experiments.

 Besides Python, quite a few MATLAB scripts were written to perform analysis on

voltage, fire count, connection map and synaptic conductance types of reports. There

were a few code changes to NCS 5 also (like the correction of floating point

approximation in synaptic delay parameter).

3.3.2 Recalibration and Initial Results

 As mentioned earlier, synaptic conductance was the parameter that was changed most

often. With these parameters we performed some simulations. By varying only synaptic

conductance (MAX_CONDUCT value in SYNAPSE section) for excitatory and

inhibitory synapses, we either had the network not firing (due to strong inhibition) or just

going epileptic (a brain disorder involving recurrent seizures) due to strong excitation.

This is shown in Figures 3.5 and 3.6. These figures have been obtained using the

Neuroplot MATLAB script [14].

 40

Figure 3.5 Few cells from E2 cell group indicating network has failed to produce any

spikes.

 The plots give voltage values for reported neurons (y-axis) over the reported duration

(x-axis in terms of time ticks). The color bar near the right border of the image gives

voltage value in mV.

 The synaptic delay parameter had a significant effect. Changing this value affected the

state of the network from epileptic to strongly inhibited and other similar transitions.

Later on this value was settled at 0.0000000001 which was interpreted as almost zero.

 41

Figure 3.6 Few cells from E2 cell group representing continuous firing (spiking) state of

the network.

 We then decided to set up a new model. The total number of neurons in the network

was reduced to 4000 as per initial model specification. Ratio of 4:1 between excitatory

and inhibitory neurons was maintained. Correspondingly the number of neurons in

excitatory cell group E1 was 14, excitatory cell group E2 was 3186 and inhibitory cell

group I was 800. Also, the input stimulus file was of random Poisson type and changed to

consist of 14 columns, one for each of the 14 cells in the E1 cell group. The file had 50

rows indicating input for 50 time ticks. The file had a single value of 1.0 (1.0

representing 100% firing probability), occurring once but randomly during the 50 time

ticks for each of the 14 E1 cells. Figure 3.7 represents the architecture of the neural

 42

network that was now used in experiments. From the figure, we also note that I-I

connections were now used.

Figure 3.7 Recalibrated architecture of the neural network built in NCS 5.

 Figure 3.8 gives the voltage state of cell group E2 after one of the experiments.

Figure 3.8 A voltage report of few cells from E2 cell group with initial burst of spikes.

 43

As seen in the figure 3.8, there were initial signs that E2 (and the whole network

correspondingly) was trying to fire but was stopped by strong inhibition (black region)

coming in from cell group I. Thus we have a couple of waves of short spike bursts

indicated by white rectangular blocks, and then the network dying out, certainly not what

we wanted.

 The next thing to look at was how NCS was setting up connections between cell

groups. Default connection distributions followed an equal distribution algorithm. That

means, all cells in the destination cell group were guaranteed to get almost equal number

of connections from source cell group cells on average. It was suggested that we use a

binomial distribution connection algorithm.

 Figure 3.9 depicts the histogram of connections from cell group E2 (3186 neurons) to

Figure 3.9 Histogram of binomial distribution algorithm for E2 to E2 self connections.

 44

itself (self connections). Y-axis has number of connections made and x-axis has number

of neurons from destination cell group. From the figure it can be seen that the number of

connections made for neurons in the destination cell group (E2 in this case) are following

a binomial distribution.

 But the binomial distribution algorithm approach did not produce the expected result

either. The model was checked and cross-checked against expected configuration results.

For example, total number of synapses was one such parameter to be cross-checked.

Various ratios of excitatory and inhibitory synaptic conductance were tried. Performing

several experiments lead to a behavior similar to RAIN but not exactly RAIN, shown in

Figures 3.10 and 3.11.

Figure 3.10 Typical voltage report plot of E2 (subset of all cells from cell group E2).

 45

 Figure 3.11 shows the membrane voltage tracings for the first 2 cells in cell group E2.

The first cell spikes once initially and then quiets down due to initial inhibition where as

second cell continues spiking at a fast rate. Here initial inhibitory wave is able to shut off

a few cells but other cells continue to fire due to high excitatory conductance. Now we

are seeing sustained activity but at higher repetitive firing rates. Excitatory and inhibitory

synaptic conductance was 42 nS and 245 nS respectively.

Figure 3.11 Membrane voltage tracings for first 2 cells in E2 obtained using Neuroplot.

3.3.3 Final Setup

 We were now close to achieving RAIN behavior. Fine tuning of parameters (mostly

synaptic conductance again) resulted in desired RAIN behavior. The final configuration

 46

was having FSV at 10,000. Random Poisson stimulus with 14 cells as earlier was kept

same. The stimulus current had amplitude of 3 nA and was given to cell group E1 during

the initial 50 ms period of simulation. Distance was still off. Network was fully

connected with nine connections at 2% probability.

 Network size was 4000 (E1 = 14, E2 = 3186, I = 800). Compartment and synapse

parameters were same as in the benchmark model specifications. Synaptic delay was

almost zero seconds. Excitatory synaptic conductance was 10 nS and inhibitory synaptic

conductance was 100 nS, a ratio of 10, matching the one given in benchmark model

specification. Synaptic absolute value was 0.250. Short-term and long-term synaptic

dynamics were not defined as per the benchmark model and paper [68]. We will discuss

those final results in Chapter 5.

 47

Chapter 4

Benchmarks for NCS 5

 Benchmarks for NCS 5 are necessary to understand system performance and

requirements of hardware for applications to operate in real time. At the time, there was a

grant for purchasing new hardware. Since a fully functional cluster (Cortex) was already

available the question was what kind of new hardware would be most beneficial.

Recently a paper on Virtual Neuro-Robotics (VNR) was published in a new online

journal [34] by researchers at the BCL (details about the system can be found here [18]).

Since this involved a fully operational system (NCS 5 and a virtual robot), it was a good

practical system to perform the benchmarks on. Using the results of this benchmarks as

indicators, new hardware was to be purchased.

4.1 System Setup

4.1.1 Hardware and Software Involved

 Apart from Cortex cluster, 3 PCs, a frame grabber card, an LCD monitor and a video

camera were a part of the Virtual Social Robot (VSR) benchmark system. The system

also used a driver for the camera, Webots [19], Universal Real-Time Behavior Interface

(URBI) for Webots [17], Microsoft® Office® PowerPoint animation, NCS 5, BCS and

Brainstem software applications. Brief details of the system setup (hardware and

software) follow:

 48

• The Cortex cluster was needed to execute NCS 5 and Brain Communication

Server (BCS), also known as VoServer. The Opteron nodes of Cortex were used

for the benchmarks. An AMD Opteron™ processor node is made up of two

processors operating at 2.14 GHz with 4 GB RAM per node. The Cortex head

node runs the Linux operating system with kernel release: 2.6.9-42.0.2.ELsmp.

gcc version: 3.4.6 20060404 (Red Hat 3.4.6-3). MPICH version: mpich-1.2.7p1.

• Brainstem was running on an IBM® Thinkpad® X60, having Intel® Core™ Duo

processor with 2 GB of RAM. It runs the Fedora Linux distribution, kernel

release: 2.6.16-1.2096_FC5smp. gcc version: 4.1.0 20060304 (Red Hat 4.1.0-3).

• Another PC, an AMD® Opteron® Processor 250 (2.39 GHz) with 2 GB RAM

and Microsoft® Windows® XP Professional Version 2002 Service Pack 2, was

used to operate Webots and URBI for Webots software applications. This PC also

had a PowerPoint file animation running on it. This animation has a blank slide

initially. The next slide has animation of vertical black bars moving horizontally

back and forth for 6 seconds. After the animation is over, a black screen is

displayed till the user closes the PowerPoint slide show.

• A third PC (Intel® Pentium® 4 processor, 1500 MHz, 1 GB RAM) was needed

for using the frame grabber card (via PCI interface). It runs the Ubuntu, kernel

release: 2.6.20-15-generic.

• A Sony EVI-D70 color video camera was used to get the visual input stimulus for

the VSR system.

• An LCD monitor was used to display the PowerPoint animation.

 49

 Except for the Cortex component, all other hardware and software in the system

was present in the BCL.

4.1.2 Setup

 Figure 4.1 gives a schematic setup of the system employed for the benchmarks. A

brief description of the hardware and software components involved in the system was

given in previous section. Figure 4.1 shows the benchmark system interaction.

Figure 4.1 Schematic representation of the benchmark system setup.

 The PC, indicated as W, is set up to display PowerPoint animation on the LCD

Monitor in front of the camera. The frame grabber (indicated as F) captures images from

camera and gives them as input stimulus to Brainstem. W also has Webots and URBI for

Webots running on it, which simulates a virtual AIBO robot. Brainstem passes on this

input stimulus via BCS to the NCS 5 neural network. The neural network processes the

input stimulus and sends a report back to Brainstem, again with the help of BCS. These

 50

report values are interpreted into one of the three pre-determined actions for virtual AIBO

by Brainstem and sent to Webots on W. The virtual robot acts accordingly. This

completes the VSR loop.

4.2 Procedure

 The procedure for executing the benchmark tests is straight forward. It is as follows:

• Assuming that all necessary files are present and the system is configured

correctly.

• Start the camera capture application such that images in form of JPEG files are

being written to a location accessible by Brainstem.

• Start the Webots server and then the application itself. (URBI for Webots support

is already built-in to Webots).

• Start the PowerPoint animation slide show. Note that initially just a blank (white

screen) slide is displayed.

• Start the BCS.

• Now start the NCS 5 neural network simulation.

• Start Brainstem with GUI.

• This is the important part. Simultaneously press “enter” (or “spacebar”) to begin

the slide show and “Start” button on Brainstem GUI to begin the simulation. This

method is a bit crude and might induce errors of up till 500 ms. An automated

approach to eliminate any manual error should be considered in the future. So

 51

multiple simulations were done (about 5 per test) and a mean result was recorded

to ensure consistency in the benchmarks.

4.3 Tests Design

 Tests were designed keeping the hardware aspect in mind. The neural network had

cell groups located in two layers in different columns. Each cell group consisted of 16 (or

a multiple of 16) neurons, because the input stimulus coming from Gabor filters on

Brainstem had only 16 values. Hence a single value was given to each neuron (in cases

where the cell groups had total neurons as a multiple of 16, stimulus was duplicated for

each set of 16 neurons). The total number of neurons in each cell group was kept same

for all benchmark tests.

 All simulations were 1.5 seconds long. Stimulus duration (via animation slide show)

was 6 seconds. The tests were carried out with 2 and 32 cell group configuration, running

on 1, 2, 4, 8, 16 and 32 CPUs when possible. The total count of neurons and CPUs in the

tests was always doubled in the scenario of the next level. In some cases, the number of

neurons was increased by up to 16 fold as it was known that intermediate results were

similar to the previous scenario. Only one processor was used from each node, thus

utilizing 32 nodes at most.

 The main idea in the experiment was to record the time it takes for a meaningful

behavior state transition for the virtual AIBO robot (viz. from watch state to angry state).

This time was recorded to a text file by the Brainstem code. Corresponding System Time

Response (STR) was also recorded from NCS 5 debug output. STR was the time it took

 52

for NCS 5 to execute the neural network from first time tick to the last time tick of the

simulation.

 Layer 1 was configured to get input from Vertical Gabor filter and Layer 2 got input

from Horizontal Gabor filter. Layer 1 was associated with the angry behavior and Layer 2

with happy behavior for the virtual AIBO. This was done by a piece of code in

Brainstem.

 The animation only had horizontal motion of vertical bars which were picked up by

the Vertical Gabor filter and passed on to the cell groups in Layer 1. Thus the Vertical

Gabor filter was always triggered by the PowerPoint animation. Cells in Layer 1

receiving this stimulus had spiking activity. This activity of cells was recorded as reports

and sent to Brainstem.

 The report given to Brainstem was from the first 16 cells from the first cell group in

each of the layers. The cell group in a Layer which had maximum firing activity over a

small window of time was considered to be the winning cell group for that window of

time. To help Brainstem identify this winning cell group more easily, the spike shape was

set to 25 time ticks for Layer 1 cell groups and 26 time ticks for Layer 2 cell groups,

allowing a maximum firing rate of 40 and 38.46 spikes per neuron per second,

respectively. Thus, we had cell groups in Layer 1 always firing at a higher rate than cell

groups in Layer 2, which changed the state of the virtual AIBO from watch state to angry

state.

 This arrangement of Layer 1 cell groups always winning did not affect the timing

aspect of benchmark results. We were not concerned about the intelligence in the

 53

behavior of the system, as this was a benchmark experiment for measuring timing

performance.

 Four basic scenarios were simulated in six tests. Description of the tests is as follows:

• Test 1: This tested raw CPU power. There were no inter-connections between

cells in the cell groups and hence no messages were passed.

• Test 2: This test analyzed the performance of Message Bus code of NCS which

uses local memory (RAM) component of the system. For this, only self

connections were made in cell groups with 10% probability. Messages were

passed by the Message Bus on the same node via local memory.

• Test 3: Ethernet latency was tested here. Cell groups were now connected

between each other with 10% probability. Self connections from Test 2 were

removed. This made the Message Bus use MPI to pass messages across the

Ethernet.

• Test 4: This test made use of both local memory and Ethernet and served to

complete benchmark scenarios. Thus Test 4 combined Test 2 and Test 3 models.

Cell groups had self connections and were also connected to each other at 10%

probability.

• Test 3 B: Another set of Test 3 was performed, but with connections at 1%. This

was to further analyze effect of number of connections and amount of message

passing occurring in the network.

• Test 4 B: Similarly Test 4 was duplicated with 1% connections.

 54

Chapter 5

Results

 In this chapter, we will discuss results for our work. First we will take a look at final

RAIN results and then look at results from the benchmarks.

5.1 RAIN

 Continuing from where we left off at the end of Chapter 3, let us see the final results

for RAIN experiments. Figure 5.1 gives the voltage tracings for the first 4 cells from cell

Figure 5.1 Membrane voltage tracings for first 4 cells in E2.

 55

group E2. The spikes of all the cells are random, irregular and asynchronous indicating

RAIN in the network.

 Figure 5.2, 5.3 and 5.4 show the typical voltage report from cell groups E1, E2 and I

respectively. We were able to obtain RAIN for both equal and binomial distribution

connect algorithms. We have continued using the equal (forced) distribution algorithm.

Figure 5.2 Voltage report plot of whole cell group E1 for final setup.

 56

Figure 5.3 Voltage report plot of a few cells from cell group E2 for final setup.

Figure 5.4 Voltage report plot of a subset of cell group I for final setup.

 57

 Figure 5.5 is from the Vogels and Abbott paper [68]. It shows the firing rates for

numerous combinations of synaptic conductance. The x- and y-axes are inhibitory and

excitatory conductance respectively, with the color indicating firing rates as represented

in the legend color bar. The black square in the figure indicates the operating point that

was chosen by the authors of the paper. The light blue triangular region represents RAIN

activity region (about 12 to 25 Hz).

Figure 5.5 Firing rates for various combinations of excitatory and inhibitory synaptic

conductance. [68]

 We were also able to map out a similar triangular region with similar firing rates in

our network, for different synaptic conductance, as shown in Vogels and Abbott paper in

Figure 5.5. Corresponding plots have been shown in Figures 5.6, 5.7 and 5.8 for E1, E2

and I cell groups respectively. The axes are same as in Figure 5.5, with color indicating

firing rates. Each combination of synaptic conductance represents a simulation.

 Figure 5.9 shows different types of Network activities, including RAIN.

 58

Figure 5.6 Firing rates for various combinations of excitatory and inhibitory synaptic

conductance (E1 cell group).

Figure 5.7 Firing rates for various combinations of excitatory and inhibitory synaptic

conductance (E2 cell group).

 59

Figure 5.8 Firing rates for various combinations (I cell group).

Figure 5.9 Types of network activity. [35]

 60

 In fact, the RAIN regime itself has other similar patterns. Those are Synchronous

Regular (SR), Asynchronous Regular (AR), Asynchronous Irregular (AI) and

Synchronous Irregular (SI). In addition to these behaviors, Figure 5.9 shows

Asynchronous + mixed Regular-Irregular (A + Mixed RI), Mixed + Irregular (Mixed + I),

Dry and Dead behaviors.

 RAIN activity has proven to be fairly self sustained as seen in Figure 5.10. Here the

simulation duration was 20 seconds and RAIN activity persisted till the end of

simulation.

Figure 5.10 A plot from Analyze Raster MATLAB script for a subset of cells from E2

showing that RAIN activity is present through out a 20 second simulation.

 The plot has been generated from one of the versions of analyze raster MATLAB

script, developed in BCL. The major feature of the plot is the raster plot with spikes

shown as green dots and high firing rates by red dots (spikes with very low inter-spike

interval). Other windows are showing average firing rate, fan out (variability),

 61

spectrogram power of windowed mean rate, amplitude of top 10 frequencies, phase of top

10 frequencies, and Eigen value correlation evolution of individual cells.

 Experiments (inspired by [64]) to simulate sleep state (delta waves) brain activity and

re-normalization of synaptic weights were also done with some success. These

experiments used RAIN along with a modified network (E1, E2, E3, E4 and I, each

having 800 cells) operating at FSV 1,000, negative ramp stimulus and RAIN pattern

itself was used as a stimulus (taken from a standardized experiment earlier). Simulation

duration was 15 seconds.

 We saw in experiments that a RAIN network was more easily started (as seen in

Figure 5.11) if a negative ramp stimulus was applied initially for about at least 25 ms. A

Figure 5.11 Slow wave oscillations in cell group E1. [35]

 62

sine stimulus with different phases (in experiments) was used as the background stimulus

for this RAIN network. STDP (positive and negative Hebbian learning) was also used.

 Figure 5.11 shows the voltage report plot for cell group E1 with slow wave

oscillations in network activity. Figure 5.12 depicts a downscaling in synaptic weights

gradually over the duration of the simulation, before stabilizing. This represents a similar

decrease of biological synaptic weights and thus simulating the sleep model suggested in

the Tononi paper [64].

Figure 5.12 Re-normalization of synaptic weights due to Hebbian learning. [35]

 Another set of experiments followed, which studied the least number of cells that were

needed to be stimulated with RAIN stimulus and the smallest network able to sustain

RAIN. Negative ramp stimulus and RAIN stimulus were used. The stimulus were applied

 63

for 100 ms and given to only 25 E1 cells (Setup was same as mentioned previously, E1,

E2, E3, E4 and I, each having 800 neurons) at FSV 1,000. This produced RAIN activity

in the network. Also, the smallest network that was able to sustain RAIN for smaller

periods of time was a total of 1000 neurons at FSV 1,000. This has important

implications in having real-time applications for RAIN. Later on it was found that a

model of network size 2,000 neurons, operating at FSV 10,000 was more robust than the

1,000 neuron model.

5.2 Benchmark Results

 The resultant times were recorded for first meaningful transition in behavior of the

virtual dog (angry, watchful or happy) indicated by a GUI on Brainstem (Behavioral

Time Response). The response times were recorded in a file “timerespond.txt” by

Brainstem code. NCS 5 execution times were recorded from debug messages by NCS 5

itself (System Time Response).

 The values in the tables represent time in seconds. Two types of neural network

models were used, one with 2 cell groups and another with 32 cell groups. The number of

processors and-or cells are normally doubled while going on to the next level of test. In

some cases where the results were remaining fairly constant, increments were more than

double.

 The number of processors range from 1 to 32. Values in bold indicate threshold after

which the response was slower than real time (more than nearly 3 seconds).

Corresponding system times are also in bold. CPUs represent the number of processors

 64

that were used to run the brain model on. A value of “X” indicates a particular scenario

was not necessary as it yields a similar result as in previous case or is beyond the range of

our interest. A value of “NA” indicates that the resulting time was immeasurable.

5.2.1 Test 1

Behavioral Time Response (BTR):

 Table 5.1 was split up into (a) and (b) because of space restrictions. Cell groups are

depicted as follows. Consider the first column, 2 (16 x 1) in Table 5.1 (a). First number

represents the number of cell groups in the model, here it is 2. First number in the bracket

(here 16) is always the same in all cases. It represents the first basic set of 16 cells.

Multiplication is shown by x. The second number in the bracket (here 1) is the number of

sets of 16 cells that are present in the network. Thus total number of cells is calculated as

2 x 16 x 1 = 32 cells.

Table 5.1 (a) Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64)

1 1.488 1.56 1.553 1.5
2 X X X X

Table 5.1 (b) Results for 2 cell group neural network model (continued).

Cell groups CPUs
2 (16 x 128) 2 (16 x 512) 2 (16 x 1024) 2 (16 x 2048)

1 1.497 1.715 3.476 6.403
2 X X 1.78 2.727

 65

 Table 5.1 (b) shows that the maximum number of cells able to be simulated in real

time for Test 1 using just a single processor, was 32768 (215). This is seen by bold value

of 3.476 seconds in column 2 (16 x 1024) which gives 2 x 16 x 1024 = 32768 cells.

Although, the thing to remember is that only half of the cells (Layer 1) here are spiking.

Similarly 2 processors (2 CPUs) can simulate 65536 (216) cells, from 2 (16 x 2048) cell

group column.

 In Table 5.2 (a), the maximum number of cells that can run on 8 processors is 262144

(218) (calculated as 32 x 16 x 512), since the BTR was 3.084 seconds (near real time). In

Table 5.2 (b), real time BTR for 32 cells was 3.136 seconds. This result was obtained by

a 220 cells model.

Table 5.2 (a) Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 64) 32 (16 x 128) 32 (16 x 256) 32 (16 x 512)

1 3.148 5.833 9.516 X
2 1.332 2.963 5.532 9.2
4 X 1.661 3.099 5.595
8 X X 1.984 3.084
16 X X X 2.255
32 X X X X

Table 5.2 (b) Results for 32 cell group neural network model (continued).

Cell groups CPUs
32 (16 x 1024) 32 (16 x 2048) 32 (16 x 4096)

1 X X X
2 X X X
4 13.201 X X
8 5.471 12.575 X
16 4.265 7.766 16.274
32 1.96 3.136 8.239

 66

System Time Response (STR):

 Tables 5.3 (a) and (b) give corresponding NCS system response for benchmark model

of Test 1 involving 2 cell groups.

Table 5.3 (a) Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64)

1 13.12259 13.22949 13.09861 13.212824
2 X X X X

Table 5.3 (b) Results for 2 cell group neural network model (continued).

Cell groups CPUs
2 (16 x 128) 2 (16 x 512) 2 (16 x 1024) 2 (16 x 2048)

1 13.109415 16.211114 28.529475 53.849343
2 X X 16.544322 29.765697

 Tables 5.4 (a) and (b) give STR for 32 cell group networks. Real time STR for an 8

processors simulation is 32.42 seconds shown as a bold value in column 32 (16 x 512) in

Table 5.4 (a).

Table 5.4 (a) Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 64) 32 (16 x 128) 32 (16 x 256) 32 (16 x 512)

1 27.03646 50.714999 95.175041 X
2 14.572991 25.910521 48.37169 93.730504
4 X 16.112949 32.759438 63.190934
8 X X 17.76706 32.42442
16 X X X 22.061521
32 X X X X

 67

Table 5.4 (b) Results for 32 cell group neural network model (continued).

Cell groups CPUs
32 (16 x 1024) 32 (16 x 2048) 32 (16 x 4096)

1 X X X
2 X X X
4 125.722244 X X
8 60.879575 119.477107 X
16 39.930199 80.739848 149.101989
32 17.552403 32.711633 63.289575

 Similar test setup and design was used to simulate other tests. The exception being the

way the simulations were allocated on Cortex cluster to test local memory (Test 2),

Ethernet latency (Test 3) and both (Test 4).

5.2.2 Test 2

Behavioral Time Response (BTR):

 As seen from Tables 5.5 (a) and (b), the BTR for Test 2 are much higher than seen in

Test 1 for the same network setup.

Table 5.5 (a) Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32)

1 1.5 1.547 1.54
2 1.526 X X

Table 5.5 (b) Results for 2 cell group neural network model (continued).

Cell groups CPUs
2 (16 x 64) 2 (16 x 128) 2 (16 x 256)

1 2.215 3.828 14.605
2 X 3.894 14.487

 68

 For example, maximum number of cells that could be simulated in real time for Test 2

were 4096 (212) compared to 32768 (215) cells in Test 1.

 Similar to Table 5.5, Table 5.6 also has BTR higher than Test 1. 214 cells were

simulated in real time on 1 processor as indicated by BTR value of 3.773 seconds.

Table 5.6 (a) Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 8) 32 (16 x 16) 32 (16 x 32)

1 1.484 1.772 3.773
2 X X 3.703
4 X X 2.869
8 X X 1.959
16 X X 1.575
32 X X 1.555

Table 5.6 (b) Results for 32 cell group neural network model (continued).

Cell groups CPUs
32 (16 x 64) 32 (16 x 128) 32 (16 x 256)

1 7.882 X X
2 10.117 X X
4 5.316 15.34 X
8 3.861 11.283 X
16 2.282 5.657 19.87
32 2.223 4.515 10.693

System Time Response (STR):

 Tables 5.7 (a) and (b) give STR for 2 cell group models from in Test 2.

Table 5.7 (a) Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32)

1 13.09803 13.28663 14.30893
2 13.11258 X X

 69

Table 5.7 (b) Results for 2 cell group neural network model (continued).

Cell groups CPUs
2 (16 x 64) 2 (16 x 128) 2 (16 x 256)

1 22.63773 65.395473 319.41792
2 X 65.818943 319.14783

 Tables 5.8 (a) and (b) give STR result for 32 cell group model. Corresponding STR

for 1 processor was 57.95 seconds.

Table 5.8 (a) Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 8) 32 (16 x 16) 32 (16 x 32)

1 13.670199 21.001584 57.946136
2 X X 57.515205
4 X X 34.955642
8 X X 24.180679
16 X X 19.032793
32 X X 17.029839

Table 5.8 (b) Results for 32 cell group neural network model (continued).

Cell groups CPUs
32 (16 x 64) 32 (16 x 128) 32 (16 x 256)

1 217.13195 X X
2 208.36749 X X
4 111.24735 461.188195 X
8 61.347211 235.667336 X
16 37.932387 124.895976 641.814124
32 25.951538 69.359208 331.443202

 70

5.2.3 Test 3

A) Connections between cell groups are at 10%.

Behavioral Time Response (BTR):

 The first part of Test 3 had cell groups connecting at a probability of 10% with other

cell groups (across connections). Tables 5.9 and 5.10 represent results for 2 and 32 cell

group brain models for Test 3 (part A). From Table 5.10, we see that as we go from one

model to the next, the number of processors required in maintaining real time RTB

quadruples instead of doubling as was the case in Test 1.

Table 5.9 Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64) 2 (16 x 128)

1 X X X X X
2 1.641 1.712 1.81 3.397 13.525

Table 5.10 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 4) 32 (16 x 8) 32 (16 x 16) 32 (16 x 32)

1 X X X X
2 3.532 13.811 X X
4 2.18 7.255 NA X
8 1.884 4.129 16.903 X
16 X 2.652 9.759 X
32 X 1.792 5.732 NA

System Time Response (STR):

 Table 5.11 and 5.12 portray results for 2 and 32 cell group models in Test 3 (part A).

The number of cells simulated in real time using a single processor was 2048 (211). This

is half of the number of cells from Test 2 and much lesser than in Test 1.

 71

Table 5.11 Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64) 2 (16 x 128)

1 X X X X X
2 13.12612 13.21849 16.17487 34.92781 125.11506

Table 5.12 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 4) 32 (16 x 8) 32 (16 x 16) 32 (16 x 32)

1 X X X X
2 34.422668 125.05567 X X
4 22.45127 64.848998 303.018165 X
8 16.948477 37.863951 145.126107 X
16 X 25.423113 78.529517 X
32 X 18.61824 45.640834 175.67498

B) Connections between cell groups are at 1%.

Behavioral Time Response (BTR):

 Part B of Test 3 had cell groups connecting across at 1% with other cell groups. Table

5.13 and 5.14 depict results for 2 and 32 cell group models in Test 3 (part B).

Table 5.13 (a) Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64)

1 X X X X
2 1.525 1.548 1.784 1.735

Table 5.13 (b) Results for 2 cell group neural network model (continued).

Cell groups CPUs
2 (16 x 128) 2 (16 x 256) 2 (16 x 512)

1 X X X
2 2.07 6.841 NA

 72

 The number of cells simulated in real time using 2 processors was 8192 (213).

Reducing connection probability increases the capacity of processors to simulate larger

models, because message passing has reduced due to fewer connections, as expected.

Table 5.14 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 8) 32 (16 x 16) 32 (16 x 32) 32 (16 x 64)

1 X X X X
2 2.226 6.184 X X
4 1.82 3.36 13.39 X
8 1.7 1.99 7.024 NA
16 X 1.832 4.19 NA
32 X 1.684 2.551 8.976

System Time Response (STR):

 Again tables were needed to be broken up into (a) and (b) to manage space as seen in

Tables 5.15 (a) and (b).

Table 5.15 (a) Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64)

1 X X X X
2 13.09831 13.10969 13.26272 13.22319

Table 5.15 (b) Results for 2 cell group neural network model (continued).

Cell groups CPUs
2 (16 x 128) 2 (16 x 256) 2 (16 x 512)

1 X X X
2 20.005084 56.4378 225.97363

 73

 Table 5.16 gives STR results for 32 cell group models. The number of cells simulated

in real time for Test 3 (part B) is approximately three times more than that of Test 3 (part

A).

Table 5.16 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 8) 32 (16 x 16) 32 (16 x 32) 32 (16 x 64)

1 X X X X
2 19.613465 53.431618 X X
4 14.920719 31.402475 107.582508 X
8 13.669482 21.319482 57.376585 243.18132
16 X 16.233758 34.713016 123.02606
32 X 13.850684 23.16983 65.592769

5.2.4 Test 4

A) Connections between cell groups at 10% and self connections in cell groups at 10%.

Behavioral Time Response (BTR):

 Tables 5.17 and 5.18 represent results for 2 and 32 cell group models connected at

10% probability in Test 4 (part A). From Table 5.18 we see that, as the total amount of

cells in cell groups inside the neural network were doubled, the number if processors

were needed to be increased four-fold to keep the BTR response id the system in real-

time (around 3 seconds).

Table 5.17 Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64) 2 (16 x 128)

1 X X X X X
2 1.631 1.735 2.114 5.755 NA

 74

Table 5.18 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 4) 32 (16 x 8) 32 (16 x 16) 32 (16 x 32)

1 X X X X
2 3.784 14.316 X X
4 2.213 7.444 NA X
8 1.983 4.209 NA X
16 X 2.728 10.636 X
32 X 1.895 6.915 NA

System Time Response (STR):

 From Tables 5.19 and 5.20, we see the same trend of quadrupling number of

processors for next level of model to be kept in real time, as was seen in Test 3 and BTR

results of Test 4.

Table 5.19 Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64) 2 (16 x 128)

1 X X X X X
2 13.15775 13.71662 21.43926 58.89992 270.03817

Table 5.20 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 4) 32 (16 x 8) 32 (16 x 16) 32 (16 x 32)

1 X X X X
2 35.925011 131.80859 X X
4 23.134739 67.815451 323.774671 X
8 17.109711 38.952764 154.702883 X
16 X 25.849791 87.555658 X
32 X 19.160225 54.862979 245.92971

 75

B) Connections between cell groups at 1% and self connections in cell groups at 10%.

Behavioral Time Response (BTR):

 Tables 5.21 and 5.22 represent results for 2 and 32 cell group models connected at 1%

probability between cell groups and 10% for self connections in Test 4 (part B).

Table 5.21 Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64) 2 (16 x 128)

1 X X X X X
2 1.528 1.62 1.813 3.156 13.055

Table 5.22 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 4) 32 (16 x 8) 32 (16 x 16) 32 (16 x 32) 32 (16 x 64)

1 X X X X X
2 1.557 2.188 8.144 NA X
4 1.563 1.893 4.244 17.817 X
8 X 1.678 2.444 9.621 NA
16 X X 1.864 6.223 NA
32 X X X 4.299 16.573

System Time Response (STR):

 Contrary to results from Test 3 (part A and B), the difference in performance for Test

4 (part A and B) is not that large, as seen from Tables 5.23 and 5.24.

Table 5.23 Results for 2 cell group neural network model.

Cell groups CPUs
2 (16 x 1) 2 (16 x 16) 2 (16 x 32) 2 (16 x 64) 2 (16 x 128)

1 X X X X X
2 1.528 1.62 1.813 3.156 13.055

 76

Table 5.24 Results for 32 cell group neural network model.

Cell groups CPUs
32 (16 x 4) 32 (16 x 8) 32 (16 x 16) 32 (16 x 32) 32 (16 x 64)

1 X X X X X
2 13.724195 24.441637 75.432045 343.89577 X
4 13.196295 17.401348 41.606433 162.96342 X
8 X 14.309163 26.491229 83.442747 382.899589
16 X X 19.859836 54.70997 217.900018
32 X X X 37.58362 129.584271

 Although across connections were dropped from 10% to 1%, the reason is the

additional overhead of passing messages on local memory due to 10% self connections.

5.2.5 Graphs

Effect of Message Bus Code Due to Spikes

 In this analysis we take a look at the effect of delay due to spikes occurring in the

neural network. We have calculated the total number of spikes for a network during

simulation. The System Time Response (STR) was then taken in terms of µ-seconds and

divided by total number of spikes to give “Microsecond / Spike”. This value indicates

how much computation power was spent on two major code portions, viz. message bus

code and code dealing with maintaining state (like compartment equations) of the neural

network. A large value indicates that processors were mostly busy executing the message

passing code and a small value, say 1, indicates that the processors spent more time on

executing compartment state code.

 77

 Log plots (cells vs. delay) were employed to better demonstrate results, as the tests

mostly involved doubling of cells and processors. An important point to note here is that

true results are seen only when a neural network is spiking near its maximal spiking rate.

 Figure 5.13 represents a comparison between Tests 1 and 2 done on a single processor

with only Layer 1 spiking. Initially Test 2 seems efficient, but after 1024 cells mark, Test

2 processor begins to spend more time on Message Bus code for message passing. This

happens because, neural network in Test 2 starts firing maximally (40 Hz) only after

1024 cells mark showing the true result. Note that Test 1 curve is a straight line with

slope 1. This means that a processor is utilized optimally for both pieces of code, as

number of cells increases (also referring to intermediate results).

Figure 5.13 Test 1 vs. Test 2.

 78

 In Figure 5.14, we see a comparison between Test 3 and Test 4 performed on two

processors with both Layers spiking. Again, we see that for first mark (32 cells) Test 4 is

not spiking much, thereby having a low Microsecond / Spike value. For remaining points,

as expected, processors spent more time on Message Bus code for Test 4 than Test 3.

Because Test 4 has more messages being passed due to self connections in cell groups

which are not present in Test 3. Another thing to note is that as number of cells keeps

doubling, Microsecond / Spike value increases non-linearly in models where Ethernet (or

local memory) is involved.

Figure 5.14 Test 3 vs. Test 4.

 Figure 5.15 compares Test 3 at 10% and 1% connections on two processors with both

layers spiking. Again we see a similar trend here. As the 1% connected neural network

starts spiking maximally (after mark of 512 cells), it has small Microsecond / Spike value

 79

than 10% connected model. In fact, when this value is increasing in 10% model, it goes

on reducing slowly in 1% model.

Figure 5.15 Test 3 - 10% vs. Test 3 - 1%.

 A similar trend is seen in Figure 5.16, Test 4 at 10% and 1% connections on two

processors with both layers spiking. The difference is that the Microsecond / Spike value

in 1% model also goes on increasing, as in case of 10%, albeit lesser than 10%. As

expected, reducing number of connections yielded in lesser time being spent on Message

Bus code, when the neural networks were spiking near their maximum spiking rate.

 From the plots we see that having spikes causes message passing in the NCS 5

Message Bus, thus making the processor spend more time on that piece of code. Large

simulations not involving Message Bus (Test 1) have greater efficiency, by almost an

order of magnitude compared to local memory and Ethernet simulations (Test 2, 3 and 4).

 80

Figure 5.16 Test 4 - 10% vs. Test 4 - 1%.

 Looking at Test 3 and Test 4 (local memory vs. Ethernet), for 32 (16 x 8) cells running

on 16 nodes the behavioral time responses are comparable (2.65 and 2.73 seconds

respectively). We get values of 105 and 107 µ-s/spike, a difference of 2 µ-s/spike. So we

can roughly say that Ethernet is 2/100th or 1/50th or 50 times slower than local memory.

Real Time Behavioral Response of the System

 We now compare all the basic four tests for real time behavioral responsiveness. A

Log plot (processors vs. cells) is used again for previously mentioned reasons. The

closest cell and processor combinations were noted where the system showed that it was

just or slightly above real time. Selecting points near or faster than real time reduced the

number of plot-points, especially in case of Test 3 and Test 4.

 81

 Figure 5.17 shows comparison of real time behavioral response. This indicates that

processor cache is the fastest medium for message passing and copes best with increasing

network size. Doubling the cells and processors achieves real time responsiveness of the

system in Test 1. Test 3 and 4 had the same data points and hence are shown by the same

line.

Figure 5.17 Comparison of real time behavioral response.

 Test 1 is a straight line with slope 1. Tests 2, 3 and 4 have their plot as a straight line

but with slope not equal to 1. This means that, simply doubling processors for an increase

in number of cells, as in Test 1, does not maintain real time system response. Number of

processors was in fact increased four (or even eight) times for a two-fold increase in cell

count, to maintain real time behavior. The point that Ethernet is slower by almost an

 82

order of magnitude (in terms of network size) than local memory is seen by comparing

Test 2 and Test 3 and 4 lines. Number of cells simulated by Test 2 is almost 10 times

more.

 Similar scenario arises when we compare Test 1 and Test 2 plots. Processor cache is

faster than local memory for message passing. Number of cells simulated by Test 1 is

about 10 times more than Test 2. This is ever so true as the network size increases.

Other Important Observations

• The major time consuming factor in NCS 5 is message passing due to spikes.

• Organization of the number of cells in connected cell groups is important. For

example, in Test 2, for same number on cells (4096) executing on same number of

processors (1) yielded a significant difference in behavioral (2.344 seconds) and

system response (51.7 seconds). The difference in these setups is that the first

case had 2 cell groups and the latter had 32 cell groups. So the number of

synapses per processor is different in the two cases. Each processor has a limit to

the number of synapses it can compute or update in real time. First case has

838,860 synapses (2 connects x ((16 cells x 128 cells)2 x 10%)) and in the second

case there are 52,416 synapses (32 connects x ((16 cells x 8 cells)2 x 10%)). This

is an important point to be kept in mind when designing neural networks with

NCS 5.

• In case of massive networks, the delay in processing was so large that the BCS-

Brainstem buffers were full almost immediately, as NCS was not ready to accept

incoming stimulus. Due to this, input stimulus (6 seconds duration) coming in

after the buffers were full, was lost. Thus there was no behavioral response in the

 83

system as input stimulus was missed and the reason for having “NA” in results for

few experiments.

• Another system issue is the report files. When a model has reports, they are stored

in files. Writing to a file requires disk I/O, which is slower than fast Ethernet

connection. So in case of large report files, the simulation slows down slightly

because NCS 5 needs to write to disk before it can proceed to simulate the next

time tick. This was taken into consideration while performing benchmark tests by

recording results from the simulations in which reports were turned off. To find

total number of spikes, a duplicate simulation was done with reports on.

 84

Chapter 6

Conclusions and Future Work

6.1 Conclusions

 Models of neural network demonstrating RAIN behavior were developed successfully

[24]. After detailed analysis and experimentation, the key factor for generation of RAIN

activity in our neural networks was found to be the self connections in the inhibitory cell

group. These self connections in inhibitory cells act as a meta-parameter which controls

the amount of inhibition applied to excitatory as well as inhibitory neurons in the

network. This is also representative of a feedback mechanism for the inhibition system.

 RAIN has the promise of being the stepping stone for a major breakthrough principle

in simulating mammalian (especially human) brain activity and behavior, sought after by

those in computational neuroscience and other fields. As mentioned in Chapter 5, RAIN

was successfully used to give a demonstration of slow wave deep sleep (delta waves). In

conjunction with Hebbian learning, re-normalization of synaptic weights was modeled as

an effect of delta wave oscillations found in biology [35].

 Other experiments like the paradigm of “winner takes most” were done, but with

small degree of success.

 Benchmark test results have shown that the major bottleneck is the messages (spikes)

that are sent to cell groups. Irrespective of hardware medium, CPU cache, local memory

or Ethernet used, message transmission is the single most computationally expensive

 85

feature of NCS 5. With respect to hardware, as expected Ethernet is the slowest, followed

by local memory and then CPU cache.

 Upgrading of hardware raises a basic question. Do we need more computation power

in form of large number of CPUs or a limited computation power with a high speed

interface? Obviously this is a tradeoff which must be achieved depending upon future

requirements. If large numbers of CPU are needed, they can be used along with Ethernet

or similar relatively cheap interface, sacrificing performance. Otherwise money could be

invested in a shared memory system, where number of CPUs is sufficient and faster

communication happens through shared memory.

 Another alternative is to get few nodes with latest multi-core processors (for example

32 processors per node) which would be connected with an InfiniBand network interface.

This interface has speeds ranging from 2 Gbit/s to 96 Gbit/s in theory.

 A fourth alternative is to look at new innovative architectures, like Lightfleet

interconnect machines [11].

 Neural modeling using computational devices has an important role to play in the

future. To understand and unravel the mysteries of the brain and theory of cortical

computation there is a need of tight combination between theoretical and experimental

results [26]. Simulations along with the experiments are being successfully used by

computational biologists to understand and predict the quantitative behavior of complex

systems [67].

 86

6.2 Future Work

 Many experiments based on the RAIN concepts have happened with small amounts of

success. Re-evaluating them might prove useful to further them or sprout new ideas off of

them. Simulating sleep and its effects with the help of RAIN need to be investigated

further. Application of negative stimulus and use of RAIN itself as the driving

stimulation needs to be studied in great detail. Models depicting “winner takes all” and

“winner takes most” behavior in single and multiple networks, using RAIN, need to be

modeled accurately.

 Research is currently underway in the BCL to study pattern recognition in audio

stimulus with help of RAIN and learning. Autism models will soon be developed using

RAIN based neural networks. Application of visual stimulus in RAIN neural networks is

also a pending project on the lines of audio stimulus project. Projects exploring

possibility of applying RAIN principle to model and simulate memory, learning,

consciousness and various other human principles are an exciting prospect.

 The benchmark tests revealed that there is a scope for either improving or re

implementing the Message Bus with new principles. One feels there are still some small

optimizations that could be done to NCS 5, so as to better suit the current hardware

configuration. The prospect of adding new features, like XML support, is still open.

 Another interesting project prospect would occur if multi-core PCs were bought.

Current version of NCS 5 simply creates multiple copies of itself to execute on different

nodes. This is actually inefficient in terms of system resources like memory. An

alternative suggested requires significant changes to the NCS. The new model would

 87

involve one main copy of the Message Bus. This copy would co-ordinate message flow

across nodes and the nodes themselves will only have light-weight NCS process

consisting of code required to update cell group dynamics. Messages between these light-

weight NCS processes would travel via shared memory implemented using the local

memory of that node. Thus multi-core architecture resources would be utilized optimally.

This offers a very good solution for expanding the performance efficiency of NCS.

 88

Bibliography

[1] A representation of a simple 3-layer feed-forward ANN with 4 inputs, 5 hidden
 nodes, and 1 output. [last accessed on November 15th, 2007]; Available from:
 http://smig.usgs.gov/SMIG/features_0902/tualatin_ann.fig3.gif.

[2] A Synapse. [last accessed on November 15th, 2007]; Available from:
 http://webspace.ship.edu/cgboer/synapse.gif.

[3] A typical Neuron. [last accessed on November 15th, 2007]; Available from:
 http://training.seer.cancer.gov/module_anatomy/unit5_2_nerve_tissue.html.

[4] Action Potential. [last accessed on November 15th, 2007]; Available from:
 http://www.answers.com/topic/action-potential-vert-png.

[5] Alpha and Beta sleep waves. [last accessed on November 15th, 2007]; Available
 from: http://neurocog.psy.tufts.edu/images/beta_alpha.gif.

[6] Brain Facts and Figures. [last accessed on November 15th, 2007]; Available from:
 http://faculty.washington.edu/chudler/facts.html.

[7] Cortex Status webpage. [last accessed on November 15th, 2007]; Available from:
 http://cortex.cse.unr.edu:8000/ganglia/.

[8] Electroencephalography (EEG). [last accessed on November 15th, 2007];
 Available from:
 http://core.ecu.edu/psyc/grahamr/DW_3311Site/BookSections/TextbookSections/
 Sect1.10.html.

[9] GENESIS, neural network simulator. [last accessed on November 15th, 2007];
 Available from: http://www.genesis-sim.org/GENESIS/.

[10] Brain Computation Lab website. [last accessed on November 15th, 2007];
 Available from: http://brain.cs.unr.edu/index.php.

[11] Lightfleet interconnect. [last accessed on November 15th, 2007]; Available from:
 http://www.lightfleet.com/.

[12] NeoCortical Simulator source. [last accessed on November 15th, 2007]; Available
 from: http://brain.cs.unr.edu/ncsDocs/ncs5.tgz.

[13] NEURON, neural network simulator. [last accessed on November 15th, 2007];
 Available from: http://www.neuron.yale.edu/neuron/.

 89

[14] NEUROPLOT: Software for Analysis of Large-Scale NN Data. [last accessed on
 November 15th, 2007]; Available from:
 http://brain.cs.unr.edu/publications/neuroplot.m.

[15] On-going electrical activity of the brain. [last accessed on November 15th, 2007];
 Available from: http://neurocog.psy.tufts.edu/images/erp.htm.

[16] The Python programming language. [last accessed on November 15th, 2007];
 Available from: http://www.python.org.

[17] URBI for Webots documentation. [last accessed on November 15th, 2007];
 Available from: http://www.gostai.com/doc/en/webots/.

[18] User Guide for Virtual Social Robot. [last accessed on November 15th, 2007];
 Available from: http://brain.cs.unr.edu/share/VSR/doc/VSR_guide.htm.

[19] Webots. [last accessed on November 15th, 2007]; Available from:
 http://www.cyberbotics.com/.

[20] H. Abdi, D. Valentin, and B. E. Edelman, "Neural Networks", Thousand Oaks:
 Sage, 1999.

[21] J. L. Blake, and P. H. Goodman, "Speech perception simulated in a biologically
 realistic model of auditory neocortex", Journal of Investigative Medicine, 2004.

[22] J. M. Bower, and D. Beeman, "The Book of GENESIS: Exploring Realistic
 Neural Models with the GEneral NEural SImulation System", Springer, 1998.

[23] M. A. B. Brazier, "The Electrical Activity of the Nervous System", written at
 London, Pitman, 1970.

[24] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower, M.
 Diesmann, A. Morrison, P. H. Goodman, F. C. Harris, Jr., M. Zirpe, T.
 Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T.
 Vieville, E. Muller, A. P. Davison, S. E. Boustani, A. Destexhe, "Simulation of
 networks of spiking neurons: A review of tools and strategies", J. Comput.
 Neuroscience, vol. 23, pp. 349-398, 2007.

[25] D. Crevier, "AI: The Tumultuous Search for Artificial Intelligence", New York,
 NY: BasicBooks, 1993.

[26] A. Destexhe, and E. Marder, "Plasticity in single neuron and circuit
 computations", Nature, vol. 431, pp. 14, 2004.

 90

[27] R. Doursat, and P. H. Goodman, "Neocortical Keys and Locks: A Neural Model
 of Associative Learning by Coherence Induction Between Spike Patterns and
 Ongoing Membrane Potentials", Abstract, Submitted 2006.

[28] D. Drachman, "Do we have brain to spare?”, Neurology, vol. 64(12), 2005.

[29] R. Drewes, "Brainlab: a toolkit to aid in the design, simulation, and analysis of
 spiking neural networks with the NCS environment", [Master's Thesis],
 University of Nevada, Reno, 2005.

[30] R. Drewes, J. Maciokas, S. J. Louis, and P. H. Goodman, "An evolutionary
 autonomous agent with visual cortex and recurrent spiking columnar
 neural network", In Proceedings of the 2004 Genetic and Evolutionary
 Computing Conference (GECCO 2004), vol. 3, pp. 257:258, 2004.

[31] J. Duncan, and A. M. Owen, "Common regions of the human frontal lobe
 recruited by diverse cognitive demands", Trends Neuroscience, vol. 23, pp. 475-
 483, 2000.

[32] J. Frye. "Parallel Optimization of a NeoCortical Simulation Program", [Master's
 Thesis], University of Nevada, Reno, December 2003.

[33] J. Frye, J. G. King, J. C. Wilson, and F. C. Harris, Jr., "QQ: Nanoscale Timing
 and Profiling", in the Proceeding of the 19th IEEE International Parallel &
 Distributed Processing Symposium, 2005.

[34] P. H. Goodman, S. Buntha, Q. Zou, and S. Dascalu, "Virtual neurorobotics (VNR)
 to accelerate development of plausible neuromorphic brain architectures",
 Frontiers in Neurorobotics, 2007.

[35] P. H. Goodman, R. Doursat, Q. Zou, M. Zirpe, and O. Sessions, "RAIN Brains:
 Mammalian Neocortex as a Hybrid Analog-Digital Computer", Poster at
 Unconventional Computation Conference, Santa Fe, March 2007.

[36] P. H. Goodman, and F. C. Harris, Jr., "Parallel Beowulf Brain-Robotics
 Simulation", Research Proposal to ONR, Submitted 2001.

[37] P. H. Goodman, and F. C. Harris, Jr., "Durip04: Parallel Beowulf
 Computing/Brain/Robotics, Phase III", Research Proposal to ONR, Submitted
 2004.

[38] P. H. Goodman, S. J. Louis, and H. Markram, "Parallel Beowulf Brain
 Simulation", Research Proposal to ONR, Submitted 1999.

 91

[39] P. H. Goodman, E. C. Wilson, J. B. Maciokas, F. C. Harris, Jr., S. J. Louis, A.
 Gupta, and H. J. Markram, "Large-scale parallel simulation of physiologically
 realistic multicolumn sensory cortex", Tech Report 01-01, 2001.

[40] J. R. Gray, T. S. Braver, and M. E. Raichle, "Integration of emotion and cognition
 in the lateral prefrontal cortex", Proceedings of the National Academy of sciences
 of the USA, vol. 99, pp. 4115-4120, 2002.

[41] D. Hanselman, and B. Littlefield, "Mastering Matlab 7", Pearson Prentice Hall,
 2005.

[42] D. O. Hebb, “The organization of behavior”, Wiley, 1949.

[43] C. Johansson, and A. Lansner, "Towards cortex sized artificial neural systems",
 Neural Networks, vol. 20(1), pp. 48–61, 2007.

[44] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, "Principles of Neural Science",
 4th ed. McGraw-Hill, New York, 2000.

[45] J. G. King, "Brain Communication Server: A Dynamic Data Transferal System
 for A Parallel Brain Simulator", [Master's Thesis], University of Nevada,
 Reno, 2005.

[46] J. C. Macera, "Design and Implementation of a Hierarchical Robotic System: A
 Platform for Artificial Intelligence Investigation", [Master's Thesis], University of
 Nevada, Reno, 2003.

[47] J. C. Macera, P. H. Goodman, F. C. Harris, Jr., R. Drewes, and J. Maciokas,
 "Remote-neocortex control of robotic search and threat identification", Robotics
 and Autonomous Systems, vol. 46(2), pp. 97-110, 2004.

[48] J. B. Maciokas, "Towards an Understanding of the Synergistic Properties of
 Cortical Processing: A Neuronal Computational Modeling Approach", [PhD
 Thesis], University of Nevada, Reno, 2003.

[49] J. B. Maciokas, P. H. Goodman, and F. C. Harris, Jr., "Large-scale spike-timing-
 dependant-plasticity model of bimodal (audio-visual) processing", Technical
 Paper, Brain Computation Lab, University of Nevada, Reno, 2002.

[50] J. B. Maciokas, P. H. Goodman, and J. L. Kenyon, "Accurate Dynamical Model
 of Interneuronal GABAergic Channel Physiologies", Technical Paper, University
 of Nevada, Reno, 2004.

[51] P. Marchand, and O. T. Holland, "Graphics and GUIs with Matlab", Chapman &
 Hall/CRC, 3rd ed., 2003.

 92

[52] H. Markram, P. Dimitri, A. Gupta, and M. Tsodyks, "Potential for multiple
 mechanisms, phenomena and algorithms for synaptic plasticity at single
 synapses", Neuropharmacology, vol. 37, pp. 489–500, 1998.

[53] H. Markram, J. Lubke, M. Frotscher, A. Roth, and B. Sakmann, "Physiology and
 anatomy of synaptic connections between thick tufted pyramidal neurons in the
 developing rat neocortex", J. Physiology, vol. 500, pp. 409-440, 1997.

[54] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, "Regulation of synaptic
 efficacy by coincidence of postsynaptic APs and EPSPs", Science, vol. 275, pp.
 213-215, 1997.

[55] R. S. Michalski, and George Tecuci, "Machine Learning: A Multistrategy
 Approach", Volume IV, Morgan Kaufmann, 1994.

[56] V. Mountcastle, "The columnar organization of the neocortex", Brain, vol. 120,
 pp. 701-722, 1997.

[57] B. Opitz, "A Balanced Knock-Out Computer Model of Neuronal Ca++-
 Dependant K+ Channels", Technical Paper, University of Nevada, Reno, 2004.

[58] Q. Peng, "Brainstem: A NeoCortical Simulator Interface for Robotic Studies",
 [Master's Thesis], University of Nevada, Reno, December 2006.

[59] D. Poole, A. Mackworth, and R. Goebel, "Computational Intelligence: A Logical
 Approach", Oxford University Press, 1998.

[60] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. LaMantia, J. O.
 McNamara, and S. M. Williams, "Neuroscience", 3rd ed., Sinauer Associates Inc.,
 2004.

[61] M. C. Ripplinger, C. J. Wilson, J. G. King, J. Frye, R. Drewes, F. C. Harris, Jr.,
 and P. H. Goodman, "Computational model of interacting brain networks",
 Journal Of Investigative Medicine, vol. 52, pp. S155-S155, 2004.

[62] S. J. Russell, and P. Norvig, "Artificial Intelligence: A Modern Approach", 2nd
 ed., Upper Saddle River, NJ: Prentice Hall, 2003.

[63] The Editors of Scientific American, "The Scientific American Book of the Brain",
 New York: Scientific American, pp. 3, 1999.

[64] G. Tononi, and C. Cirelli, "Sleep function and synaptic homeostasis", Sleep
 Medicine Reviews, vol. 10, pp. 49–62, 2006.

 93

[65] M. V. Tsodyks, and H. Markram, "The neural code between neocortical
 pyramidal neurons depends on neurotransmitter release probability", Proc. Natl.
 Acad. Sci., vol. 94, pp. 719-723, 1997.

[66] K. Tsunoda, Y. Yamane, M. Nishizaki, and M. Tanifuji, "Complex objects are
 represented in macaque inferotemporal cortex by the combination of feature
 columns", Nature Neuroscience, vol. 4(8), pp. 832–838, 2001.

[67] B. D. Ventura, C. Lemerle, K. Michalodimitrakis, and L. Serrano, "From in vivo
 to in silico biology and back", Nature, vol. 443, pp. 5, 2006.

[68] T. P. Vogels, and L. F. Abbott, "Signal Propagation and Logic Gating in
 Networks of Integrate-and-Fire Neurons", The Journal of Neuroscience, vol.
 25(46), pp. 10786–10795, 2005.

[69] K. K. Waikul, L. Jiang, F. C. Harris, Jr., and P. H. Goodman, "Implementation of
 a web portal for a neocortical simulator", In Proceedings of CATA, 2002.

[70] Y. Wang, H. Markram, P. H. Goodman, T. K. Berger, J. Ma, and P. S. Goldman-
 Rakic, "Heterogeneity in the pyramidal network of the medial prefrontal cortex",
 Nature Neuroscience, vol. 9, pp. 534–542, 2006.

[71] R. W. Williams, and K. Herrup, "The Control of Neuron Number", The Annual
 Review of Neuroscience, vol. 11, pp. 423–453, 1988.

[72] E. C. Wilson, "Parallel implementation of a large-scale biologically realistic
 parallel neocortical-neural network simulator", [Master's Thesis]. University of
 Nevada, Reno, 2001.

[73] E. C. Wilson, P. H. Goodman, and F. C. Harris, Jr., "A Large-Scale Biologically
 Realistic Cortical Simulator", in the Proceedings of SC 2001, Denver, Colorado,
 2001.

[74] E. C. Wilson, P. H. Goodman, and F. C. Harris, Jr., "Implementation of a
 Biologically Realistic Parallel Neocortical-Neural Network Simulator", in the
 Proc. of the 10th SIAM conference on Parallel Process for Sci. Comput., 2001.

[75] D.G. Bobrow, S. Mittal, and M.J. Stefik, "Expert systems: perils and promise",
 Communications of the ACM, vol. 29(9), pp. 880-894, 1986.

[76] D. Hinkle, and C.N. Toomey, "CLAVIER: Applying case-based reasoning on to
 composite part fabrication", Proceeding of the Sixth Innovative Application of AI
 Conference, Seattle, WA, AAAI Press, pp. 55-62, 1994.

 94

[77] G.A. Davis, "Bayesian reconstruction of traffic accidents", Law, Probability and
 Risk, vol. 2, pp. 69-89, 2003.

[78] J.B. Kadane, and D.A. Schum, "A Probabilistic Analysis of the Sacco and
 Vanzetti Evidence", Wiley, New York, 1996.

[79] R. A. Brooks, "Cambrian Intelligence", MIT Press, 1999.

[80] R.C. Arkin, "Behavior-Based Robotics", MIT Press, 1998.

[81] R.D. Beer, R.E. Ritzmann, and T.M. McKenna, "Biological neural networks in
 invertebrate neuroethology and robotics", Academic Press, Boston, 1993.

[82] NCS User Documentation [last accessed on November 15th, 2007]; Available
 from: http://brain.cs.unr.edu/ncsDocs/ncsUser/TOC.html.

[83] G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function", Math.
 Control, Signals Sys., vol. 2, pp. 303, 1989.

[84] Z. Gu, L.H. Lam, and P.S. Dhurjati, "Feature correlation method for enhancing
 fermentation development: A comparison of quadratic regression with artificial
 neural networks", Computers & Chemical Engineering, vol. 20, pp. S407-S412,
 1996.

[85] H.T. Siegelmann, "Foundations of Recur rent Neural Networks", [PhD
 dissertation], New Brunswick Rutgers, The State University of New Jersey, 1993.

	Title
	Abstract
	Contents
	List of Figures

	List of Tables

	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: RAIN - Recurrent Asynchronous Irregular Network
	Chapter 4: Benchmarks for NCS 5
	Chapter 5: Results
	Chapter 6: Conclusions and Future Work
	Bibliography

