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Abstract

The C and C++ languages have been unchanged in over two decades, and during

this time many shortcomings of the languages have become clear. Specifically, neither

language supports reflection, and the meta-programming capabilities are very limited.

Both of these problems can be solved by adding a pre-processing step, which can

analyze and modify the code before the actual compiler translates it into object code.

This means we can use metaprogramming and reflection to simplify some C/C++

tasks without having to change the languages at all. In order to investigate this, we

have created CHIMP, a meta-programming tool that demonstrates the concept and

can be used to explore the full capacity of the proposed programming technique.
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Chapter 1

Introduction

One of the goals of a programmer is to produce as much functionality as possible in the

limited time frame of the working day. For this reason, there is a perpetual arms race

to develop new programming languages, development environments, and platforms,

each designed to make the task of programming easier, faster, more reliable, and less

repetitive. However, for various practical and political reasons, C and C++ remain

very popular, despite their age and lack of modern features. Various attempts have

been made to update the language, such as buiding new languages based on C/C++,

extending the language through use of non-standard compilers, or using the existing

templating system in C++. This thesis will offer an alternative approach dubbed

“Imperative Meta-Programming.”

Imperative Meta-Programming is a two step technique for meta-programming.

First we inspect the contents of the target source code to get information about

variables, types, and most importantly members and methods of classes and structs.

Then we feed this information as a parameter into a template engine (Like PHP or

ASP, not like the C++ template system!). The template engine will allow us to

automatically generate large amounts of code based on the structure and content of

existing structures, and it will allow us to do so without having to change the C/C++

compilers and languages definitions.

The remainder of this document will be as follows. Chapter 2 will review the

basic ideas of meta-programming and reflection, and review the literature and re-

lated work. Chapter 3 will cover the technique of Imperative Meta-Programming
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and the implementation of “CHIMP,” the initial proof of concept imperative meta-

programmer. Chapter 4 will cover some actual applications of the CHIMP program

to C++ metacode, including a short guide to using it, and a quick overview of some

pitfalls of using it too. Chapter 5 will review the gains provided by imperative meta-

programming as a programming technique and will discuss future work. Appendix A

will include the complete source code for CHIMP. Appendix B will include additional

applications of CHIMP.



3

Chapter 2

Literature and Concept Review

2.1 Meta-Programming

2.1.1 Basic Idea of Meta-Programming

Typical programming is the act of writing code which will be translated into an

executable program. Meta-Programming is the “art” of writing code that will gen-

erate new code, which will in turn be translated into an executable program. Meta-

Programming is an old idea, and is already used in C through the PreProcessor [14]

and in C++ through template meta-programming [6]. Programs like Yacc [13] and

Lex [8] are also meta-programmers, as they take an input language and generate C

code as an output.

The motivation behind meta-programming is to relieve the programmer of having

to write repetitive or complex code, where a simple description in a meta-language

can be expanded to a large and complex block of code in a target language. A simple

example of this comes from the basic usage of C++ templates. Because of C++’s

strict typing, if one writes a container class, it will only be able to contain the type

that it was written for. If you want a container for another data type, you would

effectively need to copy and paste the whole container class, but then change every

instance of the data type. This is a pointless waste of programmer’s time, and is

simplified greatly by the C++ template system [14].
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2.1.2 Template Meta-Programming

Template Meta-Programming has become a bit of a hot topic lately. Attempts to

do a background search in the field of C++ meta-programming were rather difficult

because any search for C++ meta-programming inevitably found “Template meta-

programming” which is irrelevant to this project. However, one cannot address meta-

programming in C++ without giving a nod to template meta-programming, so I will

give a brief demo of it here.

Let’s say one wants to calculate Fibonacci numbers at compile time. We can

see an example in Figure 2.1, where we use template meta-programming in C++ to

generate Fibonacci numbers at compile time, by using the C++ Template system.

This is a reasonably approachable example, and it demonstrates the declarative (e.g.,

Prolog) nature of C++ Templates.

2.1.3 Template meta-programming is a bad idea

However, Template meta-programming is a bad idea for several reasons: it is hard

to write, hard to read and hard to understand, and does not allow the full range of

meta-programming techniques.

The first issue with Template meta-programming stems from the fact that it is

exceptionally hard. Most programmers learn to program with imperative languages,

like C or Python. However, template meta-programming is predominantly a declar-

ative programming model, which is counter-intuitive to most programmers. This is

evident by the general obscurity of Prolog in our modern language market. This

declarative approach leaves many programmers guessing as to how it will actually

behave. With sufficient training and experience, it can become obvious and intuitive.

However, most students in the field of Computer Science are given an emphasis on

imperative, object-oriented, and functional programming. Declarative programming

tends to get an “honorary mention” in a progamming lanuages course.

The C++ template system was simply not designed for this kind of use, and

as such the seam between template code and regular code is very messy. While the
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1 #include <iostream>

2 using namespace std;

3

4 template <int N>

5 struct fibonacci

6 {

7 enum {val = fibonacci<N-1>::val + fibonacci<N-2>::val};

8 };

9

10 template <>

11 struct <0>fibonacci

12 {

13 enum {val = 1};

14 };

15

16 template <>

17 struct <1>fibonacci

18 {

19 enum {val = 1};

20 };

21

22

23 int main()

24 {

25 cout << "Fibonacci number 5 is : "

26 << fibonacci<5>::val << endl;

27 cout << "Fibonacci number 6 is : "

28 << fibonacci<6>::val << endl;

29 cout << "Fibonacci number 7 is : "

30 << fibonacci<7>::val << endl;

31 return 0;

32 }

Figure 2.1: C++ Template meta-programming for Fibonacci

declarative nature of C++ templates does work well for its purpose, this is over-

shadowed by the fact that one must use a lot of C++ features in a really strange

way in order to trick the compiler into doing what it is that you really want. In

the Fibonacci example above you can see that we must use enumerations to hold

intermediate values, which is ironic since the enumeraton was designed for holding

constant values instead of variables. Also, one notices that intermediate rules are
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nested inside of structs. If we could apply the template system to a function and still

get the Fibonacci result that might make more sense, but the only way to propagate

the values is through a “constant” value defined within a struct.

As a final note, template meta-programming does not directly support reflection,

which will be explained in the following section. Some attempts have been made to

add reflection support to C++ template meta-programming. Most of these will be

discussed in the following section. Many of them have the flaw that they require the

user to explicitly list class members a second time, in a preprocessor macro. This

kind of redundancy in the class definition is undesirable, since it offers an opportunity

for inconsistent definitions which will cause errors to occur. Ideally, there should be

exactly one definition of each thing.

2.2 Reflection and Inspection

Reflection is the common name for an object’s awareness of its own members and

methods. This is a powerful feature, since it offers the programmer a lot of options

for dynamic programming techniques. A prime example of reflection in action is the

pickle module in Python. In the Python programming language, any object can be

serialized to a string or a file, regardless of its contents or inheritance tree. This

is done without requiring the user to intervene and define serialization operations.

Instead, Python looks at the contents of the objects and does a recursive traversal of

all members, dumping each to a string or stream.

Most modern languages offer this capability, such as Java’s java.lang.reflect pack-

age, Python’s “dir” function. However, C++ does not offer any such mechanism for

getting this information at run time or at compile time. Several projects and groups

have attempted to add this feature.

2.2.1 Inspective C++

Inspective C++ is a C++ compiler, based on the GCC source, which seeks to add

compile time reflection to the C++ language [12]. It does this by exposing reflective
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information to the C++ template system. This approach offers several advantages

and disadvantages over Imperative Meta-Programming.

Advantages of Inspective C++

1. Does not require extensive modification of the C++ language.

2. Does not require a two step compile process.

Disadvantages of Inspective C++

1. Uses C++ Template meta-programming techniques, which are complicated.

2. Requires maintenance of a separate branch of the GCC project.

3. Requires users to learn a new method of using C++ Templates.

2.2.2 OpenC++

OpenC++ is a project that aims to add reflection and meta-programming to C++

as well. It does so in an interesting manner by adding metaclass objects to C++.

Metaclasses generate C++ syntax tree objects from snippets of code, which can then

be added to the final C++ code. These classes are evaluated before the actual C++

compiler, and modifies the source tree. This is a useful idea, which is very similar

to several early thought experiments that led to the Imperative Meta-Programming

idea. While this approach is exceptionally powerful, it can also be very difficult and

confusing. This means the programmer is interacting with the source indirectly, and

through an unusual interface.

Advantages of Open C++

1. Allows more complex modifications to code, and is location independent with

respect to the source code.

2. Does not require a two step compile process.
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Disadvantages of Open C++

1. Changes the C++ language.

2. Modification to the program at the parse tree level can be hard to understand.

3. Requires maintenance of a separate compiler.

2.2.3 Messing with C++ and departing from GCC are bad
ideas

Departing from C++ is a bad idea

C++ has now been around for over 25 years[14], and as such has 25 years worth of code

already written in it. Attempts to modify the C++ language would inevitably break

some of that code, which is a deterrent. Additionally, there are many developers who

already know C++, and modifying the language would break their understanding of

it.

This means that any attempt to start a new language is a huge gamble and

requires a lot of resources to complete and maintain, and after all that it may never

become popular. But subtle modifications to a language are also inadvisable unless

the language is still under active development.

Departing from or modifying GCC is a bad idea

An unfortunately large number of Open Source projects fail shortly after they are

started. One of the primary causes of this is that developers eventually leave the

project with no new members to replace them. The practical ramifications of this are

that one should be humble when starting a project, a project that can be developed

in a matter of weeks and then be considered “done” has a much higher probability

of success than one that will require a massive team of developers dedicated to the

project for years, and then require maintenance for the lifetime of the language’s

usage. Additionally, when a project has a dependency on external libraries, it is wise

to choose only projects that have a long history of success.
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Given that developing and maintaining a compiler is a very complex task, it is

best to leave that to groups like GCC and Microsoft. One can say with confidence

that GCC will not be going anywhere anytime soon, but the prospects for many of

the smaller startup languages are not so sure.

From these two points we can conclude that odds of success can be maximized

by using a known language and compiler pair as is.

2.3 CodeSmith Tools

Recently a third party package for Visual Studio was released, called CodeSmith.

CodeSmith is the nearest program we know of to the Imperative Meta-Programming

method presented in this document. CodeSmith is described as a software devel-

opment tool for code generation [1]. CodeSmith uses an ASP.NET style template

system to automatically generate C# or Visual Basic .Net code, based on the con-

tents of SQL Databases. This allows developers who are interfacing with databases,

especially web developers, to rapidly get all of the basic operations up and running

very quickly.

The idea of using a templating engine designed for generating webpages is one of

the major components of the IMP concept, and so credit must be given to CodeSmith

for doing this first. However, their input data set seems to be entirely centered

around your SQLServer databases, providing no inspective information about the

actual classes. This makes sense, since C# already provides reflection through the

System.Reflection module, and so there is no need to add reflection to the language.
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Chapter 3

Imperative Meta-Programming
and CHIMP

3.1 Imperative Meta-Programming

The Imperative Meta-Programming (IMP) technique uses a powerful preprocessor for

the target language, in this case: C++. The technique starts with a MetaCode file,

which is primarily composed of the target language, with a few Metacode elements

added in. These metacode elements will be processed and evaluated or removed,

resulting in a new file completely composed of the target language. From here the

compilation process can procede normally. Figure 3.1 shows this two stage process.

For the remainder of the document, we will use C++ as the target language.

The IMP preprocessor has two stages: analyze and application, and as such

modifies the compilation process as seen in Figure 3.1. The analysis phase collects

information about the code, while ignoring all metacode. In this phase, the analyzer

collects any relevant information, such as all functions, classes, structs, and global

variables, as well as their respective members, methods and parameters. The infor-

mation gathered from the analysis phase is then provided to the metacode engine

during the application phase. The application phase then executes the metacode en-

gine, generating new C++ code based on the information provided. I will explain

each phase in detail, first the application phase (since it can be explained as a stand

alone component), then the analysis phase.
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Code

MetaCode Code Executable

Executable

IMP

GCC

GCC

Classical compile process

Imperative MetaProgrammer compile process

Figure 3.1: Added stage in the IMP compile process

3.1.1 The Application Phase

The application phase is very simple and can be used without the code analysis. For

this one only needs a template engine, much like the ones used for web development:

PHP, ASP, ERB, etc. Just like web development, we are going to have a lot of

static content (HTML in web development, C++ in IMP), with small bits of dynamic

content that is generated by the template language. Figure 3.2 shows these similarities

by comparing PHP code embeded in HTML, along with some equivalent IMP code

embedded in C++.

These two side by side examples should clarify the basic idea, we can embed

logic directly in C++ code, without interfering with C++ syntax. This allows us to

perform some very complex actions on the code, however it can be somewhat tricky.

The programmer must now be very cautious, since the code generated must be valid

C++ code. HTML is much more forgiving of small mistakes than GCC is.

A slightly more complex and practical example would be to perform loop un-

rolling. Loop unrolling is an optimization that is sometimes done by compilers [3].

It is often performed on very large bounded loops with very simple actions, where
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1 <html>

2 <head><title></title></head>

3 <body>

4 <?php print "Hello web!"; ?>

5 </body>

6 </html>

---------------------------------

1 #include <iostream>

2 using namespace std;

3

4 int main()

5 {

6 cout << "{% print "Hello C++" %}";

7 cout << endl;

8 };

Figure 3.2: HTML with PHP

the overhead of the looping operation becomes costly compared to the actual com-

putations done. In the following examples I will show a typical C++ loop, then I

will show the metacode to explicitly unroll that loop, and show the resulting unrolled

loop.

Observe Figure 3.3. It is a simple summation of all members in a simple array,

using a standard C++ for loop. In Figure 3.4, we will use an Imperative Meta-

Programmer to write a loop that will be explicitly unrolled. In this case I am using

CHIMP, which will be explained in more detail in the following section.

1 int i;

2 float array[10] = {1.0f,2.0f,3.0f,4.0f, \

3 5.0f,6.0f,7.0f,8.0f,9.0f,10.f};

4 float sum = 0.0f;

5 for(i = 0; i < 10; i++) {

6 sum += array[i];

Figure 3.3: Simple C++ loop

Finally, in Figure 3.5, we have the output generated by the metacode generated

in Figure 3.4. This may seem a bit excessive, but loop unrolling is a serious problem

for the compiler to manage. It is not a standard part of the C/C++ languages, and
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1 int i;

2 float array[10] = {1.0f,2.0f,3.0f,4.0f,

3 5.0f,6.0f,7.0f,8.0f,9.0f,10.f};

4 float sum = 0.0f;

5 {% for x in range(10) -%}

6 sum += array[{@ x @}];

7 {% endfor %}

Figure 3.4: C++ Metacode to unroll a loop

also is a very delicate operation. In order for a loop to be eligible to be unrolled by a

compiler, it must be able to verify that the index and sentinel values can not possibly

be changed during the loop, which can be very tricky. In this case we can explicitly

see the results once we are ready, but as programmers we were still able to use a loop

construct rather than type the code manually.

1 int i;

2 float array[10] = {1.0f,2.0f,3.0f,4.0f, \

3 5.0f,6.0f,7.0f,8.0f,9.0f,10.f};

4 float sum = 0.0f;

5 sum += array[0];

6 sum += array[1];

7 sum += array[2];

8 sum += array[3];

9 sum += array[4];

10 sum += array[5];

11 sum += array[6];

12 sum += array[7];

13 sum += array[8];

14 sum += array[9];

Figure 3.5: C++ code generated by MetaCode Loop Unroller

3.1.2 The Analysis Phase

While the ability to generate code procedurally does help in some cases, we are still

limited by the naive nature of the application phase. We can augment it by giving

it more information about the code itself. Lets look at some simple repetitive tasks

that are sensitive to existing code. Lets look at a simple function for debugging,
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“dumpToScreen.” We will create a struct and then write a C++ function that dumps

its entire contents to stdout.

The DumpToScreen function example in Figure 3.6 is a perfect example of mind-

less repetitive code. It is boring for programmers to write, it is often written for

every important struct/class in a program, and it is sensitive to changes in the origi-

nal struct. If one were now to add a new member to ExampleStruct, like int woot;,

the programmer would now need to go down to the DumpToScreen function for this

Struct, and add the line cout << " woot : " << ptr->woot << endl; . This is

a tedious process, and it is an error prone one. If the struct were much larger, with

many nested types, and there were many functions to dump the object to file in XML,

or in YAML, or in JSON or in raw text, then one would need to go through all of these

functions and fix them. This is also problematic from a human resources problem,

because it may be too complex a job to trust to an intern, but its so mundane that

the senior software engineer might not want to deal with it.

1 struct ExampleStruct{

2 int a;

3 float b;

4 long double c;

5 };

6

7 void DumpToScreen(ExampleStruct *ptr)

8 {

9 cout << "ExampleStruct :" << endl;

10 cout << " a : " << ptr->a << endl;

11 cout << " b : " << ptr->b << endl;

12 cout << " c : " << ptr->c << endl;

13 cout << endl;

14 }

Figure 3.6: C++ Code for DumpToScreen

What we really want to do, is be able to generate the DumpToScreen function

dynamically, based on the contents of the ExampleStruct definition. A pseudocode

example would look something like Figure 3.7. In that case, we assume we can iterate

over the members of the target struct.
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1 struct ExampleStruct{

2 int a;

3 float b;

4 long double c;

5 };

6

7 void DumpToScreen(ExampleStruct *ptr)

8 {

9 PRINT name of ExampleStruct

10 FOR each member of ExampleStruct

11 PRINT current member name : current member value

12 }

Figure 3.7: PseudoCode for DumpToScreen

C++ does not support any form of reflection, and so cannot tell what members

and methods an object might have. However, if we have a C++ parser that can look

at the code first, and then provide this information to our template engine, then our

Imperative Meta-Programmer would be able to generate code equivalent to that in

Figure 3.7.

In Figures 3.8 and 3.9 we address this problem with a complete C++ program.

Figure 3.8 is written in CHIMP MetaCode, and takes advantage of information gath-

ered in the analysis phase to generate code based on the contents of ExampleStruct.

This code is sensitive to the struct, one could add as many members or change the

types of any members, and the source code would be updated appropriately after

the next compile. This is very powerful because the DumpToScreen function is now

immune to human negligence, and will match the struct definition instead of the users

code.

In particular, we have removed the need for redundant information about Exam-

pleStruct. When logic like this is hard-coded it effectively amounts to a second copy

of the ExampleStruct definition. However, redundant definitions of data objects lend

themselves to falling out of sync, which almost always causes problems. This problem

is circumvented by removing the redundant information that would have been stored

in the hardcoded copy of the DumpToScreen function.
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1 #include <iostream>

2 using namespace std;

3

4 {% macro MetaDumpToScreen obj -%}

5 void DumpToScreen( {@ obj.name @} *ptr)

6 {

7 cout << "{@obj.name@}" << endl;

8 {% for name in obj.members -%}

9 cout << " {@ name @} : " << ptr->{@ name @} << endl;

10 {% endfor %}

11

12 }

13 {% endmacro -%}

14

15 struct ExampleStruct{

16 int a;

17 float b;

18 long double c;

19 };

20

21 void DumpToScreen(ExampleStruct *ptr);

22 {@ MetaDumpToScreen(ast.structs[’ExampleStruct’]) @}

23

24 int main()

25 {

26 ExampleStruct e;

27 DumpToScreen(&e);

28 return 0;

29 }

Figure 3.8: C++ MetaCode for DumpToScreen, written for CHIMP

Further applications will be shown in Chapter 4.

3.2 Implementation of CHIMP

CHIMP was developed as a proof of concept for Imperative Meta-Programming. It

is a combination of the Jinja Template engine [11], the GCC-XML frontend to GCC

[7] and the Element Tree library for XML [5], glued together with Python [5]. Jinja

is a template engine that was developed for the Pocoo project, and is maintained by

Armin Ronacher. Jinja is very similar to the Django template language [11]; however,
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1 #include <iostream>

2 using namespace std;

3

4 struct ExampleStruct{

5 int a;

6 float b;

7 long double c;

8 };

9

10 void DumpToScreen(ExampleStruct *ptr);

11 void DumpToScreen( ExampleStruct *ptr)

12 {

13 cout << "ExampleStruct" << endl;

14 cout << " a : " << ptr->a << endl;

15 cout << " c : " << ptr->c << endl;

16 cout << " b : " << ptr->b << endl;

17

18 }

19

20 int main()

21 {

22 ExampleStruct e;

23 DumpToScreen(&e);

24 return 0;

25 }

Figure 3.9: DumpToScreen generated from MetaCode

it is more flexible and easier to modify, as was necessary for CHIMP. GCC-XML is is

a C/C++ parser which outputs all information about a program in an XML format,

so it can easily be parsed [7].

The first step is the analysis phase, which is mostly handled by GCC-XML. GCC-

XML will parse a C++ file and read all information about the top level objects into

an XML file. These object are: types, structs, classes, members, methods, functions,

parameters, and global variables. Source code is not included in the XML output, but

is parsed, and as such the entire file must be valid C++ code. This introduces a bit

of a complication, since the metacode is not valid C++, and so will cause GCC-XML

to fail. This can be addressed by removing all MetaCode in advance as we see in
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Figure 3.10.

1 struct foo {

2 int a;

3 };

4

5 // This line is not valid C++ with the metacode in place

6 {% dosomething(ast.structs[’foo’]) -%}

7

8 int main(){

9 return 0;

10 }

Figure 3.10: Invalid C++

The code in Figure 3.10 cannot be parsed, since {% dosomething(...) %} is

not valid C++. If we could remove all metacode statements, then the code would be

left with only valid C++ code. This can be done by making a copy of the metacode

file, and feeding it into a modified version of the Jinja interpreter. This modified

interpreter simply ignores all Jinja directives and blocks, instead of printing them.

This way, only the plain C++ content is printed.

This step can have some complicated side effects. Since this “stripped” version

of the code is mostly used to find data type definitions, we don’t care about blocks of

source code disappearing (that source code still exists in the original file). However, we

may remove some function prototypes, which would have been generated by CHIMP.

This can cause some problems, and will be discussed in Chapter 4.

Now that the MetaCode has been stripped from the code file, we have only valid

C/C++ code, like that in Figure 3.11. Now we feed this into the GCC-XML program,

which will parse the C/C++ code for us. The result is a fairly large (and mostly flat)

XML file. Figure 3.11 shows both a small block of code and Figure 3.12 shows part of

the XML that is generated by GCC-XML. Looking at this XML we can see that all

different types are represented clearly, and everything in the file has an ID number.

We use this ID number to cross-reference classes and their members. Types are also

listed with an ID number, and must be cross-referenced the same way.
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1 class MyClassType {

2 public:

3 MyClassType();

4 void action();

5 private:

6 int a;

7 float b;

8 char *c;

9 };

Figure 3.11: Sample C++ for GCC-XML

1 <Class id="_3" name="MyClassType" context="_1"

2 mangled="11MyClassType" location="f0:1" file="f0"

3 line="1" artificial="1" size="96" align="32"

4 members="_114 _115 _116 _117 _118 _119 " bases=""/>

5 ...

6 <Field id="_114" name="a" type="_126" offset="0"

7 context="_3" access="private"

8 mangled="_ZN11MyClassType1aE"

9 location="f0:6" file="f0" line="6"/>

10 <Field id="_115" name="b" type="_125" offset="32"

11 context="_3" access="private"

12 mangled="_ZN11MyClassType1bE"

13 location="f0:7" file="f0" line="7"/>

14 <Field id="_116" name="c" type="_136" offset="64"

15 context="_3" access="private"

16 mangled="_ZN11MyClassType1cE" location="f0:8" file="f0"

17 line="8"/>

18 <Method id="_119" name="action" returns="_131" context="_3"

19 access="public" mangled="_ZN11MyClassType6actionEv"

20 location="f0:4" file="f0" line="4" extern="1"/>

Figure 3.12: Sample GCC-XML Output

All of the information in this can easily be collected with a typical XML parser.

For CHIMP the ElementTree package was used, because it has a nice implementation

of XPath. XPath is a command language which allows the user to traverse and search

an XML tree like a directory tree [2]. So a search might look like /root/foo , which

means “find the node called foo which is a child of the top level node called root.”

Alternatively, one could search for //foo and the XPath processor would search the
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XML document for any tags of type foo.

So the analyzer has to perform a two stage process. First it gathers all items

in the file so they can be looked up later when we are finding members types. The

XPath command for this is simply /* . Second, it gathers the four important top

level things in C++: global variables, functions, classes, and structs. Unions were

ignored for this iteration of the project. These four are found by the following XPath

commands: //Variable , //Function , //Class , and //Struct . Once collected,

we can look at the “members” attribute of the Class and Struct objects, and look all

members up based on the lookup table we created previously. Finally, we look up the

types of each member, variable or function return value. All this information is put

into a Python object which has a more user friendly interface, and is made accessible

to the Jinja template engine.

This brings us to the template engine. There are many template engines available

for Python, such as Kid [15] or Cheetah [10]. Cheetah was strongly considered, since

it claims that in addition to being used as a web template engine, it is also being used

to generate “C++ game code [10].” A version of CHIMP that uses Cheetah may end

up being future work. After a bit of research, the Jinja template engine was selected.

Jinja is a template engine written in Python for the Pocoo project [11]. How-

ever, Jinja is nicely decoupled from the project, and so lent itself to use in CHIMP.

Jinja started as a clone of the Django template engine, and so has similar default

delimiters and syntax. Another perk of the Jinja project is that it is very easy to

override the default intermediate code generation step, by simply inheriting from the

PythonTranslator object, and specifying your own new class in its place at run time.

Thus it is easy to write a program to strip Jinja commands from the file without

having to modify any of the Jinja code base. The ability to write the strip function

is pivotal to its use in the IMP paradigm.

Examples of Jinja will be covered in much more detail in Chapter 4.
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Chapter 4

Results

4.1 CHIMP Usage Guide

4.1.1 Command line usage

Usage of CHIMP is fairly straightforward. The last command line parameter is used

as the input file name. Output goes to standard out unless specified with an optional

-o flag. If the GCC-XML stage requires extra include flags, then these can be specified

with the -I flag.

CHIMP [-o <output file>] [-I "<GCC Flags for GCC-XML>"] <input file>

Make files

CHIMP was designed to be easy to use within the scope of a normal project build.

As such it can easily be invoked from within GNU/Make as shown in Figure 4.1 or

other make systems such as SCons [4], as seen in Figure 4.2.

main: main.o

g++ -o main main.o

main.o: main.cpp

g++ -c main.cpp

main.cpp: main.mcpp

chimp -o main.cpp main.mcpp

Figure 4.1: Building a CHIMP project with Make
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chimp_bld = Builder(action = ’chimp -o $TARGET $SOURCE’,

suffix = ’.cpp’, src_suffix = ’.mcpp’)

env = Environment(BUILDERS = {’Chimp’:chimp_bld})

env.Chimp(’main.mcpp’)

env.Program(’main.cpp’)

Figure 4.2: Building a CHIMP project with SCons

4.1.2 MetaProgramming Tags

As previously mentioned, the Jinja template engine is used to do the meta-programming

operations. The meta-programming tags must be delimited by using tags like {% %}

for statements and {@ @} for looking up values and simple execution of macros. These

tags can be customized within the Jinja engine, so it was tempting to use ASP/ERB

style tags with <% %> and <%= %>, however <% %> are valid C++ tags, and are aliases

for { } [14]. For this reason, I kept the default. The variable lookup was switched

to the {@ @} tags because its possible that {{ }} could be used in valid C++. It is

quite possible that there are better tags that could be used, however it is imperative

that they not conflict with the C++ language in any way.

Within the {% %} tags, we have a very Python-esque language. Unlike Python,

we must have an ending delimiter to all of our control strucures, so a for tag must

have an endfor tag as well. The format for the for loop can be found in Figure 4.3. If

statments also behave like a normal Python if statement, except that they require an

endif to explicitly end the if block. An example if statement can be found in Figure

4.4. Variable assignment is a little bit different than it is in Python, as it requires a

set directive before it, as seen in Figure 4.5. [11]

Normal function calls are missing from Jinja, and instead we have macros and

filters. Macros are the more useful of the two, as they are used for creating blocks of

content. So if one wants to auto-generate a C++ function, that will most likely be

generated by a Jinja macro. The code to create and then invoke a macro is shown in

Figure 4.6. Filters on the other hand operate on data that is still in the Python/Jinja

context. They are invoked with the | (pipe) operator, and behave like the pipe in
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bash. Filters are more complicated, in both implementation and usage. The value

on the left is fed into the filter function on the right as parameter. Filters are pure

Python functions that are embedded in the Jinja engine. As such, it is hard to add

new filters. Because of this, and because they are not as vital to CHIMP, only two

filters will be explained. In the example in Figure 4.7 we can see the length filter

being used. The length filter takes a list as a parameter and returns the length of

that list. The other filter that is useful is “role filter,” which is part of CHIMP, and

is explained in Section 4.4.

{% for <var> in <iterable expression> %}

[loop body]

{% endfor %}

Figure 4.3: Jinja For loop

{% if <logical expression> %}

[body]

{% elif <logical expression> %}

[body]

{% else %}

[body]

{% endif %}

Figure 4.4: Jinja If statement

{% set variable = 5 %}

{% set <varname> = <expression %}

Figure 4.5: Jinja assignment

{% macro my_macro param %}

[Macro body]

{% endmacro %}

{@ my_macro(value) @}

Figure 4.6: Jinja Macros
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{% set lst = [1,2,3] %}

{@ lst | length @}

Figure 4.7: Jinja Filters

4.2 Applications of CHIMP

4.2.1 XML

One of the more tedious tasks in programming is serializing and deserializing complex

objects. Most modern languages support very clever serialization techniques, such as

Python’s Pickling library, as well as C#’s SerializeXml module. Unfortunately, C++

has no such library, so programmers must constantly re-write the tedious code to read

and write XML based on the structure of their classes. In the following two examples,

CHIMP will be used to automate this process for simple classes.

For this section the libxml++ library, created by the Gnome group [9], is used.

It provides a convenient object-oriented interface to parsing and creating XML files,

and provides XPath capabilities, which will be used to parse the files. This example

is a limited proof of concept, and as such will only handle primitive types (int, float,

etc.), STL strings, and member objects. For simplicity it will NOT handle arrays,

pointers, STL lists/vectors, or STL maps. These types may be addressed in a later

release.

As a last note before we get to the example, when we compile programs with

libxml++, we need to specify an include path, with the -I flag. In order to get CHIMP

to use these flags during the GCC-XML phase, we need to use CHIMP’s -I flag as

well. An example makefile can be seen in Figure 4.8.

INC=-I/usr/include/libxml++-2.6/ -I/usr/include/glibmm-2.4/ \

-I/usr/include/glib-2.0/ -I/usr/lib/glib-2.0/include/ \

-I/usr/lib/glibmm-2.4/include/ -I/usr/lib/libxml++-2.6/include/

...

CHIMP -I ’$(INC)’ -o $@ $<

Figure 4.8: Sample CHIMP Makefile
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toXML

Writing the code to convert a class to an XML file is fairly simple, but it is very

tedious to do so manually. Ironically, for simply outputting XML, incorporating a

third party library like libxml++ can actually complicate things and increase the

work load. So the goal is to make a few macros that can handle all of the library

operations to create the XML document and write it to a file. These macros will be

placed in a separate file, called “toxml.cmf ”, short for “CHIMP Macro File.” The

main file will be called XML example01.mcpp, short for “Meta C Plus Plus.” Please

refer to Figure 4.9 for a full listing of the file. Now, a separate file called toxml.cmf

will be created, which will include the source code and calls to add_child. Please

see Figure 4.10 for the code for this. When run, the function simple::toXML and

complicated::toXML are both implemented in proper C++ code.

fromXML

Reading data from an XML file is a lot harder than writing it to an XML file. In

this case, the value of using an XML library really shines, since the effort of writing

a parser for context free grammars is a lot of work. However, despite the help of

libxml++, the process of getting data out of an XML document and into a live C++

class is still a very mundane process that we can avoid if we use a CHIMP macro.

Like before, the code shall be separated into a metacode file and a source code file

with a few metacode directives. Please see Figures 4.11, 4.12 and 4.13.
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1 #include <iostream>

2 #include <fstream>

3 #include <sstream>

4 #include <string>

5 using namespace std;

6 #include <libxml++/libxml++.h>

7

8 {% include ’toxml.cmf’ %}

9

10 class simple

11 {

12 public:

13 simple() : a(42),b(13),

14 c("This is simple"),d(10.0f/6.0f)

15 {}

16 int a;

17 int b;

18 string c;

19 float d;

20 {@ proto_toXML() -@}

21 };

22

23 class complicated {

24 public:

25 complicated() :

26 component(),name("My name"),something(1)

27 {}

28 string name;

29 int something;

30 simple component;

31 {@ proto_toXML() -@}

32 };

33

34 //---------------------- Autogen

35 {@ make_toXML(’simple’) @}

36 {@ make_toXML(’complicated’) @}

37

38 int main()

39 {

40 complicated thing;

41

42 {% print "thing.toXML(\"output.xml\");" %}

43 return 0;

44 }

Figure 4.9: xml example 01.mcpp
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1 //--------------------- MetaCode

2

3 {% macro proto_toXML -%}

4 public:

5 int toXML(string fname);

6 int _toXML(xmlpp::Element *lroot);

7 {% endmacro -%}

8

9 {% macro make_toXML objname %}

10 {% set obj = ast.classes[objname] %}

11 int {@ obj.name @}::toXML(string fname)

12 {

13 xmlpp::Document doc;

14 xmlpp::Element *enode;

15 enode = doc.create_root_node("{@obj.name@}");

16 _toXML(enode);

17 doc.write_to_file(fname,"ISO-8859-1");

18 }

19

20 int {@ obj.name @}::_toXML(xmlpp::Element *lroot)

21 {

22 stringstream conv;

23 xmlpp::Element *enode;

24 xmlpp::TextNode *tnode;

25 {% for name,member in obj.members.items() -%}

26 // {@ member.tag @}

27 {% if not member.compound -%}

28 // Add atomic type

29 conv.str("");

30 conv << {@ name @};

31 enode = lroot->add_child("{@ name @}");

32 tnode = enode->add_child_text("quiet");

33 tnode->set_content(conv.str());

34

35 {% elif member.compound -%}

36 // Add compound type

37 enode = lroot->add_child("{@ name @}");

38 {@ name @}._toXML(enode);

39 {% endif -%}

40 {% endfor %}

41

42 }

43 {% endmacro %}

Figure 4.10: toxml.cmf
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1 #include <iostream>

2 #include <fstream>

3 #include <sstream>

4 using namespace std;

5 #include <libxml++/libxml++.h>

6 {% include ’fromxml.cmf’ %}

7 //--------------------- Code

8 class simple

9 {

10 public:

11 simple(): a(42),

12 c("This is simple"),d(10.0f/6.0f) {}

13 int a;

14 string c;

15 float d;

16 {@ proto_fromXML() -@}

17 {@ friend_simpleDump(’simple’) @}

18 };

19

20 class complicated {

21 public:

22 complicated()

23 : component(),name("My name"),something(1)

24 {}

25 string name;

26 int something;

27 simple component;

28 {@ proto_fromXML() -@}

29 {@ friend_simpleDump(’complicated’) @}

30 };

31 //---------------------- Autogen

32 {@ make_fromXML(’simple’) @}

33 {@ make_fromXML(’complicated’) @}

34 {@ make_simpleDump(’simple’) @}

35 {@ make_simpleDump(’complicated’) @}

36

37 int main()

38 {

39 {% block main %}

40 complicated thing;

41 thing.fromXML("input.xml");

42 cout << thing << endl;

43 {% endblock %}

44 return 0;

45 }

Figure 4.11: xml example 02.mcpp
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1 //--------------------- MetaCode

2

3 {% macro proto_fromXML %}

4 public:

5 int fromXML(string fname);

6 int _fromXML(xmlpp::Element *lroot);

7 {% endmacro %}

8

9 {% macro make_fromXML objname %}

10 {% set obj = ast.classes[objname] %}

11 int {@ obj.name @}::fromXML(string fname)

12 {

13 xmlpp::DomParser parser;

14 xmlpp::Document *doc;

15 xmlpp::Element *root;

16 parser.parse_file(fname);

17 if(!parser){

18 return 0;

19 }

20

21 doc = parser.get_document();

22 root = doc->get_root_node();

23 _fromXML(root);

24 }

Figure 4.12: toxml.cmf part1
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1 int {@ obj.name @}::_fromXML(xmlpp::Element *lroot)

2 {

3 xmlpp::Element *enode;

4 xmlpp::Node *node;

5 string temp;

6 {% for name,member in obj.members.items() -%}

7 {% if not member.compound -%}

8 {% if member.type ==

9 "basic_string<char,std::char_traits<char>,std::allocator<char> >"

10 -%}

11 node = lroot->find("{@ name @}")[0];

12 enode = dynamic_cast<xmlpp::Element *>(node);

13 if(enode)

14 {

15 temp = enode->get_child_text()->get_content();

16 {@ name @} = temp;

17 }

18 {% else -%}

19 stringstream s_{@name@};

20 node = lroot->find("{@ name @}")[0];

21 enode = dynamic_cast<xmlpp::Element *>(node);

22 if(enode)

23 {

24 temp = enode->get_child_text()->get_content();

25 s_{@name@}.str(temp);

26 s_{@name@} >> {@ name @};

27 }

28 {% endif -%}

29 {% elif member.compound -%}

30 node = lroot->find("{@ name @}")[0];

31 enode = dynamic_cast<xmlpp::Element *>(node);

32 if(enode)

33 {

34 {@ name @}._fromXML(enode);

35 }

36 {% endif -%}

37 {% endfor %}

38 }

39 {% endmacro %}

Figure 4.13: toxml.cmf part2
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4.3 Limited Runtime Reflection

Up until this point reflection has been demonstrated as a preprocessing feature, but is

not accessible at run time. It is possible, however, to expose some of this reflection at

runtime. This is very tricky to do, especially since C++ is a strictly typed language,

and so functions must have a matching return type and return value. As an example,

if we have a function like the one in Figure 4.14, it will fail to compile. The line

that attempts to return “a” is fine, because the types match. However, the line that

attempts to return “b” fails because the value of “b” is a string, but the function

needs to return an int.

1 int function(name){

2 if(name == "a") // a is of type int

3 return a;

4 else if (name == "b") // b is of type string,

5 // which is incompatible

6 return b;

7 }

Figure 4.14: Incompatible returns

We can resolve this problem by converting types to a common intermediate type.

The C++ standard library offers a solution in the form of the stringstream, and its

overloaded operators: >> <<. There is an example of this in Figure 4.15. Now, any

types that allow use to write to or from a stringstream with these two operators

will work (except for STL strings and char * strings, which have silly behavior for

the >> operator, and need a special case). These operators are already overloaded

for almost all primitive types, and can be overloaded by the user for new classes and

types as is appropriate. One could even use imperative meta-programming techniques

explained previously to overload these two operators for arbitrary classes.

Two methods must be implemented, a get and set function. The core logic for

the get function is shown in Figure 4.16, and a full example with both functions can
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1 stringstream ss;

2 type1 a;

3 type2 b;

4 ss << a;

5 ss >> b;

Figure 4.15: Type Conversion with SStream

be found in Figure 4.17, Figure 4.18 and Figure 4.19.

1 template <class T>

2 T _ref_get(string mname)

3 {

4 T ret;

5 stringstream ss;

6 {% for name,member in obj.members.items() -%}

7 if(mname == "{@ name @}"){

8 ss << {@ name @};

9 ss >> ret;

10 return ret;

11 }

12 {% endfor -%}

13 return ret;

14 }

Figure 4.16: Simple reflect code
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1 {% macro proto_reflective objname %}

2 {% set obj = ast.classes[objname] %}

3 static const char * const _ref_members[];

4 template <class T>

5 T _ref_get(string mname)

6 {

7 T ret;

8 stringstream ss;

9 {% for name,member in obj.members.items() -%}

10 if(mname == "{@ name @}"){

11 {% if member.type ==

12 ’basic_string<char,std::char_traits<char>,std::allocator<char> >’

13 %}

14 ret = {@ name @};

15 {% else %}

16 ss << {@ name @};

17 ss >> ret;

18 {% endif %}

19 return ret;

20 }

21 {% endfor -%}

22 return ret;

23 }

24

25 template <class T>

26 void _ref_set(string mname,T val)

27 {

28 stringstream ss;

29 {% for name,member in obj.members.items() -%}

30 if(mname == "{@ name @}"){

31 {% if member.type ==

32 ’basic_string<char,std::char_traits<char>,std::allocator<char> >’

33 -%}

34 {@ name @} = val;

35 {% else -%}

36 ss << val;

37 ss >> {@ name @};

38 {% endif -%}

39 }

40 {% endfor -%}

41 }

42 {% endmacro %}

Figure 4.17: Reflect part1
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1 {% macro make_reflective objname %}

2 {% set obj = ast.classes[objname] %}

3 const char * const {@ obj.name @}::_ref_members[] = {

4 {% for name in obj.members %}

5 "{@ name @}",

6 {% endfor %}

7 NULL

8 };

9 {% endmacro %}

Figure 4.18: Reflect part2
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1 class simple

2 {

3 public:

4 simple():a(42),b(13),c("This is simple"),d(10.0f/6.0f)

5 {}

6 int a;

7 int b;

8 string c;

9 float d;

10 {@ proto_reflective(’simple’) @}

11 };

12

13 {@ make_reflective(’simple’) @}

14

15 int main()

16 {

17 simple thing;

18 cout << "Starting up" << endl;

19 {% block foo %}

20

21 cout << thing._ref_get<string>("a") << endl;

22 thing._ref_set<string>("a","33");

23 cout << thing._ref_get<string>("a") << endl;

24

25 cout << "----------------------------" << endl;

26 char * const *ptr;

27 for(ptr = (char * const *)simple::_ref_members;

28 *ptr != NULL; ptr++)

29 {

30 cout << *ptr << " : " << thing._ref_get<string>(*ptr)

31 << endl;

32 }

33

34 {% endblock %}

35

36 return 0;

37 }

Figure 4.19: Reflect part3
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4.4 Role Based Meta-Programming

Now that we are a bit more familiar with the prospect of meta-programming, we need

to think about organization. Let’s say we have one hundred functions, and we would

like to do a meta-programming operation involving about twenty of them, but these

twenty are randomly scattered throughout the list. It would be nice if we could label

some of these functions with some meta-label that we could use later.

Let’s take a hypothetical situation, we have a C++ class with a few members

and we have a MySQL database. We want to create a table based on the definition

of this class. For simple things like make an int called number and a string called

name, this is easy. However, what if we want to make an int, which is also a primary

key? How do we specify in the class definition which variable should be the primary

key?

With CHIMP, we can take advantage of the GCC-XML feature that allows us to

set meta-attributes on variables and functions (although not classes) through the use

of the __attribute tag. For the purposes of CHIMP, we have dubbed this attribute

to be a “role.” Lets look at a simple example in Figure 4.20.

Of critical importance are the preprocessor lines that say

#define role(x) __attribute((gccxml(#x)))

and

#define primary_key role(primary_key)

The first line simply provides us with a clean interface to the GCC __attribute

operator. With this in place, we can define new roles into the system by calling

#define rolename role(rolename). Now rolename is a valid modifier for vari-

ables, functions and class members. The parameter passed to “role” is the value that

appears in the role variable associated with that member inside of the role list. We

can filter lists of objects to only contain those which have a specified role with the

“role_filter” function which is part of CHIMP.
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1 #include <iostream>

2 #include <string>

3 using namespace std;

4

5 #define role(x) __attribute((gccxml(#x)))

6 #define primary_key role(primary_key)

7 #define secondary_key role(secondary_key)

8

9 class foo

10 {

11 public:

12 foo() :id(0),data(0),name("John Doe") {}

13 primary_key int id;

14 int data;

15 secondary_key string name;

16 };

17

18

19 int main()

20 {

21 {% for member in ast.classes[’foo’].members.values()

22 | role_filter(’primary_key’) %}

23 cout << "{@ member.name @}" << " is the PRIMARY KEY"

24 << endl;

25 {% endfor %}

26

27 {% block anonymous %}

28 {% set keymember = ast.classes[’foo’].members.values()

29 | role_filter(’primary_key’)[0] %}

30 cout << "The KEY is " << "{@ keymember.name @}" << endl;

31 {% endblock %}

32 return 0;

33 }

Figure 4.20: Primary key role

4.5 Failings of CHIMP

While CHIMP is very useful for solving some problems, its complex execution flow

causes some problems to arise.
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4.5.1 Gotchas: debugging

CHIMP is, at present, only a proof of concept, and so is very light on the debugging

capabilities. This means that many errors will pass silently through the Jinja template

engine, resulting in incomplete code. Additionally, any C++ errors that occur on the

stripped input file will result in an empty output file. There are two temporary file

generated by CHIMP which can be found in the /tmp/CHIMP/ directory: “raw.code”

and “info.xml.” These two files are used as intermediate by CHIMP, but can be

insightful while debugging problems. The “raw.code” file is the input file, after it has

been stripped of CHIMP tags. Info.xml is the full listing of classes, functions and

other C++ objects, generated by GCC-XML.

4.5.2 Gotchas: vanishing prototypes

If we use CHIMP to autogenerate a function, we need to be aware of when the

prototype will appear. The problem is that before the metaprogrammer has run, all

metaprogramming tags will be stripped instead of run. This means your function will

never be created. However, during the next stage, GCC-XML needs to parse a full

and valid C++ document. This means that you may attempt to call an undefined

function, which is an error in C++. This is more clear with an example, seen in

Figures 4.21 through 4.25. Figure 4.21 presents an example of a function whose

definition will only exist after the metacode has been evaluated. In Figure 4.22 is

the same code example during the analysis phase, where the code has been stripped

of all metacode. This code is not valid C++ because all functions must be declared

before they have been defined. There are several ways around this, most obviously

is to place a function prototype for the function outside of the metacode. However,

this approach does not solve all possible problems of this nature, so instead we can

address it with the code in Figure 4.23, which has both the function definition and

the function call enclosed in metacode blocks. This code will be stripped into the

code in Figure 4.24, which is valid because it has neither the function call nor the

function definition. This is parsable C++, and will ultimately produce the code in
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Figure 4.25, which is valid and complete code.

1 // Attempt 1 Metacode:

2 {@ make_function_foo() @}

3 int main()

4 {

5 foo();

6 }

Figure 4.21: Bad Metacode...

1 // Attempt 1 after the file is stripped

2 int main()

3 {

4 foo(); // Oops! the prototype for foo is gone!

5 // We cannot process this file!

6 }

Figure 4.22: Becomes bad C++ code

1 // Attempt 2 Metacode:

2 {@ make_function_foo() @}

3 int main()

4 {

5 {% block anonymous_1 %}

6 foo();

7 {% endblock %}

8 }

Figure 4.23: Better Metacode...

1 // Attempt 2 after the file is stripped

2 int main()

3 {

4 // Ah ha! Now both the prototype of foo

5 // and the call to it are gone...

6 }

Figure 4.24: Erroneous code vanishes
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1 // Attempt 2 final stage

2 int foo() {... }

3 int main()

4 {

5 foo(); // Now after the meta-processor...

6 // foo has been defined above

7 // and appears in the body of main.

8 }

Figure 4.25: Correct code is generated

4.5.3 Gotchas: vanishing statements

There is another common problem in programming with CHIMP that arises during

the analysis phase.

cout << {@ someVar @} << endl;

After the metacode stripping phase this line becomes:

cout << << endl; // No good! Not valid!

This problem is just like the one above. We need to remove this entire statement

during the preprocessing phase and have it come back for the application phase. There

are two similar options for this. One option is to wrap the whole cout statement in

a Jinja block, just as we did before, so that the whole thing will disappear until after

we can fill in {@ someVar @} with its final value.
{% block somerandomname %}

cout << {@ someVar @} << endl;

{% endblock %}
Alternatively, we could use the {% print ’’ %} tag to accomplish the same

thing. This tag will vanish until the final meta-programming phase. The only prac-

tical difference is that {% print ’’ %} can be done cleanly in one line, while the

{% block %} method is bulky for a single line, but clean for many lines.

{% print ’cout << {@ someVar @} << endl;’ %}
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The Imperative Meta-Programming Technique can be used to revitalize and extend a

language without having to modify that languages definition or compiler at all. It can

substantially reduce the amount of tedium in coding common tasks and patterns. The

mechanism to develop with an Imperative MetaProgrammer is much more intuitive

for users than the declarative nature of C++ Template Meta-Programming.

5.1.1 Gray Areas

The major drawback to using CHIMP is that it is somewhat complicated to use. It

must be used in an organized manner or it can make code more difficult to understand,

which puts additional weight on the developer to be organized. Of course, being

organized is already expected of the developer so this is not a huge issue. Another

aspect of its complexity comes in developing for it, while programming in CHIMP

one is encouraged to solve all possible aspects of a problem, rather than the one

specific case that you are currently faced with. This is nice in the long run because

it saves the developer from having to write more code later, but it means that an

immediate problem may be more complicated to solve with CHIMP than to write a

simple duct-tape fix.

Another criticism would be that CHIMP metacode is very complicated and messy,

one has to be aware of the constant context switching between template directives
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and actual C++ code. While it is true that CHIMP code is messy, once it is written

correctly, it should be quarantined into a library where it can be accessed cleanly via

includes and macros. Many of the examples listed in this document contain more

CHIMP code in the actual C++ file than would be usual in a real world scenario.

It is more likely that there would be about 5 lines of CHIMP metacode per class

definition in the actual code, and a few files of dedicated CHIMP macros.

5.2 Future Work

5.2.1 CHIMP Cleanup

While functional, the current iteration of CHIMP is not very user-friendly. There

are several things that must be cleaned up before CHIMP is ready for mainstream

distribution.

Organization

At the moment, there is no standard library for CHIMP, nor is there any place

where one could keep commonly-used CHIMP macros. It would be nice to have a

CHIMP standard library, kept in a system-wide location. Additionally, this system

wide location should allow for third party CHIMP libraries to be installed. It would

be convenient for users if CHIMP could also store libraries in a special folder within

their home directory, saving them from having to rely on their systems administrator

to install CHIMP libraries. All this would be much like Perl and the CPAN.

Install-ability

Our personal preference for package maintenance is the APT system used by Debian

and Ubuntu. We would very much like to have CHIMP offered up through such

means, either in the multiverse or in our own personal repository. In order to do this,

we will also need to get an up to date version of Jinja into the repository as well, as

the current Ubuntu repository only has Jinja 0.9, which is not compatible with the

Jinja 1.2 release used in CHIMP.
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5.2.2 CHIMP Variations

Alternative Template Tools

For CHIMP we used Jinja because it was easy to implement the strip operation, and

was easy to pick up usage. However, the Jinja/Django template language is fairly

limited, and forces users into the MVC model. As such, one cannot have large blocks

of logical code mixed into the template. To this end, it would be worthwhile to

consider other template languages. Alternatively, one could attempt to use the Ruby

language and its ERB template language. This would allow for much more diversity

in what you could do in meta code, such as writing to external files. It also could be

that a whole new template engine should be written specifically for CHIMP.

CHIMP for Java

The code layout of Java actually lends itself much more to the IMP technique. Specif-

ically, in C++ you need two macros to add a function to the class: one for the header

file and one for the implementation file, which violates the redundancy principle that

was mentioned in Section 3.1.2. Java would only need one macro, as the definition

and the implementation are in one place.

Java already has a built-in reflection mechanism, which allows for many of the

operations that we have shown so far. However, Java does not have any meta-

programming or reflective tool for adding and implementing new functions. If a

proper Java parser could be found to substitute for GCCXML then it might be in-

teresting to see if a CHIMP for Java could be useful.

5.2.3 Inspired ideas

Role Based Programming

One realization that we came to while working with CHIMP was that the merging

of logic and data, as is typical in object-oriented programming, might not be such a

great idea after all. As an alternative, we would like to try to develop a simple proof

of concept language which disjoints logic from data, much in the way CHIMP does.
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In Figure 5.1 one can see a hypothetical example. In theory, the programmer would

define data objects which are primarily or completely data members, each of which

would have a formal name and several roles or characteristics. Then the programmer

would define logic objects, which would define methods. Now a final class would

be created by merging various logic and data objects together. Once merged, the

methods from the logic objects would be made aware of any objects in their scope.
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1 DATA person_data {

2 roles(serializable,key) string name;

3 roles(serializable) string address;

4 roles(serializable) string number;

5 }

6

7 DATA transaction_data {

8 roles(serializable,key) long int transaction id;

9 roles(serializable) string cusomter_name;

10 roles(serializable) list(string) cart;

11 }

12

13 LOGICAL xml {

14 function toXML[obj](){

15 ret = ‘‘<xml_obj>’’;

16 for x in obj.role(serializable){

17 ret += x.toXML();

18 }

19 ret += ‘‘</xml_obj>’’;

20 return ret;

21 }

22 }

23

24 LOGICAL database {

25 function lookupInDatabase[obj](database){

26 key = obj.role(key);

27 ret = database.search(key);

28 return ret;

29 }

30 function doSomethingElse[obj](database){

31 ...

32 }

33 }

34

35 OBJECT employee = DATA(person_data)

36 merged_with LOGIC(xml,database)

37 OBJECT transaction = DATA(transaction_data)

38 merged_with LOGIC(xml,database)

Figure 5.1: Role Based Programming Pseudo Example
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Appendix A

Chimp Source Listing

A.1 Chimp.py

#!/usr/bin/env python

import analysis
import template

import os
import sys
import getopt

if __name__==’__main__’:
dest = sys.stdout
target = ’’
includes = ’’

cmdline_args = sys.argv[1:]
opts,args = getopt.getopt(cmdline_args,"o:I:")

for o,a in opts:
if o == ’-o’:

dest = file(a,"w")
if o == ’-I’:

includes = a

if args:
target = args[0]
assert target
assert os.path.isfile(target)

try:
os.mkdir(’/tmp/chimp/’)

except:
pass

raw_cpp = ’/tmp/chimp/raw.code’
info_xml = ’/tmp/chimp/info.xml’
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os.system(’rm -f %s’%raw_cpp)

template.stripFile(target,raw_cpp)

ast = analysis.analyzeFile(raw_cpp,info_xml,includes)

data = template.applyTemplate(target,ast)

dest.write(data)
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A.2 Analysis.py

#!/usr/bin/env python

import os
import sys
import xml.etree.ElementTree as ET
import re

###############################################################################

global lookuptable
lookuptable = {}

global known_roles
known_roles = {}

###############################################################################

def digUpType(id):
node = lookuptable[id]
if node.tag in [’FundamentalType’]:

return node.attrib[’name’]
elif node.tag in [’ArrayType’]:

tname = digUpType(node.attrib[’type’])
tname = tname + "[]"
return tname

elif node.tag in [’PointerType’]:
tname = digUpType(node.attrib[’type’])
tname = tname+"*"
return tname

else:
#print "Warning, unknown xml tag type :",node.tag
return "<mystery type>"

###############################################################################

class Obj:
def __init__(self,node):

self.node = node
if not node.attrib.has_key(’name’):

node.attrib[’name’] = node.attrib[’mangled’]
self.name = node.attrib[’name’]
self.tag = node.tag

#Set defaults
self.members = {}
self.methods = {}
self.compounds = {}
self.classes = self.compounds
self.structs = self.compounds
self.type = ’’
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self.caste = ’’
self.parameters = []
self.roles = []
self.arguements = []
self.compound = False

# Get members
if node.attrib.has_key(’members’):

for x in node.attrib[’members’].split():
target = lookuptable[x]
if target.attrib and target.attrib.has_key(’name’):

subname = target.attrib[’name’]
subobj = Obj(target)
if subobj.tag in [’Class’,’Struct’]:

self.compounds[subname] = subobj
elif subobj.tag in [’Field’,’Variable’]:

self.members[subname] = subobj
elif subobj.tag in [’Function’,’Method’]:

self.methods[subname] = subobj

# Set type
try:

if self.tag in [’Field’,’Variable’]:
if not node.attrib.has_key(’type’):

self.type = node.attrib[’mangled’]
else:

typeid = node.attrib[’type’]
typenode = lookuptable[typeid]
while typenode.attrib.has_key(’type’) or

typenode.attrib.has_key(’returns’):
typeid = typenode.attrib.get(’type’,

typenode.attrib.get(’returns’,None))
typenode = lookuptable[typeid]

if typenode.attrib.has_key(’name’):
self.type = typenode.attrib[’name’]

elif typenode.attrib.has_key(’mangled’):
self.type = typenode.attrib[’mangled’]

else:
raise Exception(’No type’)

elif self.tag in [’Function’,’Method’]:
typeid = node.attrib[’returns’]
typenode = lookuptable[typeid]
self.type = typenode.attrib[’name’]

elif self.tag in [’Class’,’Struct’]:
if node.attrib.has_key(’name’):

self.type = node.attrib[’name’]
else:

self.type = node.attrib[’mangled’]
except:

self.type = ’<UNKNOWN>’

if self.tag in [’Function’,’Method’]:
lst = self.node.findall(’Argument’)
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for parm in lst:
tname = ’’
pname = ’’
tname = digUpType(parm.attrib[’type’])
if parm.attrib.has_key(’name’):

pname = parm.attrib[’name’]
elif parm.attrib.has_key(’mangled’):

pname = parm.attrib[’mangled’]
else:

pname = ’anonymous’
typle = (tname,pname, tname + pname)
self.arguements.append(typle)

pass

# Set caste
if self.tag in [’Field’,’Variable’]:

self.caste = ’variable’
elif self.tag in [’Function’,’Method’]:

self.caste = ’function’
elif self.tag in [’Class’,’Struct’]:

self.caste = ’compound’

# Look for GCCXML attributes
if node.attrib.has_key(’attributes’):

gxroles = node.attrib[’attributes’].split()
for r in gxroles:

m = re.match(r"gccxml\((.*)\)",r)
if m:

role = m.group(1)
if role:

self.roles.append(role)
if not known_roles.has_key(role):

known_roles[role] = []
known_roles[role].append(self)

# Set compound standing
if node.tag in [’Class’,’Struct’]:

self.compound = True
elif node.tag in [’Field’,’Variable’]:

typenode = lookuptable[self.node.attrib[’type’]]
if typenode.tag in [’Class’,’Struct’]:

self.compound = True

###############################################################################

class Content:
def __init__(self):

self.compound = {}
self.classes = self.compound
self.structs = self.compound
self.variables = {}
self.functions = {}
self.roles = {}
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def addObj(self,obj):
name = obj.name
if obj.tag in [’Class’,’Struct’]:

self.compound[name] = obj
elif obj.tag in [’Function’,’Method’]:

self.functions[name] = obj
elif obj.tag in [’Variable’,’Field’]:

self.variables[name] = obj

###############################################################################

def analyzeFile(fname,oname=’tmp/processed.xml’,cflags = ’’):
cmdstring = ’gccxml --gccxml-cxxflags "%s" %s -fxml=%s 2>&1’

%(cflags,fname,oname)
#print cmdstring
res = os.popen(cmdstring)
result = res.read()
if len(result):

raise Exception(’Compile failed!\n’+result)

tree = ET.parse(oname)
structs = tree.findall(’//Struct’)
classes = tree.findall(’//Class’)
base_functions = tree.findall(’//Function’)
variables = tree.findall(’//Variable’)

# There are a lot of __builtin functions that gccxml puts there.
# I don’t care about them
functions = filter(lambda x :

not x.attrib[’name’].startswith(’__builtin’),base_functions)

# Top
toplevel = structs + classes + variables + functions

for x in tree.findall(’/*’):
lookuptable[x.attrib[’id’]] = x

content = Content()

for node in toplevel:
obj = Obj(node)
content.addObj(obj)

content.roles.update(known_roles)

return content
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A.3 Template.py

#!/usr/bin/env python
import os
import jinja
import sys
from pprint import pprint
from jinja.translators.python import PythonTranslator,Template

class JohnsTranslator(PythonTranslator):
# def __init__(self,*args,**kwargs):
# PythonTranslator.__init__(self,*args,**kwargs)

def process(environment, node,source=None):
"""
The only public method. Creates a translator instance,
translates the code and returns it in form of an
‘Template‘ instance.
"""
translator = JohnsTranslator(environment, node,source)
filename = node.filename or ’<template>’
source = translator.translate()
return Template(

environment,
compile(source, filename, ’exec’))

process = staticmethod(process)

def handle_for_loop(self,node):
return ""

def handle_if_condition(self,node):
return ""

def handle_cycle(self,node):
return ""

def handle_print(self,node):
return ""

def handle_macro(self,node):
return ""

def handle_call(self,node):
return ""

def handle_set(self,node):
return ""

def handle_filter(self,node):
return ""
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def handle_block(self,node):
return ""

def handle_include(self,node):
return ""

def stripFile(targetname,destname):
assert os.path.isfile(targetname)

env = jinja.Environment(’{%’, ’%}’, ’{@’, ’@}’, ’{#’, ’#}’,
trim_blocks=True,loader=jinja.FileSystemLoader("./"))

tree = env.parse(file(targetname).read())
rv = JohnsTranslator.process(env, tree)
data = rv.render()
fout = file(destname,’w’)
fout.write(data)
fout.close()

def do_role_filter(key):
def searchkey(mem):

try:
if key in mem.roles:

return True
except:

return False
return False

def wrapped(env,context,value):
if type(value) is list:

ret = filter(searchkey,value)
return ret

else:
return value

return wrapped

def applyTemplate(target,ast):
env = jinja.Environment(’{%’, ’%}’, ’{@’, ’@}’, ’{#’, ’#}’,

trim_blocks=True,loader=jinja.FileSystemLoader("./"))
env.filters[’role_filter’] = do_role_filter

tmpl = env.get_template(target)
ret = tmpl.render(ast=ast)
ret = ret + "\n"
return ret
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Appendix B

Applications of Chimp

B.1 LUA

B.1.1 toLua

toLua MetaCode

#include <lua5.1/lua.h>
#include <lua5.1/lauxlib.h>
#include <lua5.1/lualib.h>

{% macro proto_toLua -%}
public:

int toLua(string fname);
int _toLua(stringstream &s,string indent = "");

{% endmacro -%}

{% macro make_toLua objname %}
{% set obj = ast.classes[objname] %}
int {@ obj.name @}::toLua(string fname)
{

stringstream s;
fstream fout;
s << "-- To Lua" << endl;
s << "{@obj.name@} = " ;
_toLua(s);
s << endl << endl;

fout.open(fname.c_str(),fstream::out);
cout << s.str() << endl;
fout << s.str() << endl;
fout.close();

}

int {@ obj.name @}::_toLua(stringstream &s,string indent)
{

s << " {" << endl;
{% for name,member in obj.members.items() %}
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{% if not member.compound %}
{% if member.type == "basic_string<char,std::char_traits<char>,std::allocator<char> >" -%}

s << indent << " " << "{@ name @} = \"" << {@ name @} << "\"" ;
{% else %}

s << indent << " " << "{@ name @} = " << {@ name @};
{% endif %}

{% else %}
s << indent << " " << "{@ name @} = ";
{@ name @}._toLua(s,indent + " ");

{% endif%}

{% if not loop.last %}
s << ",";
{% endif %}
s << endl;

{% endfor %}
s << indent << "}";

}
{% endmacro %}

toLua Main

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
using namespace std;

{% include ’toLua.cmf’ %}

//--------------------- Code

class simple
{
public:

simple();
int a;
int b;
string c;
float d;
{@ proto_toLua() -@}

};

class complicated {
public:

complicated();
string name;
int something;
simple component;
{@ proto_toLua() -@}

};
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simple::simple()
{

a = 42;
b = 13;
c = "This is something simple";
d = 10.0f/6.0f;

}

complicated::complicated()
: component()
{

name = "My name";
something = 1;

}

//---------------------- Autogen
{@ make_toLua(’simple’) @}
{@ make_toLua(’complicated’) @}

int main()
{

complicated thing;

{% print "thing.toLua(\"output.lua\");" %}
return 0;

}

B.1.2 fromLua

fromLua MetaCode

#include <lua5.1/lua.hpp>
#include <lua5.1/lauxlib.h>
#include <lua5.1/lualib.h>
//--------------------- MetaCode

{% macro proto_fromLua -%}
public:

int fromLua(string fname);
int _fromLua(lua_State *L);

{% endmacro -%}

{% macro make_fromLua objname %}
{% set obj = ast.classes[objname] %}
int {@ obj.name @}::fromLua(string fname)
{

lua_State *L;
L = lua_open();
luaL_reg *lib;
luaL_reg lualibs[] =
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{
{"base",luaopen_base},
{NULL,NULL}

};

for (lib = lualibs; lib->func != NULL; lib++)
{

lib->func(L);
lua_settop(L,0);

}

luaL_dofile(L,fname.c_str());

lua_getglobal(L,"{@obj.name@}");
if(!lua_istable(L,-1))
{

cerr << "Warning, {@obj.name@} is not a table" << endl;
return 0;

}

_fromLua(L);

lua_pop(L,1);
lua_close(L);
return 0;

}

int {@ obj.name @}::_fromLua(lua_State *L)
{
{% for name, member in obj.members.items() %}
{% if member.compound %}

lua_pushstring(L,"{@ name @}");
lua_gettable(L,-2);
{@name@}._fromLua(L);
lua_pop(L,1);

{% else %}
{% if member.type ==

"basic_string<char,std::char_traits<char>,std::allocator<char> >" -%}
lua_pushstring(L,"{@ name @}");
lua_gettable(L,-2);
{@ name @} = lua_tostring(L,-1);
lua_pop(L,1);

{% else %}
lua_pushstring(L,"{@ name @}");
lua_gettable(L,-2);
{@ name @} = static_cast<{@member.type@}>(lua_tonumber(L,-1));
lua_pop(L,1);

{% endif %}
{% endif %}

{% endfor %}
return 0;
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}
{% endmacro %}

fromLua Main

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
using namespace std;

{% include ’fromLua.cmf’ %}
//--------------------- Code

class simple
{
public:

simple();
int a;
int b;
string c;
float d;
{@ proto_fromLua() -@}

};

class complicated {
public:

complicated();
string name;
int something;
simple component;
{@ proto_fromLua() -@}

};

simple::simple()
{

a = 42;
b = 13;
c = "This is something simple";
d = 10.0f/6.0f;

}

complicated::complicated()
: component()
{

name = "My name";
something = 1;

}

//---------------------- Autogen
{@ make_fromLua(’simple’) @}
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{@ make_fromLua(’complicated’) @}

int main()
{

complicated thing;

{% print "thing.fromLua(\"input.lua\");" %}
cout << "thing.name : " << thing.name << endl;
cout << "thing.something : " << thing.something << endl;
cout << "thing.component.a : " << thing.component.a << endl;
cout << "thing.component.b : " << thing.component.b << endl;
cout << "thing.component.c : " << thing.component.c << endl;
cout << "thing.component.d : " << thing.component.d << endl;
return 0;

}
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