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Abstract 

 

   Several bacterial and viral species are human pathogens and contain strains exhibiting 

different degrees of virulence.  Nucleic acid sequencing enables strain fingerprinting, 

which is a term used for identifying bacterial and viral strain species and subtypes based 

on their DNA. Strain fingerprinting methods are becoming increasingly important in the 

threat of epidemic outbreaks and the possibility of biothreat agents [3, 4, 17]. This thesis 

examines the use of oligonucleotide word signatures for strain fingerprinting and related 

classifications.  An investigation into word signature differences exhibited by different 

strains of the same subtype reveals that words not expressed by individual genomes offer 

the most potential as differentiating features.  Thus, a supervised classifier is built with 

feature sets derived from absent words.  Resulting accuracies are high and are listed for 

five classifications at different levels of phylogenetic resolution: Mixed Pathogens: 

100%, Influenza A virus/Influenza B virus: 100%, Influenza A virus subtypes (human 

host): 96%, Avian Influenza A virus H5N1 lineages: 94%, Avian to Human Transmission 

H5N1 lineages: 100%. While the data set used does not allow complete confirmation of 

reported accuracies, it is suggested that this method could be a valuable tool in 

comparative genomics and enable geographic origination determination of Influenza A 

virus and other pathogenic isolates.  
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Chapter 1  

Introduction  

    Microbes are living species invisible to the naked eye and are ubiquitous in every 

living system.  Several bacterial and viral species are human pathogens and contain 

strains exhibiting different degrees of virulence.  Subsequently, many of these species 

have been studied extensively and their genomes sequenced.  For example, a large 

database of Influenza A and B virus genomes has recently been made publicly available 

by the National Institute of Allergy and Infectious Disease (NIAID) [2].  Influenza 

epidemics cause an average of 30,000 deaths per year in the U.S. while flu pandemics 

such as the Spanish flu in 1918 can affect 20-40% of the world’s population [22].   

    Nucleic acid sequencing enables strain fingerprinting, which is a term used for 

identifying bacterial and viral strain species and subtypes based on their DNA. Strain 

fingerprinting methods are becoming increasingly important in the threat of epidemic 

outbreaks and the possibility of biothreat agents [3, 15, 40]. In addition, strain 

fingerprinting can enable medical diagnosis, insights into microbial strain evolution, as 

well as geographic distribution and transmission networks [37]. 

    The specific order of nucleotides within and adjacent to coding regions of DNA dictate 

which proteins will be created under any given condition.  In this way, DNA codes how 

an organism will live in its environment.  While the entire genomic sequence is 

analogous to the main driver in a C program, genes represent embedded functions which 

are called under specific circumstances and proceed to call on each other in complex 
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patterns.  Though genomes can be billions of base pairs (bp) long, they are ultimately 

composed of only four different nucleotides; Adenine(A), Guanine(G), Tyrosine(T), and 

Cytosine(C).   A base pair is the term used for the bound pair of nucleotides across each 

DNA strand, with specific binding rules.  Unless an error is present, A only binds with T 

and C only binds with G, and all nucleotides are paired.    

    As would be expected from a molecule with such a distinct and crucial biological role, 

the order of base pairs composing DNA is not random.  This has well been elucidated by 

the discovery of the oligonucleotide word signature. A genomic signature is a preferential 

usage of specific base pair patterns (words) which remains consistent.  It is derived by 

calculating the over- and under- representation of nucleotide words when compared to 

random expectations. Processes such as replication, transcription, gene coding and 

defense against invasive DNA are driven by nucleic acid sequences which contribute to 

nucleotide patterns throughout a genome [14].   

    This thesis examines the use of oligonucleotide signatures for strain fingerprinting and 

related classifications.  First, an investigation into signature differences exhibited by 

different strains of the same subtype is described.  The results suggest that word 

sequences simultaneously absent from groups of genomes can indicate lineage 

relatedness at a resolution finer than subtype.  Due to these results, a supervised classifier 

is built with feature sets derived from absent words.  This classifier is tested on its ability 

to identify genomes from different genera, species within the same genera, subtypes 

within a species, lineage groups within a subtype, and viral lineage groups across host  

species (avian to human).   
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    The next sections in this thesis are structured as follows: Chapter 2 presents a 

background literature review of oligonucleotide word signatures and current strain 

fingerprinting methods. Chapter 3 describes a preliminary examination of word signature 

differences between strains of the same subspecies, Staphylococcus aureous subs. 

aureous.  Chapter 4 presents a supervised classification based on results in Chapter 3, and 

includes a description of five classification applications. Chapter 5 shows results to all 

classifications, and Chapter 6 presents a discussion of the strain classifier including its 

relevance to current events, potential improvements and possible future applications.   
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Chapter 2  

Background  

2.1 Rooted Phylogenetic Trees 

     Rooted phylogenetic trees are equivalent to computational tree data structures with 

each parent node representing a common ancestor to all of its child nodes.  The concept 

of classifying living organisms with a tree structure was first proposed by Charles Darwin 

in 1859 [59].  The specific organization of trees representing related groups of organisms 

depends on both the traits used to differentiate organisms as well as the tree building 

method. Computational phylogenetics employs computer algorithms in the determination 

of tree based relationships.  Different nucleic acid based traits such as whole genome 

alignment, 16Srna [59] or the sequence of specific genes can be used to derive any 

number of tree forms among groups of organisms.  

     Current taxonomic classifications can be traced back to the grouping of organisms 

based on physical characteristics.  These groupings have since been revised with the 

Darwinian principle of common descent and genetic sequence information. The root of 

the tree of life is “life”.  Life requires all of a certain group of traits. These include a 

carbon and water based cellular form, complex organization, heritable genetic 

information, capacity for metabolism, growth, response to stimuli, reproduction and 

adaptation of successive generations through natural selection [59].  While bacteria are 

considered living organisms, viruses are not able to metabolize and are thus generally not 
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considered life forms.  Another definition relevant to this thesis is that of “species”.  A 

general definition of species is a group or organisms capable of interbreeding and 

producing fertile offspring [59].  Two examples of phylogenetic trees are given.   Figure 

2.1 illustrates the derivation of Homo sapiens subsp. sapiens (modern man) through 

current taxonomic groupings.  Figure 2.2 shows the path of the H5N1 Influenza A virus 

subtype (bird flu). 

 
Figure 2.1.  Basic phylogenetic tree, modern man trace. 
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Figure 2.2. Basic phylogenetic tree, Influenza A virus H5N1 trace. 
 

2.2 Overview of Human Pathogens 

    This section presents a brief description of each species included in the data set used 

for classifications. More specific descriptions of subtypes and strains used are included in 

the classification results.  All information for this section was obtained from the pubmed 
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website [57] and the National Institute of Allergies and Infectious Disease (NIAID) 

Influenza resource [2]. 

 Bacillis Anthracis:  This is a bacterial species that causes the human disease 

known as anthrax.  This disease exhibits three forms including cutaneous (skin), 

pulmonary (lung), and intestinal. The latter two forms can be fatal if not treated. Spores 

have been used as a terror weapon. The full lineage of B.anthracis is as such: (Domain) 

Bacteria; (Phylum) Firmicutes; (Class) Bacilli; (Order) Bacillales; (Family) Bacillaceae; 

(Genus)  Bacillus; (Species) Bacillus anthracis.   

 Clostriduim botulinum: This bacterium causes botulism, on often fatal form of 

paralysis. Botulinum toxin, and C. botulinum cells, have been found in many foods, 

including canned foods. The full lineage of C.botulinum is as such: (Domain)  Bacteria; 

(Phylum) Firmicutes; (Class) Clostridia; (Order) Clostridiales; (Family) Clostridiaceae; 

(Genus) Clostridium; (Species) Clostridium botulinum. 

 Francisella tularensis: This bacterium is the causative agent of tularemia. This 

disease can be transmitted to humans by infected ticks, deerflies, carcasses, or by aerosol, 

and is a potential bioterrorism agent. The full lineage is given: (Domain) Bacteria; 

(Phylum) Proteobacteria; (Class) Gammaproteobacteria; (Order) Thiotrichales; (Family) 

Francisellaceae; (Genus) Francisella; (Species) Francisella tularensis. 

 Mycobacterium tuberculosis: This bacterium causes tuberculosis, a chronic 

infectious disease of which incidences are increasing worldwide.  This species causes 

more deaths in humans than any other bacteria. The full lineage is: (Domain) Bacteria; 

(Phylum) Actinobacteria; (Class) Actinobacteridae; (Order) Actinomycetales; (Family) 

Mycobacteriaceae; (Genus) Mycobacterium; (Species) Mycobacterium tuberculosis. 



 8

 Staphylococcus aureus:  This bacterium is a major source of hospital and 

community acquired infections.  Strains continue to evolve resistance to various 

antibiotics and infections can sometimes be uncureable. It can often result in mortality as 

well as superficial infections and more serious forms of infection such as meningitis.  The 

full lineage is as such: (Domain) Bacteria; (Phylum) Firmicutes; (Class) Bacilli; (Order) 

Bacillales; (Family) Staphylococcaceae; (Genus) Staphylococcus; (Species) 

Staphylococcus aureus.  

Yersinia pestis: This bacterium is the causative agent of plague (bubonic and 

pulmonary). It can be transmitted from rats to humans through the bite of an infected flea 

or from human-to-human through the air during widespread infection. This species was 

the cause of the Black Death in Europe in the 19th century and a current subtype 

originating in China persists today. Its full lineage is: (Domain) Bacteria;  

(Phylum) Proteobacteria; (Class) Gammaproteobacteria; (Order) Enterobacteriales; 

(Family) Enterobacteriaceae; (Genus) Yersinia; (Species) Yersinia pestis. 

Influenza A virus: Influenza A virus infects humans and many other species as 

the flu. Each year in the U.S., an estimated 36,000 deaths are attributed to the flu.  Over 

100 subtypes of Influenza A virus exists. Specific subtypes have caused all of the world’s 

major flu pandemics. This species also includes the subtype H5N1 which has been 

predicted to cause the next worldwide pandemic. All subtypes have been found in wild 

birds, which are considered reservoirs for the virus as they can transmit the virus to other 

animals.  The full lineage of this virus is: (Domain) Viruses; (Group) ssRNA negative-

strand viruses; (Family) Orthomyxoviridae; (Genus) Influenzavirus A; (Species) 

Influenza A virus. 
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Influenza B virus: Influenza B virus also contributes to yearly flu epidemics. It’s 

lineage is: (Domain) Viruses; (Group)ssRNA negative-strand viruses; (Family) 

Orthomyxoviridae; (Genus) Influenzavirus B; (Species) Influenza B virus. 

 

2.3 Strain Fingerprinting 

    Strain fingerprinting is a term describing the determination of microbial species and or 

subtype type from its DNA.  Subtypes are variations of species which exhibit genetic 

differences but still remain in the same species group.  Sometimes these changes can 

cause strong characteristic differences. For example, Francisella tularensis is a bacterium 

causing the disease tularemia in mammalian species.  Three subtypes of F. tularensis 

have been described: F. tularensis subsp. tularensis, F. tularensis subsp. holoartica, and 

F. tularensis subsp. mediaasiatica.  The first of these subspecies is considered highly 

virulent while the others are considered less virulent [50]. To prevent dangerous 

outbreaks, when occurences of F. tularensis are found in animal or human cases, it is 

important to know to which subtype the specific strain belongs.   

    DNA extracted from non-living samples can be used in strain fingerprinting methods. 

With rapid advances in genomic sequencing, DNA based identification methods are 

increasingly being relied upon to identify pathogenic strains and monitor epidemic 

outbreaks [31].  One advantage to DNA based strain fingerprinting is that live cultures 

are not required, reducing the risk of accidental work place exposure to pathogenic 

microbes [26].   
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    Most current fingerprinting techniques incorporate laboratory methods to locate 

specific nucleotide sequences which are expected to be expressed in different quantities 

or with different variations between strain genomes.  These techniques rely on DNA 

probes.  Probes are short nucleic acid segments which bind to the sequences of interest in 

unknown DNA samples.  These probes can be used as primers in polymerase chain 

reactions (PCR) whereby if the sequence of interest does exist in the sample, it is copied 

exponentially and the quantity is measured (see [9] for more detail).  Multiple probes can 

also be used in miccroarrays where the degree of binding between each probe in the array 

and the DNA sample can be specific to species and subtype samples [11,12].  In these 

cases, the design of probes plays an important role in the success of such techniques. 

Algorithmic methods designed to optimize this process often include determining 

sequences specific to species groups [24, 43, 54].  

    Ribosomal RNA (rRNA) plays a role in the manufacture of proteins dictated by DNA 

coding regions. Genes coding for rRNA are the least variable in all cells and 

subsequently their nucleotide coding sequences are often used to determine the taxonomy 

of an organism [59].  Designing probes based on these gene sequences is referred to as 

ribotyping. Ribotyping has been examined as a means of strain differentiation of 

Francisella tularensis samples, but has proven limited in its ability to differentiate 

subtypes [15, 17].     

    Strain differentiation through the use of variable number tandem repeats (VNTR) has 

been applied to discriminating subtypes of  F.tularemia [17, 26], B. anthracis [28], 

Y.pestis [33, 44],  M. tuberculosis [23, 34], and C. difficile [29].  It has also been reported 

as a relatively fast method, allowing results in 8-12 hours after obtaining a strain isolate 
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[15]. Short tandem repeats are DNA regions characterized by the repetition of specific 

nucleotide words, i.e., TATATATA.  Variable number tandem repeats are found at the 

same locus (position) among different genomes of the same species but show different 

numbers of repetitions between individuals [53].  In strain differentiation, these repeats 

can be used as probes.  

    Fragment Length Polymorphism has been another successful tool employed in strain 

fingerprinting of such pathogens as F. tularensis [17, 50] and C. difficile [29].  This 

process uses restriction enzymes which cut DNA samples at any occurrence of sequences 

specific to each enzyme. After being digested with these enzymes, each strain sequence is 

left broken into fragments of different lengths. Depending on which restriction enzyme is 

used, these fragment lengths should differ between subtypes and enable its identification.  

While this method has also proven successful in strain subtyping, it is slower than PCR 

amplification methods [59] and requires about twice as much time [15]. 

 

2.4 Oligonucleotide Signatures   

    Oligonucleotide signatures have been studied extensively in nucleic acid sequence 

analysis. They are derived by calculating the over- and under- representation of 

nucleotide words when compared to random expectations. In [7], differences in 

dinucleotide signatures were examined among prokaryote, plasmid, and mitochondrial 

DNA. Mitochondrial DNA signature differences corresponded with phylogenetic 

classifications in that mammalian signatures were found to be similar, while animal and 

fungal signatures were described as moderately grouped and divergent from plants and 
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protists.  Plasmids and their hosts were also significantly similar.  To quantify signature 

differences between genomic sequences, the average absolute dinucleotide relative 

abundance was calculated, given by the formula: 

   

   δ*(f,g) = 1/16∑|ρ*XY(f) -  ρ*XY(g)|   

 

where f and g are two sequences, and XY represents all 16 possible dinucleotide pairs, 

and ρ*XY is the odds ratio of dinucleotide xy and its reverse compliment [7]. 

    Signatures are not restricted to dinucleotide usage patterns, and can include nonrandom 

utilization of any oligonucleotide. The authors in [20] examined codon pairs, or 

hexoligonucleotide abundances in Escherichia coli. The codon triplet is the basic reading 

block in transcription, each codon codes for an amino acid, which in turn helps to build a 

protein.  The authors showed that dicodon usage patterns were nonrandom and that the 

degree of nonrandomness exceeded that which would be contributed by nonrandom 

dinucleotide abundances alone.  The authors also describe that codon signatures vary 

considerably between organisms.  For each of the possible 3,271 codon pairs, a value was 

calculated: 

                    χ2
1 = (observed – expected)2/expected 

where the expected number of each codon pair was the product of the pairs frequency and 

the total number of pairs.  A codon pair’s frequency was the product of the frequency of 

each codon, under the assumption that codons are used randomly.     

    Tetranucleotide signatures were examined in [45] via the calculation of tetranucleotide 

usage departures from random (TUD)s for 27 microbial genomes.  The authors found that 
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a zero order Markov chain, which measured tetranucleotide bias assuming random 

nucleotide distributions, gave the best distinction between species signatures.  In this 

approach, the frequency of a word F(W) was a ratio of the observed O(W) and the 

expected E(W). Through this approach, phylogenetically related species showed similar 

TUDs.   

    In [6], word over- representation was determined if the probability calculated for an 

oligonucleotide and its reverse complement were greater than one ( ρXY >1 and ρI(XY)  

>1). Similarly, both values less than one indicated under- representation.   In the 

calculation of all probabilities, adjustments were made for the complimentary antiparallel 

nature of DNA.  For example, the adjusted frequency of the mononucleotide A would be 

f*A = f*T = ½(fA +fT).   Similarly, f*G = f*C = ½(fG +fC).  For dinucleotides, an example 

for GT is given: ρ*GT = f*GT/f*Gf*T = 2(fGT +fAC)/(fG + fC)(fT +fA).  Trinucleotides were 

calculated as : γ*XYZ = f*XYZf*Xf*Yf*Z/f*XYf*YZf*XNZ , where f*XYZ = ½(fXYZ + f I(XYZ) ) , 

I(XYZ) is the inverted complement of trinucleotide XYZ, and N is some nucleotide. 

    The specific mechanisms which maintain short oligonucleotide frequencies throughout 

a genome are not clearly understood.  Some of these mechanisms may have opposing 

results creating a mixed composition [14]. In a study of E.coli, it was suggested that a 

Very Short Patch (VSP) repair mechanism may be responsible for the under- 

representation of T containing oligonucleotides (i.e. CTAG) and the over-representation 

of C containing oligonucleotides (i.e. CCAG) [4].  The VSP repair in E.coli targets T:G 

mismatches in the sequences NTWGG/N’GW’CC and CTWGN/GGW’CN’ (W = A or 

T, N = A,C,T,or G, primes ‘ indicate complementary bases and slashes /  indicates double 

stranded pairs) and converts them to C:G base pairs.   The authors used first, second and 
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third order Markov chains to test for over- and under- representation of penta, tetra and tri 

nucleotides expected to be affected by VSP repair.  Results supported the VSP repair 

hypothesis, short oligonucleotides favored C:G over T:A bases in all expected sequences.    

      Restriction-Modification (R-M) systems have also been suggested as a mechanism 

contributing to short oligonucleotide bias throughout a genome.  Type II R-M systems 

recognize specific nucleotide sequences and cleave within or very close to those 

sequences [30]. In [18], a direct connection was found between type II R-M target sites 

and under-representation of those palindromic sequences in several bacterial genomes.  

Palindromes are the combination of nucleotide sequences followed by their reverse 

complements, i.e. TGGCCA.  Markov models were used in the derivation of positive or 

negative representation of 4, 5, and 6 base pair(bp) palindromes in Haemophilus 

influenzae, E.coli, Methanococcus jannashii, Bacillus subtilis, Mycoplasma genitalium, 

Synechocystis sp., Marchantia polymorpha mitochondrion and chloroplast genomes. 

Palindromes representing R-M target sites within the same genome were highly avoided 

while palindromes representing R-M target sites from foreign genomes were mildly 

avoided.   It was suggested that bacterial genomes in environmental populations may be 

exposed to R-M systems from other strains and species through lateral gene transfer.  

This was proposed to explain the avoidance of palindromes not specifically targeted by 

indigenous R-M systems.  The researchers also showed that in mitochondrial and 

chloroplast DNA which do not contain R-M systems, palindrome avoidance was not 

detected.  R-M systems were compared between two Helicobacter Pylori strains in [32]. 

Though both strains shared 90% of their R-M systems, it was found that only strain 
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specific R-M genes were expressed.  The shared genes were inactive.  This suggests that 

different strains may differ in palindrome avoidance patterns as a result of R-M systems.   
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Chapter 3   

Strain Signature Comparisons 

    A preliminary comparison of strain word signature differences is presented in this 

section. The method of DNA sequence comparison used hinged on two parameters.  The 

first was the method for determining the degree of over- or under- representation of any 

given word.  The second was the length of word to use.  Detailed descriptions and 

reasons for selection of these parameters are described in sections 3.1 and 3.2.    

  Oligonucleotide signatures of short word lengths (2-5) have been shown to be similar 

for organisms within kingdom groupings [7] as well as species specific [27, 45, 49].  

They are also consistent enough to be used in the regrouping of mixed fragments from 

multiple species genomes [1, 36, 49].    

    While genome signatures show consistencies within phylogenetic groups, examining 

differences at the strain level may reveal significant differences that could enable strain 

classification and give insight into strain evolution. In this work, genomic signature 

differences between strains within the same subspecies group were examined as 

preliminary research in the potential building of a strain classifier.  To extract strain 

differences, over- and under- represented words were examined as potential feature sets.  

The most significant results stemming from this research concerned the under- 

represented subset which allowed the highest level of strain differentiation and even 

seemed to cluster along lineage groupings.   
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    Staphylococcus aureous is an opportunistic pathogen in humans and animals 

characterized by high genetic plasticity. Many drug resistant and virulent strains have 

evolved in hospital and clinical settings [21], and deaths caused by S. aureous have 

reached epidemic proportions. Ten strains of bacterium Staphylococcus aureous subs. 

aureous (Mu50, NCTC8325, USA300, N315, Mu3, MSSA476, MRSA252, RF122, 

COL, NEWMAN) are compared against each other in terms of their oligonucleotide 

signatures.   These strains have been collected from Japan, United Kingdom and the 

United States.    

 

3.1 Markov Chain Selection 

    In genomic signature analysis, Markov chains have often been utilized to calculate 

nucleotide word bias.  In Markov chains, the current state of a system is predicted by its 

previous states. In signature analysis, this translates to predicting a word frequency based 

on the observed frequencies of its subwords. Depending on the degree of the Markov 

model, bias contributing to a word of length m from occurrences of subwords of length 

1..m-1 can be removed.  For example, in a sequence dominated by TA and AG, unless 

specifically selected against, TAA and AAG will naturally show high frequencies due to 

the abundance of their sub words.  With the ultimate goal of matching DNA’s internal 

word selection mechanisms, the optimal degree of Markov model to use remains 

undetermined. The expected count of a nucleotide word (W) of length m with a maximal 

order Markov model is written as follows: 
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 E(W)  = N(w1w2w3..wm-1) N(w2w3...wm) / N(w2w3..wm-1)    

 

w1…wm represent characters forming word (W) of length m.  While a zero order Markov 

model would predict: 

 

 E(W) = [(Aa*Cc*Gg *Tt)* N]  

 

where A,C,T,G represent nucleotide frequencies in a given sequence of length N and 

a,c,t,g are the number of each nucleotide in word W.   Findings in [45] and [46] suggest 

that minimal order Markov models allow the most differentiation between species 

genomic signatures. Based on this past research, minimal order models were used to 

calculate E(W) in this work.  The degree of over or under representation of each word 

was then derived by the ratio of O(W)/E(W) counts (see [45] for more detail). 

 

3.2 Signature Subset Selection 

     Oliognucleotide word length selection was based on the maximal length which 

enabled random representation of all possible words in a signature. Signatures of long 

word lengths may include more words than a microbial genome can contain. S.aureous 

strain sequence lengths ranged from 2,799,802 to 2,902,619 (bp). With a word length of 

eight, this allowed for an average of 43 occurrences of each possible word 

(~2,850,000/65,536).    



 19

    Histograms were created by binning word counts into their over- or under- 

representation calculations (Figure 3.1).  The complete octanucleotide signature showed 

similar histograms across all strains, illustrating the high degree of coincidence in strain 

signatures. Two signature subsets were then examined as potential differentiating feature 

sets for strain identification. These included highly over- represented words and under- 

represented words, determined by words absent from at least one strain.   
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Figure 3.1. Word counts for each frequency bin. Bin size 0.1 increments of ln(O(W)/E(W). 

    To examine how the expression of each word in the set varied across strains, the 

normalized interstrain variance was also derived for each word in the signature set and 

was calculated as: 

  

           
        

 

Where xi = O(W)/E(W) for word (W) in strain (i) , µ = mean (xi) across strains,  n = 

number of strains compared.  Before variance was derived, O(W)/E(W) values for each 

                           n 

 V(W) = ∑(xi - µ)        
                           i=0  
            (n-1) 
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word were normalized across strains by reducing the range of  values to a common scale 

between zero and one.  The formula used to achieve this was: 

  xi norm = (xi – xmin)/(xmax - xmin)   

Where xi = O(W)/E(W) for word (W) in strain (i), xi norm is the normalized value, xmax is 

the maximum O(W)/E(W) for word (W) across all strains in a group, and xmin is the 

minimum O(W)/E(W) for word (W) across all strains in a group. Without normalization, 

highly over- represented words resulted in the highest interstrain variance measures due 

to the larger magnitude of their O(W)/E(W) values, regardless of their relative interstrain 

variance.  Variance calculations are referred to in section 3.4. 

 

3.3  Over- Representation Subset 

   Words over- represented in any genome by at least 10x their expected values were  

examined for this subset.  It is not predicted that this group would contribute to strain  

differentiation.  This is illustrated by figure 3.2 in which O(W)/E(W) values across all 

 strains converge.   
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Figure 3.2.  ln (O(W)/E(W)) of over represented words. 
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3.4 Absence Subset 

    The absence subset was created by selecting all words absent from at least one strain 

but not absent from all.  This subset enabled groupings based on lineage and offers the 

most potential as a feature set for strain classification and differentiation.  This group 

included 1136 words. 

Table 3.1  Strain avoidance pattern for large absent word clusters. 

   Table 3.1 shows word groups, or clusters absent from at least one strain. The largest 

word cluster of 125 was avoided  solely by RF122, a strain obtained from cattle and 

assumed to be methicillin sensitive.  The second largest word cluster of 114 was avoided 

by the methicillin sensitive strain MSSA476.  The next two largest word clusters 

contained words uniquely expressed by RF122 and MSSA476 respectively. The 

distinction of these two strains may represent earlier lineages which have not evolved to 

the state of antibiotic resistance. Table 3.1 also shows identical words avoidance patterns 

for the COL, NEWMAN, USA300 group as well as the NCTC, MU3, MU50, N315.  

Strains MU3, MU50, and N315 were all collected in Japan, while the NCTC strain is 

  Cluster 
size MSSA476 RF122 MRSA252 COL USA300 NEWMAN NCTC MU3 MU50 N315 
125   Absent                 

114 Absent           

74  Absent Absent Absent Absent Absent Absent Absent Absent Absent 

69 Absent  Absent Absent Absent Absent Absent Absent Absent Absent 

52 Absent Absent          

49   Absent         

49   Absent Absent Absent Absent Absent Absent Absent Absent 

46       Absent Absent Absent Absent 

24   Absent Absent Absent Absent      

18    Absent Absent Absent Absent Absent Absent Absent 

16 Absent Absent Absent Absent Absent Absent      

14 Absent Absent Absent         

14  Absent     Absent Absent Absent Absent 

14 Absent Absent         Absent Absent Absent Absent 
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considered an international specimen. If these strains are derived from a similar lineage, 

it may explain their grouping. The origin of the COL and NEWMAN strains is 

unreported, but they may share common ancestry with the USA300 strain based on these 

results.  The methicillin resistant strain MRSA252, originating from the U.K. was more 

similar to the other methicillin resistant strains in avoidance patterns than to its U.K. 

counterpart MSSA476.  
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Figure 3.3.  O(W)/E(W) for some words in the absence subset. 

    

    A graph of some of the most varied words within the absence subset shows visible 

signature differentiation between strains (Figure 3.3).  In addition, words from the 

absence subset resulted in the highest normalized interstrain variance. The 60 words 

exhibiting the highest variance were solely from this subset.   It is suggested that the 

absent word subset could contribute significantly to strain differentiation with standard 

classification methods and may also enable insight into lineage histories. 
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Chapter 4  

A Supervised Strain Classifier 

    While current strain fingerprinting methods are able to resolve species subtypes, they 

are not sensitive enough to differentiate individual strain lineages.  Furthermore, most 

comparative genomics approaches involve alignment to compare related genomes. This 

research builds on results in Chapter 3 and proposes a strain classification method based 

on the absence subset of oligonucleotide signatures.  The goal of this approach is to 

increase strain classification sensitivity as well as to avoid the computationally expensive 

process of sequence alignment. The advantage of this process is that it extracts 

differences between strain sequences while masking their high degrees of similarity.   A 

standard supervised classification approach, described in Section 4.1, will be used with 

the Manhattan distance as the differencing factor between training and test genomes.  

Feature vectors will be derived at classification run time and will be based on training 

data. Specifically, feature vectors will contain signature values for words of a specified 

length which are absent from at least one training genome (but not absent from all).  

Signatures of word lengths up to 10bp will be tested to determine the shortest word 

length allowing the highest degree of accuracy for each classification.  

     The discriminatory power of this approach will be tested at increasing levels of 

phylogenetic resolution including classifying genomes from different genera, species 

within the same genus, subtypes within a species, and strain lineages within a subtype.  

The final classification will be used as a test to determine geographic region of  Influenza 
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A virus H5N1 acquisition from bird host to human.  Each classification schema is 

described in more detail in Section 4.4. All viral and bacterial species used for 

classification purposes are pathogenic to humans or contain pathogenic subtypes. This 

characteristic along with data availability dictated the choice of genomes used for ensuing 

classifications.  

 

4.1 Supervised Classification 

    In supervised classifications, test data is comprised of “unknown” data from samples 

which must be classified.  Training data denotes “known” data which will be used as 

class identifiers.  This supervised algorithm compares each test data sample to each class 

identifier, and assigns it to which ever class it is closest to. Methods of test and training 

data comparisons vary widely and have engendered many different classification 

algorithms.  For strain classification, a set of strain genomes will be selected as training 

data and each will represent a unique class. The algorithm will assign all other test 

genomes to the class each is closest to, using the Manhattan distance metric as a distance 

measure.  Before classification, all genomes will be reduced to equal length feature 

vectors.  The feature vector associated to each genome will be the absence subset of 

training genome oligonucleotide signatures.  This is the observed to expected ratio 

(O(W)/E(W))  for each member in the set of words for which at least one is absent and at 

least one is present in the group of training genomes.  This enables the derivation of a 

unique feature set for each classification run which has been tailored to the differences 

between the particular training genomes being used.  E(W) for each word will be 
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calculated using a zero order Markov model as described in Section 3.1. The difference 

between two genomes will then be the sum of differences between their respective 

feature vectors, the Manhattan distance. If feature vectors contain K features and a 

comparison is made between two genomes p and q, then the difference between them is 

calculated as:          

 
            K 

                dif[p,q] =  ∑ |p(k) – q(k)|, 
           k = 1 
the number of words in the absence subset with different expected frequencies between 

genomes P and Q. 

 

4.2 Feature Set Selection 

     The finite nature and small alphabet of DNA sequences lends itself well to 

representation by formal language definitions. Knowing which words are avoided by a 

specific genome makes its set of all subwords decidable and theoretically enables their 

representation by finite automata.  While this topic is not explored in this thesis, the 

feature set used in this classification is written as a formal language.  The feature set used 

to represent each genome in comparisons is O(W)/E(W) for all words in the 

oligonucleotide signature which at least one training genome does not express and at least 

one training genome does express.  This word set may be written as a formal language as 

such: 

  Let ∑ = {a,c,t,g}, 

Let the set of all possible nucleotide words on ∑ with length n be written as: 
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  L = {w:|w| = n} 

Let training genomes 1,..,N be represented as strings G1,..,GN. 

Let L1..N represent the set of all words of length n found in training genomes G1..GN  such 

that: 

  L1 = L ∩ {w: w is a substring of G1} 

  L2 = L ∩ {w: w is a substring of G2}  

  ….. 

  LN = L ∩ {w: w is a substring of GN} 

 
 
Let LPRESENT represent the set of all words in L1…LN such that: 
     
 LPRESENT= L1  U  L2….U LN 
 

Let LABSENT represent all words not found in L1…LN such that: 

  LABSENT = L1´ U L2´ …U LN´ 

Then the classification feature set LFEATURE is: 

   LFEATURE = LPRESENT ∩ LABSENT    

 
4.3 The Classification Algorithm 
 
   All of the code and algorithmic design described in this thesis were developed 

independently by the author.  Oligonucleotide signature sets grow exponentially with 

increasing word length and reliance on dynamic memory as opposed to array-based data 

structures soon becomes crucial.  The central data structure for this application is a linked 

list of linked lists, created from the C++ Standard Template Library (STL).  Each word in 

the signature set can be considered a node in the primary linked list. From each node is a 
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list of the O(W)/E(W) calculation for each genome in a test or training data set.   Thus, 

after all genomes are processed, the primary list can be examined for usable feature set 

words. In this case, we select those that contain at least one zero value and one value 

greater than zero (figure 4.1). These feature set word values are then inserted into training 

and test vector lists and the classification is performed.   

   To compare two genomes with brute force would require determining the maximum 

alignment existing between them.  Reducing each genome to an oligonucleotide feature 

set removes the need for alignment to compare genomes.  At this point, each genome is 

represented by a single vector containing values for each word in the signature.  Further 

reduction of this signature set to the absent word subset allows even faster comparison 

between genomes. The actual feature set size for each classification is given in Chapter 5. 

 

Figure 4.1. Linked List Arrangement and Word Selection. 
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   The code written for this thesis maintains the flexibility to calculate signature sets of 

words with a user specified length.  Each genome is processed in the same manner and 

results are either inserted into test or training data lists.  The main processing goals per 

genome are achieved in the following order: 

  1. Calculate the observed count of each word O(W) in the oligonucleotide word   

       set  of word length n. 

 2. Calculate the expected count of each word, E(W) using a zero order Markov    

      model.   

 3. Insert values into training or test data lists. 

 4. Perform feature set extraction and classification. 

     Step 1 is described in most detail in this section.  Obtaining word counts for each 

genome involves reading in each word of the specified length and incrementing the count 

for that specific sequence.  It is important to note that words were overlapping and not 

adjacent, see figure 4.2.  

 

Figure 4.2. Overlapping Words 
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    Counts for each word are stored in a numeric array because each word can be 

converted to its corresponding integer index in the array.  Let a word of length n be 

represented by the character array word[n]. The indexing formula for converting this 

nucleotide string to its integer value index is given as: 

 
            n  
                                 indx = ∑ num(word[i]) * 4(n-i-1) 

              i = 0 

  

where num(word[i]) is a function which returns the integer value designated for each 

nucleotide in a word, a = 0, c = 1, g = 2, t = 3.  Thus, aaaaaa would be indexed at 0 and 

tttttt would be indexed at 4095.  While this indexing formula was derived independently 

for this thesis, it has also been used for other word counting programs [16, 25]. 

    It should be noted that many genomic sequences contain non-nucleotide entries to 

represent unknown values, usually denoted by N, n, X or x.  Genomic algorithms should 

account for this by checking each read character or word to ensure that it is fully 

composed of real nucleotide values.   The pseudocode for counting all occurrences of 

words of length n in a genome is given in figure 4.3. 

    When nucleotide words are represented numerically so that a = 0, c = 1, g = 2, t = 3, 

the signature word list becomes a tertiary counting system. Iterating through all words in 

the set can then be accomplished by adding 1 to the previous with tertiary addition rules 

adhered to.  Character word arrays must first be converted to integer arrays of the same 

length following the described substitution rules.  To iterate through all words, the initial 

integer word is set to all zeros, representing a1a2…an.  To create the next word, a one is 

added and the rules of tertiary addition are implemented. Specifically, if any single 
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integer digit is greater than 3, reduce the 3 to zero and carry a one to the higher order 

digit.   

   * A function “getindex()” is used in this pseudocode. This is based on the index 
calculation description described above. 
 
start Count(input = n) //input desired word length  
        
 declare character word[n]  //input word container 
 declare double wordcount //total number of words found in genome 
 declare double list[n4] //array list of counts for each word in signature set 
  
 for( i = 0 to n-2)           //obtain n-1 characters in first word 
  readin word[i] 
 end for 
 
 while(readin word[n-1]) //while readin character from file insert as last char in  
     word 
  if(word) //if word contains all nucleotide values – no errors 
      wordcount++ 
      list[getindex(word)] //increment value in list at word index location 
  end if 
    
  for(i = 0 to n -2) //shift all letters to left to prepare for next char input at  
     end 
     word[i] = word[i+1] 
  end for 
 end while 
end Count() 
     

 

Figure 4.3. Word counting pseudocode. 

 

4.4 Data  

    A large database of Influenza A and B virus genomes has recently been made publicly 

available by the National Institute of Allergy and Infectious Disease [2].  This database 

contains multiple isolates of different strains of the Influenza virus from diverse 
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geographic regions, times and host species.   Due to the availability of data, all 

classifications except the first focused on the Influenza A and B virus species. The 

remaining genomes were acquired from the pubmed website [57].  

 

 4.5 Classification Applications 

  This section describes five classification applications using the algorithm presented 

above. Details regarding exact subtype, lineage and collection dates are provided in the 

results for each classification.  
 Mixed Pathogens:  Bacterial and viral species groups which are generally 

regarded as threats to public health through pandemic or bioterrorism events available 

through pubmed were selected for the first classification.  Genomes from organisms from 

different genera are used to test the proposed method at a low differencing resolution.  

Multiple strains representing seven species from different genera are used.  Species 

include B. anthracis, C. botulinum, F. tularensis, S. aureus, M. tuberculosis, Y. pestis and 

Influenza A virus.  

 Influenzavirus A/B:  Both Influenza A and B virus are different species within 

the same genus, Influenzavirus.  This classification is used to determine whether the 

proposed method can discriminate between these different species within the same 

family.  Influenza A virus has many subtypes and most available are included in this 

datum group.  Influenza B virus is not divided into subtypes so this was not a determining 

factor when selecting sample genomes.  Ten Influenza A virus and ten Influenza B virus 

genomes are used in this classification. All genomes used are from human hosts.    
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 Influenza A virus subtypes: This classification was designed to test whether the 

proposed method can discriminate between different subtypes of Influenza A virus 

genomes from the same host species.  Genomes used for this classification represent five 

human host subtypes with six genomes per subtype. 

 Avian Influenzavirus A, H5N1 Origin:   The Avian influenza A virus H5N1 

subtype is a highly pathogenic avian influenza (HPAI) which can cause high mortality in 

poultry and kill 90-100% of infected chickens [48].  Domestic poultry have historically 

been key in the harboring of flu strains which can cross over into humans and have 

caused major pandemics in the 20th century [42].   This subtype, H5N1, has infected 

humans and subsequently has become a focus as a potential source of the next major flu 

pandemic [39, 41, 42]. 

 This classification tests the proposed method in its ability to discriminate between 

individual avian H5N1 strain lineages and thereby determine their geographic origins.  

Genomes from domestic bird (chicken, duck, turkey, goose) outbreaks in China (2006), 

Africa (2006), Thailand (2006), and Vietnam (2005) are used for this classification.  

Regions represented in the China dataset include Guanxi province, Hunan province, 

Guandong province, and HongKong.  Countries represented in African dataset include 

Afganistan, Nigeria and Sudan.  Specific regions of genomes collected in Thailand and 

Vietnam were not indicated on the NIAID website and are thus referred to by their 

country name.  

    Training genomes were selected in attempts to represent major avian H5N1 outbreaks 

in each region of interest during specified time periods and included 17 genomes from 

domestic birds. Test genomes include 61 domestic avian H5N1 genomes from time 
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periods corresponding with training genomes in the same regions and included multiple, 

concurrent samples from all areas.  

 Avian to Human Transmission of Influenza A virus (H5N1):  As of April, 

2007, there have been 292 cases of Avian H5N1, 192 of which proved fatal [58].  The 

first case was in Hong Kong in 1997 [5].  This classification attempts a cross host species 

matching of individual strain lineages between avian and human cases.  Human acquired 

Influenza A virus H5N1 genomes from Indonesia in 2005, Thailand in 2004, and 

Vietnam in 2004 are used as test data. The training data set included all H5N1 strains 

from domestic bird hosts in Indonesia, Thailand and Vietnam during the same years of 

2005, 2004 and 2004 respectively.  Thus, human cases are assigned to their closest bird 

counterparts to determine whether the proposed method can point to the location of viral 

crossover from bird to human.  
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Chapter 5 

Classification Results and Analysis  

5.1 Mixed Pathogens Results 

Table 5.1. Results summary for mixed pathogens. 
 

accuracy:  100% 
word length: 6 
feature set size:  643 

 

 The application of the proposed method resulted in 100% accuracy with all 

 genomes being assigned to their correct species groups. This classification requires the 

 least amount of discriminatory power as all genomes are from different genera. The 

 genome dataset includes entire sequences of  four B. anthracis strains, three C. 

 botulinum strains, six F. tularensis strains, eleven S. aureous strains, four M.tuberculosis 

 strains, six Y. pestis and nine Influenza A virus strains. B. anthracis is a very genetically 

 homogenous species and is not classified into subtypes. Thus, this group contains the 

 four different strains available on Genbank.  The C.botulinum group is composed of 

 four different strains from subtypes A and F. The F.tularensis group includes three 

 subtypes; holarctica, novicida, and tularensis.  The S.aureous dataset contains ten strains 

 of the human pathogen subtype aureous, nine of which are methicillin resistant while 

 one is methicillin sensitive. This group also contains one genome of subtype RF122 

 which infects cattle.  The four strains in the M.tuberculosis group are from the same 

 subtype. This species, like B. anthracis, is also highly genetically homogeneous and is 
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 not divided into subspecies [29]. The Y.pestis group contains seven strains which 

 represent all four subtypes; Antiqua, Mediaevalis, Orientalis and Microtus.  The 

 Influenza A virus set contains ten samples collected from human hosts including 

 subtypes H1N1, H1N2, H2N2, H3N2, H5N1.Table 5.2 presents the individual genomes 

 used as training data. Table 5.3  presents strains used as test data and the classes to which 

 they are assigned.   

 

Table 5.2. Mixed pathogen training data. 
 

Training Data: Mixed Pathogens 
Species/Class subtype/strain Common disease name 
Bacillus anthracis   Ames Anthrax 
Clostridium botulinum  A /ATCC 19397 Botulism 
Francisella tularensis  holarctica Tularemia 
Staphylococcus aureus  aureus/MRSA252 Staph 
Mycobacterium tuberculosis  CDC1551 Tuberculosis 
Yersinia pestis Angola Plague 
Influenzavirus A  H1N1/Brazil/11/1978  Flu 

  

 

Table 5.3. Mixed Pathogen, test data and classification results. 
 

Test Data: Mixed Pathogens 

Species subtype/strain 
Common disease 
name Classified as 

Bacillus anthracis A2012 Anthrax Anthrax 
Bacillus anthracis 'Ames Ancestor' Anthrax Anthrax 
Clostridium botulinum A ATCC 3502 Botulism Botulism 
Clostridium botulinum A Hall Botulism Botulism 
Clostridium botulinum F Langeland Botulism Botulism 
Francisella tularensis holarctica FTA Tularemia Tularemia 
Francisella tularensis holarctica OSU18 Tularemia Tularemia 
Francisella tularensis novicida U112 Tularemia Tularemia 
Francisella tularensis tularensis FSC198 Tularemia Tularemia 
Francisella tularensis tularensis SCHU S4 Tularemia Tularemia 
Francisella tularensis tularensis WY96-3418 Tularemia Tularemia 
Staphylococcus aureus aureus MSSA476 Staph Staph 
Staphylococcus aureus aureus Mu3 Staph Staph 
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Staphylococcus aureus aureus Mu50 Staph Staph 
Staphylococcus aureus aureus N315 Staph Staph 
Staphylococcus aureus aureus NCTC 8325 Staph Staph 
Staphylococcus aureus aureus str. Newman Staph Staph 
Staphylococcus aureus RF122 Staph Staph 
Mycobacterium 
tuberculosis F11 Tuberculosis Tuberculosis 
Mycobacterium 
tuberculosis H37Ra Tuberculosis Tuberculosis 
Mycobacterium 
tuberculosis H37Rv Tuberculosis Tuberculosis 
Yersinia pestis Antiqua Plague Plague 
Yersinia pestis CO92 Plague Plague 
Yersinia pestis KIM Plague Plague 
Yersinia pestis biovar Microtus str. 91001 Plague Plague 
Yersinia pestis Nepal516 Plague Plague 
Yersinia pestis Pestoides F Plague Plague 
Influenza A virus H1N1/Cam/1946 Flu Flu 
Influenza A virus H1N2/New York/78/2002 Flu Flu 
Influenza A virus H1N2/New York/226/2003 Flu Flu 
Influenza A virus H2N2/Albany/1/1968 Flu Flu 
Influenza A virus H2N2/Canada/720/2005 Flu Flu 
Influenza A virus H3N2/AuklandNZ/602/2001 Flu Flu 
Influenza A virus H3N2/England/1972 Flu Flu 
Influenza A virus H5N1/Hong Kong/212/2003 Flu Flu 
Influenza A virus H5N1/Vietnam/CL26/2004 Flu Flu 

 

  

5.2 Influenza A virus /Influenza B virus Results 

Table 5.4. Results summary for Influenza A/B virus. 
 

accuracy:  100% 
word length: 6 
feature set size:  783 

 

    Classification accuracy for this dataset was also 100%. Nine genomes of Influenza A 

virus and nine genomes of Influenza B virus were accurately assigned to their correct 

species class. Training genomes include one additional randomly selected genome 

representing each class. These results were somewhat surprising considering that the 
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Influenza A and B virus datasets are highly diverse in both geographic origins and 

acquisition dates.  The Influenza A virus  test data contains genomes from Cambodia in 

1946, UK in 1933, New York in 2003, Albany, New York in 2005, Canada in 2005, 

England in 1972, Indonesia in 2005, Canada in 2004, and Hong Kong in 1999.  These 

genomes also represent seven distinct subtypes which included H1N1, H1N2, H2N2, 

H3N2, H5N1, H7N3, and H3N2.  The Influenza A training genome is a H3N2 subtype 

collected in Auckland, New Zealand in 2005.   The Influenza B virus test data is 

composed of genomes from China, Guangzhou province in 1972, China, Nanchang 

province in 2002, Cordoba Spain in 2007, the Czech Republic in 1994, St. Petersburg, 

Russia in 1979, Victoria, Australia in 1990 and 2000, and Vienna, Austria in 2006 and 

1999.  The training genome for this group was collected in Chile in 2000.   Table 5.5 lists 

training genomes, table 5.6 contains test genomes and classification results. 

 

Table 5.5. Influenza A/B virus training data. 
 

 

 

 

Table 5.6. Influenza A/B virus test data and classification results 
 

Test Data: Influenza A & B virus 
Species/Class subtype/strain Classified As 
Influenza A virus   H1N1/Cam/1946 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H1N2/UK/WilsonSmith/1933 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H1N2/New York/226/2003 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H2N2/Albany/1/1968 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H2N2/Canada/720/2005 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H3N2/England/1972 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H5N1/Indonesia/CDC184/11/08/2005 InfA/H3N2/AuklandNZ/602/2001
Influenza A virus   H7N3/Canada/rv504/2004 InfA/H3N2/AuklandNZ/602/2001

Training Data: Influenza A & B virus 
Species/Class subtype/strain 

Influenza A virus H3N2/AuklandNZ/602/2001 
Influenza B virus Chile/16188/2000 
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Influenza A virus   H3N2/HongKong/1073/1999 InfA/H3N2/AuklandNZ/602/2001
Influenza B virus  China/Guangzhou/5/1972 InfB/Chile/16188/2000 
Influenza B virus  China/Nanchang/3162/2002 InfB/Chile/16188/2000 
Influenza B virus  Spain/Cordoba/01/2007 InfB/Chile/16188/2000 
Influenza B virus  Czech Republic//630/1994 InfB/Chile/16188/2000 
Influenza B virus  Russia/St. Petersburg/1979/ InfB/Chile/16188/2000 
Influenza B virus  Australia/Victoria/69/1990 InfB/Chile/16188/2000 
Influenza B virus  Austria/Vienna/14/2006 InfB/Chile/16188/2000 
Influenza B virus  Australia/Victoria/504/2000 InfB/Chile/16188/2000 
Influenza B virus  Austria/Vienna/1/1999 InfB/Chile/16188/2000 

 

5.3 Influenza A virus Subtypes, Results 

Table 5.7. Results summary for Influenza A virus subtypes. 
 

accuracy:  96% 
word length: 5 
feature set size:  43 

 

        The accuracy in classifying 25 Influenza A virus subtypes to their correct subtype 

classes was 96%. Five genomes of each subtype including H1N1, H1N2, H2N2, H2N3, 

and H5N1 are used as test data. Training data contains one additional randomly selected 

genome from each of the five subtypes.  It is important to note that all subtype groups 

were accurately classified except for the H3N2 group, from which one genome was 

assigned to the H2N2 group.  This genome is an older strain with a collection date in 

1960. Being assigned to the H2N2 class which is also represented by an older strain, 

“H2N2/Japan/305/1957” may suggest an influence of relative circulation time overriding 

subtype groupings.  The procedure for subtyping Influenza A genomes only examines 

two genes out of the ~120,000 bp sequences, see [59] for a description. The classification 

method described in this thesis compares global statistics relating to the entire genome.  

While this is an inaccurate classification, it may also indicate a particular relationship 
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between the H3N2 and H2N2 influenza subtypes that emerged in some portion of the 20th 

century that is not reflected in subytpe grouping indicators.  The H3N2 subtype has been 

found to contain a broad range of diversity in [39] and it has been suggested that current 

Influenza A virus subtyping methods are not comprehensive enough to represent strain 

groupings [19, 22].  A larger dataset with a more detailed attention to time periods as well 

as subtypes may allow better accuracy and enable insight into the evolution of individual 

lineages within and across subtype groupings.  Tables 5.5 and 5.6 present training data, 

test data, and classification results.  The misclassified genome in table 5.6 is denoted with 

bold lettering and an asterisk. 

 
Table 5.8. Influenza A virus subtypes test data. 

 
Training Data: Influenza A virus Subtypes 

Species/Class Subtype/Strain host 
Influenza A virus/H1N1 H1N1/UK/Wilson-Smith/1933 human 
Influenza A virus/H1N2 H1N2/New York/296/2003 human 
Influenza A virus/H2N2 H2N2/Japan/305/1957 human 
Influenza A virus/H3N2 H3N2/New York/197/2003 human 
Influenza A virus/H5N1 H5N1/China/Beijing/01/2003 human 

 

Table 5.9. Influenza A virus subtypes, training data and classification results 
 

Test Data: Influenza A virus Subtypes 
Species/Class subtype/strain host Classified as 
Influenza A virus 
/H1N1 

H1N1/Brazil 
/11/1978 human 

H1N1/UK/Wilson-
Smith/1933 

Influenza A virus 
/H1N1 

H1N1/Cambodia 
/1946 human 

H1N1/UK/Wilson-
Smith/1933 

Influenza A virus 
/H1N1 

H1N1/China/Nanchang
/8/1996 human 

H1N1/UK/Wilson-
Smith/1933 

Influenza A virus 
/H1N1 H1N1/Henry/1936 human 

H1N1/UK/Wilson-
Smith/1933 

Influenza A virus 
/H1N1 

H1N1/South Australia 
/64/2000 human 

H1N1/UK/Wilson-
Smith/1933 

Influenza A virus 
/H1N2 

H1N2/New York 
/78/2002 human H1N2/New York/296/2003 

Influenza A virus 
/H1N2 

H1N2/New York 
/226/2003 human H1N2/New York/296/2003 

Influenza A virus H1N2/New York human H1N2/New York/296/2003 
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/H1N2 /400/2003 
Influenza A virus 
/H1N2 

H1N2/New York 
/491/2003 human H1N2/New York/296/2003 

Influenza A virus 
/H1N2 

H1N2/New York 
/C1/2003 human H1N2/New York/296/2003 

Influenza A virus 
/H2N2 

H2N2/Albany 
/1/1968 human H2N2/Japan/305/1957 

Influenza A virus 
/H2N2 

H2N2/Canada 
/720/2005 human H2N2/Japan/305/1957 

Influenza A virus 
/H2N2 

H2N2/Sinagpore 
/1/1957 human H2N2/Japan/305/1957 

Influenza A virus 
/H2N2 

H2N2/South Korea 
/426/1968 human H2N2/Japan/305/1957 

Influenza A virus 
/H2N2 

H2N2/Taiwan 
/1964 human H2N2/Japan/305/1957 

Influenza A virus 
/H3N2 

H3N2/NewZealand 
/Auckland/602/2001 human H3N2/New York/197/2003 

Influenza A virus 
/H3N2 

H3N2/England 
/1972 human H3N2/New York/197/2003 

Influenza A virus 
/H3N2 

H3N2/New York 
/786/1993 human H3N2/New York/197/2003 

Influenza A virus 
/H3N2 

H3N2/Australia 
/Northern Territory 
/60/1968 human H2N2/Japan/305/1957 * 

Influenza A virus 
/H3N2 

H3N2/Washington 
/UR060252/2007 human H3N2/New York/197/2003 

Influenza A virus 
/H5N1 

H5N1/Hong Kong 
/156/1997 human H5N1/China/Beijing/01/2003

Influenza A virus 
/H5N1 

H5N1/China 
/Shenzen/406H/2006 human H5N1/China/Beijing/01/2003

Influenza A virus 
/H5N1 

H5N1/Indonesia 
/175H/2005 human H5N1/China/Beijing/01/2003

Influenza A virus 
/H5N1 

H5N1/Thailand 
/16/2004 human H5N1/China/Beijing/01/2003

Influenza A virus 
/H5N1 

H5N1/Vietnam 
/1194/2004 human H5N1/China/Beijing/01/2003

 
 

5.4 Avian Influenza A virus H5N1 Geographic Origin,    

      Results 

Table 5.10. Results summary for Influenza A virus H5N1 origins. 
 

accuracy:  94% 
word length: 7 
feature set size: 3244  
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   This classification achieved 94% accuracy in assigning all genomes to their correct 

place of origin.  Out of 61 genomes, 57 were accurately assigned to their exact collection 

region.  Instead of selecting training genomes randomly, an attempt was made to 

represent all outbreak groups in each region resulting in 17 genomes being used as 

training data.   There are no standardized naming conventions for data on the NIAID flu 

database so an assumption was made that genomes with similar strain identification 

labels represented samples from related outbreaks, i.e. H5N1/Africa/Afghanistan/1573-92 

and H5N1/Africa/Afghanistan/1573-65 were assumed to be from the same group.  

    The misclassifications in this application present an interesting question regarding this 

method.  All misclassified genomes were assigned to regions directly adjacent to their 

true collection origins.  One genome from Vietnam was incorrectly assigned to China’s 

Guanxi province. The Guanxi province lies north of the Vietnamese border.  One genome 

from Thailand was matched to genomes originating in Vietnam.  These two countries are 

also directly adjacent to each other. Within the Chinese genomes, one genome from the 

Hunan province was assigned to the Guanxi province while one genome from Shantou 

was assigned to the Hunan province. Hunan is next to Guanxi, and the Guandong 

province which contains Shantou is next to the Hunan province. While these errors may 

represent a fault with the proposed method or an incomplete training genome set, it is 

also possible that the geographic proximity of true and mistaken regions may play an 

important role. Some of these samples may have been collected near regional borders and 

the disease may have been acquired from birds in adjacent region populations. More 

interestingly, these misclassifications could potentially follow commerce or trade routes 

for domestic poultry and follow border crossing transmission routes.   Tables 5.8 & 5.9 
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show training genomes, test genomes and classification results. Misclassified genomes in 

table 5.9 are denoted with bold lettering and an asterisk.  

Table 5.11. Avian Influenza A virus H5N1, training data. 
 

Training Data : Avian Influenza A virus H5N1 
Species/Class subtype/strain host 
Influenza A virus H5N1/Africa/Afghanistan/1573-7/2006 chicken 
Influenza A virus H5N1/China/Guangxi/150/2006 duck 
Influenza A virus H5N1/China/Guangxi/1633/2006 goose 
Influenza A virus H5N1/Hong Kong/282/2006 chicken 
Influenza A virus H5N1/China/Hunan/856/2006 duck 
Influenza A virus H5N1/China/Shantou/1233/2006 chicken 
Influenza A virus H5N1/China/Shantou/2086/2006 goose 
Influenza A virus H5N1/Indonesia//CDC25/2005 chicken 
Influenza A virus H5N1/Africa/Ivory Coast/4372-2/2006 turkey 
Influenza A virus H5N1/Africa/Nigeria/1047-30/2006 chicken 
Influenza A virus H5N1/Africa/Nigeria/SO300/2006 chicken 
Influenza A virus H5N1/Africa/Sudan/1784-10/2006 chicken 
Influenza A virus H5N1/Africa/Sudan/2115-10/2006 chicken 
Influenza A virus H5N1/Thailand//39692/2004 chicken 
Influenza A virus H5N1/Thailand/Nontaburi/CK-162/2005 chicken 
Influenza A virus H5N1/Vietnam//10/2004 chicken 
Influenza A virus H5N1/Vietnam//10/2005 chicken 

 
 
 
 

Table 5.12. Avian Influenza A virus H5N1, test data and classification results. 
 

Test Data: Avian Influenza A virus H5N1 
Species subtype/strain host Classified as 
Influenza  
A virus 

H5N1/Africa/Afghanistan 
/1573-92/2006 chicken ../Afghanistan/1573-7/2006/chicken 

Influenza 
A virus 

H5N1/Africa/Afghanistan 
/1573-65/2006 chicken ../Afghanistan/1573-7/2006/chicken 

Influenza 
A virus 

H5N1/Africa/Afghanistan 
/1573-47/2006 chicken ../Afghanistan/1573-7/2006/chicken 

Influenza 
A virus 

H5N1/China/Guangxi 
/1458/2006 goose .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/1898/2006 goose .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/224/2006 goose .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/532/2006 goose ../China/Hunan/856/2006/duck * 

Influenza 
A virus 

H5N1/China/Guangxi 
/582/2006 goose ../China/Guangxi/150/2006/duck 

Influenza 
A virus 

H5N1/China/Guangxi 
/288/2006 duck .../China/Guangxi/150/2006/goose 
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Influenza 
A virus 

H5N1/China/Guangxi 
/1830/2006 duck .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/2143/2006 duck .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/392/2006 duck .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/744/2006 duck .../China/Guangxi/150/2006/goose 

Influenza 
A virus 

H5N1/China/Guangxi 
/804/2006 duck ../China/Guangxi/150/2006/duck 

Influenza 
A virus 

H5N1/China/Guangxi 
/89/2006 duck ../Vietnam//10/2005 * 

Influenza 
A virus 

H5N1/Hong Kong  
/947/2006 chicken ../Hong Kong/282/2006/chicken 

Influenza 
A virus 

H5N1/China/Hunan  
/988/2006 duck ../China/Hunan/856/2006/duck 

Influenza 
A virus 

H5N1/China/Hunan 
 /324/2006 duck ../China/Hunan/856/2006/duck 

Influenza 
A virus 

H5N1/China/Hunan  
/344/2006 duck ../China/Hunan/856/2006/duck 

Influenza 
A virus 

H5N1/China/Shantou 
/3295/2006 goose ../China/Shantou/1233/2006/chicken

Influenza 
A virus 

H5N1/China/Shantou 
/3265/2006 goose ../China/Hunan/856/2006/duck * 

Influenza 
A virus 

H5N1/China/Shantou 
/3840/2006 chicken ../China/Shantou/1233/2006/chicken

Influenza 
A virus 

H5N1/China/Shantou 
/3923/2006 chicken ../China/Shantou/1233/2006/chicken

Influenza 
A virus 

H5N1/Indonesia  
/175H/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia  
/PA/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia 
/Dairi/BPPVI/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia  
/Deli Serdang/BPPVI/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia  
/Gunung Kidal/BPPW/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia 
/Magetan/BPPW/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia 
/Parepare/BPPVM/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia 
/Purworejo/BPPW/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia 
/Simalanggang/BPPVI/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia 
/Tarutung/BPPVI/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Indonesia  
/Tebing Tinggi/BPPVI/2005 chicken ../Indonesia//CDC25/2005/chicken 

Influenza 
A virus 

H5N1/Africa  
/Ivory Coast/4372-3/2006 turkey ../Ivory Coast/4372-2/2006/turkey 

Influenza 
A virus 

H5N1/Africa  
/Ivory Coast/4372-4/2006 turkey ../Ivory Coast/4372-2/2006/turkey 

Influenza 
A virus 

H5N1/Africa  
/Nigeria/1047-34/2006 chicken ../Nigeria/1047-30/2006/chicken 
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Influenza 
A virus 

H5N1/Africa  
/Nigeria/1047-54/2006 chicken ../Nigeria/1047-30/2006/chicken 

Influenza 
A virus 

H5N1/Africa  
/Nigeria/1047-62/2006 chicken ../Nigeria/1047-30/2006/chicken 

Influenza 
A virus 

H5N1/Africa  
/Nigeria/1047-8/2006 chicken ../Nigeria/1047-30/2006/chicken 

Influenza 
A virus 

H5N1/Africa 
/Nigeria/SO452/2006 chicken ../Nigeria/SO300/2006/chicken 

Influenza 
A virus 

H5N1/Africa 
/Nigeria/SO493/2006 chicken ../Nigeria/SO300/2006/chicken 

Influenza 
A virus 

H5N1/Africa 
/Nigeria/SO494/2006 chicken ../Nigeria/SO300/2006/chicken 

Influenza 
A virus 

H5N1/Africa  
/Sudan/1784-7/2006 chicken ../Sudan/2115-10/2006/chicken 

Influenza 
A virus 

H5N1/Africa  
/Sudan/1784-8/2006 chicken ../Sudan/2115-10/2006/chicken 

Influenza 
A virus 

H5N1/Africa  
/Sudan/2115-12/2006 chicken ../Sudan/2115-10/2006/chicken 

Influenza 
A virus 

H5N1/Africa  
/Sudan/2115-9/2006 chicken ../Sudan/1784-10/2006/chicken 

Influenza 
A virus 

H5N1/Thailand 
/Ayutthaya/CU23/2004 chicken ../Thailand//39692/2004 

Influenza 
A virus 

H5N1/Thailand 
/Kanchanburi/CK-160/2005 chicken ../Thailand/Nontaburi/CK-162/2005 

Influenza 
A virus 

H5N1/Thailand  
/Nakom Patom/CUK2/2004 chicken ../Thailand//39692/2004 

Influenza 
A virus 

H5N1/Vietnam 
/35/2004 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam 
/36/2004 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam 
/38/2004 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam 
/C57/2004 chicken ../Thailand//39692/2004 * 

Influenza 
A virus 

H5N1/Vietnam 
/LD080/2004 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam 
/TG023/2004 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam 
/TN025/2004 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam 
 /2/2005 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam  
/5/2005 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam  
/8/2005 chicken ../Vietnam//10/2004/chicken 

Influenza 
A virus 

H5N1/Vietnam  
/9/2005 chicken ../Vietnam//10/2004/chicken 
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5.5 Avian to Human Transmission (H5N1) Region, Results 

Table 5.13. Results summary for avian to human transmission (H5N1). 
 

accuracy:  100% 
word length: 8 
feature set size: 9131  

 

    This classification was 100% accurate in matching all human cases of H5N1 to bird 

cases in their correct countries.   Regional accuracy could not be assessed due to a lack of 

data information. Complete regional information was only available for avian strains in 

Indonesia and some avian strains in Thailand.  All other genomes were only labeled by 

country.   While results can not be verified, this classification indicates that all human 

H5N1 cases in Indonesia 2005 listed in the NIAID website were acquired in the areas of 

Magetan, Pare Pare and Gunung Kidal.  The training data set contains genomes from all 

domestic bird H5N1 cases from Indonesia in 2005, Thailand in 2004 and Vietnam in 

2004. The test data includes all human H5N1 cases from Indonesia in 2005, Thailand in 

2004 and Vietnam in 2004. Training data, test data and classification results are presented 

in tables 5.11 and 5.12. 

 
Table 5.14. Influenza A virus H5N1 avian to human transmission, training data. 

 
Training Data: Influenza A virus H5N1 Avian to 

Human Transmission 
Species/Class subtype/strain host 
Influenza A virus /Indonesia  H5N1/Indonesia/CDC25/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Dairi/BPPVI/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Deli Serdang/BPPVI/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Gunung Kidal/BPPW/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Magetan/BPPW/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Parepare/BPPVM/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Purworejo/BPPW/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Simalanggang/BPPVI/2005 chicken
Influenza A virus /Indonesia  H5N1/Indonesia/Tarutung/BPPVI/2005 chicken
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Influenza A virus /Indonesia  H5N1/Indonesia/Tebing Tinggi/BPPVI/2005 chicken
Influenza A virus /Thailand H5N1/Thailand//9/2004 chicken
Influenza A virus /Thailand H5N1/Thailand/Ayutthaya/CU23/2004 chicken
Influenza A virus /Thailand H5N1/Thailand/Nakom Patom/CUK2/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//10/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//35/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//37/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//38/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//C57/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//LD080/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//TG023/2004 chicken
Influenza A virus /Vietnam H5N1/Vietnam//TN025/2004 chicken

 
 

Table 5.15. Influenza A virus H5N1 avian to human transmission, test data and classification. 

Test Data: Avian to Human Transmission 
Species/Class subtype/strain host Classified as 
Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/5/2005 human ../Indonesia/Magetan/BPPW/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/7/2005 human ../Indonesia/Magetan/BPPW/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/175H/2005 human ../Indonesia/Gunung Kidal/BPPW/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/239H/2005 human ../Indonesia/Parepare/BPPVM/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/245H/2005 human ../Indonesia/Parepare/BPPVM/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/CDC7/2005 human ../Indonesia/Magetan/BPPW/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/CDC184/2005 human ../Indonesia/Magetan/BPPW/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/CDC287/2005 human ../Indonesia/Parepare/BPPVM/2005 

Influenza A virus 
/Indonesia  

H5N1/Indonesia 
/CDC292T/2005 human ../Indonesia/Parepare/BPPVM/2005 

Influenza A virus 
/Thailand 

H5N1/Thailand 
/1(KAN-1)/2004 human ../Thailand//9/2004 

Influenza A virus 
/Thailand 

H5N1/Thailand 
/2(SP-33)/2004 human ../Thailand//9/2004 

Influenza A virus 
/Thailand 

H5N1/Thailand 
/5(KK-494)/2004 human ../Thailand//9/2004 

Influenza A virus 
/Thailand 

H5N1/Thailand 
/16/2004 human ../Thailand//9/2004 

Influenza A virus 
/Thailand 

H5N1/Thailand 
/SP83/2004 human ../Thailand//9/2004 

Influenza A virus 
/Vietnam 

H5N1/Vietnam 
/1194/2004 human ../Vietnam//TN025/2004 

Influenza A virus 
/Vietnam 

H5N1/Vietnam 
/1203/2004 human ../Vietnam//35/2004 

Influenza A virus 
/Vietnam 

H5N1/Vietnam 
/3062/2004 human ../Vietnam//35/2004 

Influenza A virus 
/Vietnam 

H5N1/Vietnam 
/CL26/2004 human ../Vietnam//35/2004 
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5.6 Word length vs. Accuracy 

    To examine how increasing word length in classifications influences accuracy, 

accuracy vs. word length plots are presented for word length from five to ten for each 

classification.   
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Figure 5.2. Classification Accuracy vs. Word Length for Mixed Pathogens. 
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Figure 5.2 Classification Accuracy vs. Word Length for Influenza A/ Influenza B. 
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Influenza A virus Subtypes
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Figure 5.3 Classification Accuracy vs. Word Length for Influenza A subtypes. 
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Figure 5.4 Classification Accuracy vs. Word Length for Geographic Origins. 
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Avian to Human Transmission
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Figure 5.5 Classification Accuracy vs. Word Length for Avian to Human Transmission. 
 
     These graphs illustrate that each classification application shows a distinct response to 

increases in word length. The mixed pathogen classification attains 100% accuracy at 

word lengths of six or more (Figure 5.1), while the Influenza A/Influenza B data set is 

100% accurate at all word lengths (Figure 5.2). The Influenza A virus subtypes 

classification exhibits the highest degree of accuracy, 96% at the shortest word length of 

five (Figure 5.3) and the lowest accuracy, 56% at the longest word length of ten. The 

geographic origins data set shows accuracy peaks of 94% at word lengths seven and ten 

(Figure 5.4). The avian to human transmission classification obtains a peak 100% 

accuracy at word lengths of eight and nine (Figure 5.5).  

   Presenting an explanation for these results would be only speculative, but these results 

illustrate the significance of the length of word used to compare related genomes. They  

are also suggestive of a relationship between word length and type of relatedness between 

genomes. For example, the Influenza A virus subtypes showed the most marked 
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difference at a word of length five, while the matching of avian to human host viruses 

(Figure 5.5) required longer word lengths of eight to achieve maximal accuracy.  
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Chapter 6  

Discussion and Future Work 

 This research suggests that genome classification based on absent words can be 

accurate at many levels of phylogenetic resolution.  Determining the geographic origins 

of emergent strains may also be enabled.  One of the most important applications of a 

sensitive strain lineage classifier would be in monitoring pandemics and bioterror events.  

The H5N1 flu subtype is of particular current interest. Many efforts have been made to 

investigate the transmission of avian H5N1 in Southeast Asia [8, 13, 38, 55, 56], India 

[47], Europe [5, 51], Africa [49], and worldwide [10, 52].   Genome comparisons in these 

applications have included whole genome alignments and coding region comparisons. 

The method described in this thesis may be another approach towards the same goal, but 

with a different comparison technique which may allow a geographic trace of lineage 

spreads.  Obtaining a detailed history of all current human influenza outbreaks and 

transmission, particularly of those subtypes presently in circulation may also enable 

predictions to aid in vaccine design [22] and allow a better understanding of epidemic 

behavior at the genomic level. Other similar applications of a fine resolution strain 

classifier could be determining the source of public food contamination such as E.coli in 

grocery produce or forensics and human DNA matching.   

      Being able to map the evolution of any disease on both spatial and temporal scales 

could enable unforeseeable insights.  To enable such projects, a refinement of the 

proposed method would most likely be required. This may include a fuzzy instead of 
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discrete classifier with the potential use of word trees to enable multilevel comparisons 

among genomes. A fuzzy classifier could give an extra measure of how closely test 

strains are related to the training strains they are assigned to. A DNA word tree could be 

created as a tertiary tree structure, with each node pointing to an “a”child, “c” child, “g” 

child, and “t” child.  Each overlapping word of length n found in a sequence could be 

inserted into the tree along with its subwords. This would result in a dynamic, linear-time 

data structure to hold counts and statistics for all words up to length n.  This would also 

enable a more precise record of which specific words are avoided in sequences.  For 

example, if a genome maintains a strict bias against the word CTAG, then all words 

containing CTAG will also be missing, but the bias is still only against CTAG.  

Experimentation with the degree of word absence across all training strains is also a 

subject for future work.  The current algorithm uses all words that are absent from at least 

one genome, but this cutoff value could be raised so that words selected must be absent 

from any given percentage of the training data set. This has the potential of either 

decreasing classification accuracy, or selecting more biologically significant words and 

thereby increasing accuracy. Future work will be applied towards improving the 

sensitivity and accuracy of the described classification method, and towards its ability to 

highlight significant nucleotide sequences across closely related genomes.   

Improvements will most likely allow a more precise and informative method of 

classifying strain lineages, mapping transmission routes and potential probe design.  
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