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Abstract

The advantages of modern game engines in the simulation field are numerous, but sim-

ulations need to accurately represent physical data. Real world objects can be scanned and

recorded as sets of point data. Surface reconstruction from point data is only one step needed

to visualize it in a virtual environment - static objects can take advantage of significant op-

timizations by converting the surface faces into convex solids and storing them in a binary

space partition tree. During this conversion, other physical characteristics of the data can be

determined for use in the simulation. This thesis presents methods for conversion and data

extraction, algorithm backgrounds and step-by-step procedures from spatial data through

active simulation.
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Chapter 1 Introduction

Virtual reality (VR) is most commonly experienced in commercial game engines. Today,

games are powered by tool sets using highly optimized routines for both virtual physics and

display of the virtual world. The power of these engines can be extended to more practical

use in fields currently dominated by physical modeling, specialty hardware training, hands-

on experience and specialty simulations. This would allow safer, less expensive and easier

to distribute solutions to problems like flight training, mining safety, military training, and

driving instruction.

Many current simulations are written from scratch for each application. The use of a

commercial game engine can shorten development time significantly. Routines for rendering

and physics are provided, allowing the software developer to reduce their scope. In general,

simulation developers are most concerned with a finite set of specific requirements. A flight

simulator, for example, must provide realistic aircraft, flight dynamics, cockpit layout, radio

communication, air traffic, and ground landmarks. These requirements can be coded with as

much detail as needed while the game engine handles the rest of the application.

The benefits of a framework are especially evident when all of the project developers

are well versed in one discipline, such as a team of hydrologists who want to create a dam

simulation but are not experienced in rendering effects, user interfaces, network communica-

tion, or hardware compatibility. By using a game engine, a development team can be much

smaller and undiversified while still producing a strong final product.

A game engine is a toolset providing the complete back-end to an interactive game. It

is usually comprised of a graphical output or renderer, a physics engine, a sound engine, a

networking layer, and an input handler, along with a set of logic routines defining the game

parameters and rules.

The term game engine was first coined in the 1990s and referred to the original first-

person shooter (FPS) games, like Doom and Quake, but the concept of a reusable library is

an old one. A company could spend the resources needed to code a single game and would

be able to reuse most of the programming to create a sequel. The cost and time-to-market

of any follow-up projects is reduced significantly. Studios that invest in creating engines see
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an increase on their return through licensing to other companies - an attractive alternative

for many smaller design houses, where hiring the talent needed to make a competitive engine

might not be feasible.

By using a game engine for a project, the developer begins far ahead of from-scratch

development. They will have a full working example program that they can learn from and

edit. They will have documentation to follow and developers to query with issues. They

will not need to write code in a completely foreign discipline, keeping graphics people from

writing distributed networking code and the like.

Game engines are also designed with one or more target platforms. They are designed to

work consistently on that platform, and will already have coded in the necessary user interface

considerations needed for interoperability. They will usually include ways to modify their

detail so as to scale to different levels of hardware, allowing a much larger audience to use

the final program.

Developers using game engines also begin development using a base that is near the level

of the existing standard of the day. With the shortened development time, this lessens the

potential for release of a product that is already considered dated at release. Many engines

also are constantly refining to stay even with competitor advances, providing updates at little

or no cost to current licensees. While this leaves the game makers the freedom to create their

games with as little overhead as possible, it has also accelerated the technology advances in

the field. The studios creating the engines are hiring specialized programmers to focus on

improvements and the results of their developments have been spectacular.

Modern game engines have come far since their original inception. Current engines can

handle many thousands of objects on screen, deliver believable physics and world interactions,

as well as handle the networking tasks to bring hundreds of people into a shared space. Scenes

can display almost a gigabyte of texture and vertex data and users can communicate in real-

time by voice and text. Environments can be constructed in startling accuracy, and can

furthermore be designated by material type and behave as such. Modern engines know wood

floats and burns, glass breaks, and water puts out fire (while producing steam). Liquids fill

their containers and the wind moves leaves and grass. Underneath is complex math, but the

interface to the programmer or artist is highly simplified.



3

Physical interaction between objects can extend from simple collisions to programmatic

destruction. Liquids will move when touched, stick to objects that touch them and leave

traces as the object continues to move. Metal can be dented. Paint can be scraped off. Fires

can start in a wastebasket and extend to an entire structure while providing light to the

area around it and sending sparks and smoke into the air. The level of detail in calculating

interactions between objects has never been greater. Once implemented, a single physics

model can be reused in many situations to provide new game mechanics. The addition

of friction, for instance, could be used to interact with sliding objects like in hockey and

more realistic driving by emphasizing the interaction between the tires and a surface. The

addition of fluid dynamics gives way to splashing water, realistic waves and rainfall, and

possibly boating and swimming. As the engines grow more complex, the possible interactions

continue to grow.

An area where game engines lack, though headway has recently been made, is in the

area of simulation. A game engine still strives for a smooth user experience over an accurate

one. Calculations are not designed to be exact, but fast. Interactions may be done to a lesser

degree of detail to reduce calculation time. In many cases, the extra accuracy would not be

noticed or missed. While this is acceptable in a game environment, when using an engine for

simulation it may not be. In order to allow options for correcting this, many engines have

adopted a structured approach to this problem. Many will allow licensees to code modules

and attach them to the engine. This allows simulation developers to add realism and structure

in areas where they feel it is needed while allowing the engine to continue to handle all other

parts of the application. This method again leaves the programmers to concentrate only on

their specific areas of expertise and leave the rest to others who know better.

And while game engines may provide the toolset to create an application, they do not

provide much in the way of objects to use in that application. When developing a new

simulation, the largest barrier after coding the required accurate physics rules is the creation

of objects to fill the simulation. This is why many companies using game engines will hire

many more artists than programmers.

What simulation developers lack in art they can make up for with data. The display

of accurate physical data in VR is one of the most important factors in the acceptance of
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that VR by a participant. A simple method for importing real environmental data into the

virtual space can speed simulation development while increasing its realism. This project is

a step toward this last point and has three main goals: the conversion of spatial data as a

point cloud into a tessellated thin-surface solid, the conversion of a thin-surface solid into a

binary space partition (BSP) solid set, and the display and evaluation of the BSP solid set

in commercial game engines.

Chapter 2 gives a background on the research used in this project. It begins with data

acquisition, where current methods of spatial sampling are examined. It discusses advantages

to the individual methods with respect to this project, along with theory for merging data

from multiple data sets. Once a point cloud is available, the conversion to a thin-surface

solid can be done using any of many published methods. Tessellation and related algorithms

are presented, and the two methods used in this project are examined in detail. Procedures

for evaluating the final mesh and for extracting other useful information are discussed. BSP

trees - a data structure with strong ties to current game engines - are discussed. The input

format is also presented as related to a thin-surface solid.

Chapter 3 covers the original work of the project. The reduced medial axis transform

is introduced as a modification of the medial axis transform. Volumetric thresholding is

introduced and its output is examined. Finally, the thin-surface solid to BSP solid set

conversion is discussed.

Chapter 4 describes the conversion process from start to finish. Individual game engines

are discussed, along with their specific input requirements. BSP compiler options, errors, and

resolutions are demonstrated. The final output as an environment in the engine is shown and

evaluated in multiple engines, while the individual engines are discussed for their potential

application to simulation issues. This chapter also presents common conversion issues and

their resolutions as well as optimizations and parallelization opportunities.

Chapter 5 contains several case studies of conversions and Chapter 6 discusses the overall

project strengths, opportunities and possible paths to continue this work.
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Chapter 2 Background

The creation of a mesh from a point cloud is a long-standing problem. Several different

approaches have been made in this area, most notably Delaunay tessellation. While this is

the classic, verifiable approach, there have been advances in recent years that can speed the

mesh construction. In this chapter, different input methods are described along with methods

for registration of their point sets. Tessellation output post-processing is shown, both for

mesh refinement and data extraction. Binary space partition trees and their application in

graphics and physics are also discussed.

2.1 Input Data Acquisition

There are currently many different methods for sampling the true space coordinates of a single

point in space. These include direct sampling with a laser rangefinder or global positioning

system and indirect sampling using multiple 2D representations from different viewpoints

(recently discussed in [24] and [38]). While these methods to find individual points are very

accurate, the process of creating a 3D mesh from the sampled points can be complex.

2.1.1 3D Scanning

Figure 2.1: 3D scanning example [44].
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Currently, the easiest method for creating a solid from sampled coordinates is to take

the samples in a set order that implies the overall surface. This is best represented by a 3D

scanner, as in Figure 2.1. Using a laser rangefinder, a static object is scanned as a set of

connected points. The scanner circles the object, keeping the laser parallel to the vertical

axis. Starting at a low height, the scanner moves the laser vertically across the object

taking individual samples at set intervals. Since the samples are taken in order, they can be

connected by edges. In the example, one full rotation of these points and edges comprise a

single longitudinal set. Once a set has been completed, the scanner rotates a small amount

and repeats the scanning process. By sampling the object at an interval independent of the

object, longitudinal sets can be connected by edges across adjacent points taken at similar

intervals to form latitudinal sets. This creates an irregular mesh of quads over the entire

model with inconsistent resolution.

Problems with this scanning method arise when the object has irregularities, such as

occlusion. Occlusion is where part of the object obscures itself from a certain perspective.

Since the laser cannot penetrate the object, the surface that is hidden is left unsampled. If

the mesh were to uniformly cover every recorded point, the mesh would incorrectly span this

occluded area. Some occlusions can be detected by setting a segment length threshold as a

function of the scanner resolution. If exceeded, the point is still recorded but the segment is

discarded as in Figure 2.2.

Figure 2.2: Occlusion example - note the excluded segment [44].

While this helps to prevent erroneous meshes, the occluded area still has not been
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scanned. The solution to this problem is to rescan the object from a different perspec-

tive to produce a second irregular mesh. Use of a calibrated beam splitter allows sampling

of several points from many angles at each interval point, and is significantly faster than

multiple longitudinal rotations. Newer 3D scanners use a combination of object rotation and

beam-splitting, producing a set of meshes - one for each perspective. Unfortunately, these

individual data sets cannot be combined easily. The meshes must be related to each other

spatially and in complex areas the individual meshes may overlap and show inconsistent data.

2.1.2 Registration

First the spatial relationships between the various data must be determined. This process is

called registration, and will produce a set of spatial data that can transform the coordinate

data of all inputs into a common space. This is a classic problem - [13, 14, 16, 36] are good

sources for background and methods.

Reference points are a set of paired coordinates shared between two sets of input data.

Each pair of points specifies a common point in the two independent sets. Any number of

pairs helps to speed the registration process, but a full relation requires a minimum of four

non-coplanar pairs with no more than two collinear points. If the spaces are assumed not to

be skewed (the axes are perpendicular), this can be reduced to three pairs. When registration

is complete, the output is a set of reference points showing the input meshes relationship.

See Figure 2.3 for an example of registration.

Figure 2.3: Aligning related spatial data is called registration [36]. (Stanford Bunny courtesy
of the Stanford Computer Graphics Laboratory)
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2.1.3 Other Data Sources

The data set can be made of mixtures from different input sets, as long as the data has

been registered. For simulations needing to display accurate depictions of places, buildings,

and objects, data can be imported from survey data, blue print data, elevation data, and

other readily attainable documents. This shortens the data acquisition phase of modeling, as

most structural data requires highly accurate plans during construction and many require as-

built plans from post-construction surveys. Reuse of these typically available materials is an

advantage to this method. A disadvantage is that these data sets tend to be very large, with

many thousands of points for even simple plans. There is also no current industry standard

for the plans other than paper, so it may not be feasible to use them. While topographies

are normally 3D (or 2D with contour lines depicting elevation), only very recent construction

might have 3D data and it may not be easily obtainable. Debevec et al. points out how

architecture specifically has several optimizations when forming meshes from photographs,

and the results are quite detailed [24].

2.2 Mesh Combining Algorithms

Once registered, combining the meshes presents several challenges. Different methods will

question the validity of individual points, expecting possible error in the sampling process.

Others expect that every point is guaranteed to lie on the surface of original object.

If range data was used for the individual meshes, the addition of an extra piece of infor-

mation can create a very well structured final mesh. By adding knowledge of the perspective

point with respect to the sampled data, the algorithm proposed by Curless et al. in [23]

(based on Turk and Levoy [44]) can be used. By creating an implicit function that represents

the weighted signed distance of a calculated point to the nearest ranged surface along the

line of sight to the sensor, a new surface point can be calculated (see Figure 2.4). Weights

are determined based on input method, and are usually a function of sampling density or

sampling error, such as the reduced resolution and increased optical error as the incident

angle of a laser rangefinder approaches tangential intersection.

Without the knowledge of the perspective point, this method can still be used to combine

mesh points. The average of the neighbor normals can be used to determine the perspective
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Figure 2.4: Two range surfaces, f1 and f2, are tessellated range images acquired from direc-
tions v1 and v2. The possible range surface, z = f(x, y), is evaluated in terms of the weighted
squared distances to points on the range surfaces taken along the lines of sight to the sensor.
A point, (x, y, z), is shown here being evaluated to find its corresponding signed distances,
d1 and d2, and weights, w1 and w2 [23].

Figure 2.5: Left, a single range surface with occlusions. Right, a merge of multiple scans.
Note the greatly increased resolution [33].

vector and the weights can either be distance based or mesh-position based.

Another method for combining multiple meshes is called zippering, first described in [44]

and illustrated in Figure 2.6. A border is chosen, usually either the extreme edge of one mesh

or the average of their overlap, as a series of edges in an existing mesh. Triangles that are

fully over this border are discarded from both meshes. The triangles that intersect the border

are cut at the border and new triangles are created using the intersection points and vertices

of the border. Zippering may not be ideal, as overlapping range information is discarded

when it could be used for refinement, but in many sampling methods the confidence is lowest
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in the data recorded near extremities. This factor should be considered when choosing the

zippering border selection method.

Figure 2.6: To zipper the meshes, the boundary of Mesh B is used as a clip boundary.
Intersections of A with this boundary are used as new intersection points. The portion of A
inside B is discarded, and new polygons are created in B using the new intersection points
and new polygons are created in A using the new intersection points and the vertices of the
clip boundary [44].

Turk and Levoy’s consensus geometry [44] can be used to resolve errors in these merging

methods. Especially when new points are created, deviation from the original sampling

can be seen as errors in the geometry. Using a method similar to Figure 2.4, each point

is re-evaluated compared to the original mesh inputs. A normal is calculated based on the

average of the neighboring vertex normals (in a specified range) and a weighted average of

the intersection of that normal with each of the input meshes is formed. The weighting can

be influenced by the measure of confidence in each input set, if available.

Finally, another method to resolve multiple meshes is to retain only the individual 3D

points, combine the points of all sampled meshes and rebuild a single mesh from these points.

This process of mesh creation from points is called tessellation. Since it requires only points

as input, we can obtain suitable data from a wide variety of sources. It also prevents any

erroneous edge data in input meshes, but without any edge information the calculation takes

much more time, comparatively.
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2.3 Surface Tessellation

Finding the surface defined by a point set is a classic problem, with solutions first appearing

in the late 1800s. Delaunay tessellation is a commonly accepted solution. At its heart, it is

based on a variation of the nearest neighbor approach. All space is evaluated to determine

the closest point, forming a set of regions known as a Voronoi diagram. Neighboring regions

are connected by an edge, and this set of edges forms a Delaunay triangulation. For a set

of points in general position (in 2D, no three points are collinear and no four points lie on

the same circle), this method produces a unique mesh. It also follows several mathematical

traits, such as the circumcircle defined by the three points of a face encompasses no other

points. This finds discrete faces that do not overlap while maintaining a near fit to the ideal

surface.

Figure 2.7: A point set, the Voronoi diagram and the complementary Delaunay triangulation
in 2D [8].

While simply illustrated in 2D as in Figure 2.7, this method can be extended to any

number of dimensions. The computation time required for 3D triangulation can be significant

for many input points, as the entire set is evaluated for each face. On larger data sets (above

one million points), the complexity is too large for timely execution.

2.4 Regioning and Parallel Surface Tessellation

As data sets become larger, memory requirements for classical Delaunay surface reconstruc-

tion become an obstacle. As with any other data-intensive applications, swapping to disk

drastically increases runtime. Since Delaunay tessellation requires calculations on all points

in the data set to guarantee the fit of the surface, and since the complexity of the surface
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calculation is quadratic (Attali et al. shows a best case N log N for even distribution over

smooth surfaces [7]), extremely large data sets cannot be evaluated.

Subdivision of the original point set can reduce the number of points evaluated at all steps

during surface reconstruction, explored in depth by Dey et al. [25]. By splitting the data set

into smaller pieces, two advantages can be realized. First, the calculation can proceed much

quicker, as the split reduces the computational complexity. Second, the individual areas can

be calculated without full knowledge of the points contained in other areas. This leads to a

natural parallel implementation.

The main data set is split into pieces following a similar setup to binary space partition

trees, discussed in Section 2.7. The split is done orthogonally and in such a way that the

boxes formed each hold approximately the same amount of total space. Each of these new

boxes is further sub-divided until each box contains a number of points beneath a threshold.

The resulting structure is an octree.

These boxes will be individually meshed, but each box does not contain a full data set.

In order to accurately form faces on all points inside one of these boxed regions, the algorithm

must use data from points within boxes that neighbor the current box. It does not need to

use all neighbor box points, but can instead use a subset. Depending on the uniformity of

the sample data, this neighbor threshold can be adjusted. The neighbor points are added to

the smaller data set and labeled as border points.

When meshing, the data set is treated as a standard Delaunay set with two exceptions:

the points are not guaranteed to be all on the same surface within a box, and no faces are

kept that are comprised of three border points. Faces that are comprised solely of border

points will also be produced in other box calculations and should not be duplicated.

An additional step is required when merging the individual meshes, involving comparison

and reconciliation of any discrepancies in the border faces of adjacent boxes. With large

enough border regions, this is a small calculation and any errors are discovered and corrected

during manifold tests. Figure 2.8 shows the final results of this process, colorized to illustrate

the individual partition volumes.

This simple regional division allows for parallelization of larger data sets and reduces

the hardware requirements (especially RAM) to workstation levels. Adjusting the point
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Figure 2.8: By partitioning the data into smaller pieces, meshing is much faster [25].

threshold and neighbor point thresholds can further reduce the computation, with the optimal

settings using most of the workstation RAM and maintaining enough neighbor points to

create accurate border faces. Output time is drastically less when compared to meshing

the full data set. Run-times on standard desktop hardware using data sets in the area of

a million points are reduced from three or more hours to under a half-hour with identical

output meshes.

The main variance in this method from Dey is in the subdivision. After numerous

meshing issues when using standard octree divisions (a side-effect of irregular density in the

input sets), the method was modified to subdivide while taking into account the number

of points in each subdivision. The final data structure used is a three dimensional k-d tree

(see Figure 2.9). The k-d tree is introduced in [11] and discussed later in [12] by Bentley.

Changing the splitting plane in this way makes the tree more balanced and the operations

on it are faster, but otherwise calculation methods are similar.

2.5 Tessellation Post-processing

Once the mesh has been formed from the input data, some post-processing will insure that

it is valid and well-formed. This section discusses methods for evaluation and correction of

errors in the mesh.
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Figure 2.9: For non-uniform mesh density, a k-d tree provides better partitioning than an
octree [11, 12].

2.5.1 Mesh Holes

While Delaunay tessellation will not leave holes in the geometry, other methods might. It

is especially important when using range scans exclusively to check the final mesh for holes,

especially if occluded areas are not adequately sampled. The method does no harm on a

well-formed mesh, so it also acts as a sanity check for all methods.

For all edges in the final mesh, check to see if they are members of exactly one triangle.

These edges are labeled as borders. Once all edges have been classified, search the set of

border edges for cycles. For each set of cycles, fill the interior with a rough triangulation,

then rework the triangulation to best fit the neighboring triangles (see Figure 2.10). This is

discussed in more detail by Liepa in [34]. Other potential algorithms are surveyed by Botsch

in [17], which includes information about other degenerate cases, such as isles or islands.

2.5.2 Topological Evaluation

Adamy et al. discuses a method for testing for topologically-correct surface reconstruction

in [1]. This addresses many of the issues where mesh formation on close-proximity surfaces

with inconsistent resolution incorrectly link the two surfaces. It does so by enforcing the idea

of an umbrella condition - each vertex has a set of vertices that share an edge with itself

(called neighbor points), and these vertices must connect to each other to form a cycle. The

effect of this in the normal case is a triangle fan, shaped like a parasol or umbrella.

There are three possible errors to be detected, as illustrated in Figure 2.11: type 1 errors
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Figure 2.10: After detecting a border edge cycle, the inferred hole can be filled [17].

Figure 2.11: Four cases possible in umbrella topology evaluation [1].

are where the neighbor points do not form a cycle, type 2 errors contain a neighbor cycle

where some neighbor points are not included, and type 3 errors have more than one cycle.

After identifying errors in the mesh, the offending triangles (shown darker in Figure 2.11)

are removed and the mesh is re-evaluated to fill holes. In practice, type 1 errors can be left

for the hole filling process without ill effect. Removal of topological errors using this method

can find errors in water-tight meshes, preventing issues in manifold testing, such as in Figure

2.12.

2.6 Alternatives and Other Data Processing

2.6.1 Higher Dimension Convex Hull

An alternative method to regioning was introduced by Brown in [18] and involves adding a

fourth dimension to every point in the set and finding the convex hull. Once found, the fourth
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Figure 2.12: Before and after topological clean up [1].

dimension is discarded and the bottom of the new convex hull is equivalent to the Delaunay

triangulation. This is discussed in more detail, along with other calculation methods, in

the overviews by Aurenhammer [8] and Boissonnat [16]. More current research and some

alternatives to strict Delaunay triangulation can be found in [6, 7, 22, 25, 32, 37]. While

faster triangulation is desirable, discussion of the method is outside this project’s scope.

2.6.2 Evening Resolution by Interpolation

Some of the data processing requires the mesh density throughout the model to be somewhat

uniform. Once the set of faces has been found, they are reordered according to size. A

standard curve is obtained, as well as the average size. If any face areas lie outside of the

95 percent confidence interval, adjusting them will help to prevent errors. Since merging

faces that are too small will result in a loss of detail, faces that are too large will be broken

up. The largest faces in the mesh are repeatedly broken into pieces until their area is equal

or less than the average face area of the original set. Interpolation stops once no face lies

outside two standard deviations from the average on the large side. Where possible, triangle

reductions will consist of the four triangle set formed by the contact triangle so as to prevent

small incident angles from becoming smaller, as illustrated in Figure 2.13.
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Figure 2.13: The contact triangle (or intriangle) is formed by connecting the three
semiperimeter points of a triangle.

2.6.3 Medial Axis Transform

The medial axis transform (MAT) is a way to find topological data of an object. This data

can be used to relate multiple objects to one another or to classify the object, partition

the object, smooth the object’s geometry or to recreate similar objects. The structure of

the MAT describes the original surface in ways that are otherwise difficult to quantify. The

MAT shows areas of uniformity as well as areas of noise. The structure of the MAT can

show symmetry in the model, as well as areas where the model might naturally be split into

subcomponents. See Figures 2.14 and 2.15 for examples.

The MAT is defined as the volume specified by the centers of all maximal interior balls.

The balls will be largest in open volumes of the object, and will become smaller in more

detailed areas of the boundary. The MAT is formed by connecting the centers of the balls.

Sheehy et al. provides a good overview and an algorithm for triangulated solids in [41]. Dey

[26] and Amenta [5] both describe approximate MAT methods.

2.6.4 Simplified Medial Axis Transform

Finding the MAT is calculation intensive. Foskey et al. describes an alternative that is faster

called a simplified medial axis transform (SMAT) [28]. The SMAT also tries to eliminate

some of the instability of the MAT by reducing the effects of small changes in the mesh. This
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Figure 2.14: Left, the medial axis transform of a smooth body [3]. Right, the medial axis of
a union of balls [5].

Figure 2.15: The medial axis transform of a 3D object [41].

provides a usable MAT alternative while actively changing the mesh during operations such

as simplification, morphing or deformation (see Figure 2.16).

The SMAT reduces the number of points in the MAT by enforcing a angle restriction,

forming a volume called the θ–simplified medial axis. When evaluating an incident circle or

sphere for the MAT, the angle centered on the circle between the two points of intersection

must be greater than θ for it to be included in the SMAT. This removes most of the spheres

on the boundaries of the mesh where the faces are contiguous and smooth.
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Figure 2.16: The range data, calculated surface, and simplified medial axis transform of a
hand [4].

2.6.5 Power Crust

A more recent project that has had impact on the project’s implementation is the research by

Amenta et al., notably in the research involving the Power Crust [5, 4]. The Power Crust is

a combination of two methods for surface reconstruction - a simplified medial axis transform

and a power diagram. The power diagram selects and changes the radius of the balls in the

SMAT by a function of their distance from the original input data. This process is much

faster than exact Delaunay triangulation, and produces a good mesh with far fewer triangles.

This project makes use of the Power Crust in comparison to the Delaunay triangulation and

as a faster evaluator of new input data.

2.6.6 Variational Shape Approximation

Depending on the density of the data, geometry simplification may reduce the number of

faces significantly while retaining most of the contour data of the original data. This savings

in polygons will speed all subsequent calculations considerably, as most of the calculations

are not linear. Cohen-Steiner introduces variational shape approximation in [21], and the

results are encouraging on some data sets. This can also be performed before the Delaunay

tessellation, providing reduced complexity regions that are fast to triangulate. This is most

beneficial on extremely large and dense data sets.

The method uses simple mathematical surfaces called shape proxies to cover the parti-

tions on the original set of points. Fitness is measured by an optimization function. Once
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the error metric is below a set threshold, the partitions are split at the intersections of the

shape proxies and a simplified mesh is created from the proxy surfaces, as in Figure 2.17.

Figure 2.17: Variational shape approximation can quickly region mesh areas, providing a
simplified mesh and partitioned sets of points to mesh separately [21].

2.6.7 Tetrahedral Meshing

Once a surface has been obtained, it can be used to find a tetrahedral mesh of the entire

model (see Figure 2.18). Tetrahedral meshing fills the object with tetrahedra, a guaranteed

convex solid. Once this set of tetrahedra has been found, it can be used for many more

applications than a simple mesh. The solids can be used to calculate exact volume of the

object, as well as the approximate volumes of smaller portions of the object.

Figure 2.18: Tetrahedral mesh for a torus with 1000 vertices [2].

Alliez et al. describes one approach for this meshing called variational tetrahedral mesh-

ing that has shown accurate results [2]. It is a hybrid of optimal Delaunay triangulation and

local vertex relocation that seeks to produce a high quality mesh while avoiding exhaustive

calculations, producing well formed tetrahedra, and minimizing the global energy over the
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domain. The modifications to provide optimal and near-optimal Delaunay triangulations by

Chen and Xu [20] help to keep the accuracy high without drastically increasing run-times.

In use, the algorithm produces tetra that vary in size with the density of the faces in the

mesh. The tetrahedra formed are, in general, shaped well and without slivers. A sliver is a

tetra is where any interior angle approaches zero and is considered a degenerate case in many

calculation methods. Calculating the volume of a tetra is relatively simple (Equations 2.1,

2.2, 2.3, 2.4, 2.5), and by using this meshing algorithm we can obtain an accurate volume of

our object. Furthermore, though outside the scope of this project, the tetra are essential in

performing any geometric modifications to the model. Once the tetra have been calculated,

it is much easier to deform the object, split it into pieces and add objects together. The

tetra limit the volume affected by such operations. A repeat of the meshing algorithm on the

affected subset can be done quickly, and the merge of the output to the remaining unaffected

area is trivial.

Semiperimeter of a triangle with sides length abc

s =
a + b + c

2
(2.1)

Area of a triangle with sides length abc using Heron’s formula

AT =
√

s ∗ (s − a) ∗ (s − b) ∗ (s − c) (2.2)

Planer normal vector ~n from three points p1p2p3

~n =







a

b

c






= (p2 − p1) × (p3 − p1) (2.3)

Distance D between point P and the plane defined by point p and ~n

D =
|aPx + bPy + cPz − (~n · p)|√

a2 + b2 + c2
(2.4)

Volume V of irregular tetrahedron with points p1p2p3p4

V = AT (p1, p2, p3) ∗ D(p1, ~n(p1, p2, p3), p4) ∗
1

3
(2.5)
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2.7 Binary Space Partition Trees

Game engines commonly use a pre-compiled geometric data structure to speed the detection

of collisions between objects and avoid calling computationally expensive collision operations

on every pair of faces in a scene. Binary Space Partition trees, or BSP trees, store static

objects as collections of planes divided into convex groups. Planar collisions are a quick

operation, and the tree can reduce the number of objects needed to test for collisions by

several orders of magnitude. It can also quickly identify objects that are not inside the

camera view to save drawing operations in the renderer and sort planes in order of depth.

BSP trees are also used for radiosity calculations and network optimizations. Ranta-Eskola

gives an overview of the most common uses of BSP trees with pseudocode in [39].

2.7.1 BSP Tree History

The concept was originally introduced by Schumaker et al. in [40] and used arbitrary planes to

help with the issue of correctly drawing cyclic-overlap (see Figure 2.19). The drawing routines

of the day used the painter’s algorithm - sorting polygons based on depth and drawing from

bottom up. In this order, objects that are closer are drawn last, providing a simple way

of hiding parts of objects that are occluded by nearer objects. The painter’s algorithm has

two major issues - all objects in the view must be drawn, and complex object interactions

are not drawn correctly. One example of an unhandled complex interaction is cyclic overlap,

where two or more objects cover each other. The painter’s algorithm will incorrectly cover

whichever object is thought to be farther away. By splitting the scene with a plane, cyclic

overlap could be prevented by splitting one of the polygons into two pieces with one in front

of the plane and one behind. Note that this is not a issue of complex polygons, as a cyclic

overlap of three convex polygons is also possible.

Sutherland et al. (including Schumaker) described it in more depth later, with special

regard for hidden surface removal and culling faces not within the viewing frustum, in [42].

Fuchs et al. added a refinement using cutting planes incident with surfaces in the figure

[29] to avoid the expensive plane discovery step but possibly causing uneven tree balance

and forming a constrained tree. While the effort is somewhat intensive to create the tree,

the intermediate structure is negligibly larger than the original geometry and preprocessing
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Figure 2.19: Left, Cyclic overlap occurs when two or more object cannot be sorted accurately
according to depth - Q covers P and P covers Q. By splitting one of the objects, the depth
priority can be determined - Qb covers P and P covers Qa [42]. Right, cyclic overlap of three
convex primitives, a single cutting plane intersection and the corrected draw order of the
pieces.

static objects provides much faster run-time calculations. This is the first definition of the

BSP tree.

Gordon and Chen later used BSP trees to order polygons but reversed the draw order

to front-to-back. By noting which parts of the screen had already be drawn, the renderer

could omit drawing of occluded polygons for another large increase in rendering performance

[30]. A variation on this is the Z-buffer, usually attributed to Edwin Catmull but described

previously by Wolfgang Strasser, as shown by Green et al. in [31]. The Z-buffer records

not only that a pixel has been drawn, but also notes the depth of that pixel. By using

Z-buffering, the objects no longer need to be drawn in order of depth, though ordering by

depth can prevent wasted re-draw. Z-buffering and z-culling show the highest speed increase

when the processing to draw a single pixel is expensive, such as when complex shaders or

lighting are used. Z-buffering is an accepted standard and is implemented in hardware on

nearly all modern graphics cards.

2.7.2 BSP Tree Structure

BSP trees are formed by partitioning an input set of primitives - usually edges or planes.

Partitions are made along a plane. Any plane can be used, though some implementations

constrain to a plane defined by a primitive in the set to reduce calculation time. Any
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primitives that intersect this plane are split into two pieces. At each split, the new partitions

are evaluated to determine if the primitives they contain are convex. If not, the non-convex

set is further partitioned.

Choosing a partition plane can be difficult. When unconstrained, plane selection can

take a long time due to the very large number of potentials. Constraining to primitives makes

this selection set much smaller, but at the cost of not necessarily selecting the optimal plane.

In practice, constrained plane selection is almost always preferable due to speed issues when

forming the tree. An example of both constrained and unconstrained plane selection is shown

in Figure 2.20. If constrained to primitives, any primitives that lie on the convex hull of the

set cannot be chosen, as they will not divide the geometry and will add useless depth to the

tree and an empty node. Depending on the object, calculating the convex hull and removing

these primitives from the cutting plane potentials may be faster than testing the planes.

Figure 2.20: Left, unconstrained (1 split edge) and Right, constrained (3 split edges) BSP
partitioning.

Partitioning can be done in one of three ways: such that the two formed partitions are

of close to equal number of primitives, creating the most balanced tree; such that the fewest

number of primitives would need to be split, avoiding the creation of new vertex data; or

such that a new convex set is always formed in one of the partitions, which spends the least

time finding a plane. All will produce valid trees and will have different performance traits

depending on input set and application use. Partitions by primitive count is the most widely
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used, though combinations of the three methods are also common. Once all partitions contain

convex sets, the tree is complete.

2.7.3 BSP Trees and Collision Detection

When an object is encoded in a BSP tree, it is reduced to a set of convex pieces. For each of

these convex pieces, it is no longer necessary to retain the exact point data of the individual

faces. Instead, the BSP tree stores a collection of planes that form a convex hull around

the object. In order to test if the object is colliding, the query is tested against each plane

in the BSP tree. If the query is fully outside (on the same side as the normal) any single

plane, it is not colliding with that section of the tree. Assuming the query volume is usually

small compared to the volume of the BSP tree, the majority of collision checks will be false.

Pruning at the first negative test saves many calculations. Planar comparisons are much

faster than triangle intersections and can be applied to a number of query simplifications,

such as bounding spheres, to further speed the tests.

When collisions are detected, the result is a sub-set of the BSP tree. If simplifications

were previously used, a less general simplification is retested against the BSP sub-set. If

collision is again detected (usually returning a smaller BSP sub-set), the actual geometry of

the query is used and retested. If collision is detected again, the object is in collision and the

collision must be handled. If needed, the individual faces of the query can be tested against

the BSP sub-set to determine the specific geometry that collided.
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Chapter 3 Original Work

3.1 Reduced Medial Axis Transform

The reduced medial axis transform (RMAT) is the MAT reduced to segments and vertices.

In 2D, a similar figure is referred to as the straight skeleton or straight-line skeleton (SLS),

though it is computed differently than the MAT and RMAT (see Figure 3.1). Using the MAT

calculated in Section 2.6.3, any curve data is interpolated into straight segments. Surfaces

are reduced to segments by performing a constrained 2D MAT and interpolating any curves.

If using a SMAT, all solids are reduced to points at their centroids and segments are

formed between neighbors. The SMAT is not guaranteed to be contiguous, so some post

processing may be required. In general, the results are not comparable to the MAT unless θ

is small (see Section 2.6.4).

Figure 3.1: (a) The medial axis, (b) the straight-line skeleton, and (c) the reduced medial
axis (modified from [43]).

The RMAT can be used to perform graph related functions on a generalization of the

model’s structure, including finding the volumetric thresholds and skeleton of the solid. It

generally has less perturbations than an SLS and is more stable when the surface changes.

It is also faster to calculate the MAT than the SLS for highly detailed input.

3.2 Volumetric Thresholds

After the tetrahedral mesh and RMAT have been calculated, they can be used to find the

volumetric thresholds of the model. Volumetric thresholds are the dividing space between

continuous volumes within an object. By finding the thresholds, regional volumetric data
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can be found. A planar representation of the threshold can also be used as a portal for

visual culling. The threshold boundary can be used to partition the exterior mesh for use in

dynamic deformations based on the determined skeletal structure.

The RMAT provides a skeletonization of the object - a set of points, either endpoints

or intersections, and their connectivity as a set of segments. For each segment, find the

set of spheres internal to the mesh and centered on the RMAT. Find any overlap between

the segment sphere sets and mark that volume as an intersection. Record the position and

size of the smallest sphere per segment that is not in the overlap. After all intersection

volumes have been marked, find the interfaces between each segment sphere set and any

intersections. Assign tetrahedra to either a segment or an intersection. For volumetric

accuracy, the tetrahedra can be divided on the intersection borders, but in practice the error

produced by leaving the tetrahedra whole and assigning them based on their centroid is

negligible for well-formed tetrahedra. Finally, find all RMAT intersection points and assign

them to the intersection volume that contains them, allowing multiple intersection points

to share a single intersection volume if needed. Alternatively, the methods described by

Edelsbrunner in [27] can be used to calculate some of this information by directly operating

on the set of spheres generated, possibly saving time for highly detailed meshes.

This set of operations can provide the following data about the object: total volume,

total surface area, simplified skeleton segment list (with intersections that share a volume

reduced to a single intersection), low approximate smallest cross section of each segment,

approximate volume of each segment and intersection, and a set of mesh regions and the

portals between them. This data can be used as input to a number of different calculations,

including MFIRE (see Appendix A.2.1) for air flow.

3.3 Thin-Surface Solid to BSP Solid Set Conversion

The input for the BSP tree must be made up of solid 3D objects, and each object must be

made up of a convex hull of flat planes. The smallest valid object would be a pyramid with

a total of four sides - a tetrahedra. Triangle meshes are collections of triangles, which are

not 3D objects - they are 2D objects in a 3D space. A mesh of triangles forming a manifold

is called a thin-surface solid (TSS). To be used in a BSP tree, the individual triangles must
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become objects that have some amount of volume, creating a new thick-surface solid or BSP

solid set.

3.3.1 Interior/Exterior Detection

To convert the TSS, we must first identify the interior and exterior of the object. This can

be done by selecting a single triangle at an extremity, designating the surface such that the

face pointing away from the center of the solid is considered the outside, and propagating

the designation of outside to that triangle’s immediate neighbors. Repeat for all neighbors of

neighbors until all triangles have been touched. When finished, we have a clear designation of

interior and exterior of the solid. Reversing the designation is quick, if needed. The triangle

points are reordered such that their winding orients their normals in the direction of exterior.

3.3.2 Intrusion/Extrusion

To create solids, each face must be intruded (e.g. open-pit mine) or extruded (e.g. under-

ground mine) - in general, penetrating the side where the original data was sampled. The

normal of each triangle is used to determine the correct offset direction. The normal is a

vector from the center of the triangle extending perpendicular to the surface. For each pair

of neighbors, the average of their normals and their neighbor edge are used to determine the

plane of the new neighboring face between them. Once the average has been calculated for

all three neighbors of a surface, the vectors can be used to create a set of five planes. These

planes include the original face, the three border faces, and a containing face in the direction

of intrusion or extrusion, as illustrated in Figure 3.2. The containing face is parallel to the

original face, moved along the normal by an offset distance. This is a single addition, which

allows the corollary surface to be generated with minimal overhead or recalculation. The

offset distance is determined by the needs of the specific renderer.

The containing face should be omitted if the border faces converge, though the resulting

solid may produce errors later (see Section 3.3.4). Border faces will be reused for the neigh-

boring face. Compared to a full tetrahedra mesh, intrusion produces a set number of solids

- only enough to provide proper collision detection.

If the goal was to form quads between neighboring faces, it would be tempting to use the

vertex normals as the edges. Unfortunately, using vertex normals to describe the neighbor
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Figure 3.2: Example of extrusion - the containing and border faces are red while the neighbor
faces are brown. Normals are yellow and face angle bisectors are blue.

plane in not a consideration, as they are not guaranteed to be coplanar. The average of the

face normals yields the desired plane, though to form quads extra work must be done to

account for the three intersecting planes.

3.3.3 Brushes and Visualization

The set of five planes that make up the individual extruded mesh triangles are all that is

needed to create a BSP tree. In applications used for creating geometry specifically for game

levels, the user manipulates convex objects called brushes. The brush contains the set of

planes, as well as other information including texture. Brushes can be extended to denote

game-specific objects, such as starting positions and goals.

Since it is difficult to visualize many planes simultaneously, it would be helpful to be

able to instead visualize the volume formed by the planes. To convert a brush into a set of

faces, each plane is intersected with all other planes. The area on the inside (opposite the

normal) of the incident plane is kept, and the area left after all intersections is a face. The

set of faces covers the interior volume of the brush and is easier to draw.
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3.3.4 Offset Overlap

In narrow regions of a mesh, faces may be extruding into the same space. Overlap does not

affect the viewing quality of the model from the other side of the mesh face, but if the overlap

extends so far as to touch or cross another mesh face, it can cause issues. By calculating the

border plane based on the neighboring faces’ normals, overlap is prevented for immediate

neighbors. Unfortunately, this does not apply for neighbors of neighbors or beyond.

When the offset volume of a face intersects another face, the two faces are a pair of offset

overlap faces. Overlap faces occur in two types of degeneracy: sharp features and channels.

Sharp features are where the mesh forms a peak, dimple, edge, or corner causing neighboring

faces to form small incident angles to each other. The angle threshold is usually less than

sixty degrees, but can vary depending on mesh density. Channels are where two faces are

spatially close but topologically far from one another.

It is possible to identify geometry that is going to cause overlap issues before extrusion

and change/simplify the geometry. This can be done through a modification to the previous

MAT method. So far this paper has only shown the MAT interior to the mesh geometry, but

the same calculations can be used to find the intersection of maximal balls on the outside of

the mesh to form an exterior MAT (see Figure 3.3). Areas where overlap issues can occur will

be where the balls have diameter equal or less than the offset distance, though extending the

area to a slightly larger diameter can help identify bordering faces that will later be affected

by any mesh changes. This allows the MAT calculation to ignore the degeneration of the

balls as they become infinitely large and preventing some of the longest MAT calculations.

Individual pairs of non-neighboring faces in the overlap areas will create issues if their nearest

points are equal or less than the offset distance and are labeled as offset overlap faces. It

is also possible to calculate the offset and identify problem areas after using collision checks

between the mesh and each offset volume.

An alternative use of the exterior MAT is to identify the smallest exterior ball in a

channel. The radius of this ball is the largest offset value that can be used without the need

to post process the offsets. Channels are identified by a decrease in ball radius followed by

an increase.

Figure 3.4 shows three solutions to this issue. The mesh can be modified to compensate
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Figure 3.3: The exterior MAT of a solid, where blue shows maximal balls (excluding degen-
erate half-spaces), yellow shows the MAT, and red denotes the smallest ball in a channel. If
the offset distance is greater than the radius of the ball, there will be offset overlap and the
calculation must compensate. Note that if merging were to be used, the center space would
become an island.

for offset overlap faces. The regions of the mesh surrounding each face can be smoothed,

removing sharp features. Another option is mesh deformation. Overlap faces can be moved

in the direction of their normal until their offsets no longer overlap any faces. The mesh

can also be merged at the offset faces. An irregular cylinder is formed between the outside

borders of the overlapping faces in the surface. In practice, the faces are not separated

enough to require tessellation along the cylinder surface, but for large offset values this may

be necessary. The zippering algorithm is applied at the intersection. The zipper will delete

any faces interior to the border. Once fixed, localized smoothing algorithms are applied to

the faces neighboring the changed region and the mesh is re-evaluated to find offset overlap

faces, repeating the algorithm if needed.

Another alternative for preventing offset overlap is called convergence propagation. When

neighboring faces intersect at a sharp angle, their offset areas will become long and narrow.

Overlap is prevented for neighbors, but the small offset greatly increases the probability that

the next face will cause overlap faces. When neighbors have sharp incident angles, their

containing faces are usually omitted as their border faces converge before the offset distance.

To prevent further neighbor offsets from overlapping, the neighbors can adjust their offset

distance to the implied offset distance produced by the convergence, either directly inheriting
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Figure 3.4: Top Left, an example of a channel offset overlap. White is original mesh, blue
is calculated offset, red are offsets that overlap geometry. Three resolutions are presented:
Top Right, mesh deformation; Bottom Left, dynamic offsets; Bottom Right, merging. Yellow
shows altered original geometry and green shows altered offsets.

the distance or by using the sharp neighbors’ border face as a containing face.

Lastly, the offset can become dynamic, with the original offset distance defining the

maximum length. Each pair of overlap faces has their offset reduced until the offset volume

no longer intersects with any face. This requires first finding all offset overlap face pairs, but

each pair can be evaluated separately. By enforcing that the containing face must be parallel

to the mesh face, there are no unintentional interactions between different sets of pairs.

In general, convergence propagation is adequate to deal with sharp features, but cannot

handle channels. Dynamic offsets can account for both issues, but verifying all offset volumes

takes calculation time. For both of these methods, some game engines may not handle

collisions correctly with the new, thin brushes. The exterior MAT can account for both

issues, but changes the model. Deformation reduces interior volume. Merging increases it.

Channel removal can drastically change the mesh geometry, also changing the MAT and

volumetric threshold. It can also create new portals and islands. Smoothing reduces the

accuracy of the mesh.

Overlap faces are usually a sign of undersampled meshes - as the mesh density goes up,

the offset distance can go down. In any case, final geometry should always be evaluated for

fitness when the original mesh has overlap faces.
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Chapter 4 Conversion Process

4.1 Utility Conventions

All conversion and extraction utilities written for this project are run via the command line.

Some general Unix conventions are assumed. All utilities can take input either as a command

line argument or via STDIN. All utilities will write to STDOUT unless the –output flag is

passed specifying a file to write to. Status and information output is written to STDERR.

4.2 Input Conversion

The first step for tessellation is to extract raw 3D point data. These points can come from

a variety of sources, but among the most common are from ASCII data or from AutoCAD

proprietary DXF files [9]. Current modeling programs can usually convert their data into

one of these two formats, and both are easily parsable.

Two conversion routines were written to format this data: dxf2points and ascii2points.

Note that the input can be either point or surface data. If surface data is given, individual

points are extracted and the surface is discarded. If specified, the –interpolate flag will cause

faces larger than one standard deviation above average face area to be broken into smaller

pieces. A triangle is divided into four using the triangle defined by the interior contact

circle (see Figure 2.13). Curved data and more complex figures from DXF files are currently

ignored, but they could be replaced at this step with interpolated data derived from user

defined granularity parameters.

For multiple input data sets, registration is defined by four points for each set. The

input data is preceded by the local coordinate equivalent for the origin and the XYZ unit

segment terminators. This allows skewed, non-uniformly scaled and rotated input data which

is translated to the global coordinate system at read time. It also allows the inclusion of 2D

data, with the spatial relationship determining the constricting plane. If no parameters are

given, the input conversion routine assumes the standard origin and scale are common to the

local data.

Once extracted, any duplicate points are removed. The remaining points are ordered by
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distance from the origin and form the final point cloud. The points are written in a universal

ASCII format for use as input to the tessellation routine, points2tss. Multiple data sets can

be combined by passing the sets to either routine using the –combine flag.

INPUT

./dxf2points --interpolate --output dataset1.points dataset1.dxf

./ascii2points --combine dataset1.points --output dataset.points dataset2.txt

OUTPUT

dxf2points - Interpolation activated

dxf2points - Reading dataset1.dxf...

dxf2points - dataset1.dxf contains 0 points, 0 segments, 82852 faces, 0 curves

dxf2points - dataset1.dxf creates 47216 points from 82852 faces

dxf2points - dataset1.points contains 47216 points

ascii2points - Reading dataset2.txt...

ascii2points - dataset2.txt contains 1626 points, 0 faces

ascii2points - Reading dataset1.points...

ascii2points - dataset1.points contains 47216 points

ascii2points - Removed 21 repeated points

ascii2points - dataset.points contains 48821 points

4.3 Mesh Creation

The combined point cloud is input to points2tss, which has multiple paths for mesh creation.

The –qhull flag will use the Qhull library [10]. The –cgal flag will use the CGAL library

[15]. The –jwm flagwill use the author’s original mesh implementation. The –parallel option

expects a set of comma separated IP addresses or machine names with an optional colon

separated port number. Unspecified port numbers will be assumed as 8332. The routine

will attempt to contact all workers, but will continue even if it cannot connect to one or

more of them. The –notify option takes an e-mail address to send results to. The amount of

notifications depends on verbosity. The -v or –verbose flags increase the amount of output

- up to three levels of verbosity are available. All connection information is written to

STDERR.

The parallel meshing routine points2tssworker listens on a port for connections from a

points2tss routine. It takes –port as a parameter but will use port 8332 if it is not specified.

It will run as a background process and must be killed by PID.

INPUT

./points2tss --cgal --notify root@localhost \

--parallel 192.168.0.10:6000,192.168.0.11:10000,192.168.0.12,clusterslave3 \
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--output dataset.tss dataset.points

OUTPUT

points2tss - Using CGAL meshing support

points2tss - Notifications will be sent to root@localhost

points2tss - Contacting 192.168.0.10:6000... (Failure)

points2tss - 192.168.0.10 - ping successful, worker not running?

points2tss - Contacting 192.168.0.11:10000... (Success)

points2tss - Contacting 192.168.0.12:8332... (Success)

points2tss - Contacting clusterslave3[192.168.0.13]:8332... (Success)

points2tss - Reading dataset.points...

points2tss - NOTIFY - Started meshing 48821 points with 3 workers Fri Aug 4

01:03:20 PDT 2006

points2tss - NOTIFY - Finished meshing Fri Aug 4 01:16:01 PDT 2006

points2tss - dataset.tss contains 85611 faces

4.4 Extrusion

The conversion program that creates the BSP Solid Set is called tss2map. By default, it

produces a map file for input to Quake III. The –offset x option sets the offset value to

x. x can be specified as a float or integer. If x is preceded by the @ character, all faces

will be examined and the average length of an edge will be calculated. The offset will be x

times the average length. If an offset is not provided, it will be assumed to be @0.1. The

–intrude flag specifies that the program should intrude instead of extrude. This also adds an

orthogonal surrounding mesh with minimal density to act as a bounding box. The –precalc

flag will perform exterior MAT on the surface before extruding, looking for overlap based

on the offset value. The –overlap option specifies the overlap handling routine, if needed. If

unspecified, the program will only write output if there are no overlap faces. Possible overlap

specification values are deform, dynamicoffset, merge, and any.

INPUT

./tss2map --output dataset.map dataset.tss

./tss2map --overlap any --output dataset.map dataset.tss

OUTPUT

tss2map - Reading dataset.tss...

tss2map - dataset.tss contains 83611 faces

tss2map - Offset is 0.0239

tss2map - ERROR - Found 6 overlap faces. (Minimum separation: 0.0155)

tss2map - Overlap will be handled by: any

tss2map - Reading dataset.tss...

tss2map - dataset.tss contains 83611 faces

tss2map - Offset is 0.0239

tss2map - WARNING - Found 6 overlap faces. (Minimum separation: 0.0155)
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tss2map - Evaluating possible changes... chosing deform

tss2map - Applying deform to overlap faces...

tss2map - Starting over...

tss2map - dataset.map is complete

tss2map - WARNING - dataset.map has altered geometry

4.5 Other Data

Once the mesh has been created, processing can be done to extract more data useful in op-

timization. The RMAT extraction program, tss2rmat, produces a geometry file consisting of

vertices and a connectivity graph of those vertices. The tss2tets program creates a tetrahe-

dral mesh from a thin-surface solid. The output is a geometry file of vertices and an index

table of vertices for individual tetrahedra.

Once the RMAT and tetrahedral mesh are available, they can be simultaneously evalu-

ated to find various information about the original geometry. After splitting the geometry

into regions, each region can be evaluated to find its volume, surface area, and smallest

cross-section. The geometryinfo utility outputs this information in a human-readable format

to a text file. The maphints program performs a subset of these calculations and attempts

to find optimal portal placement for a map. Brushes are added to an existing map file and

textured with the special hint texture (see Section 4.7) by finding the volumetric thresholds

of the geometry. Both of these utilities specify the RMAT file with the –rmat option and the

tetrahedral mesh with the –tets option.

INPUT

./tss2rmat --output dataset.rmat dataset.tss

./tss2tets --output dataset.tets dataset.tss

./geometryinfo --output dataset.txt --tets dataset.tets --rmat dataset.rmat

./maphints --output dataset2.map --tets dataset.tets --rmat dataset.rmat dataset.map

4.6 Input Requirements for Engine Limitations

The planes of the BSP solid set or MAP file are used as the input to the specific game engine

BSP compiler. As each engine has its own set of input parameters and data requirements,

advanced knowledge of the target platform can allow for integration and testing at the TSS

conversion step. The current project has targeted the Quake III and Torque game engines,

providing compatibility with the many derivatives of each that use similar input formats.
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Some earlier versions of Torque have a limitation of +/-4096 integer-only coordinates for

vertices. This usually means that the coordinates of the calculated brushes must be truncated

or scaled to fit in this region. Scaling need not be uniform, allowing better resolution in the

smaller displaced dimensions. Support for float-based coordinates is mentioned in the engine

source, but in practice the coordinates are truncated. To mitigate this, Torque allows multiple

compiled BSP objects to be combined in a larger play area defined by a Torque mission file.

This requires some interesting splitting calculations to be done, even occasionally requiring

alteration of the MAP file to split up larger brushes, but it can result in a full-detail version

of the original map file. Extra calculations must be done to orient and arrange the individual

pieces of the map file into the Torque mission file.

Compared to Quake III, where the lighting is pre-calculated during the BSP compile

step, Torque must calculate the lighting for the combination of all these interior pieces for

the mission. This is done within the engine by calling a relight scene command. For especially

complex geometry, like the output of the examples in this paper, the lighting step can take

several minutes even when only a single omnidirectional light source is used. Fortunately this

lighting data is cached with the mission and will not need to be repeated unless the geometry

changes or moves.

The Quake III engine has an upper limit of 2048 individual drawn entities, which begins

to be an issue when approaching 10,000 brushes. When the limit is exceeded, depending on

which version of the engine being run, errors manifest as either missing geometry, blinking

geometry, or renderer crashes. This can be mitigated by proper regioning using portals.

There are also restrictions on the number of textures that can be applied and the dimensions

of input textures.

4.7 MAP and BSP Optimizations

While the MAP file so far has been a relatively ubiquitous file type, different game engines

provide optimizations that may not be generally supported. Render speed is not a main

consideration of this project, but a couple of easily implemented optimizations should be

mentioned due to their performance gains and low cost.

During the BSP compile process, a map is split into regions by portals. Unfortunately,
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the automatic detection of portal placement is sometimes very inefficient, causing the engine

to attempt to draw many surfaces that end up obscured by closer geometry. To combat this,

a special texture named hint is provided. When deciding on portal planes, the BSP compiler

will first try to region the map using the hint faces, then follow-up as needed with calculated

portal faces. If even a few hint planes are added, the overdraw of complex regions can be

reduced greatly. Note that the map file has no way of specifying a single plane, only full

brushes. Since the hint is only a single plane, the other planes of the brush can be textured

as hint skip, effectively discarding them in any BSP calculations. Both hint and hint skip

textured faces are not drawn by the renderer.

For this project, the volumetric thresholds can have a second benefit by also acting as

portal hint planes. This requires an additional calculation to create a brush at the threshold,

which may be irregular and concave, but the work required is relatively minor and can

be completed at any time - even as post-processing to a finished map. Depending on the

engine used, it may be possible to pre-calculate which regions of the map will have the

largest face draw count and specifically target these areas and the adjacent thresholds for

this optimization. Since the hint planes can be added and removed easily, it only requires a

recompile of the BSP tree to test different portal choices.

In some later games based on the Quake III engine, such as Enemy Territory, a special

texture type was created named caulk. Applying this special texture to known hidden surfaces

(such as the neighbor face shared by two adjoined brushes) would tell the renderer that the

face would never be seen. Since it can’t be seen, the renderer will never attempt to draw it and

it will not be used in any visibility calculations during the BSP compile. This is a kind of tag

culling and is commonly a large speed improvement. The mesh intrusion/extrusion output

benefits greatly, as the number of faces that will never been seen approaches 83 percent of

the total. In the examples presented in this paper, there was only a 0.2 percent increase in

the number of drawn faces over the original tessellations. On average, this reduced the BSP

compile time by about 40 percent and increased the frame rate of the renderer by over 50

percent.

Though not used in this conversion, brushes can be marked with a tag called detail. This

tag is used for geometry that should not be considered when calculating portals but should
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still be drawn. In general, any non-wall static object is marked with this tag, leaving only the

wall and structure geometry to be used during the visibility calculations in the BSP compile.

As the current conversion process does not add any visible, non-wall geometry, this is not

necessary, but when starting to add any sort of visual enhancement to a map it should be

considered and used appropriately.
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Chapter 5 Case Studies

This chapter follows the process from input data through the conversion process and finally

to the display of the data inside a game engine. Statistics and run times are provided for

various options. Where possible, colors are used to illustrate relative height.

5.1 Cove Pit Mine

The Cove Pit is part of a joint operation of the Cove/McCoy mining operation located near

Battle Mountain, Nevada. It was the largest silver producing mine in North America with an

estimated total capacity of 1.9 million ounces of gold and 83 million ounces of silver [35]. The

coordinate data for this mine comes from a survey in 2004 and is a combination of optical

and GPS data in an AutoCAD DXF file.

Table 5.1 lists the statistics and run times for the Cove Pit input file. Note that as the

pit is not a closed figure, volume-based calculations, including tetrahedral meshing, are not

possible. This also prevents the use of maphints, but as visibility is continuous throughout

the pit, this is not much of a concern.

Cove Pit Mine
Statistics Run Times (sec)

Points 78448 dxf2points 8
Faces 156909 points2tss (CGAL) 2995
Dimensions (5148.5, 4065.9, 762.5) points2tss (QHull) 5441
Surface Area 80565486.3 points2tss (JWM) 17302
Volume N/A points2tss (CGAL) (3 Workers) 1973

tss2map 51
tss2rmat 255
tss2tets N/A
maphints N/A
q3map2 4642

Table 5.1: Cove Pit Mine Statistics and Run Times

Figure 5.1 shows the calculated crust using the points of the input file. Note the pertur-

bations and long, thin triangles on the outside border. The crust considers the closest points

to any point, so outlying points will still form triangles with their closest neighbors.
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Figure 5.1: Cove pit crust.

Figure 5.2 shows the full point set of the Cove Pit. Figure 5.3 shows the triangulation

calulated from the input data. Figure 5.4 shows the edges calulated from the input data.
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Figure 5.2: Cove pit point set.

Figure 5.3: Cove pit Delaunay triangulation.

5.2 Total Solid Mine

The Total Solid mine is a conceptual mine from the University of Nevada, Reno Department

of Mining Engineering. It is an underground mine design for excavating a 50 meter wide 300
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Figure 5.4: Cove pit triangulation edge set.

meter deep ore deposit. The coordinate data is from an AutoCAD DXF file.

Table 5.2 lists the statistics and run times for the Cove Pit input file.

Total Solid Mine
Statistics Run Times (sec)

Points 6813 dxf2points 3
Faces 13470 points2tss (CGAL) 619
Dimensions (99.9, 120.4, 99.3) points2tss (QHull) 799
Surface Area 103455.7 points2tss (JWM) 1813
Volume 25219.4 points2tss (CGAL) (3 Workers) 408

tss2map 18
tss2rmat 474
tss2tets 1563
maphints 204
q3map2 1925

Table 5.2: Total Solid Mine Statistics and Run Times

Figure 5.5 shows the calculated crust using only the points of the input file. Note the

effect of uneven sampling. With so much distance between the indivual points, the crust

treats smaller portions of the model as individual models.

Figure 5.6 shows the calculated crust using resampled points from the input file. The
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Figure 5.5: Total Solid crust - note the effect of uneven sampling.

crust is a much better fit.

Figure 5.7 shows the full point set of the Total Solid mine. Figure 5.8 shows the trian-

gulation calulated from the input data. Figure 5.9 shows the edges calulated from the input

data.
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Figure 5.6: Total Solid resampled crust.

Figure 5.7: Total Solid point set.
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Figure 5.8: Total Solid Delaunay triangulation.

Figure 5.9: Total Solid triangulation edge set.
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Chapter 6 Conclusion and Future Work

6.1 Conclusion

Volumetric thresholding provides two major benefits: information for placement of portals in

the MAP file and volumetric data on the individual pieces of the skeleton. In another field,

volumetric segmentation of the model can also be used to localize mesh deformation.

Conversion of a thin-surface solid to a BSP solid set is more complex than expected.

Directly forming tetrahedra from the individual faces is not a robust solution, showing nu-

merous manifold and visual errors. By using neighboring faces and calculating a shared

border plane, most of these anomalies are prevented. The intrusion/extrusion step is timely

and most errors can be caught early on.

The MAT is a surprisingly useful data model. The use of the reduced medial axis

transform provides quick solutions in both the skeletonization and in offset overlap detection.

More investigation in how to apply the MAT to other problems is definitely needed.

One of the largest difficulties in this project was the smaller modifications needed to

produce adequate output for each individual game engine. While the basic idea of the BSP

compilation is unchanged, differences in MAP limitations from engine to engine can be quite

extreme. This limits the scope of the project, and might be a time-intensive area for any

modifications targeting a new engine.

The computation power of modern machines has increased to a point where static BSP

compilation of geometry is not necessarily needed for performance. The main benefit from

using BSP trees is the ability to do a large amount of optimization on objects that cannot

change during run-time. For future applications where all geometry is alterable, this will no

longer be usable. While the MAP creation step may not be long-lived, the rest of this project

still has relevance in other geometric applications.

Conversion of real-world spatial data into a format that can be read by modern game

engines is not only possible, but works with very few issues. The conversion can tolerate

inconsistent resolution in input sets, identify and overcome issues when storing that geometry,

combine multiple input sets, and format output to work with multiple game engines. As the
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method matures, vast amounts of existing data can be brought into a virtual environment

with minimal hassle. This conversion will help to make the power and simplicity of modern

game engines available to simulation applications and to bring more realism and variety to

future games.

6.2 Future Work

There are several areas to expand on the work in this project. Support for more input formats

would allow more diverse input sets to be considered. Improving the interpolation options

for input data, especially complex and curved data, would also allow more diverse input and

possibly faster meshing by retaining information where possible. Support for more output

formats, especially non-MAP files, would greatly increase the number of engines that could

be targeted.

Support could be added to provide cosmetic enhancements to the output MAP files via

more complex texturing, possibly basing which textures to use on the geometry data. More

realistic textures could be added, such as satellite imagery for the open-pit mines. Extra

detail geometry and lighting could also be added.

The additional data gathered can be used as input to related simulation calculations,

such as using MFIRE for heat and smoke movement. The geometric calculations could be

improved on as research progresses in the field, especially to speed the individual conversions

and identify the problem areas discussed. Finally, packaging these applications and providing

them in a single application would expand the target audience and make the overall project

more useful.
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Appendix A Applications and Tools

A.1 Libraries

A.1.1 Qhull

http://www.qhull.org

Qhull is a general dimension convex hull program that reads a set of points from stdin,

and outputs the smallest convex set that contains the points to stdout. It also generates

Delaunay triangulations, Voronoi diagrams, furthest-site Voronoi diagrams, and half-space

intersections about a point [10]. Qhull is open-source with no specified license.

A.1.2 CGAL - Computational Geometry Algorithms Library

http://www.cgal.org

The goal of CGAL is to provide easy access to efficient and reliable geometric algorithms

to users in industry and academia [15]. CGAL has algorithms to compute n-dimensional

convex hulls, graph traversal, mesh simplification, and more. CGAL is open-source and free

to use in non-commercial projects.

A.2 Related Applications

A.2.1 MFIRE

Originally developed at Michigan Tech, MFIRE is a computer simulation program that per-

forms normal ventilation network planning calculations, and dynamic transient state simu-

lation of ventilation networks under a variety of conditions. The program is useful for the

analysis of ventilation networks under thermal and mechanical influence. MFIRE simulates

a mine’s ventilation system and its response to altered ventilation parameters, external in-

fluences such as temperatures, and internal influences such as fires [19].

A.3 MAP File Editors

A.3.1 Radiant

http://www.idsoftware.com/business/techdownloads
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Radiant is the original editor for Quake-based games and is available from id Software.

Several versions exist, including GtkRadiant, Q3Radiant, and the upcoming ZeroRadiant.

A.3.2 QuArK - the Quake Army Knife

http://quark.planetquake.gamespy.com

QuArK is an independently developed map editor. Originally called Quakemap, QuArK

has grown to support a large range of games. It is written in Dephi and expanded with

python. QuArK is open-source and still developed.

A.4 Game Engines

A.4.1 Quake III

http://www.idsoftware.com/business/techdownloads

Quake III is the third installment in the venerable Quake franchise, originally touted for

using full 3D level design. Released in 1999, it uses the id Tech 3 engine. The full source

code of the engine was open-sourced in 2005 and is available from id Software. Note that the

models, maps, and textures were not open-sourced.

Content for Quake III-based games is commonly supported in various modeling programs,

especially the MD3 model format. MD3 is a generic container for models and animations

It allows segmentation of the model into individually addressed pieces while still perform-

ing dynamic mesh deformation to keep the outer mesh consistent. It also allows dynamic

keyframing for animations.

Many games after Quake III have utilized the same engine, including Call of Duty, Medal

of Honor - Allied Assault, and Star Wars Jedi Knight II: Jedi Outcast. Individual games have

made modifications to the engine, so while the file formats are similar, certain extensions may

require resources to be built with tools specific to the game.

A.4.2 Torque

http://www.garagegames.com

The Torque engine is the product of GarageGames, Inc. It was originally developed by

the company Dynamix for the game Tribes 2. After release of the game, some Dynamix
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employees negotiated the purchase of the engine from Tribes 2 publisher, Vivendi Universal,

and began to market the engine to independent developers. It is considered to be one of the

lowest-cost commercial engines available and has been used in many games, including Marble

Blast and Penny Arcade - On the Rain-Slick Precipice of Darkness.

The developer package contains more than just the engine - a full content pipeline is

provided, with support for several modeling programs and audio formats. The engine itself

provides rich content tools, allowing in-game terrain editing and placement of world objects.

The full source code of the engine is provided, along with support for compiling under Linux,

XCode on OSX, and Visual Studio on Windows. The engine also supports a rich scripting

language, allowing game logic to be updated without recompiling the engine.
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