
University of Nevada
Reno

Identification of Tree Locations

in Geographic Images

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Engineering

by

David T. Brown

Dr. Frederick C. Harris, Jr., Thesis Advisor

December, 2008

We recommend that the thesis

prepared under our supervision by

DAVID T. BROWN

entitled

Identification Of Tree Locations

In Geographic Images

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu M. Dascalu, Committee Member

Dr. Timothy J. Brown, Graduate School Representative

Marsha H. Read, Ph. D., Associate Dean, Graduate School

 December, 2008

THE GRADUATE SCHOOL

i

Abstract

This thesis describes an interactive image analysis algorithm for the correct place-

ment of trees within a virtual reality wildfire visualization system. The wildfire visu-

alization system is VFIRE (Virtual Fire in Realistic Environments), which uses fire

simulation results produced by software programs such as FARSITE to place the user

into an immersive, artificial environment where he or she can see graphical depictions

of real or fictitious wildfire events. The purpose of VFIRE is to assist in training and

planning for actual fires, and our purpose is to place trees within the artificial envi-

ronment at locations corresponding to their locations in the real environment. Our

goal was to achieve adequate tree-placement accuracy using any, arbitrarily chosen

image, assuming no constraints on the minimum suitability of that image for tree

detection. This goal led to the selection of a template-matching algorithm wherein

the user selects a particular tree as a template and begins to search the image for

similar-looking trees. Tree detection results are presented for a 1-meter panchromatic

image of the current area of interest, Kyle Canyon, in Southern Nevada. It is diffi-

cult to perceive the aesthetic effect of tree-detection inaccuracies in terms of numeric

error rates. Therefore, screen shots are provided representing tree-detection results

placed into three broad, subjective categories: good, adequate, and poor. The results

obtained were found to be roughly fifteen percent good, seventy percent adequate,

and fifteen percent poor, where accuracy was directly related to the suitability of the

terrain for tree detection in each particular region of the image.

ii

Acknowledgments

This work is funded by the STTC CAVE Project (ARO# N61339-04-C-0072) at

the Desert Research Institute.

iii

Contents

Abstract i

List of Figures iv

List of Tables vi

1 Introduction 1

2 Background 3

2.1 Geographic Data . 3

2.1.1 Aerial Imagery . 3

2.1.2 Satellite Imagery . 4

2.1.3 Types of Photography . 5

2.1.4 LiDAR . 7
2.1.5 Digital Elevation Models . 7

2.1.6 Vegetation Maps . 8

2.1.7 GDAL . 9
2.2 Image Processing and Analysis . 11

2.2.1 Point Operations . 12

2.2.2 Neighborhood Operations . 14

2.2.3 Image Segmentation . 16

2.2.4 Image Thresholding . 17

2.2.5 Edge Detection . 18

2.2.6 Template Matching . 20

2.3 Virtual Reality . 22

2.3.1 Visual Depth Cues . 23

2.3.2 Video Display Devices . 24

2.3.3 Virtual Reality Input Devices 27

2.4 VFIRE . 29
2.5 Related Work . 31

3 Placing Items in a Virtual Reality Visualization 34

4 Software Specification and Design 37

iv

4.1 Requirements . 37

4.2 Use Cases . 38
4.3 Classes . 41
4.4 Program Subsystems . 43

5 Implementation and Results 46

5.1 Detecting Trees . 46

5.2 Using Vegetation Maps . 54

5.3 Tree Detection Accuracy . 57

6 Conclusions and Future Work 66
6.1 Conclusions . 66
6.2 Future Work . 67

Bibiliography 70

v

List of Figures

2.1 True Color Image [5, page 45]. 6

2.2 False Color Image [5, page 45]. 6

2.3 Vegetation Coverage of Kyle Canyon. 9

2.4 Vegetation Types for Kyle Canyon. 10

2.5 Vegetation Heights for Kyle Canyon. 10

2.6 Generalization of Image Processing. 11

2.7 Unprocessed Image. 13

2.8 Brighter Image. 13

2.9 Example of input submatrix . 14

2.10 A Blur Filter. 16
2.11 Blurred Image. 16

2.12 Unprocessed Gray-Scale Image. 18

2.13 Image After Applying Threshold of 50. 19

2.14 Conceptualization of Scale-Space [47]. 20

2.15 LoG Scale-Space Edge Detection at Different Values of Sigma [36]. . . 21

2.16 Effect of Perspective on Virtual Reality Display [2, page 120]. 24

2.17 A Three-Sided Projector System [25]. 25

2.18 A Head Mounted Display [2, page 14]. 26

2.19 A Pair of Head Tracking, Active Stereo Goggles [17]. 28

2.20 A Virtual Reality Wand [17]. 28

2.21 Fire Visualization in Progress [25]. 30

2.22 User Interacting with VFIRE Visualization [25]. 30

4.1 Use Cases. 40
4.2 Classes Used by Utility. 41

4.3 System Structure . 44

5.1 Enlarged View of Tree Centered in Window. 47

5.2 Enlarged View of Tree Highlighted by User. 48

5.3 Tree Used As Template and Surrounding Area. 48

5.4 Monochrome Correlation Image Contained in Red Buffer of Workspace
Image. 50

vi

5.5 Likely Trees Marked After Processing. 50

5.6 Tuning Parameter Controls. 52

5.7 Placement File Information. 53
5.8 Photographic Image Alone. 54

5.9 Vegetation Map Alone. 55

5.10 Photographic Image and Vegetation Map Together. 56

5.11 Terminal Text Output Produced When User Clicks on the Image. . . 56

5.12 Tree Placements Made According to Vegetation Map Tree Densities. . 57

5.13 Random Placement File Information. 58
5.14 Likely Trees Marked After Processing with Two Templates. 59

5.15 False Positives Produced by Burnt Trees. 61

5.16 False Positives Produced by Small Trees and Shrubs. 61

5.17 False Positives On Houses. 62
5.18 False Positives On Roads. 62
5.19 Good Results in Area with Few Items to Produce False Positives. . . 63
5.20 Good Results in Another Area with Few Items to Produce False Positives. 64
5.21 Portions of Image Obscured by Shadow. 64

5.22 Additional Area Obscured by Shadow. 65

vii

List of Tables

4.1 Functional Requirements. 39

4.2 Nonfunctional Requirements. 40

1

Chapter 1

Introduction

VFIRE is an application that uses Virtual Reality (VR) technology to allow a user to

be immersed in an artificial environment where real or fictitious wildfire scenarios can

be visualized [25]. The purpose of such simulations is to provide useful information

about fire spread in a particular region under various wind, humidity, and other

environmental conditions. Currently, the region of interest is Kyle Canyon, near Mt.

Charleston, Nevada.

Since the simulation is intended to model an actual place, it is desirable that

items within the simulation be located in the same place they would be located in

the real environment. The purpose of this work is to accomplish such realistic item

placement without the user having to specify the placement of each item individually.

This project provides a facility to make the process more (though not fully) automatic.

Some assistance from the user is still required.

We are primarily focused on the placement of trees because trees constitute a

large proportion of the fuel in a wildfire and because trees dominate the landscape in

the current VFIRE region of interest. Other items, such as buildings, can be placed

in the simulation manually, but trees are currently the only items that can be placed

automatically.

We perform automatic tree placement by interpreting user-supplied information

with reference to an image file showing the region of interest, and this image file

is supplemented with information from various vegetation attribute files as well. If

either of these file sets is not available, tree placements will be less accurate. If neither

2

is available, tree placements will be completely random.

This project is currently configured to use satellite photographic image files show-

ing the region of interest. Because satellite images tend to have low resolution, the

current implementation cannot make use of algorithms requiring fine detail in the

image. Instead, we use a method more similar to blob detection, which selects blobs

based on size and shape, ignoring details of the interior of the blob.

It is the type and variety of data being used that distinguishes this work from

others. Much work has already been done to develop general-purpose interactive

image analysis tools, tools for locating trees within relatively high-resolution aerial

photo images, and tools to locate trees within groves of vegetation having uniform

appearance. This project, on the other hand, is similar to a general-purpose inter-

active image analysis utility that incorporates vegetation maps to compensate for

poor image quality and outputs tree locations directly in georeferenced coordinates.

In addition, this utility allows trees to be placed based on vegetation maps alone in

cases where photographic images are not available.

The rest of this thesis is structured as follows: Chapter 2 provides background

information on basic image processing methods and existing item placement tools and

algorithms. Chapter 3 explains the conceptual operation of this project. The design

of this project is presented in Chapter 4. Information on the current implementation

of this project as well as the results obtained so far are given in Chapter 5. Chapter

6 presents our conclusions and identifies useful improvements to this project to be

made in the future.

3

Chapter 2

Background

2.1 Geographic Data

Information regarding the surface of the earth can be produced in a number of different

ways. In one such method, known as remote sensing, a camera or other sensing device

is taken to a high altitude and aimed at the earth to collect information. Alternatively,

data can be acquired by means of proximate sensing, which is performed by people

using measuring devices at ground level [29]. For any application, the choice of

methods and technologies is determined by the type, quality, and cost constraints of

the required data. Much of the geographic data that is collected consists of geographic

imagery such as maps and photographs.

2.1.1 Aerial Imagery

In the case of remotely sensed imagery, a common practice is to attach a downward-

facing camera or other sensor to an aircraft and fly over the area of interest, taking

pictures. This type of remote sensing, known as aerial imagery, has been done for

almost as long as cameras have existed. Early aerial imagery was done by taking

photographs from balloons. Subsequently, airplane-mounted cameras were used ex-

tensively for military reconnaissance in World War I [32]. Today, both airplanes and

helicopters are used in the production of aerial imagery. Airplanes have the advantage

that they can cover a given area more quickly, but helicopters can be positioned with

greater control than airplanes [18].

4

In addition, unmanned aerial vehicles (UAV) are increasingly being used as plat-

forms for aerial imagery. They can often be used to produce aerial imagery at a lower

cost than can be done with manned aircraft [40]. UAVs encompass an extraordinary

variety of vehicles, and the capabilities of UAVs vary greatly from one vehicle to

the next. For example, their payloads may range from less than 1 kg up to several

hundred kg, and their maximum altitudes may range from one thousand feet up to

altitudes in excess of ninety thousand feet [27]. In spite of this diversity, UAVs do

not always give the most cost-effective solution over all terrains at all altitudes, and

the need for a reliable connection between UAVs and their remote pilots further lim-

its their applicability. Therefore, there will likely continue to be some need to use

manned aircraft in remote sensing for the foreseeable future.

2.1.2 Satellite Imagery

In addition to aircraft, spacecraft can also be used for the collection of remotely

sensed data. Spacecraft have been used for remote sensing since the 1940’s. At that

time, cameras were placed inside V2 rockets acquired from Germany to take pictures

of the Earth. These rockets did not reach orbit, but they were able to take photos at

high altitude. Subsequently, in the 1960’s, astronauts and cosmonauts took pictures

of the Earth from their orbiting spacecraft [26]. Today, remote sensing from space is

commonly done with Earth-orbiting, unmanned satellites.

Satellite imagery has several advantages and disadvantages compared to aerial

imagery. Among the advantages of satellite imagery is the fact that the process of

contracting to have aerial imagery produced requires planning to make sure that an

aircraft is available and that weather conditions are acceptable on the acquisition

date. On the other hand, the most recent satellite image of a region can generally be

ordered with no preparation at all. For repeated imaging of the same region, aerial

imagery can be more expensive because the aircraft has to be sent up each time an

image is taken. A satellite has the advantage that it remains in orbit and can capture

additional images with no additional cost [8].

5

Among the advantages of aerial imagery is the fact that it can be scheduled

for a specific date. A satellite image of a particular region can only be produced

on the dates when the satellite happens to be passing over it. In addition, aerial

imagery often has much better resolution because it is taken much closer to the

ground. Aerial imagery can have resolutions as good as about 2 inches. The best

satellite imagery resolution is about 2.4 meters for CIR and about 0.6 meters for

panchromatic images [8].

2.1.3 Types of Photography

In standard color photography, a camera is used that responds to light in a way

similar to the way that the human eye responds to it. Such a camera will show a

scene just as we would see it with our own eyes. However, there are other ways to

depict a scene [5].

Another depiction commonly used in satellite imagery is CIR (Color Infrared)

imagery, in which the green component is depicted as blue, the red is depicted as

green, and near-infrared component is depicted as red. The result is a false color

photo which allows us to see the infrared energy emitted or reflected from objects as

the amount of red in the image [5]. Figure 2.2 shows a false color version of the true

color image in Figure 2.1.

Images can also be shown in a panchromatic format. Originally, this term referred

to standard black and white photography [13], where the brightness at any location in

the image corresponds to the total combined visible-spectrum light energy detected

by the camera at the corresponding location in the scene. Currently, the term has

a looser definition, applying to any imagery where a large portion of the visible

spectrum and, possibly, some portion of non-visible spectra are taken together to

produce a monochrome image. For example, the IKONOS and QuickBird satellites

each possess panchromatic cameras sensitive to light over nearly the entire visible

spectrum plus the near infrared spectrum as well [15].

Geographic images are often captured using multispectral scanners. These are

6

Figure 2.1: True Color Image [5, page 45].

Figure 2.2: False Color Image [5, page 45].

7

scanners that can be set to selectively respond only to a particular light spectrum,

visible or invisible [5]. A multispectral scanner can repeatedly scan the same scene

each time in a different spectrum. The purpose is to detect selected features such

as water or vegetation, which show up differently depending on the light spectrum.

Hyperspectral scanners are very advanced multispectral scanners, having the ability

to select very narrow light spectra from the available range. This allows a particu-

lar feature within the scene to be identified more precisely than can be done with

multispectral scanners [9].

2.1.4 LiDAR

A height map is a mapping in which an altitude value is associated with each spot

on a two-dimensional surface. LiDAR, (Light Detection And Ranging) is a form of

surface scanning in which a laser beam is used to produce such a height map [41].

Aircraft-mounted equipment able to produce and detect laser beams is flown

in a scanning pattern over the area of interest, and during the flight, the equipment

projects laser beams toward the ground, measuring how long it takes for the reflections

to return. The equipment records the delay times, which it then uses, in conjunction

with its own altitude and projection angle, to determine the altitude of whatever the

laser beam struck [42]. This process produces data in the form of a point cloud, a set

of points in three-dimensional space, which can then be further processed into other

formats that are easier to interpret [12].

LiDAR data are commonly used in forestry to create maps of forest canopy

height, a task which is difficult to accomplish by other means [1]. It is also used for

mapping beaches and shorelines [28]. Other uses of LiDAR include, transportation

planning, oil exploration, and mining [12].

2.1.5 Digital Elevation Models

A Digital Elevation Model (DEM) is a digital file containing the information for

a height map of the ground [46]. They can be derived from LiDAR data or from

8

ground survey data [38]. Several different types of DEMs are produced by the United

States Geological Survey (USGS). These DEMs differ mainly in their coverage areas

and data spacing, which is the horizontal distance between each consecutive height

measurement [44]. USGS produces DEMs in blocks of 7.5, 15, 30, and 60 minutes

of latitude corresponding to a 7.5, 15, 30, and 60 nautical miles square, respectively.

DEMs are available with data spacing of 30m × 30m, and they are also available with

spacings of 2×2, 3×3, 2×3, and 1×2 arc-seconds [45].

DEMs have a wide variety of applications including the modeling of water flow,

creation of relief maps, rectification of aerial or satellite imagery, and rendering 3D

visualizations [39].

A DSM (Digital Surface Model) is similar to a DEM except that it gives forest

canopy elevation instead of ground elevation. Similarly, a DCHM (Digital Canopy

Height Model) is created by subtracting the DEM from the DSM to produce a height

map of a forest canopy with no height variations resulting from variations in ground

elevation [16].

2.1.6 Vegetation Maps

Data regarding the amount and types of vegetation present in a geographic area can

be compiled and displayed as a map. Such maps can be used for wildlife habitat

assessment, resource management planning, and fire risk assessment and prioritiza-

tion [19]. Many vegetation maps are produced by LANDFIRE, a joint project of

the U.S. Department of Agriculture Forest Service and U.S. Department of the Inte-

rior [21]. Vegetation maps can be produced using data from many different sources.

However, LANDFIRE relies heavily on remotely sensed data from the Landsat satel-

lites [20]. Three different LANDFIRE vegetation maps are shown, each having its

own color scheme. In Figure 2.3, the colors displayed correspond to the amount of

vegetation coverage at each location on the map. The darker green areas have greater

tree coverage, and the lighter green areas have less coverage. Other colors correspond

to areas in which trees are not the dominant surface feature. In Figure 2.4, the colors

9

Figure 2.3: Vegetation Coverage of Kyle Canyon.

displayed correspond to the specific type of vegetation dominant in each location,

and in Figure 2.5, the colors displayed correspond to the height range of vegetation

dominant in each location.

In addition, LANDFIRE has maps depicting several other forest metrics [22].

These other metrics, such as canopy bulk density, canopy height, and canopy fuel

weight, can be used, along with atmospheric and weather data, as inputs in fire

simulation programs such as FARSITE, which is discussed in Section 2.4.

2.1.7 GDAL

Geographic images are commonly stored as raster data files, and there exist many

different raster file formats in which these data can be encoded. Some common file

formats include Arc/Info ASCII Grid, Arc/Info Binary Grid, and GeoTIFF [30]. With

many different formats available, it is often helpful to use an abstraction library to

allow access to the data without concern as to the particular file format used. GDAL

(Geospatial Data Abstraction Library) is such a library. It allows data to be retrieved

10

Figure 2.4: Vegetation Types for Kyle Canyon.

Figure 2.5: Vegetation Heights for Kyle Canyon.

11

using the same generic access commands for many different file formats including the

ones listed above [31].

In addition to the raster data, itself, geographic images also have associated

metadata. For example, images of the Earth’s surface are generally accompanied by

longitude and latitude or some other georeferencing information to establish what

part of the world they depict. GDAL allows convenient access to this information as

well.

2.2 Image Processing and Analysis

Image analysis can be defined as “the process of describing or evaluating an image

based on its parts, properties, or relationships,” and image processing can be defined

as “the manipulation of images by computer” [43]. From these two definitions, it

is apparent that image analysis is the process by which we gain useful information

from an image. However, we may need to use techniques from image processing to

manipulate the image in the course of acquiring this information. Therefore, our

purpose is image analysis, but our methods often involve image processing.

Since images are stored as numeric arrays within a computer, image processing

is, in practice, the manipulation of arrays of numbers within a computer. As shown

in Figure 2.6, an array containing a matrix X, representing the input image, is trans-

formed by some process into the output image represented by matrix Y, which may

or may not have the same dimensions as the input.

Figure 2.6: Generalization of Image Processing.

12

A great variety of methods to manipulate numeric arrays has been developed for

the purpose of image processing, and there are several ways in which these methods

can be categorized. For example, they can be divided into Fuzzy Logic or Discrete

Logic methods. Alternatively, they can be divided into spatial-domain or frequency-

domain methods. However, one of the most commonly used categorizations is to

divide them into point operations and neighborhood operations.

2.2.1 Point Operations

Point operations are methods of manipulating numeric arrays such that each element

in the output array is a function of the corresponding element in the input array [43].

The value of each output element does not depend on any of the elements surrounding

the corresponding input element. Equation 2.1 gives the general form of a point

operation.

yi,j = f(xi,j) (2.1)

Point operations generally possess a greater degree of speed and simplicity than

neighborhood operations. However, point operations are not always straightforward.

They can be arbitrarily complex, depending on the complexity of the function f . A

good example of a point operation is the process of changing the brightness of an

image. Equation 2.2 shows how this might be done.

yi,j = f(xi,j) =

{
xi,j + 50 if xi,j ≤ 205
255 otherwise

(2.2)

Equation 2.2 assumes an array of 8-bit numbers comprising either a monochrome

image or the brightness component of a color image. The output image is constructed

such that each output element is fifty units brighter than its corresponding input. If

the input value is greater than 205, the output value is clipped at 255 because this

value corresponds to the color white and white is the brightest that any pixel can

be. Figure 2.8 shows the input image of Figure 2.7, noticeably brighter after the

application of Equation 2.2.

13

Figure 2.7: Unprocessed Image.

Figure 2.8: Brighter Image.

14

2.2.2 Neighborhood Operations

Neighborhood operations are methods of manipulating numeric arrays such that each

element in the output array is a function of a neighborhood of elements near the

corresponding element in the input array [43]. These operations are inherently more

complex than point operations, and they generally require more time to execute.

However, this added difficulty is often unavoidable because there are many tasks

that cannot be done with point operations alone. The advantage of neighborhood

operations is that more information goes into the calculation of each output element,

and a greater range of processes can therefore be implemented.

If we assume Xi,j to be a submatrix of X, where i and j are indices into X, as

shown in Figure 2.9, then Equation 2.3 shows the general form of a neighborhood

operation.

yi,j = f(Xi,j) (2.3)

For simplicity, a 3×3 submatrix is shown in Figure 2.9. In practice, however, the

submatrix can be of any desired dimensions, and the input element corresponding to

the output element need not be at the center of the submatrix.

Xi−1,j−1 Xi−1,j Xi−1,j+1

Xi,j−1 Xi,j Xi,j+1

Xi+1,j−1 Xi+1,j Xi+1,j+1

Figure 2.9: Example of input submatrix

We see from Equation 2.3 that the entire neighborhood of elements near the

input element goes into the calculation of each output element. This process is done

for every index pair (i, j) for which Xi,j is defined. The function, f , is commonly

written such that each output element will be a weighted sum of the elements in the

input neighborhood, as shown in Equation 2.4, where the hm,n coefficients are the

weights specified in the function.

yi,j = f(Xi,j) =
2∑

m=0

2∑
n=0

xi+m−1,j+n−1 × hm,n (2.4)

15

A problem often occurs when attempting to process the elements along the edges

of the image matrix. Depending on the dimensions of the submatrix, some portion of

the neighborhood may lie outside the image matrix for input elements near the edge

of the image. This problem can be overcome either by ignoring the edge elements,

resulting in a smaller output image, or by padding the input image with a perimeter

of extra elements. In the latter case, the values contained in the padding elements

should be chosen to minimize their effect on the output values, though some effect

may be unavoidable.

Equation 2.4 can be rewritten by taking the hm,n coefficients out of the function

definition and putting them into an argument to the function. In this case, Equa-

tion 2.4 becomes Equation 2.5, and the function f is reduced to merely taking the

dot product of two matrices for each output element [37], where H is the matrix of

weights, a constant matrix having the same dimensions as submatrix Xi,j.

yi,j = f(Xi,j,H) = Xi,j ·H (2.5)

In addition, if we think of the input image and the matrix of weights as discrete-

domain functions of (i, j), the function f becomes almost equivalent to a two-dimensional

convolution function, commonly denoted with an asterisk as in Equation 2.6.

y(i, j) = x(i, j) ∗ h(i, j) (2.6)

The major difference between a two-dimensional convolution and an array of

matrix dot products is that the convolution process effectively flips h as if it were

a function (−i,−j) instead of (i, j) before multiplying and summing. However, this

has no effect as long as the matrix of weights is symmetric about the center.

Several different terms are commonly used to refer to the H matrix. Such terms

include filter, filter mask, convolution mask, and convolution matrix.

A good example of a neighborhood operation is the process of bluring an image.

Figure 2.10 shows a simple filter mask that could be used for this purpose.

The output image is constructed such that each output element is the mean

average of the input element and its eight surrounding elements. The filter mask

16

Figure 2.10: A Blur Filter.

used in this example is commonly referred to as a blur filter. Figure 2.11 shows the

input image of Figure 2.7 after three applications of the blur filter.

Figure 2.11: Blurred Image.

2.2.3 Image Segmentation

Image segmentation can be defined as “the process of dividing an image into re-

gions” [43]. Since any region within an image is merely a group of pixels, the process

of image segmentation can be thought of as a grouping problem. It is the process

of grouping image pixels according to the objects they represent. For example, in

17

a landscape image, there will be a group of pixels representing one particular tree,

another group of pixels representing another tree, and so on. In addition, there will

be a group of pixels representing the ground and another group of pixels representing

the sky. Therefore, each object depicted in the image is represented by a particu-

lar pixel group, and it is the purpose of image segmentation to put each pixel into

its correct group, though it may not be known, initially, exactly what those groups

represent. That determination is generally left to be made in a subsequent stage of

processing [34].

In most cases, the purpose of image segmentation is to divide the image into re-

gions so that the objects being represented by those regions can be correctly identified.

In practice, however, image segmentation can be a very difficult task for computers

to accurately perform automatically. As a result, many software tools have been de-

veloped that allow a human user to assist the computer in the segmentation process,

but whether a system is automatic or interactive, two of the most commonly used

segmentation algoritms are thresholding and edge detection [35].

2.2.4 Image Thresholding

Thresholding methods assign each pixel to a particular group based on its gray level

or color. Image thresholding is so named because it requires one or more thresholds

to be established. Once the thresholds have been established, all pixels that lie

between the same two thresholds (or on the same side of the threshold, if there is

only one) are assigned to the same pixel group. There are many different ways to

threshold an image, but thresholding methods can be broadly considered to fall into

two categories. There is global thresholding, in which a single set of thresholds is

applied to the entire image, and there is local thresholding, in which the image is

divided into subregions and each subregion has its own set of thresholds. The image

segmentations produced by local thresholds are generally more accurate than those

produced by global thresholds, but in either case, the accuracy is strongly dependent

on the particular choice of threshold values. Although thresholding can be used on

18

color images, the effect is often easier to see in monochrome images. Figure 2.13

shows the image of Figure 2.12 after applying a global threshold of 50. All pixels

darker than 50 are set to zero (black), and all pixels equal to or brighter than 50 are

set to 255 (white).

Figure 2.12: Unprocessed Gray-Scale Image.

2.2.5 Edge Detection

Edge detection is the process of highlighting the boundaries between regions of an

image. There are many different types and qualities of edge detection. In general,

edge detection is accomplished by filtering an image with an edge-detection filter.

One of the difficulties of edge detection is that the region representing a particular

object may, itself, contain many edges and these edges may be highlighted as if they

delineated separate objects. To overcome this problem, a scale-space representation

is often used in the process of edge detection. In a scale-space representation of

an image, some of the fine detail has been removed, preventing such details from

producing any highlighted edges in the edge-detection stage. The removal of detail

19

Figure 2.13: Image After Applying Threshold of 50.

is commonly done by filtering the image with a Gaussian blur filter, which is derived

from the Gaussian probability density function shown in Equation 2.7.

G(x) =
1√
2πσ

e
−(x−µ)2

2σ2 (2.7)

The value of sigma specifies the strength of the filter. A greater value of sigma

corresponds to a greater loss of image detail. The reason for the use of a Gaussian

filter is that a Gaussian filter will reduce the existing detail in an image without

introducing any extraneous detail which may occur with other filters. Figure 2.14

shows a conceptualization of scale space, where f is a function of x, and the large

variations in f(x) diminish as sigma increases [47].

A common type of scale-space edge detection filter is the Laplacian of Gaussian

(LoG) filter. It combines a Gaussian blur filter with a Laplacian edge detection filter

to produce an edge-highlighted image at whatever level of detail is specified in the

parameter sigma. Figure 2.15 shows an image after processed with a LoG filter using

three different values of σ [36].

20

Figure 2.14: Conceptualization of Scale-Space [47].

Once the image has been segmented by whatever method, the next stage of

analysis can begin. Often, this will be the process of identifying what each segmented

region of the image actually represents.

2.2.6 Template Matching

Another image processing method that can be used as the initial step in an image

analysis procedure is template matching. This method can be used when the ap-

pearance of an object is already known, but its location within an image needs to

be determined. Template matching is a filtering process in which the filter mask is,

itself, an image of the object that needs to be found. The filter mask is referred

to as a template, and the output of the process is a correlation image containing a

bright spot (or dark spot, depending on the algorithm) where the object is located.

A second stage of processing searches the correlation image for bright spots to locate

the object. If there is more than one instance of the object in the source image, each

instance will have an associated bright spot in the correlation image, and the object

21

Figure 2.15: LoG Scale-Space Edge Detection at Different Values of Sigma [36].

22

will be identified once for each such spot. The objects in the image do not need to

match the template perfectly. Closer matches produce brighter bright spots, and the

algorithm can be tuned to accept any bright spots exceeding the brightness threshold

established for the given application.

2.3 Virtual Reality

Virtual Reality can be defined as “the use of computer modeling and simulation

that enables a person to interact with an artificial three-dimensional (3-D) visual or

other sensory environment” [7]. As this definition indicates, virtual reality is not

just visual. Technologies exist to provide virtual reality displays for other senses

as well. However, virtual reality is most commonly associated with the computer

graphics technologies used to create artificial 3D visual environments. In addition,

virtual reality systems often include specialized input and output devices, designed

specifically for that purpose.

To determine whether a particular technology or experience qualifies as virtual

reality, four things need to be considered. A virtual reality experience must include

a virtual world, immersion, sensory feedback, and interactivity. A virtual world is

“a description of a collection of objects in a space and the rules and relationships

governing those objects” [2]. Immersion is a state of mind in which the artificial

environment is perceived as if it were real. The user has the perception of being inside

the artificial world. This can be accomplished through strong mental engagement in

a fictitious reality or physically by connecting one or more senses to an artificial

reality system [2]. Sensory feedback is the sensory input that a person receives in

response to his or her actions within an environment [2]. For example, in the physical

environment, if a person touches an object, that person will feel what he or she

is touching. This particular form of sensory feedback is known as haptic feedback.

Similarly, if a person turns his or her head, the scene that he or she sees will change in

response [2]. This is a form of visual feedback. Interactivity is the ability of objects in

the environment to be affected by actions of the user [2]. For example, when a person

23

exerts a sufficient force on an object in the physical environment, it begins to move in

response. Therefore, the physical environment would be considered interactive. Video

games are also interactive because objects within the game can be moved, destroyed

or otherwise affected by actions of the user. Similarly, a 3D graphical virtual world

is interactive if it contains objects that can be moved or in some other way affected

by the actions of the user [2].

2.3.1 Visual Depth Cues

It is common for virtual reality display devices to have the ability to produce the same

visual cues that we receive from the physical world. These cues give us an impression

of the size, proximity, rate of motion, and relative position of the objects we see.

Standard video displays are monoscopic, meaning that they display only one

video stream at a time and both of the viewers eyes receive exactly the same image.

Some visual cues such as interposition, size, linear perspective, and motion parallax

can readily be produced by standard video display devices [2]. Interposition is the

situation in which our view of an object is partially occluded by another, letting

us know that the object blocking our view must be closer [2]. Size is a visual cue

because objects appear smaller as they move away and larger as they come closer.

Linear perspective is a cue that takes advantage of the linear path that objects appear

to follow as they move closer to us or further away. Motion Parallax refers to the

fact that, as we move, distant objects appear to be moving slowly and close objects

appear to be moving fast [2]. Figure 2.16 shows the way changing position can affect

depth cues.

Video display devices designed for use in virtual reality applications often provide

a stereoscopic display, meaning that they display two different multiplexed video

streams and that each of the viewers eyes receives only one of those video images. Each

video image depicts the same scene from a slightly different perspective, simulating

the human visual system in which the brain receives two slightly different images of

the same scene, one image from each eye. The eyes must turn toward each other

24

Figure 2.16: Effect of Perspective on Virtual Reality Display [2, page 120].

to force the differing images to coincide, and the brain estimates the distance to the

object being observed from the amount by which the eyes are deflected toward each

other. This form of depth perception is similarly induced by the differing images

produced by stereoscopic displays.

2.3.2 Video Display Devices

With the addition of some virtual-reality graphics hardware to provide stereoscopic

display and other VR capabilities, an ordinary desktop computer can be used as a

virtual reality system. This is often referred to as a fishtank VR system [2]. Such

systems have the advantage of being relatively inexpensive, but their small screens

and stationary placement make them very limited compared to the other VR systems

in common use [2].

Projection-based displays are usually much larger than fishtank system displays.

They are stationary like fishtank systems, but because their screens are so much larger,

they fill the user’s field of view more fully. In addition, large projection-based displays

have been constructed with multiple screens, each acting as one side of a partial or

complete cube, large enough for people to walk inside. A three-sided projector system

is shown in Figure 2.17.

Another type of VR display is the Head Mounted Display (HMD), which is worn

on the head as shown in Figure 2.18. Head Mounted Displays are significantly less

25

Figure 2.17: A Three-Sided Projector System [25].

expensive than large projection displays, and they usually have a better field of regard

(FOR). The FOR is the percentage of all possible directions in which the user can

orient his or her head without looking away from the VR display. The three-sided

projection display in Figure 2.17 would be expected to have an FOR of fifty percent

because the area covered by the two side projector screens and the floor projector

screen is equal to the area left vacant by the open ceiling and two remaining open

sides. An HMD, on the other hand, would be expected to have an FOR of one-hundred

percent.

Although the FOR of an HMD is usually better than that of a multi-sided projec-

tor display, the multi-sided projector display usually has a wider field of view (FOV).

The field of view is the angle associated with the user’s viewing cone. A wider FOV

means that the user can see more of the surrounding scene at one time. In addition,

projection displays do not cause the unpleasant disorientation effects sometimes as-

sociated with HMDs. Finally, projection displays have the advantage that more than

26

Figure 2.18: A Head Mounted Display [2, page 14].

27

one person can view the same display at the same time.

2.3.3 Virtual Reality Input Devices

To allow the user to interact with the virtual world, it is necessary to use input devices

to let the VR system know where the user is and what the user is doing. Among

the most commonly used input devices are those used for head tracking. For VR

projection displays, it is necessary to know the location and orientation of the user’s

head. This allows the system to give the correct view of the scene at the correct angle

of view. Head tracking can be done using stationary sensors that communicate with

a tracking device worn on the user’s head. The communication link may be radio,

optical, or even acoustic [2]. Figure 2.19 shows a head tracking device incorporated

into a pair of stereoscopic goggles. The goggles work in concert with the stereoscopic

display by alternately shuttering the view for each eye at the instant when a video

frame intended for the other eye is being displayed. In this way, each eye receives

only its intended video stream, and the user is unaware of the shuttering because it is

too rapid to be perceptible. Incorporating the tracking device into the pair of goggles

allows them to perform two tasks at once.

Another commonly used input device is the wand. The location and orientation

of the wand can be tracked just like the goggles, and the wand can be used as a 3D

mouse pointer, with buttons to initiate actions as would be found on a conventional

mouse. Figure 2.20 shows a wand used for input in a projection display VR system.

A multi-sided projection system along with its associated tracking and other in-

put devices together form a system known as a CAVE (Cave Automatic Virtual En-

vironment). CAVEs are often described in terms of the number of projector screens

they possess. For example, a four-sided CAVE would compose two-thirds of a com-

plete cube and would have an FOR of about sixty-seven percent. Similarly, a six-sided

CAVE would form a complete cube and would have an FOR of one-hundred percent.

28

Figure 2.19: A Pair of Head Tracking, Active Stereo Goggles [17].

Figure 2.20: A Virtual Reality Wand [17].

29

2.4 VFIRE

VFIRE is an application that uses virtual reality technology to allow a user to be

immersed in an artificial environment where real or fictitious wildfire scenarios can

be visualized. Unless otherwise noted, the material from this section is based upon the

material in [25]. The purpose of these simulations is to provide useful information

about fire spread in a particular region under various wind, humidity, and other

environmental conditions.

Given that wildfires occur suddenly, without warning, and that the ways in which

they spread are difficult to accurately predict, it is not surprising that a great deal

of money and effort have been spent to develop mathematical models of wildfire

spread patterns. However, only minimal resources have been applied to the purpose

of visualizing simulations of these fire models.

Determining the accuracy of existing wildfire spread models is difficult, short of

actually starting a wildfire to see if it burns as predicted by the model. Wildfire

visualizations can be very useful for this purpose by comparing the computer visu-

alization to video recordings of an actual fire. In addition, the visualizations can be

used as a training tool for firefighters. Figure 2.21 shows a VFIRE visualization in

progress.

VFIRE allows the user to travel throughout the entire area, either at ground

level or flying above, observing the fire as it progresses. VFIRE also allows the user

to go backward or forward in time, reversing or advancing the progress of the fire

accordingly. Figure 2.22 shows a user interacting with the fire visualization.

VFIRE uses a virtual reality toolkit called FreeVR, created by William R. Sher-

man [48]. A virtual reality toolkit is essential in VR applications because it allows

the computer to communicate with specialized VR hardware, not supported by most

operating systems or graphics libraries.

Presently, VFIRE depicts wildfires using fire-spread simulation output data cre-

ated by FARSITE. FARSITE is a fire behavior and growth simulator application

30

Figure 2.21: Fire Visualization in Progress [25].

Figure 2.22: User Interacting with VFIRE Visualization [25].

31

designed to be used by wildland fire planners and managers [10]. The FARSITE

simulation output data contains six parameters of concern to VFIRE. However, the

primary parameter is the time of arrival (TOA). The TOA data is a grid of numbers,

each representing the time of day when the associated region (cell) of the terrain

caught fire in the simulation. When the visualization time reaches or exceeds the

time of arrival for any particular cell, VFIRE shows that cell catching fire. VFIRE

shows the fire, the smoke, and eventually, the residual burnt vegetation.

Currently, VFIRE selects the location of each tree in the visualization randomly.

Upon completion of this project, the arrangement of trees should more accurately

reflect their positions in the real environment.

2.5 Related Work

It is often desirable to have knowledge of the locations, types, and sizes of trees in a

particular area. For example, plantation managers may need to have accurate counts

of their inventories in order to plan for their harvest activities. Forestry officials often

require information about the ages, densities and types of trees in forested areas in

order to assess the health of the forests and identify ongoing trends that may or may

not be desirable. Similarly, it may be useful to know how much wood is available for

harvesting in a particular area and, potentially, how much is available for combustion

in the event of a fire. For these reasons, significant effort has been made to find fast

and inexpensive ways of obtaining such data.

LiDAR data are not available in this project, and an examination of the tech-

niques applied to LiDAR show relatively little applicability. In one instance, an effort

was made to distinguish individual trees within a set of LiDAR data by clustering the

point cloud in all three spatial dimensions [3]. In any area where the space between

trees is sufficiently large, this algorithm could be expected to accurately locate indi-

vidual trees. A similar approach could conceivably be applied to the photographic

images available in this project by treating the brightness values as if they were height

values in the LiDAR data. Using this approach, however, would likely result in a high

32

rate of false positive errors because brightness clusters may be produced by a vari-

ety of surface features besides trees, and without the height information contained

in the LiDAR data, these false clusters would be indistinguishable from legitimate

tree clusters. Similar limitations could be expected when trying to apply any LiDAR

technique directly to photographic data.

Most of the algorithms that determine the locations of trees in photographic

imagery do so by locating local maxima of the pixel values in the image [33]. A

method of doing this was shown in [6], where a photographic image of a forested area

is searched vertically, horizontally, and along both diagonals to find local maxima

occurring in any of eight directions. One of the difficulties that occurs in using this

method is that a single tree can produce more than one local maximum, resulting in

two or more trees being detected where only one tree actually exists.

Various approaches have been developed to prevent such multiple detection. One

such method is to apply a scale-space filter to the entire image and then extract the

individual tree locations using a sophisticated thresholding technique [24]. In another

approach, a scale-space filter is applied to the entire image and the individual tree

locations are extracted by applying an edge-detection filter to reveal the curved edges

enclosing the tree crowns. Analysis of the curvature of those edges produces the

locations of likely trees [11]. In yet another method, a window is moved over the

image in a scanning pattern and, at every location, the maximum pixel value inside

the window is taken to be the local maximum for that region [14, 33].

The methods described in [11], [14], and [33], all benefit from the use of multi-

spectral imagery. The different color bands in a multispectral image can be mixed

in specific ways to allow certain types of material to appear brighter than others,

allowing the image to be optimized for use in a particular algorithm.

In addition, all the methods described above use image data under constraints

that can be exploited by the algorithm. For example, [24] uses aerial images of “even-

aged homogeneous stands of Norway spruce.” The other methods cited above also

benefit from a relatively homogeneous scene in which there is scarcely anything to

33

be detected except the desired trees. Such visual similarity among the items to be

detected greatly improves accuracy, and the methods cited above work well under

those constraints.

In this project, however, the algorithm must be able to locate trees in images

where no such constraints are assumed to exist and where multispectral imagery may

not be available. The research done in [23] comes closer to this goal through the use

of template matching. In this instance, a set of tree templates was created from a

ray-traced, three-dimensional model based on an image of a Norway spruce forest.

The image was filtered with the template, producing a correlation image that could be

scanned for local maxima. This method produces good results as long as most of the

trees in the image match the template reasonably well. This project also uses template

matching, but the templates can be produced more quickly and easily, meaning that

a template can readily be created for each group of similar-looking trees in an image.

As a result, this project can be used as a stand-alone program to locate trees in a

wide variety of images containing multiple groups of groupwise-uniform trees. The

only preparation needed is to place the vegetation map data into the program in cases

where a vegetation map is necessary.

There does exist image analysis software that can perform template matching [4].

However, these software packages would not be expected to list tree locations in geo-

referenced coordinates nor assist the user by integrating vegetation map information

into the image display. Finally, this project has the ability to make tree placements

based on vegetation map data alone in cases where photographic imagery is not avail-

able.

34

Chapter 3

Placing Items in a Virtual Reality
Visualization

The goal of this project is to place items, particularly trees, at locations within

the VFIRE artificial environment corresponding to their true locations in the actual

environment. Meeting this goal requires that the actual locations of most of the trees

be known. In addition, trees, correctly placed, should have appearances similar to

their appearances in the real environment, meaning that the heights, widths, and

types of most of the trees must also be known. A further goal of this project is

to place artificial structures such as houses and buildings in their correct positions

within the VFIRE environment.

These goals are limited by the type and degree of detail of the available geographic

image data. The available data consist of satellite images and LANDFIRE vegetation

maps. The satellite imagery includes a panchromatic image at 1-meter resolution. It

also includes red, green, blue, and near infrared images each at 4-meter resolution.

There are several vegetation maps available, some being of minimal usefulness and

some being of significant usefulness for the purposes of this project.

It is not assumed that the available data are necessarily adequate to fully meet

the ultimate goals of the project, stated above. The 4-meter resolution images do not

appear to have sufficient detail to distinguish trees. The 1-meter resolution image

does appear to have marginally sufficient detail to distinguish trees. However, groups

of trees in different regions of the image have different characteristic appearances, and

35

there exist many non-tree surface features in the image that can easily be mistaken for

trees by a tree detection algorithm. For these reasons, this project uses an interactive

process for tree detection, allowing the user to assist the computer in overcoming

some of the limitations in the image data.

This project detects trees using a template matching algorithm, which allows the

user to quickly adapt this project to the way trees look in any given image. This is

possible because the algorithm is not tailored to a particular image. The user-defined

template is tailored to the image, and the algorithm is tailored to the correlation

pattern between the image and the template. As long as the trees in an image can

be grouped into collections of groupwise-similar appearance, the user can select one

representative tree from each group to serve as the template for that group. The

system will then search for all items that look similar to the templates.

Although the trees in the 1m-resolution image are generally identifiable as trees,

the tree types are not easily identifiable without prior knowledge of the types of vege-

tation in the area. Therefore, vegetation maps are used to supplement the vegetation

type information not conveyed by the image itself. If the user clicks on the image, the

system will display the information in the vegetation maps pertaining to the location

where the mouse click occurred. In addition, the user can choose to have the photo-

graphic image of the geographic area highlighted using the colors of the vegetation

map. This allows the user to see the dominant vegetation patterns along with the

photo of the area at the same time.

Photographic images have already been obtained for the current area of interest,

Kyle Canyon in Southern Nevada. However, it is possible that the project may be

used in the future in an area for which photographic imagery will not be obtained.

Given the low cost of vegetation maps, it is likely that they will be available even when

no other data are available. Therefore, the system is also able to place trees based

on vegetation map data alone. Tree placements, in this case, are made by placing

trees randomly within each vegetation map cell according to the vegetation coverage,

vegetation type, and tree height specified in the respective maps. The tree place-

36

ments produced in this way are less accurate than those produced from photographic

imagery, but they are more accurate than completely random placements.

This project does not currently allow for the automatic detection of artificial

structures. The template matching algorithm used for detecting trees does not work

well for detecting houses and buildings in the area of interest because their appear-

ances exhibit a high degree of diversity, preventing the creation of widely applicable

templates. Furthermore, the number of such structures in the area is small enough to

allow the user to efficiently place each one of them manually. Therefore, the system

allows artificial structures (or trees, if desired) to be manually placed anywhere in the

scene. It also allows items of any type to be manually deleted from the scene.

37

Chapter 4

Software Specification and Design

In this chapter, the features of this project are presented as a list of functional and

nonfunctional requirements, as well as a diagram showing the use cases that are

expected to occur in the process of tree detection. An explanation of the requirements

and use cases is provided to clarify the process of using this project.

This chapter also presents the structure of this project both in terms of the

classes used and in terms of the subsystems from which it is composed. The purpose

of each class and each subsystem is explained, and information is provided regarding

the ways in which each subsystem accomplishes its task.

4.1 Requirements

The purpose of this project is to find the locations of trees in an image. Given that

there are no constraints on the type, resolution, or geographic area of the image,

the system relies heavily on the judgment of the user to overcome tree-detection

difficulties that cannot be anticipated or resolved within the algorithm. For this

reason, this project uses an interactive detection procedure in which the user must

be able to see what the system is doing in order to effectively guide the process.

A significant portion of the program is devoted to the task of letting the user see

the current status of the operation and what needs to be done next. In addition,

a large portion of the program is devoted to allowing the user to control the way

that tree detection occurs in order to minimize errors. Table 4.1 shows the functional

38

requirements.

The nonfunctional requirements are shown in Table 4.2. These features reflect

some of the goals and constraints of the project, such as the use of C++ for opti-

mum speed and the direct implementation of graphics display functions to maintain

total control over memory consumption, which is of concern when viewing very large

images.

4.2 Use Cases

The operations commonly used in the tree-detection process are shown in Figure 4.1.

The use cases show that the user is given the flexibility to decide at runtime which

geographic images to analyze, which combination of images to view at any moment,

and which image to use as the source for any tree placements that are made. The

user creates a template by drawing a highlighting mark over a particular tree. Each

template is given a name, as well as a nominal height and width. These data are

eventually placed in the output file for every tree detected using that template. The

user can determine the approximate height and width either by visual inspection of

the photographic image or by clicking on the image at the location of the template to

view data from the vegetation maps. Multiple templates can be created for a single

project, and the user can click on any existing template to select it as the active

template. Subsequently, the user can filter the image using the active template to

produce a correlation image. The system then scans the correlation image for bright

spots, corresponding to likely trees. Finally, the system places a mark at the location

of each tree detected. The user may then choose to have the current set of tree marks

placed in an output file and stop the process or make changes to improve the accuracy

and repeat the process.

39

F01 The utility shall allow the user to load a photographic
image of a geographic area.

F02 The utility shall allow the user to display the photographic image.
F03 The utility shall allow the user to zoom and scroll the image.
F04 The utility shall load vegetation cover, vegetation type,

and vegetation height maps if available.
F05 The utility shall display vegetation map information for

user-specified locations.
F06 The utility shall allow the user to display one of the vegetation maps.
F07 The utility shall allow the user to display one of the

vegetation maps on top of the image.
F08 The utility shall allow the user to select image regions

to use as tree templates.
F09 The utility shall allow the user to select one template

as the active template.
F10 The utility shall allow the user to edit the active template.
F11 The utility shall allow the user to associate a name,

type, hight, and width for each template.
F12 The utility shall allow the user to place templates into groups.
F13 The utility shall allow the user to adjust tuning parameters for

tree detection.
F14 The utility shall allow the user to filter the image to

produce a correlation image.
F15 The utility shall allow the user to display the correlation image.
F16 The utility shall search the correlation image for trees.
F17 The utility shall search only within the region currently in view.
F18 The utility shall place a mark at each location where a tree is detected.
F19 The utility shall allow the user to place a tree mark in any location
F20 The utility shall allow the user to mark any location as

the location of an artificial structure.
F21 The utility shall allow the user to delete any mark from any location.
F22 The utility shall allow the user to save all data in a project folder.
F23 The utility shall allow the user to load a project from

an existing project folder.
F24 The utility shall allow the user to output all item

locations to a file usable by VFIRE.
F25 The utility shall allow the user to create rough tree

placements based only on vegetation maps.
F26 The utility shall mark tree placements made based on veg map data.
F27 The utility shall allow the user to output map-based tree

placements to a file usable by VFIRE.

Table 4.1: Functional Requirements.

40

NF01 The utility shall directly implement graphics to create and
manage templates.

NF02 The utility shall directly implement graphics to display, scroll,
and zoom image.

NF03 The utility shall use bilinear interpolation to zoom into and out of
the image.

NF04 The utility shall swap correlation images to and from disk to match
currently active template.

NF05 The utility shall use the brightness component of the image for
tree detection.

NF06 The utility shall perform contrast stretching on the correlation image.
NF07 The utility shall be implemented on the Linux platform.
NF08 The utility shall be written in C++.
NF09 The utility shall use GDAL to read image files.
NF10 The utility shall use FLTK for its GUI.

Table 4.2: Nonfunctional Requirements.

Figure 4.1: Use Cases.

41

4.3 Classes

Although the goal of this project is complex from an image analysis perspective,

most of the data types used are fairly simple arrays of numbers. Therefore, only six

classes are needed, and the classes are completely independent with no inheritance.

Figure 4.2 shows the classes used in this project.

Figure 4.2: Classes Used by Utility.

An instance of the Image class is used to store the main image used in a tree-

detection project. This is generally expected to be a photographic image of the area

of interest, though other types of images can be used as long as they possess the

same metadata. In addition, the system also uses three other instances of the Image

class. The first of these is used to allow viewing of a vegetation map (if any), the

second of these is used to allow viewing of the vegetation map simultaneously with the

photographic image, and the third of these is used as a work space to hold temporary

image data. Image class objects contain the raster data for the image as well as the

georeferencing data that associates each location in the image with its corresponding

location on the Earth’s surface. The Image class also contains the information to let

the display system know how to display the image, such as the current scroll position,

zoom level, and whether the display buffer needs to be refreshed.

Instances of the Attribute class are used to store the vegetation maps for the

system. Each vegetation map is stored as a raster of vegetation codes. The meaning

of each code is stored in data tables contained in each instance of the class. For each

possible vegetation code, the data tables give the associated display color. In addi-

tion, data tables also translate vegetation codes into information such as dominant

vegetation type, percentage of vegetation cover, or vegetation height, depending on

which vegetation map file the Attribute instance is being used to store. The display

42

system is not designed to use objects of the Attribute class. Therefore, vegetation

maps are not displayed directly. Instead, the pattern of display colors associated with

the raster of vegetation codes is scaled and copied to an object of the Image class,

which is then displayed. The vegetation map can be copied onto a blank Image object

or it be can mixed with photographic data already present in the Image object to

produce an overlay of the vegetation map over the photographic image.

The Point class is used to keep track of individual pixels in an image. Each

instance of the Point class stores the horizontal and vertical location of a single pixel,

as well as its three color components. Multiple instances of the Point class are used

to form templates.

Each instance of the ItemRef class is used to store an image template. ItemRef

is a container class for objects of the Point class. Such collections of Point objects

constitute the image templates that are used as filter masks to produce correlation im-

ages which are then scanned for bright spots corresponding to tree locations. ItemRef

also contains the tuning parameters that govern which bright spots in the correlation

image qualify as trees. These parameters determine how bright the spot must be,

how wide it must be, and how much brighter it must be than the surrounding image.

ItemRef also stores information about the area covered by each template. When the

user chooses to filter an image, only the portion of the image currently in view is

filtered, allowing the user to quickly test the accuracy of a newly created or newly

altered template without waiting for the entire image to be processed. Finally, Item-

Ref stores a name, nominal height, and nominal width to be associated with any tree

detected using that particular template.

ItemGroup is a container class for objects of the ItemRef class. The purpose

of ItemGroup is to allow templates to be placed into separate groups, of which only

one group is visible at a time. This allows the user to decide which templates and

corresponding tree marks will be visible simultaneously with others and which ones

will not. If the user wants a particular template and its associated tree marks to

be seen only by itself, without any others on the screen at the same time, then this

43

template should be placed into its own separate instance of ItemGroup.

ObjectIO is the class used to read and write the binary tree-location files used by

VFIRE. Instances of the ObjectIO class are used to write the geographic coordinates

of each tree along with its height, width, and type. All the information is written in

binary form to save disk space. ObjectIO can also be used to read these data from

VFIRE.

4.4 Program Subsystems

This project consists largely of global functions rather than class methods. The

functions that display images could have been included with the Image class, but the

current configuration is very intuitive. A large collection of global functions, together,

constitute the graphics display subsystem, and the graphics display subsystem accepts

data from a small, fixed number of Image objects. The process of displaying images

is straightforward and predictable in terms of which operations will be performed on

which class objects. Figure 4.3 shows the arrangement of subsystems.

The File I/O subsystem consists of several functions that read and write the

files used by the system. Vegetation map files and GeoTIFF image files are read

by the system but never written. Tree-location files are written by the system but

never read. Project data files and correlation image files are read and written by the

system. GeoTIFF files are usually photographic images, and the File I/O subsystem

relies on GDAL to read these files. GDAL has the ability to read and write other

types of files, but this project currently uses it only for GeoTIFF files.

The Template subsystem is a set of functions that allow the user to create, edit,

and manage the templates used for tree detection. The user creates templates by

using the mouse pointer to draw highlighting marks on the desired portion of the

image. The Template subsystem keeps track of which pixels have been highlighted,

which template the pixel belongs to, and which group the template belongs to. As

shown in Figure 4.3, the template subsystem relies on the graphics subsystem to draw

the marks. The template subsystem also keeps the data in the active template current

44

Figure 4.3: System Structure

as the zoom level or other view conditions change.

The Graphics subsystem includes all the functions that display images on screen.

The Graphics subsystem can only process objects of the Image class, and to avoid

running out of memory, this project uses only four instances of the this class. The first

instance stores the original image. The second stores the original image mixed with

the color pattern of one of the vegetation maps. The third stores the color pattern

of the vegetation map by itself, and the third is a work space used for temporary

storage of correlation images and to show tree placements made using vegetation

map data alone. The graphics subsystem is always set to display one of these Image

objects. The object being displayed at any particular time depends on the current

view settings selected by the user. The need to display highlighting marks for the

templates adds complexity to the display subsystem, and the need to display, at times,

very large images adds further complexity. However, the graphics subsystem always

displays one of the four Image objects listed above.

The functions in the Algorithm subsystem use the available templates and user-

45

controlled tuning parameters to detect the locations of trees within the image. This is

done by filtering the image with the active template to produce a correlation image in

which the brightness at any location varies directly as the similarity between the pixels

in the template and the pixels in the corresponding neighborhood in the image. There

are many ways to calculate the correlation values, but in this implementation, each

pixel in the correlation image is calculated by taking the average difference between

the two sets of pixels and subtracting this value from 255. Once the correlation

image is produced, it is scanned for bright spots and they are marked as likely trees

according to the current settings of the tuning parameters

46

Chapter 5

Implementation and Results

In this chapter, the software implementation of this project is presented. Exam-

ples are provided, demonstrating the use of the currently implemented features, and

an explanation is given of the major design and implementation issues. Possible

methods to optimize tree-detection accuracy are considered, and several examples of

tree-detection results are provided. An exact, quantitative analysis of tree-detection

accuracy is not provided because such results vary greatly among images and may

vary significantly even within a single image. Instead of numeric detection results,

screen shots are provided, showing the detection results obtained for portions of the

panchromatic image of Kyle Canyon, Nevada. The screen shots are categorized to

exemplify the good, adequate, and poor accuracy regions of the image. Good results

were obtained in about fifteen percent of the image, adequate results were obtained in

about seventy percent of the image, and poor results were obtained in the remaining

fifteen percent. These screen shots are intended to indicate the level of accuracy that

can be expected for images of similar resolution depicting scenes similarly suited for

tree detection.

5.1 Detecting Trees

After loading a photographic image of the area of interest, the user identifies a group

of similar-looking trees and selects one of them to serve as the template for the rest.

The user then uses the mouse to draw a highlighting mark over that particular tree,

47

covering all pixels intended for inclusion in the template. The tree to be selected as

the template is shown in Figure 5.1. The image is zoomed in so that the individual

tree can be easily seen. The tree, itself, is the light-colored blob in the center of the

image. The shadow of the tree is also visible. It is the dark, elongated shape pointing

upward and to the left from the tree. It is often helpful to include, in the template,

portions of the ground surrounding the tree or, as shown in Figure 5.2, the shadow

of the tree.

Figure 5.1: Enlarged View of Tree Centered in Window.

Figure 5.3 shows the image zoomed out to allow more of the area to be seen.

The template can still be seen, highlighted in green. It is intended that the system

will search for similar-looking trees and mark their locations.

Once the template has been defined, the user activates the filtering process. The

result of the filtering process is a correlation image, as shown in Figure 5.4. The

image looks red because the correlation image is monochrome and the data for it

is stored in the first available array in the Image object being used as a temporary

48

Figure 5.2: Enlarged View of Tree Highlighted by User.

Figure 5.3: Tree Used As Template and Surrounding Area.

49

workspace. The second and third arrays (green and blue) are used for intermediate

processing of the correlation image. The display function could have been modified to

show only the red array of the workspace image, displaying it in grayscale. However,

there are cases where it is desirable to see the other arrays as well, to verify that

the processing algorithms are working properly. The bright spots in the correlation

image of Figure 5.4 correspond to locations in the original image that look similar

to the template tree. Filtering the original image to produce the correlation image is

generally the most time consuming step in the tree-detection process. For this reason,

the system filters only the portion of the image in view at the time of filtering. This

way, the user can test the effectiveness of a template without waiting for the entire

image to be filtered, and it can be determined quickly whether the current template

is adequate. When it comes time to filter the entire image, the user clicks the “fit”

button, which will fit the entire image into the window. With the entire image in

view, any subsequent filter command will be applied to the entire image.

After creating the correlation image, the system begins searching for bright spots.

It places tree markers in the locations of certain bright spots according to a set of

user-adjusted tuning parameters. Figure 5.5 shows the placement of tree markers in

the portion of the original image near the template.

The tuning parameters tell the system which bright spots qualify as trees and

which ones do not. The controls are shown in Figure 5.6. Bright spots are initially

found by identifying local maxima. Each pixel in the correlation image is surrounded

by eight other pixels. If the center pixel is brighter than six of the surrounding pixels,

then it is a peak in six directions, and if it is dimmer than two of the surrounding

pixels, then it is a dip in two directions. Using the parameters of Figure 5.6, such

a pixel would meet the first two criteria for inclusion as a likely tree. However, if

it had more than two dip directions or fewer than six peak directions, it would fail.

Since each pixel in the correlation image is a linear combination of other values, the

word moment is used to refer to the pixel value itself. Figure 5.6 shows that each

local maximum pixel must have a value of at least 190 on a scale of 0 to 253. The

50

Figure 5.4: Monochrome Correlation Image Contained in Red Buffer of Workspace
Image.

Figure 5.5: Likely Trees Marked After Processing.

51

maximum value for any pixel is 253 because the values 255 and 254 are reserved for

manually placed or manually deleted items, respectively. Bright spots corresponding

to valid trees are often surrounded by dark-colored perimeters. Figure 5.6 shows that

a bright spot must be surrounded by a perimeter at least 18 units darker than the

brightest pixel in order to qualify as a likely tree location. The distance between

the perimeter and the brightest pixel usually falls within certain bounds. In the case

shown in Figure 5.6, the perimeter must lie anywhere from one to thirteen pixels from

the brightest pixel in the bright spot. In addition, the perimeter may be partial or it

may completely enclose the bright spot. Estimating the extent of enclosure is done

by scanning in eight directions from the brightest pixel. In the case of Figure 5.6, the

perimeter must be detected in all eight directions for a given bright spot to qualify

as a likely tree. It is possible for one tree to produce a bright spot with more than

one local maximum. Therefore, a minimum distance between tree markers is set by

the user. Tree markers occurring closer than the minimum distance from any other

marker will be culled from the image. Finally, the user may wish culling to occur

on a per-template basis, in which case the tree markers for one template are culled

without regard to their distances to the tree markers from other templates. On the

other hand, the user may consider all the tree markers to refer to the same type of

tree, in which case the tree markers from one template should not be allowed to exist

too close to marks from another template. In the case of Figure 5.6, the markers

must be at least four meters apart and the markers for the active template are culled

without regard to the markers of other templates.

As mentioned above, the user has the ability to manually place markers. The

great majority of markers are used to represent trees, but they can be used to represent

artificial structures as well, depending on the associated item code. In addition, the

user can manually delete any marker of any type. The locations of manually placed

or deleted items are stored in the correlation image itself. When a user places an item

manually, the value 255 is placed in that particular location in the correlation image.

This value is interpreted as a valid tree or artificial structure, and the automatic

52

Figure 5.6: Tuning Parameter Controls.

system cannot override such placements even if its rules would not otherwise have

placed an item in that location. Similarly, when the user manually deletes an item,

the value 254 is placed in that particular location in the correlation image. This value

is automatically interpreted to contain nothing, and the automatic system cannot

override such deletions even if its rules would otherwise have placed an item in that

location.

In the process of tree detection, large amounts of data may be produced. To

allow the user to interrupt the process and resume it at a later time, the system

allows the user to save the data in a project directory and reload it when needed.

A project directory contains one project file, along with one correlation image file

for each template in the project. The project file is a text file that contains the

current values of the tuning parameters for each template as well as all other data

associated with the templates. The correlation image files contain the raster data for

each correlation image.

Once the tree-detection process is satisfactorily completed, the user outputs all

tree and artificial structure locations to a binary file that can be used as input for the

VFIRE application. To save space within the file and reduce the time it takes VFIRE

53

to read the file, tree types are expressed using an item code, as shown in Figure 5.7.

The reference list of item codes is shown above the list of existing templates so that

the user can place the correct code for each template before generating the placement

file. The user also has the option of letting the tree type be selected by the vegetation

type vegetation map. For example, if the user selects item code 14 in Figure 5.7, then,

for each tree, code 14 will be replaced by whatever code matches the tree type in the

vegetation map at the location of that particular tree. Each template is called a

reference because the system refers to the data in the template to determine what to

search for.

Figure 5.7: Placement File Information.

54

5.2 Using Vegetation Maps

In addition to the photographic imagery of the area of interest, the user can also

view vegetation maps of the area. This project is currently able to handle three

different vegetation maps. The first of these is the map showing vegetation cover.

Each 5m× 5m surface cell has a code that determines what percentage of the land in

that cell is covered by vegetation. The second type of vegetation map is the vegetation

type map. Each 5m× 5m cell has a code specifying the dominant vegetation species

within that cell. The third type of vegetation map is the vegetation height map. Each

5m× 5m cell has a code specifying the range of tree heights within the cell. Each of

these maps can be displayed by itself or as an overlay onto the photographic image

of the area. Figure 5.8 shows the panchromatic image of Kyle Canyon, zoomed out

far enough to show the entire image all at once. Figure 5.9 shows the vegetation type

vegetation map for the same area, and Figure 5.10 shows the vegetation map as an

overlay on the panchromatic image.

Figure 5.8: Photographic Image Alone.

55

Figure 5.9: Vegetation Map Alone.

The image overlay is intended to help the user to determine tree types. Similar-

looking trees found to exist on uniformly colored regions are probably the same type

of tree. The tree type itself can be determined by clicking anywhere in the region.

Figure 5.11 shows the text output that results from clicking on the image.

Vegetation maps can be used to make tree placements even when no photographic

image is available. Figure 5.12 shows how this project can make tree placements based

on the vegetation cover vegetation map.

The system draws a circle for every location where a tree is placed. This allows

the user to see the results of the current settings and make adjustments if necessary.

The density of tree placements in any cell is governed by the designated vegetation

cover percentage of that cell. The vegetation type vegetation map may be used to

determine tree types or the types may be generated randomly according to user-

specified relative proportions as shown in Figure 5.13.

56

Figure 5.10: Photographic Image and Vegetation Map Together.

Figure 5.11: Terminal Text Output Produced When User Clicks on the Image.

57

Figure 5.12: Tree Placements Made According to Vegetation Map Tree Densities.

5.3 Tree Detection Accuracy

When the system fails to mark the location of a tree, it is considered a false negative

result, and when it marks a location where no tree actually exists, it is considered a

false positive result. Ideally, the tuning parameters should be adjusted to balance each

type of error so that both are kept below the maximum acceptable limit. In practice,

however, it may not be possible to keep both types of errors within acceptable limits

at the same time. A more generally applicable procedure, therefore, is to adjust the

tuning parameters to put the number of false positives within acceptable limits and

then create a new template to deal with the remaining false negatives. Figure 5.14

shows the same region depicted in Figure 5.5 after the inclusion of a second template.

As shown in the image, adding the second template reduces the number of false

negatives. The tree markers associated with the second template are shown in a

slightly brighter red to indicated that they are associated with the currently active

template. This image depicts the adequate, though not exceptional, level of accuracy

58

Figure 5.13: Random Placement File Information.

59

Figure 5.14: Likely Trees Marked After Processing with Two Templates.

found in about seventy percent of the image.

The second template takes advantage of the fact of being surrounded by shadow

on all sides, unlike the first template, which has shadow only on two sides. The trees

themselves both look like light-gray blobs. It is the nearby shadows that distinguish

them from each other. The second template will more easily detect trees that are

similarly surrounded by shadow. This is the reason why some portion of the area

surrounding a tree is often included in the template. Including in the template some

portion of the immediate area around a tree often produces darker perimeters around

bright spots corresponding to trees in the correlation image. As the template ap-

proaches the edge of a tree during the filtering process, the shadow in the template

overlaps the tree in the image and the shadow in the image overlaps the tree in the

template. This situation produces a low correlation value, and it occurs mostly when

the template is at the edge of a tree, resulting in a dark perimeter around the bright

spot. As the template approaches the center of the tree, the similar regions tend to

60

coincide more, which produces the bright spot in the center. If the shadow or oth-

erwise dissimilar area surrounding a tree is not included in the template, the bright

spot will still be produced in the correlation image, but it is less likely to be enclosed

by an extra dark perimeter. The darker perimeter is helpful because it makes the

bright spot easier for the system to recognize as a likely tree. Still, there does remain

some advantage in the practice of excluding any surrounding area from the template

and including only the tree itself. The advantage is in reducing the false negatives

caused by differences in nearby shadows. However, the disadvantage of doing this is

in increasing the number of very conspicuous false positives, where there is nothing in

the vicinity that could possibly be a tree. In general, both methods should be tried,

keeping in mind the strengths and weaknesses of each. The templates shown in Fig-

ure 5.14 were chosen to produce satisfactory tree detection results in most portions of

the image. In about fifteen percent of the image, however, false positives were found

to be excessively high. Figure 5.15 shows an area where the straight-line shadows of

burnt trees were mistaken for living trees.

Figure 5.16 shows an area where what appear to be large shrubs or small trees

are commonly mistaken for the medium-sized trees being sought. About ten percent

of the image is covered by this type of vegetation. These areas account for most of

the false positives produced for this image.

In some areas, even a small number of false positives is unacceptable. Figure 5.17

and Figure 5.18 show two such areas. These are the two regions with a significant

concentration of artificial structures. Clearly, a false positive occurring directly on

top of a house or in the middle of a road would be unacceptable. Therefore, the

system allows the user to manually remove each such error from the current project.

This is not a lengthy process because these regions are so small. Manual correction

would not be practical, however, if these regions were significantly larger.

In the remaining fifteen percent of the image, detection results were relatively

good. Figure 5.19 and Figure 5.20 show two of the areas where the trees are spaced

far enough from one another to show a single light gray blob coupled with a clearly

61

Figure 5.15: False Positives Produced by Burnt Trees.

Figure 5.16: False Positives Produced by Small Trees and Shrubs.

62

Figure 5.17: False Positives On Houses.

Figure 5.18: False Positives On Roads.

63

Figure 5.19: Good Results in Area with Few Items to Produce False Positives.

defined shadow. This is the best situation for tree detection. When the trees are

too close together, the blobs and shadows interfere with one another and confuse the

system.

There are areas of the image where tree detection accuracy is unknown. These

are the regions entirely covered in shadow. Figure 5.21 and Figure 5.21 show some of

the regions bordering the dark areas where tree detection is not possible.

64

Figure 5.20: Good Results in Another Area with Few Items to Produce False Positives.

Figure 5.21: Portions of Image Obscured by Shadow.

65

Figure 5.22: Additional Area Obscured by Shadow.

66

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The purpose of this project is to develop an interactive image analysis system for

the detection of trees in geographic images that may not be well suited to tree de-

tection. The system relies on the judgment of the user to compensate for the lack of

constraints on the factors that determine the suitability of any given automatic tree

detection algorithm. All factors involved in the tree detection process are intended

to be controlled by the user at runtime. Consistent with this goal is the selection of

a template matching algorithm in which the user is fully responsible for defining the

templates used in the detection process and all other parameters are controlled by

the user as well.

Interactive tree detection using this system is a trial and error process. Ideally,

the user continues this process until an acceptable level of accuracy achieved, though

there is no guarantee that such accuracy will be attainable for any given image.

Using two templates, both referencing medium-sized trees in the panchromatic

image of Kyle Canyon, tree detection accuracy was found to be good in about fifteen

percent of the image, acceptable in about seventy percent of the image, and poor in

the remaining fifteen percent of the image. These results were accomplished in a few

hours including the time required to manually delete trees incorrectly placed on top

of houses and on roads. Relatively few such manual corrections were necessary due to

the great scarcity of houses and roads in the image. However, manual correction would

67

not be a practical solution for the overall problem of the many false positives occurring

in less conspicuous areas. The total number of trees detected for the 8km×6km Kyle

Canyon area is well in excess of 100,000. Assuming even a small percentage of these

to have been placed incorrectly would likely require an inadvisable number of manual

deletions. Other methods of dealing with this problem are discussed later in this

chapter.

6.2 Future Work

This project currently provides the user with the ability to delete false positives one at

a time, but there needs to be a way to delete large numbers of such errors all at once.

Such a tool would be less precise, but it would be useful in areas where the number

false positives is much greater than the number of correctly identified trees. Most

likely, this would be accomplished by letting the user move the viewer to a particular

region and then erasing all the tree markers within view. A better alternative to

large-scale deletions would be to allow the user to change the tuning parameters from

one region to the next. This would require a restructuring of the data structures to

allow multiple sets of tuning parameters to be associated with each template and to

allow each set of templates to be associated with a particular subregion of the image.

The minimum item radius tuning parameter appears to have little effect on the

tree-detection results, and it is possible that this parameter should be removed. It

was intended to allow excessively small trees to be eliminated from consideration.

Further investigation of the usefulness of this parameter is warranted.

In the current implementation of this project, objects of the ItemRef class, the

class that stores templates, are collected into groups and stored in objects of the

ItemGroup class. The user selects one of the groups to be the active group. At any

given time, only the templates in the active group will be visible, allowing the user

to control which templates are simultaneously visible. It might be more convenient

to include a flag in the ItemRef class telling the display system whether or not to

display it. This would allow the elimination of the ItemGroup class. Alternatively,

68

some facility to allow the user to transfer templates from one group to another would

make it easier to control which templates are visible at the same time. Currently, this

can be done only by editing the project file. Although this is not a difficult process,

a built-in facility would be helpful.

Using the utility could be made easier by allowing the user to choose the highlight-

ing color used to specify templates. As shown in Figure 5.2, light green is currently

used as the highlighting color, but this color could be difficult to see in images con-

taining significant amounts of similar colors. In addition, it would be helpful to allow

the user to cancel the filtering process. There is currently an indicator to show the

current level of progress but no way of aborting the process prematurely.

The display subsystem is designed to allow the user to view very large image files

without locking up. Zooming in and out is accomplished using bilinear interpolation

to copy a rescaled subregion of the image raster to a fixed-size buffer. Scrolling is

accomplished by changing the position of the view window over the buffer. When the

view window reaches the edge of the buffer, a new portion of the image raster is copied

to the buffer and the view window is restored to the center of the buffer. This results

in an undesirable momentary pause while the copying and bilinear interpolation are

being done. On computers that lack abundant memory, this system appears less

likely to lock up than many other viewers. However, some means of eliminating these

momentary pauses would be desirable if it could be done without greatly increasing

memory consumption.

Currently, this project is used mainly to detect trees and other vegetation. Ide-

ally, it could have been used in a more general capacity, to detect any type of item

including but not limited to vegetation. In particular, the ability to detect houses

and buildings would be desirable. Implementing such capability was investigated but

not implemented because the algorithm would have to be very different from the one

used for tree detection. All the houses in the image look very different from one

another. In addition, the houses are often largely occluded by the surrounding vege-

tation. For these reasons, template matching is not likely to be successful. Instead,

69

an edge-detection filter would need to be applied and an algorithm used to distin-

guish the smooth, straight edges associated with artificial structures from the rough

irregular edges associated with vegetation. Finally, a clustering algorithm would need

to be applied to try to determine which edges belong to the same structure. Such an

algorithm could be implemented in this project and could be useful when analyzing

images containing large numbers of artificial structures, provided those structures are

not located in very close proximity to one another.

70

Bibliography

[1] airbornelasermapping.com. Latest lidar news and web links. http:
//www.airbornelasermapping.com/Features/ALMSpo02.html (Accessed July
10, 2008).

[2] William R. Sherman Alan B. Craig. Understanding Virtual Reality. Morgan
Kaufmann Publishers, San Francisco, CA USA, 2003.

[3] Felix Morsdorf Erich Meier Benjamin Ktz Klaus I. Itten Matthias Dobbertin
Britta Allgwer. Lidar-based geometric reconstruction of boreal type forest stands
at single tree level for forest and wildland fire management. Remote Sensing of
Environment, 92(3):353–362, August 2004.

[4] C. Connolly. Latest developments in machine vision a review of image processing
packages. Sensor Review, 23(3):193–201, 2003.

[5] Canada Centre for Remote Sensing. Fundamentals of remote sensing. http://
www.ccrs.nrcan.gc.ca/resource/tutor/fundam/pdf/fundamentals_e.pdf
(Accessed July 10, 2008).

[6] Darius S. Culvenor. Tida: an algorithm for the delineation of tree crowns in high
spatial resolution remotely sensed imagery. Computers & Geosciences, 28(1):33–
44, February 2002.

[7] Encyclopedia Britannica. Virtual reality. Encyclopedia Britannica Online.
http://www.britannica.com/EBchecked/topic/630181/virtual-reality
(Accessed July 10, 2008).

[8] eXtension. What are some considerations in determining whether I need aerial
photography or satellite imagery? http://www.extension.org/faq/30026 (Ac-
cessed July 10, 2008).

[9] eXtension. What is the difference between multispectral and hyperspectral im-
agery? http://www.extension.org/faq/29837 (Accessed July 10, 2008).

[10] firemodels.org. firemodels.org - farsite. http://www.firemodels.org/content/
view/112/143/ (Accessed July 10, 2008).

[11] Tomas Brandtberg Fredrik Walter. Automated delineation of individual tree
crowns in high spatial resolution aerial images by multiple-scale analysis. Ma-
chine Vision and Applications, 11(2):64–73, October 1998.

71

[12] Geospatial Solutions. A lidar primer. http://www.geospatial-solutions.
com/geospatialsolutions/article/articleDetail.jsp?id=10275 (Ac-
cessed July 10, 2008).

[13] GISdevelopment.net. GIS Glossary. http://www.gisdevelopment.net/
glossary/p.htm (Accessed August 19, 2008).

[14] Wulder M. Niemann K.O. Goodenough D.G. Local maximum filtering for the
extraction of tree locations and basal area from high spatial resolution imagery.
Remote Sensing of Environment, 73(1):103–114, July 2000.

[15] Le Wang Wayne P. Sousa Peng Gong Gregory S. Biging. Comparison of ikonos
and quickbird images for mapping mangrove species on the caribbean coast of
panama. Remote Sensing of Environment, 91(3–4):432–440, June 2004.

[16] Y. Hirata, K. Sato, A. Sakai, S. Kuramoto, and Y. Akiyama. The extraction
of canopy-understory vegetation-topography structure using helicopter-borne li-
dar measurement between a plantation and a broad-leaved forest. Geoscience
and Remote Sensing Symposium, 2003. IGARSS ’03. Proceedings. 2003 IEEE
International, 5:3222–3224 vol.5, 2003.

[17] Intersense. Is-900 wireless tracking modules. http://www.intersense.com/
products/prec/is900/wireless.htm (Accessed April 1, 2007).

[18] JG Photography Group. Georgia aerial photography - aerial platform. http:
//georgiaaerialphotography.com/platform.htm (Accessed July 10, 2008).

[19] LANDFIRE. Landfire-faq. http://www.landfire.gov/faq.php?faq_id=
3&sort_id=1 (Accessed July 10, 2008).

[20] LANDFIRE. Landfire-faq. http://www.landfire.gov/faq.php?faq_id=
9&sort_id=1 (Accessed July 10, 2008).

[21] LANDFIRE. Landfire homepage. http://www.landfire.gov/index.php (Ac-
cessed July 10, 2008).

[22] LANDFIRE. Landfire national products. http://www.landfire.gov/
products_national.php (Accessed July 10, 2008).

[23] M. Larsen. Individual tree top position estimation by template voting. In Proc.
of the Fourth International Airborne Remote Sensing Conference and Exhibition
/ 21st Canadian Symposium on Remote Sensing, volume 2, pages 83–90, Otawa,
Ontario, June 1999.

[24] Kim Dralle Mats Rudemo. Automatic estimation of individual tree positions
from aerial photos. Canadian Journal of Forest Research, 27(11):1728–1736,
1997.

[25] Michael A. Penick. Vfire: Virtual fire in realistic environments. Master’s thesis,
University of Nevada Reno, Department of Computer Science and Engineering,
Reno, NV 89557, May 2007.

72

[26] National Aeronautics and Space Administration. Earth observatory li-
brary: Remote sensing. http://earthobservatory.nasa.gov/Library/
RemoteSensing/remote.html (Accessed July 10, 2008).

[27] National Consortium on Remote Sensing in Transportation. UAV2003 a
road map for deploying unmanned aerial vehicles (UAVs) in transporta-
tion. http://www.ncgia.ucsb.edu/ncrst/meetings/20031202SBA-UAV2003/
Findings/UAV2003-Findings-Final.pdf (Accessed July 10, 2008).

[28] National Oceanic and Atmospheric Administration. What is beach mapping
data. http://www.csc.noaa.gov/products/nchaz/htm/intro.htm (Accessed
July 10, 2008).

[29] Nicholas M. Short. Remote sensing tutorial introduction. http://www.fas.org/
irp/imint/docs/rst/Intro/Part2_1.html (Accessed July 10, 2008).

[30] Open Source Geospatial Foundation. GDAL: GDAL - geospatial data abstraction
library. http://www.gdal.org/formats_list.html (Accessed July 10, 2008).

[31] Open Source Geospatial Foundation. GDAL: GDAL - geospatial data abstraction
library. http://www.gdal.org/ (Accessed July 10, 2008).

[32] Paul R. Baumann. History of remote sensing, aerial photogra-
phy. http://employees.oneonta.edu/baumanpr/geosat2/RSHistory/
HistoryRSPart1.htm (Accessed July 10, 2008).

[33] Pouliot D.A. King D.J. Bell F.W. Pitt D.G. Automated tree crown detection
and delineation in high-resolution digital camera imagery of coniferous forest
regeneration. Remote Sensing of Environment, 82(2):322–334, October 2002.

[34] G. J. Awcock R. Thomas. Applied Image Processing, pages 9–10. McGraw-Hill,
Inc, New York, NY USA, 1996.

[35] G. J. Awcock R. Thomas. Applied Image Processing, page 127. McGraw-Hill,
Inc, New York, NY USA, 1996.

[36] Robyn Owens. Stereo matching. http://homepages.inf.ed.ac.uk/rbf/
CVonline/LOCAL_COPIES/OWENS/LECT11/node5.htm (Accessed July 10, 2008).

[37] James E. Gentle J. Chambers W. Eddy S. Sheather. Numerical Linear Algebra
for Applications in Statistics, page 57. Springer-Verlag, New York, NY USA, 1st
edition, 1998.

[38] H. Mitasova W.M. Brown M. Hohmann S. Warren. Computing erosion mod-
eling inputs from a dem. http://skagit.meas.ncsu.edu/~helena/gmslab/
reports/CerlErosionTutorial/denix/Data/DEM_computing_erosion_
modeling_input.htm (Accessed July 10, 2008).

[39] Satellite Imaging Corporation. Generating digital elevation models (dem) from
satellite imagery. http://www.satimagingcorp.com/svc/dem.html (Accessed
July 10, 2008).

73

[40] Sky-Borg Unmanned Aerial Vehicle Photography. Sky-borg unmanned aerial
vehicle photography - about. http://www.sky-borg.com/about.htm (Accessed
July 10, 2008).

[41] Songxin Tan. lidar. http://www.engineering.sdstate.edu/~tans/
lidarremotesensing.htm (Accessed July 10, 2008).

[42] Spencer B. Gross. Lidar mapping technology at sbg. http://www.sbgmaps.com/
lidar.htm (Accessed July 10, 2008).

[43] John B. Lane Louise McMonegal Russell Mike1 Jane Radatz Lawrence Reeker
Charles Russell Paul Schmid Ernest Stalder Scott Tucker Mary Yee Ronald
Berlack Susan Chonoles William Dupras Daniel Garvin Shirley Gloss-Soler John
Goetz Virl Haas Robert Haralick Richard Leahy Philip Marriott Rollin Mayer
Theo Pavlides Azriel Rosenfeld Leonard Seagren Sonja Peterson Shields Jack
Sklansky Marti Szczur Fermin Trujillo Terry Weymouth. IEEE standard glossary
of image processing and pattern recognition terminology. IEEE Std 610.4-1990,
Mar 1990.

[44] United States Geological Survey. USGS digital elevation model (dem). http:
//edc.usgs.gov/guides/dem.html (Accessed July 10, 2008).

[45] United States Geological Survey. USGS Earth Resources Observation and Sci-
ence (EROS). http://edc.usgs.gov/guides/glossary/c_d.html (Accessed
July 10, 2008).

[46] United States Geological Survey. USGS terraweb for kids: Glossary. http:
//terraweb.wr.usgs.gov/kids/glossary.html (Accessed July 10, 2008).

[47] Vishvjit S. Nalwa. A Guided Tour of Computer Vision, page 96. Addison-Wesley
Publishing Company, 1993.

[48] William R. Sherman. FreeVR: Virtual reality integration library. http://www.
freevr.org/ (Accessed July 10, 2008).

