
University of Nevada
Reno

Wildfire Simulation on the GPU

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science

by

Roger Viet Hoang

Dr. Frederick C. Harris, Jr., Thesis Advisor

December, 2008

We recommend that the thesis

prepared under our supervision by

ROGER V. HOANG

entitled

Wildfire Simulation On The GPU

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Frederick C. Harris, Jr, Advisor

Sergiu M. Dascalu, Committee Member

Timothy J. Brown, Graduate School Representative

Marsha H. Read, Ph. D., Associate Dean, Graduate School

 December, 2008

THE GRADUATE SCHOOL

i

Abstract

The environmental, social, and economic effects of wildfires have led researchers

to develop various models to study the behavior of this phenomenon. These models

vary widely in terms of complexity, with some models simulating the basic spread

of surface fires and other more complex models simulating the progression of fire

through tree crowns and lofting embers. The computational requirements of these

more complex models limits their use in prediction and interactive applications, and

increasing the parallel computational power through the addition of more CPUs is

not always cost-effective. At the same time, the increase in computational power of

relatively inexpensive graphics cards has led to their use as parallel general purpose

processors. This thesis examines the viability of harnessing the power of GPUs to

simulate fire spread. A fire spread model that incorporates the effects of surface

fire, crown fire, and fire acceleration is developed. A mapping of this model to GPU

concepts is presented, and the results of an implementation are discussed.

ii

Acknowledgments

This work is funded by the STTC CAVE Project (ARO# N61339-04-C-0072) at

the Desert Research Institute.

Thanks to my committee: Dr. Frederick C. Harris, Jr., Dr. Sergiu M. Dascalu,

and Dr. Timothy J. Brown.

Also, thanks to my family for putting up with me and my rampant use of their

electricity.

Finally, thanks to all my friends and co-workers at UNR and DRI.

iii

Contents

Abstract i

List of Figures iv

List of Tables v

1 Introduction 1

2 Background 3

2.1 Fire Models . 3
2.1.1 Taxonomy of Fire Models . 3

2.1.2 Fire Shape . 4

2.1.3 Model Subsystems . 4

2.2 Fire Simulators . 6
2.2.1 Vector-based Approaches . 7

2.2.2 Raster-based Approaches . 7

2.2.3 Computation Time . 9

2.3 GPU Computation . 9

2.3.1 Graphics Pipeline . 9

2.3.2 SIMD Architecture . 11
2.3.3 GPGPU . 11

3 Real-time GPU-based Wildfire Simulation 14

4 Software Engineering 17

4.1 Requirements and Use Cases . 17

4.2 Graphics Data Structures . 18

4.2.1 Texture and TextureFormat 18
4.2.2 Framebuffer . 19
4.2.3 VertexBuffer and TextureBuffer 19
4.2.4 Shader . 20
4.2.5 ContextData and SimulationState 21

4.3 Simulator Components . 21

4.3.1 FuelModel and FuelMoisture 21
4.3.2 Events . 22

iv

4.4 Data Storage . 23

5 Modeling and Implementation 24

5.1 Fire Spread . 24

5.2 Surface Fire . 26
5.3 Fire Acceleration . 27
5.4 Crown Fire . 30
5.5 Simulation Progression . 32

5.5.1 Texture Summary . 32

6 Results 34
6.1 Simple Conditions . 34

6.2 Complex Conditions . 40

7 Conclusions and Future Work 49
7.1 Conclusions . 49
7.2 Future Work . 50

Bibiliography 53

v

List of Figures

2.1 Traditional Graphics Pipeline [9] . 10

2.2 Programmable Graphics Pipeline [9] 10

4.1 Use case diagram . 19

4.2 Graphics Data Structure Relationships 20

4.3 Simulator Class Hierarchy . 22

5.1 Problem introduced by fire acceleration 29

6.1 Simulated fire spread on terrain with no slope, no wind, and a uniform
fuel map. 35

6.2 Simulated fire spread on terrain with various slopes, no wind, and a
uniform fuel map. 36

6.3 Simulated fire spread on terrain with no slopes, various wind speeds,
and a uniform fuel map. 37

6.4 Simulated fire spread on terrain with no slopes, a steady wind speed,
an oscillating wind direction, and a uniform fuel map. 38

6.5 Effects of fire acceleration on flat terrain with a rotating wind using a
uniform fuel map. 39

6.6 Simulation of fire spread around an unburnable area. 40

6.7 Simulation of fire spread through a faster burning area. 41

6.8 Simulation of fire spread through a slower burning area. 42

6.9 Kyle Canyon, Nevada . 43

6.10 Fuel map used in the Kyle Canyon simulation 44

6.11 Simulation run with no wind and no crown acceleration. 45
6.12 Simulation run with eastbound wind and no crown acceleration. . . . 45
6.13 Simulation run with no wind and crown acceleration. 46
6.14 Simulation run with eastbound wind and crown acceleration. 46
6.15 Execution times with 576,752 cells simulated. 47

6.16 Average update time with 576,752 cells simulated. 47

6.17 Execution times with a timestep of 500 seconds. 48

6.18 Average update times with a timestep of 500 seconds. 48

vi

List of Tables

4.1 Functional Requirements . 18

4.2 Nonfunctional Requirements . 18

5.1 Summary of Textures . 33

1

Chapter 1

Introduction

Every year, wildfires destroy millions of acres of land and costs millions if not billions

of dollars to control. From 2000 to 2002, over 18 million acres were burned, over

2,000 structures were destroyed, and over 3.4 billion dollars were expended just for

suppression efforts. Beyond the immediate damage caused by wildfires, there are

also lingering effects that are not only environmental, but social and economical as

well [24].

To better combat wildfires, scientists have developed models to predict the spread

of fire. These models may be used to identify and reduce potential fire risks. Areas

determined to be highly combustible or susceptible to crowning may be candidates

for controlled burns or forest thinning. Prediction of fire growth given some set of

conditions could be used to more efficiently allocate suppression resources. Integration

of these models into training exercises could increase the effectiveness of such exercises.

For these reasons, several simulators have been created over the years that in-

corporate various fire models. More complex simulators tend to take extremely long

times to execute. As such, their effectiveness at real-time prediction and their ability

to react to unexpected changes in the environment are reduced. Increasing com-

putational power by increasing the number of CPUs may prove uneconomical and

impractical for more mobile applications. At the same time, the computation power

offered by commodity graphics hardware has increased at a faster rate than CPUs.

The advent of the programmable shader allowed not only for elaborate graphical

effects to be implemented but also for the GPU to be used as a general purpose

2

processor with a large number of processing cores.

Applications of using the GPU as a general purpose processor have been success-

ful in a wide range of simulation applications; however, their applicability towards the

simulation of large scale wildfire growth has not been examined. This work addresses

this problem by developing a wildfire simulator that can be executed in real-time

on commodity graphics hardware. Two approaches were taken. The first allows for

GPU computation of fire spread where the costs of spreading a fire to adjacent cells

remain the same for the span of the time step. The second approach allows for GPU

computation of fire spread where the costs of spreading are not known until a cell is

actually ignited.

The rest of this thesis details the development of a GPU fire simulator. Chapter 2

examines the background information on fire modeling, computational simulation of

wildfires, and the history of GPUs and their applicability to general purpose compu-

tation. Chapter 3 motivates the development of a GPU wildfire simulator. Chapter 4

discusses the design and underlying components of the software developed. Chapter 5

details the model used to simulate fire spread and its mapping to the GPU. Chapter 6

presents the results. Chapter 7 concludes and offers several directions for future work.

3

Chapter 2

Background

This chapter delves into the history of work done on fire models and computer sim-

ulators of these models. It then details the nature and evolution of the GPU from a

graphics processor to a general-purpose processor.

2.1 Fire Models

Research into parameterizing various aspects wildfires has been ongoing for decades.

This section highlights components of this research that are relevant to this work.

For a more complete treatment of fire models, the reader is referred to [41].

2.1.1 Taxonomy of Fire Models

Both [41] and [42] outline three types of fire models: theoretical, empirical, and semi-

empirical. Theoretical models are models that rely solely on physical principles. The

advantage of such reliance is that these models are based on known properties. On the

other hand, the utility of these models in practice is questionable due to the difficulty

of obtaining the appropriate inputs. On the other end of the spectrum are empirical

models, which are generally statistics that can be used to predict fire behavior under

certain conditions. Beyond this set of conditions, purely empirical models have had

little success. Between these two extremes lies semi-empirical or semi-physical models

that rely on some theoretical principles which are adjusted with some experimental

data. Because of their reliance on experimental data, some calibration may be needed

4

in order to apply these models to different conditions.

2.1.2 Fire Shape

Most work done in determining the shape of a fire as it spreads has concluded that

under homogeneous conditions, fire will spread in roughly an elliptical shape of some

sort. [13] compared the effectiveness of a simple ellipse, a double ellipse, an ovoid,

and a rectangle and found that while any of those shapes could adequately fit the

contours of various observed fires, the ellipse and double ellipse were found to fit best

under homogeneous conditions. As wind speed increased, the length to width ratio

of the ellipse would likewise increase [1].

Spread of a fire tends to be modeled using Huygens’s Principle, which assumes

that every point along a fire perimeter will ignite another fire that grows elliptically

according to the environmental characteristics of that point. At the end of a time

step, the new fire perimeter is given by the outline of all of these new ellipses [43].

2.1.3 Model Subsystems

[41] further classifies models by the aspect of wildfire that a model is attempting to

parameterize. This classification divides fire models into surface fires, crown fires,

and spotting.

Surface Fire

Surface fires are characterized by the burning of fuels that are less than two meters

in height. While numerous models for surface fire spread have been developed, few

have been applied to real-world applications. The most successful of these models is a

semi-empirical model developed by Rothermel in 1972 [41]. In [44], Rothermel found

that the forward rate of spread for a wildfire was approximated by the equation

R =
IRξ(1 + φw + φs)

ρbεQig

where IR is the reaction intensity, ξ is the propagating flux under zero wind and

zero slope conditions, φw is a coefficient resulting from wind, and φs is a coefficient

5

resulting from slope.

The previous equation approximates spread in one dimension with both the di-

rection of maximum wind and the direction of maximum slope oriented along this

axis. [45] presents a method for finding a two dimensional spread vector if the slope

and wind directions are not aligned. The maximum spread rate is found using only

the slope in the direction of maximum slope and no wind; likewise, the maximum

spread rate is found using only the wind speed and direction and no slope. These

two vectors are then added together to yield a vector describing the maximum spread

rate.

Crown Fire

Crown fires are characterized by the spread of fire into the crowns of trees. Modeling

of such a phenomenon attempts to determine how a surface fire transitions to a crown

fire and how such a crown fire would modify the spread of fire [41].

In [50], Van Wagner classifies crown fires into three categories and details condi-

tions required for each type. The conditions are tied to the surface fireline intensity

and the surface fire spread rate. A passive crown fire characterized by the torching

of trees occurs when the fireline intensity crosses a threshold intensity required for

the crowns to be ignited, but the surface fire spread rate is less than the spread rate

required for an active crown fire. Should the surface rate cross this threshold value,

the fire is then considered an active crown fire. Such a fire spreads through both

the surface fuels and crown fuels simultaneously. The surface fire aids in igniting the

crowns while the crown fire increases the heat radiated to the surface fuels in front

of the fire. If the horizontal heat flux required to ignite the crowns can be supplied

completely by the burning crowns, then the fire is considered to be independently

crowning, spreading without being linked to the surface fire below.

While Van Wagner outlined various crown fire types and the conditions for each,

the quantitative effects of these fires had to be measured and calibrated for particular

situations. In [45], Rothermel provides one such set of values. The average spread

6

rate of a crown fire was found to be roughly 3.34 times the spread rate computed for

fuel model 10 with the wind reduced by a factor of 0.4. Despite its purely empirical

nature and relatively high standard deviations, these values have been applied to

other situations [41].

Spotting

Spotting occurs when burning embers are carried into the air and land somewhere

in the landscape, possibly igniting it. This presents a slew of problems ranging from

limiting the efficacy of fire barriers to altering the shape, size, and progression of a

fire [41]. As an example, spotting was observed as far away as ten kilometers from

the fire front [4].

Major models in this cateory have been primary theoretical in nature and have

focused on determining the maximum spotting distance. Albini proposed a set of

models to determine the maximum spotting distance from torching trees, fuel piles,

and surface fires [41]. In the torching tree case, embers are lofted vertically to some

maximum height and then fall horizontally with the wind field [11]. While Albini’s

models computed the movement of cylindrical particles that ignored wind parameters

as they were being lofted upwards, more recent research has been focused on other

shapes such as spherical particles being lofted [52] and propagated [53] and disk-

shaped particles moving through a three-dimensional plume that accounts for wind

during the lofting stage [46].

2.2 Fire Simulators

As computer technology advanced, fire models were incorporated into various soft-

ware applications. In the one-dimensional case, several applications were developed

that could compute various aspects of wildfires under some set of conditions [2, 3].

With the increase in availability of spatial landscape data, several simulators have

been developed that account for both spatial and temporal variations in landscape

characteristics. Such simulators can be divided into two classes: vector-based and

7

raster-based.

2.2.1 Vector-based Approaches

Vector-based approaches more strictly follow the idea elliptical wave propagation;

that is, the fire shape after some time step can be found by generating ellipses along

the previous fire shape and determining the new outline. Simulation is done on a con-

tinuous space. While greater in accuracy when compared to raster-based approaches,

their complexity and time requirements are also greater [41]. Compared to the num-

ber of raster-based ones, few simulators use this approach including SiroFire [7] and

Prometheus [6], and of them, the most commonly known is FARSITE.

FARSITE

Utilized globally [41], FARSITE is a vector-based wildfire simulator. It incorporates a

number of fire models, including Rothermel’s surface spread model and Van Wagner’s

crown fire model. Spotting is implemented via Albini’s spotting model for torching

trees with an adjustable percentage reduction in the number of brands that actu-

ally ignite new fires. Fire acceleration is also accounted for. Acceleration addresses

changes such as a fire heating nearby fuels and increasing the potential for spread

as well as to prevent instantaneous jumps in spread rate when the perimeter enters

an area with a different fuel type [11]. More recent work on FARSITE includes the

integration of a post-frontal combustion model [12]. The simulator has been used in

a number of fuel treatment assessment applications both by itself [51] and in conjunc-

tion with FlamMap [48].

2.2.2 Raster-based Approaches

Raster-based approaches, or cellular approaches, propagate fire through some set of

rules across a uniform grid. While faster and simpler to implement, they lack precision

when compared to vector-based approaches [41]. Depending on the number of paths

that a fire can travel across, distortion is possible [11].

8

HFire

HFire is a cellular fire spread simulator designed to compute the spread of surface fire

in chaparral fuels. It allows fire to spread from cell to cell in eight directions, four

orthogonal and four diagonal. A fire ellipse is computed using Rothermel’s spread

rate equation and then spread rates in each of these spread directions are derived

from the result. The simulator assumes that fire spreads at the maximum rate (no

acceleration is accounted for) and mitigates the effects of distortion due to the limited

spread directions by using an adaptive time step and finite fractional distances. The

adaptive time step determines the minimum time required for a fire to spread from

at least one burning cell to another burning cell. Using such a mechanism allows the

simulation to quickly simulate large time steps when a fire moves slowly and vice-

versa. In conjunction with an adaptive time step, finite fractional distances allow a

fire to spread some partial distance to other cells within a time step. Should a fire

spread farther than the distance separating two cells, the extra portion of that spread

is contributed to the partial distance burning out of the newly burning cell [23].

FlamMap

While FARSITE computes the spread characteristics of a fire over time, FlamMap

assumes that the entire landscape is ignited and computes the spread characteristics

for each cell of the terrain. It also provides functionality to compute the minimum

time required for a fire to spread from an ignition point to any other point on the

landscape given constant temporal conditions [10]. This particular capability is de-

tailed in [21]. In essense, every node in the grid is connected to each other. The cost

in time of traversing any connection is computed accounting for changes in fuels and

the length of the connection across each fuel type. Given this information, a shortest

path algorithm is executed to determine the minimum travel time to every node in

the simulation space. Optimizations such as stopping the search if no travel times

are updated within a certain range can be used to speed up this algorithm.

9

2.2.3 Computation Time

While vector-based approaches may be more precise, they can also be rather time-

consuming. While [48] computes the spread of fire and a few other characteristics

using FARSITE, another set of characteristics were computed with FlamMap instead

since a FARSITE simulation could run for hours while FlamMap output was almost

instant. On a set of trial runs, HFire was found to run roughly 92 times faster than

FARSITE running with several of FARSITE’s capabilities disabled to more correctly

compare the outputs [23].

2.3 GPU Computation

Because of their intended purpose, graphics processing units(GPU) are designed to

process a massive number of vertices and pixels in parallel. The introduction of the

programmable shader allowed for an array of new graphical effects to be implemented.

At the same time, the programmability of the GPU allowed for the exploitation of

its resources for non-graphical purposes [22].

2.3.1 Graphics Pipeline

At its core, the graphics pipeline consists of four stages: vertex transformation, primi-

tive assembly and rasterization, fragment transformation, and framebuffer operations.

The first stage transforms primitives defined by a set of vertices by a set of trans-

formation matrices before being clipped and converted into fragments (rasterization)

in the next stage. Textures and other per fragment operations are performed in the

third stage. In the fourth stage, before the fragment is sent to framebuffer, a set of

operations can be applied to possibly discard the fragment due to depth testing or to

blend the resulting fragment with the data currently stored in the target pixel [47].

Figure 2.1 shows a picture of this pipeline.

10

Figure 2.1: Traditional Graphics Pipeline [9]

Programmable Shaders

Over time, modifications to the standard pipeline have been made to allow for more

developer control over it. Control over the vertex transformation and fragment trans-

formation stages of the traditional pipeline was permitted through the use of ver-

tex [40] and fragment shaders [38], respectively. A shader is essentially an executable

that can be run on some programmable part of the GPU [39]. Figure 2.2 shows

these modifications. In addition to vertex and fragment shaders, a geometry shader

stage was added directly after the vertex transformation stage. A geometry shader

takes whole primitives transformed in the vertex transformation stage and outputs a

variable number of another primitive type [29].

Figure 2.2: Programmable Graphics Pipeline [9]

11

OpenGL Extensions

Beyond the addition of shaders, several other extensions to OpenGL were made that

extended the capabilities of GPUs and made general purpose computing on the GPU

more viable. Textures were no longer limited to 8-bit integer representations with

the introduction of floating point textures capable of storing both 32-bit and 16-

bit floating point values [27]. Similarly, another extension brought the ability to

store full 32-bit or 16-bit integers into textures [30], and shaders were updated to

support integer computation [32]. The updating of these textures using shaders was

made possible with the advent of the framebuffer object, allowing directing rendering

access to the them [28].

With the addition of 32-bit floating point color textures, the ability to use 32-bit

floating point depth buffer textures was also introduced. Using this sort of depth

buffer no longer locks the depth range between 0 and 1 [26]. Query capabilities were

also added, allowing one to obtain a count of the number of fragments actually drawn

into the framebuffer [31].

2.3.2 SIMD Architecture

To process large numbers of vertices and primitives and because these objects can be

processed without regard for other objects, GPUs adopt a single-instruction multiple-

data (SIMD) parallel processing architecture, employing a large number of processors

all executing the same set of instructions simultaneously [49]. Earlier architectures

such as the one used in the NVIDIA 6000 series separated these processors into

vertex processors and fragment processors that can execute their respective shader

programs [16]. More recent GPU architectures take a unified approach, providing a

set of stream processors that can be used for any sort of shader [20].

2.3.3 GPGPU

Given the parallel processing power of a GPU in conjunction with the availability

of these processors in commodity hardware, a great deal of work has been done

12

on moving computations generally done on the CPU to the GPU, something that

has been dubbed General Purpose computations on the GPU (GPGPU). This is

accomplished by storing data into graphics memory in textures and updating them

through the use of shaders [19]. The proliferation of GPGPU has led to the creation

of special cards such as the NVIDIA Tesla dedicated to GPGPU with a GPU onboard

but no video outputs [25].

Applications

GPGPU has been applied to a broad spectrum of applications. More graphical appli-

cations include not only the rendering but also the creation, updating, and destruction

of a massive number of particles [17] to the simulation of fluid effects such as fire and

water [8]. On the less graphical side, n-body simulations [37] and computation of all

pairs shortest paths [15] have been performed.

GPGPU Languages and Abstraction

A learning curve exists for those that wish to do work with GPGPU. Because GPUs

were designed originally for graphics, knowledge of graphics and graphics APIs is

necessary. To perform computations using shaders, an understanding of a shading

language such as GLSL [14] is also necessary. Because of the GPU’s architecture,

programs must be written with a stream processing mentality.

To reduce the price of admission, work has been done to abstract away the

graphics elements of GPGPU and provide direct access to the GPU. Some earlier work

includes the development of Brook. Data-parallel sections of code can be denoted

in a Brook program. These sections are then compiled into shader code while the

remainder of the code is compiled into C++ code which executes the shader code using

a run-time library. The underlying graphics calls are blocked from the developer’s

view [5]. Accelerator takes a similar approach by providing a library that developers

can use to execute data-parallel operations over arrays [49].

While the previous two approaches block the graphics API from the developer’s

13

view, the graphics pipeline is still running in the background. More recent work

removes the pipeline completely and allows for direct access to the GPU’s stream

processors. This idea is embodied in NVIDIA’s Compute Unified Device Architec-

ture (CUDA). Programs written with CUDA can execute thousands of simultaneous

threads that run on the GPU. Unlike using a fragment shader, scattered writing into

memory is possible [36]. Packs of threads called warps are executed together on a sin-

gle stream processor in a model called single instruction multiple thread (SIMT). As

a result, branching is localized, and applications can be written to reduce branching

within warps [18].

14

Chapter 3

Real-time GPU-based Wildfire
Simulation

While several fire simulators have been implemented in the past, many require exces-

sive amounts of time to complete their simulations. Because of this, these simulators

as they are are unsuitable for real-time purposes such as interactive training and pre-

diction. For example, the value of the predictions made by these simulators decreases

as the time it takes to actually compute these predictions increases. Modifications to

the simulation data due to unexpected changes in winds can further increase delay.

To increase the effectiveness of fire simulation in a real-time setting, some relax-

ations or approximations of the model could be made. Alternatively, the simulator

could be implemented in a manner that supports parallelism. While developing a sim-

ulator to run on multiple CPUs or multiple processing cores may bring a simulator to

real-time speeds, it is not necessarily cost-effective to do so due to the price of CPUs.

Additionally, while simulation is useful in itself, visualization of the results may be

just as important. However, the continuous transfer of simulation data from system

memory, perhaps even across systems, to the graphics card can become a bottleneck

itself.

For these reasons and given the results obtained by other similar projects, moving

the fire simulation onto the GPU warranted experimentation. The focus of this work

is on such an experiment. Given the various stages of a fire simulation, a set of

modifications and mappings were developed to allow what have been traditionally

15

CPU-based techniques to be performed on the GPU. In the end, a fire simulator

will be produced that, other than the CPU calls used to initiate and control the

computations as well as to feed in user interaction, resides on the GPU.

To do so, a raster-based fire spread approach will be developed that incorporates

surface fire and crown fire models in addition to fire acceleration. The resulting model

can be thought of as a compromise between several fire simulators, adopting the

raster-based aspects of HFire for speed purposes while expanding its accuracy and

applicability by incorporating various aspects of FARSITE. Rather than adapting

timesteps and computing the transfer of burn progression, this model instead will

compute all possible spread given some arbitrary timestep, a characteristic more

akin to FlamMap’s minimum travel time functionality. However, unlike FlamMap,

temporal alterations to the system will be permitted through the use of discrete

events. Time steps will then be divided to account for these changes. Partial burning

will be introduced to reduce distortion caused by these smaller time steps.

This approach will then be mapped to the GPU. Discretized terrain properties

such as topology and fuel models will be stored in video memory using textures.

Updating of this data will be performed by using a number of shaders that read the

data from textures and output the updated values into another texture. Looping will

be accomplished by executing a shader repeatedly, and a method for determining a

stopping condition will be established.

An interface will be designed that would allow for an application to control the

flow of the simulation as well as to inject events that would alter its progression. In

addition, the interface would provide mechanisms for the application to access the

state of the simulation in order to provide feedback to the user. These mechanisms

will also be designed to be usable in systems running with multiple video cards.

Synchronization of data will be provided through co-simulation.

The resulting simulator is expected to perform in a manner that would allow it

to run in coordination with some sort of visualization system at interactive rates at

various time scales. While the overall model developed would be slower than HFire

16

due to the incorporation of various FARSITE features, such slowdown is expected

to be tempered by the parallel processing capabilities of the GPU. Timings will be

performed to determine conditions under which the simulator could achieve interactive

rates.

17

Chapter 4

Software Engineering

This chapter outlines the software design decisions made and the reasoning behind

them. The underlying data structures are discussed, and the interaction between

components of the system are examined.

4.1 Requirements and Use Cases

Because the goal of developing a real-time fire simulator is to allow for user interac-

tivity, whether the user is a human or a computer, the functional requirements reflect

these intentions. Furthermore, the notion of human interactivity implies a visualiza-

tion of some sort in order for the user to understand the simulation. Hence, because

the rendering environment cannot be predicted beforehand, requirements were de-

veloped to facilitate the possibility that the simulation would have to be replicated

across multiple rendering contexts. These functional requirements are enumerated

in Table 4.1. Because the simulator is designed to be a component in some larger

package, the user in this case is the calling application. Nonfunctional requirements

were also developed to assure speed and consistency through development. These

requirements can be found in Table 4.2.

Figure 4.1 shows the use cases generated from the functional requirements.

18

F01 The simulator shall allow for multiple graphical contexts.
F02 The simulator shall allow for user-defined ignitions.
F03 The simulator shall allow for user-defined fuel modifications.
F04 The simulator shall allow for user-defined moisture modifications.
F05 The simulator shall allow for user-defined modifications to wind.
F06 The simulator shall allow user access to all graphical assets.
F07 The simulator shall simulate the spread of fire.
F08 The simulator shall allow for control of the forward flow of time.

Table 4.1: Functional Requirements

NF01 The simulator shall be written in C++.
NF02 The simulator shall run primarily on the GPU.
NF03 The simulator shall use OpenGL.
NF04 The simulator shall use shaders written in GLSL.

Table 4.2: Nonfunctional Requirements

4.2 Graphics Data Structures

Given that the bulk of the simulation will be computed on the GPU, a set of data

structures was developed to facilitate more rapid development. Their relationships

to each other are summarized in Figure 4.2. Their design and purpose are discussed

in the following subsections.

4.2.1 Texture and TextureFormat

The Texture class was designed to abstract away details regarding texture creation

and maintenance. Because textures with similar pixel formats, internal formats,

mipmapping, and other texture settings are often created, these settings are sepa-

rated from the Texture class itself and relocated into a TextureFormat class that may

be used multiple times. Binding textures to various texture units is also handled

through the Texture class. Spatially organized simulation data, such as the elevation

map, fuel map, and moisture maps, are organized into regular two-dimensional rect-

angular lattices. As such, two-dimensional textures are used to store such data. To

prevent loss of precision, simulation data is stored using 32-bit floating point textures.

19

Figure 4.1: Use case diagram

4.2.2 Framebuffer

Textures containing simulation data are useless without a method of manipulating

their contents. The GL EXT framebuffer object extension [28] provides this func-

tionality by allowing one or more textures to be attached to a framebuffer object

(FBO) and subsequently written to by binding the FBO as the render target and

rendering fragments into the texture. Blending functionality is retained while using

an FBO, facilitating the partial burn component discussed later on. Depth testing

can still be used by attaching a special texture to the FBO’s depth attachment,

which facilitates the spread algorithm also discussed later. The Framebuffer class

itself manages the creation, binding, error checking, and destruction of these objects.

4.2.3 VertexBuffer and TextureBuffer

While textures provide an analogue for two-dimensional arrays, vertex buffer objects

(VBO) [35] provide an analogue for one-dimensional arrays. Data stored in a VBO

20

Figure 4.2: Graphics Data Structure Relationships

reside in graphics memory and can be used as vertex data such as position, texture

coordinate, or element index. Later extensions increased the utility of VBOs, in-

cluding the introduction of transform feedback [34], allowing transformed vertex data

to be streamed out of either the vertex or geometry shader stages and into another

VBO for later use. This particularly capability allows for the simulation of a variable

number of particles, which were used to model ember flight and fire spotting. The

VertexBuffer class facilitates the creation, destruction, memory management, and

data uploading for these structures. Further extending the capabilities of the VBO

was the addition of the ARB texture buffer object extension [33], allowing VBOs

to be bound as textures accessible by shaders. Because a large number of variables

are constant for a particular fuel model, rather than storing these constants for every

single cell, memory conservation was achieved by storing these constants into VBOs

which were then converted to texture objects using the TextureBuffer class. Each cell

instead only holds a fuel model number which is used to index into the VBOs.

4.2.4 Shader

The Shader class encapsulates details regarding the driving force behind the simu-

lator. It is responsible for loading shaders from files, setting any necessary program

parameters, and providing access to various uniform variables.

21

4.2.5 ContextData and SimulationState

As previously discussed, due to the intended purposes of real-time simulation, the need

for visualization is often a side-effect. To this end, direct access to the data textures

is allowed. However, information about the underlying visualization system may not

be known at runtime. Given a system with multiple video outputs through separate

graphics cards, the simulation data must be replicated in each graphics context’s video

memory. To facilitate this, the graphics data is kept separate from the simulator

itself. This ContextData structure is created for and returned to each rendering

context that requests it. When communicating with the simulator, a graphics context

passes the structure in as an argument. It is the responsibility of the application

programmer to assure that every ContextData instance is updated before advancing

the simulation. Otherwise, synchronization issues may arise. Beyond graphics assets,

the ContextData structure also holds a SimulationState object that stores information

regarding the state of the simulation for that particular context. This object is the

only data accessible by events and allows events to manipulate the simulation by

queuing data modifications in the form of ignitions, moisture modifications, and fuel

model modifications.

4.3 Simulator Components

While a single monolithic simulator component would have reduced code complexity,

it would have also degraded modifiability and maintainability. Therefore, the simula-

tor is broken up into several structures to better facilitate these properties. Figure 4.3

summarizes the class relationships of the simulator.

4.3.1 FuelModel and FuelMoisture

To allow for various file formats for fuel data, the simulator abstracts this data into

the form of a FuelModel structure and a FuelMoisture structure. The FuelModel

structure maintains data regarding an integer fuel model number such as fuel density

22

Figure 4.3: Simulator Class Hierarchy

and extinction moisture. This data is eventually uploaded and maintained in graphics

memory in the form of TextureBuffers for spread rate calculations; on the other hand,

the FuelMoisture structure’s existence is far more ephemeral. As its name indicates,

the FuelMoisture structure structure holds information regarding the moisture content

for each fuel class of each integer fuel model number. These values, however, do not

remain constant due to factors such as weather and human intervention; thus, they

are only used to generate an initial fuel moisture map and then discarded.

4.3.2 Events

Events are the primary method of interacting with the simulation. Every event derives

from an abstract Event class that contains a trigger time and a trigger function that

can manipulate the SimulationState structure. As events are registered with the

simulator, they are maintained in a list ordered by trigger time. When the event falls

within the simulation step’s time window, the event is moved to a different event

list. As part of the updating stage for each context, every event in this second list

is eventually triggered. To prevent some redundant rendering state setup, events in

general enqueue some sort of action into the SimulationState structure. By doing

so, all events of the same type, such as ignitions, can be processed together rather

than, for example, setting the rendering state up for a single ignition, processing

23

the ignition, setting the rendering state up for a fuel modification, processing that

modification, and setting the rendering state up again for yet another ignition. To

further increase performance, a set of flags are available to denote which pieces of

data a particular event will modify. For example, an ignition event will merely modify

time-of-arrival data and will have no effect on spread rates or the wind field; nothing

else is recomputed. On the other hand, alteration of the wind properties will cause

changes to the spread data, in which case, a flag will be raised requiring the simulator

to recompute the spread data before proceeding.

In its present incarnation, four primary types of Events have been implemented.

The first, an IgnitionEvent, is used to start fires. The second, a FuelModification

event, is used to alter the fuel models of the landscape. Fire breaks can be approxi-

mated by altering the fuel model to some unburnable type, while the effects of other

preventative measures such as forest thinning can be experimented with through the

alteration of the fuel models to less dense models. The third subclass of Event is the

MoistureModificationEvent, which allows for the alteration of moisture content in fu-

els. These events can be used to simulate climate changes as well as fire suppression

methods. Finally, a WindEvent class allows for the alteration of wind properties,

specifically the wind direction and wind speed. Another Event subtype, the Compos-

iteEvent, is provided to ensure that a set of events will be triggered simultaneously.

4.4 Data Storage

Spatial inputs to the simulator come in the form of two-dimensional lattices. Because

of this, they are stored as two-dimensional textures. Constants for each fuel model

are stored in VertexBuffer objects that are bound as textures using a TextureBuffer.

Due to the limited number of textures, these constants were packed into different

components of four-component floating point buffers. They are retrieved by fetching

the fuel model index for a cell and using the result to index into the buffers.

24

Chapter 5

Modeling and Implementation

This chapter discusses the method used to simulate the various aspects of fire spread

and how they were performed on the GPU.

5.1 Fire Spread

For basic fire spread, the simulator is based on Rothermel’s fire spread equations,

which are based on Huygens’s principle. Thus, fire spread is modeled as an ellipse

expanding at some maximum rate Rmax with some orientation φ and eccentricity ε

based on wind and slope. Given this information, the spread rate in any arbitrary

direction Θ can be computed using

r(Θ) = Rmax
1.0− ε

1.0− εcos(|φ−Θ|)

as described in [23]. Given this spread rate r, the time required for a fire to travel

from one point to another point separated by a distance d is given by

t = d/r

Because the desired output is a set of rasters that can be visualized and analyzed,

the simulation is modeled as a two-dimensional regular rectangular lattice in a fashion

similar to that of HFire [23]. Essentially, the center of each cell is connected to the

centers of each of its eight neighboring cells by a straight line of fuel. Fire can spread

from a burning cell to any unburnt cell by burning the entire distance separating

the cell centers. In the case of multiple lines burning towards the same center, the

25

first line to completely burn is used to determine the time of arrival and other fire

characteristics. The time of arrival logic can be summarized by Algorithm 5.1. It

may be executed repeatedly until the resulting times of arrival no longer change. To

account for changing spread conditions, times of arrival can only be computed up to

the point when these conditions are altered; any arrivals after this point are simply

discarded.

Algorithm 5.1 Time of arrival computation.

1: for all Surrounding Cells c do
2: t=timeOfArrival(c) + spreadTime(c, thisCell)
3: timeOfArrival(thisCell)=min(timeOfArrival(thisCell), t)
4: end for

To achieve this logic on the GPU, the times of arrival are double-buffered with

a pair of 32-bit floating point textures. A 32-bit floating point depth buffer also

stores the time of arrival. An OpenGL extension allows for this depth buffer to be

clamped to a range other than [0..1]. All times are initialized to the very end of the

simulation. A fragment shader is executed over each cell of the simulation space. This

shader executes a single iteration of Algorithm 5.1 and uses the resulting value as the

fragment color as well as the fragment depth. During execution, one texture is used as

the times of arrivals accessed while the other texture is used to collect the outputted

values. After each iteration, the values are copied from the write texture to the read

texture. Due to depth buffering, only fragments with a depth value, which contains

the time of arrival, lower than the current pixel depth are actually written. As a

result, only the earliest times will be written out, and only these written fragments

are counted when querying the number of fragments drawn. Hence, to compute

times of arrival up to a certain point in time, the acceptable depth range is set to the

simulation’s current time step window (earlier fragments need not be written again)

and the fragment shader is executed repeatedly until no more fragments are written.

While some arrival times may exceed the threshold time and thus would not be

recorded during that simulation step, that does not necessarily imply that nothing

occurred between each pair of links. In fact, if that were the case, using a time step

26

that is too short would result in no fire propagation at all since the arrival times

would always exceed the time window. To prevent this problem, fractional burning

is utilized. That is, while a fire may not be able to travel the entire distance between

two links, it has at least burned through some of that distance; as a result, that

distance is reduced by the product of the spread rate and the elapsed time.

d=d−r∆t

The result of this effect is that the distance will eventually be reduced to the point

where the fire will spread across the link within the simulated time window. It also

necessitates the modification of Line 2 of Algorithm 5.1 to

t = max(timeOfArrival(c), windowStartT ime) + spreadTime(c, thisCell)

to account for the time spent partially burning the distance. Unlike HFire, link

distances between each cell’s neighbors is maintained rather than a normalized value

representing the highest burned fraction.

On the GPU, implementation of partial burning is straightforward. The remain-

ing distance from the center of each cell to each of its neighboring cells is stored

in two textures, with the orthogonal distances in one four-component floating point

texture and the diagonal distances in another. At the end of a simulation step, a

fragment shader is executed with the write targets set to these distance textures.

The fragment shader fetches from a set of textures the spread rates in each direction,

multiplies them by the elapsed time, and outputs the result as the fragment colors.

Subtractive blending results in the distances already stored in the write targets being

reduced by the output fragment values.

5.2 Surface Fire

The basic spread characteristics of a wildfire are computed using Rothermel’s model.

Spatial information such as fuel model and terrain characteristics are stored in two-

dimensional textures. Various fuel model properties such as packing ratio and fuel

bed density are stored in one-dimensional TextureBuffers that are accessed using

27

the integer fuel model used for each cell. Computation of the spread characteristics

is performed by executing a fragment shader over the simulation space with the

write target set to a four-component floating point texture. The outputted fragments

contain the maximum spread rate of fire including the contributions of slope and wind,

the eccentricity of the ellipse, the direction of maximum spread, and an intensity

modifier value

IntensityModifier =
12.6IR
60.0σ

where IR is the reaction intensity and σ is the ratio of the fuel bed’s surface area to

volume. The modifier is used later in computing crowning.

5.3 Fire Acceleration

A newly ignited fire does not immediately begin to spread at its maximum rate.

Instead, it accelerates towards its maximum rate over time. Fire acceleration in the

GPU simulator uses a modified model of that used by FARSITE [11]. Given the

maximum rate Rmax, the spread rate at time t is given by

R(t) = Rmax(1.0− e−aat)

where aa is an acceleration constant. From this equation, the time tmax required to

achieve the maximum spread rate given the current spread rate R is given by

tmax =
1.0− R

Rmax

aa

During the fire acceleration phase, the spread rate for every burning cell is increased

by

dR =
dt

tmax

(Rmax −Rcurrent)

A fire started from an ignition will have an initial spread rate of zero and will

steadily increase to its maximum rate. As the fire spreads from cell to cell, the cell

inherits the current spread characteristics of the cell that ignited it. If the spread

28

rates exceed the maximum spread rates of the newly burning cell, they are clamped

instantaneously to their maximums. If, however, they are slower than the cell’s

maximum rates, they are accelerated by the difference dt given by

dt = timeOfArrival(thisCell)−max(baseT ime, timeOfArrival(ignitingCell))

where baseT ime is the last time that the burn distances were updated.

The addition of fire acceleration on the GPU simulator introduces a problem

which cannot be handled by the previously described depth buffering method. That

method of computing spread can be reduced to a problem of determining the lowest

cost (least time) to each node in a graph. The method makes a few assumptions, some

of which are invalid with fire acceleration. First, the cost of each linkage traversed

during the previous simulation step remain constant. This remains valid as the path

traversed to that point in time was actually taken and burned. The second assumption

is that the cost of each linkage is constant during a simulation step. This assumption

becomes invalid for the following reason: because a newly ignited cell takes on the

spread characteristics of the igniting cell, the costs going out of that cell depend on

the path taken to get to the cell.

Figure 5.1 illustrates the problem. Consider the two burning cells with spread

properties a and b in (a). The resulting spread characteristics after one pass through

the propagation algorithm is shown in (b). The upper left cell burns into the upper

middle cell before the upper right cell can, so the upper middle cell inherits a modified

set of a’s spread properties, a′. The following iteration (c) shows that the lower left

cell will receive spread properties that originated from the upper left cell since the

upper middle cell will burn to it before the lower middle cell can. However, in the

next iteration (d), it is determined that the lower middle cell will burn into the upper

middle cell (from b to b′ to b′′ to b′′′) before the upper left cell can burn directly into it.

As a result, the cell now contains properties inherited from b, but that cell’s spread

rate towards the bottom left cell may be slower than the spread rate used to compute

a′′. Consequently, the value in the lower left is invalid. If such an event occurs using

29

Figure 5.1: Problem introduced by fire acceleration

the depth buffering algorithm previously described, the depth value written due to

a′′ will be lower than the depth value written for b′′′, resulting in that cell incorrectly

retaining a′′’s characteristics.

To remedy this problem and implement fire acceleration, the depth buffering

method was abandoned. Maximum spread rate properties are still only computed

when some event is triggered that would alter these properties. Given these computed

properties stored in a texture, the maximum spread rate in each of the eight spread

directions is computed and stored in a set of two textures, one for the orthogonal

directions and another for the diagonal directions. A seperate pair of textures is used

to maintain the current spread rates for each cell and is initialized at the beginning

of the simulation to be all zeroes. At the end of every simulation step, all burning

cells have their spread rates accelerated as previously discussed.

Propagation based on burn times and times of arrival is still used, although it

was modified to account for changing spread rates as a result of acceleration and rate

inheritance. Spread rates are double-buffered like the time of arrival textures, and a

copy from write texture to read texture for each is done at the end of the iteration.

The propagation shader was modified to output the inherited and accelerated rates

30

from the igniting cell.

Three additional textures were added. The first two store integer time stamps

that denote the last time a cell was updated. If any cells surrounding the current cell

were updated in the last round, the current cell is checked again to see if a lower time

of arrival is possible. These textures are swapped in terms of reading and writing at

the end of each iteration; no compositing is necessary since only cells that changed

in the previous iteration are of concern. At the beginning of the propagation phase,

all stamps are cleared to zero to force all cells to at least check once with new spread

times. Cells that are updated write the next time stamp out to the write buffer.

The third texture contains the texture coordinate of the cell that ignited the current

cell. If the data in that cell becomes invalid, that is, if the spread properties of that

cell have changed and the time stamp is equal to the previous iteration’s time, the

current cell’s time of arrival is invalidated and the original time of arrival used at the

beginning of the simulation step is used to proceed.

Because depth buffering can no longer be used, fragments must be explicitly

discarded in the shader to ensure that zero fragments are eventually written in a

single pass, signaling the end of the propagation step. In the fragment shader, a

fragment is discarded if the current time of arrival is earlier than the start of the

simulation step, if the resulting time of arrival is later than the end of the simulation

step, if the resulting time of arrival is later than the current time of arrival, or if no

surrounding cell was updated in the previous iteration.

5.4 Crown Fire

Whether a fire will spread into and through the crowns of trees depends on a number

of factors. As with FARSITE’s implementation [11], active crown fires have a different

maximum spread rate than surface and passive crown fires approximated by

Rmaxcrown = 3.34R10

31

The actual maximum spread rate of a crown fire depends on the crown fraction

burned, given by the equation

CFB = 1− e−ac(R−Ro)

where

ac =
−ln(0.1)

0.9(RAC −Ro)

and

Ro = Io
R

Ib

Io is the reaction intensity of the fire which can be obtained by multiplying the current

spread rate by the intensity modifier outputted from the maximum spread property

shader. Ib is the threshold intensity for a crown fire to occur and is given by

Io = (0.010CBH(460 + 25.9M))
3
2

where CBH is the crown base height and M is the foliar moisture content. RAC is

the threshold spread rate at which a crown fire is promoted from passive to active.

Given the crown bulk density CBD, this threshold is given by

RAC = 3.0/CBD

Crowning is modeled in the simulation as an increase in maximum spread rate in

the case of an active crown fire. Canopy height is stored in a texture, and crowning

is only considered if the canopy height is greater than zero. RAC is computed with

a shader and stored in a texture. Modification of the CBD texture results in the

recomputation of the RAC texture. Io is also computed with a shader and is only

updated if the CBH texture is modified. Before accelerating spread rates, the current

spread rates are used to test whether the fire is now actively crowning, and if so, the

maximum spread rate is adjusted accordingly. This computation is done on a per

direction basis.

32

5.5 Simulation Progression

At the beginning of the simulation, all directional spread rates are initialized to zero.

Times of arrival are cleared to a user-defined end time. Burn distance textures are

set to the complete distance to each neighbor.

Algorithm 5.2 outlines the flow of the simulation. Because spread properties can

change due to alterations caused by events, simulation progresses in substeps between

events.

Algorithm 5.2 Simulation Flow

1: endT ime = currentT ime
2: startT ime = lastUpdateT ime
3: while startT ime != endT ime do
4: stepT ime = min(endT ime, nextEvent.time)
5: Update corrupted data()
6: Propagate fire(startT ime, stepT ime)
7: Burn distances(startT ime, stepT ime)
8: Accelerate(startT ime, stepT ime)
9: Trigger next event()

10: startT ime = stepT ime
11: end while
12: lastUpdateT ime = endT ime

5.5.1 Texture Summary

Table 5.1 summarizes the purposes of every texture used in the system with fire

acceleration incorporated. Constant textures such as the TextureBuffers used to

store constant data are not enumerated. Several of the textures have a notation of

[2] denoting that there are actually two copies of this texture.

33

Texture Purpose
slopeAspectElevation Slope, aspect, and elevation of the terrain
fuel Integer fuel model numbers
deadMoistures Dead fuel moisture content (1-hour, 10-hour, 100-hour)
liveMoistures Live fuel moisture content (herbaceous, woody)
wind Wind direction and magnitude
spreadData Maximum spread rate, direction, eccentricity, intensity

modifier
burnDistance[2] Length of unburned fuel in orthogonal and diagonal di-

rections
burnRate[2] Current spread rates in orthogonal and diagonal direc-

tions
maxBurnRate[2] Maximum spread rates in orthogonal and diagonal di-

rections
sourceData Coordinate of cell that ignited this cell
timeOfArrival Earliest ignition times
originalTimeOfArrival Time to revert to if source data becomes corrupted
crownThreshold Threshold intensity for crowning
crownBaseHeight Base height of the crown (CBH)
crownBulkDensity Density of crown bulk (CBD)
crownActiveRate Threshold spread rate for crown spread (RAC)
canopyHeight Height of the canopy
timeStamp[2] Last integer iteration cell was updated during

Table 5.1: Summary of Textures

34

Chapter 6

Results

In order to examine the benefits and shortcomings of the GPU simulator, a set of test

cases were generated. Simple conditions were used to examine the basic properties of

fire spread while more complex conditions were setup to examine performance under

more realistic conditions. For all figures, times of arrival are colored with a gradient

mapping violet to the time of ignition and red to the simulation time at which the

image was produced. The black lines indicate some time milestone, and images within

the same figure use the same time milestones.

6.1 Simple Conditions

Figure 6.1 shows the simulated spread progression of an ignited fire in a completely

homogeneous environment. The slope of the entire landscape was set to zero, the

fuel map contained a single fuel model and crowning was disabled. Fuel moistures

were also kept uniform. With zero wind, it would be expected that such conditions

would result in fire spreading in a perfect circle. However, the simulation result shows

fire spread in the shape of an octagon. This is explained by the limited number of

directions that fire can spread in. Points lying on these directions relative to the

ignition point have correct times of arrival since the distance traveled to reach them

is equal to the distance between the cell and the ignition point. Every other point,

however, can only be reached by traversing a set of links oriented in the allowable

spread directions. In other words, the actual distance burned to get to these points is

35

Figure 6.1: Simulated fire spread on terrain with no slope, no wind, and a uniform
fuel map.

longer than the length of a line connecting the ignition point with the cell. As such,

it may be concluded that this particular model will underestimate the spread of fire.

Figure 6.2 summarizes the results of simulation of fire given various uniform

slopes facing west. Again, fuels and moistures were kept consistent and no wind was

added. As the slope increases, the eccentricity of the fire ellipse increases as expected.

Additionally, the overall spread rate increased. Fire spread upslope was relatively

faster than fire spread downslope, and the difference between the two increased with

the slope percentage. At the same time, the underprediction due to the limited spread

directions becomes more apparent.

Figure 6.3 drops the slope back to zero and instead varies the wind speed moving

eastward. The effects are similar to the effects of increasing slope in that an increase

in wind speed increased the eccentricity of the fire ellipse as well as the spread rate.

Again, underestimation can be observed, although this effect seems to be mitigated by

oscillating the wind direction by some amount during each update. Figure 6.4 shows

the effect of oscillating the wind vector by various amounts using different periods.

36

Figure 6.2: Simulated fire spread on terrain with various slopes, no wind, and a
uniform fuel map.

37

Figure 6.3: Simulated fire spread on terrain with no slopes, various wind speeds, and
a uniform fuel map.

The shapes on the left side were generated by allowing the wind to oscillate with

a period of 4000π seconds while those on the right used a period of 8000π seconds.

The shapes on top allow the direction to oscillate up to 20 degrees in either direction

while the lower shapes allow an absolute difference of 40 degrees. These variables

were inputted into a sine function to determine the actual oscillation at any point in

time.

The effects of fire acceleration is illustrated in Figure 6.5. The upper left fire

used an acceleration constant aa of 0.1 while the upper right used a constant of 0.01.

The lower left and lower right fires used constants of 0.001 and 0.0001, respectively.

At ignition, a 10 mph is set blowing east. The direction is rotated 90 degrees coun-

38

Figure 6.4: Simulated fire spread on terrain with no slopes, a steady wind speed, an
oscillating wind direction, and a uniform fuel map.

39

Figure 6.5: Effects of fire acceleration on flat terrain with a rotating wind using a
uniform fuel map.

terclockwise every 3000 simulation seconds. As aa decreases, the time required to

accelerate towards the maximum spread rate increases. As a result, the effects of the

wind direction change become less apparent as aa decreases.

While all of the previous results assumed a single fuel model across the entire

simulation space, in reality this is rarely the case. When a fire progresses from an

area with one fuel model to an area with a different fuel model, spread rates change,

altering the overall progression of the fire. These effects were examined by generating

a fuel map containing a single fuel model in all areas except for a large rectangle of

some other fuel type. Figure 6.6 shows the effects of an unburnable fuel type being

inserted into the simulation space. Fire spread stops completely at the boundary of

40

Figure 6.6: Simulation of fire spread around an unburnable area.

the fuel and must spread around it, delaying its spread to the other side of the barrier.

Figure 6.7 shows the effects of fire spreading into an area that burns faster than

the surrounding area. The fire shape becomes distorted as the fire burns through the

area. Figure 6.8 shows the effect of swapping the fuel models. While the fire slowly

progresses into the area from the south side, it also surrounds the entire slow area

and slowly burns inward from all directions, forming a ring of fire.

6.2 Complex Conditions

Although the simple conditions are useful for examining the individual characteristics

of the fire simulator, its performance cannot be realistically tested with such condi-

tions. Therefore, performance measurements are done on a more complex example.

A fire is simulated using data from Kyle Canyon, Nevada. A satellite image of the

area in question is shown in Figure 6.9. A graphical representation of the fuel map

used is shown in Figure 6.10.

Figure 6.11 shows the result of a run with no wind and no crown fire acceleration.

41

Figure 6.7: Simulation of fire spread through a faster burning area.

Even without these effects, the complex shape of the fire presents higher probabilities

of the fire acceleration problem occurring and requiring additional propagation passes

to correct it. Figure 6.12 shows the result of a run with an eastbound wind. Such

winds increase the spread rates in various directions, increasing the probability that

a fire may spread from one cell to two or more cells in a single simulation step,

again requiring more propagation passes to account for. Figure 6.13 illustrates the

effect of adding crown fire acceleration to the simulation without any wind. Again,

the increased spread rates may result in additional propagation passes. Figure 6.14

shows the effect of both wind and crown acceleration on the result, increasing the

spread rates even higher and possibly requiring more propagation passes.

For measurements, this complex data set was used for two experiments. For both

experiments, an ignition is placed at the exact center of the simulation space. A 10

mph wind is used. Its orientation is rotated by 1 degree every 100 simulation seconds,

and all of these wind events are initially enqueued. The timer is then started. The

simulation is then updated with some time step until it has reached 100,000 simulation

seconds. The timer is then stopped. Statistics on the number of updates and the

42

Figure 6.8: Simulation of fire spread through a slower burning area.

total simulation time are collected. The time per update is then computed as the

total simulation time divided by the number of updates.

All experiments were executed on a computer with an Intel Core 2 Quad with

four cores running at 2.4GHz and 3GB of memory. The graphics card used was an

NVIDIA 9800GTX with 128 stream processors and 512 MB of video memory.

The first experiment keeps the number of cells constant at 576,752 cells. Time

step size is varied from 50 seconds to 600 seconds in increments of 50 seconds. The

results are shown in Figure 6.15. The higher execution times whenever the time step

is not a multiple of 100 can be explained by the fact that a wind event occurs at every

100 second mark. Each of these events divides the simulation into substeps. When a

time step is not a multiple of 100, these substeps will periodically be divided again,

increasing the total number of substeps.

While the total execution time increases as the time step decreases, this increase

may be worth it in order to allow for increased user interactivity. Figure 6.16 shows

the average time per update. With smaller time steps, this time decreases, likely

43

Figure 6.9: Kyle Canyon, Nevada

due to fewer propagation iterations per update. This also suggests that there is a

considerable overhead to calling the update function repeatedly.

The second experiment maintained a constant time step of 500 seconds while

varying the number of cells in the simulation space. This value was varied by altering

the size of each cell while maintaining the same simulation extents. It should be noted

that some data, such as the fuel model texture, are not scaled according and are kept

in their raw form. As a consequence, any gains or losses due to cache coherence is

not accounted for.

Figure 6.17 shows the execution times of the second experiment. Increasing

the number of cells appears to increase the execution time quadratically. The overall

increase in execution time can be explained by several factors. First, while the number

of cells increased, their distances decreased. As a result, the likelihood of a fire making

more than one jump in a single iteration is increased given a static time step. Second,

an increase in the number of cells increases the number of fragments that must be

rasterized and processed. Finally, an increase in cells increases the size of the textures

44

Figure 6.10: Fuel map used in the Kyle Canyon simulation

used to store the spread data which in turn may result in a higher frequency of cache

misses. Unlike the first experiment, the computation time per update increases along

with the total execution time since the number of updates remains constant due to

the constant time step. Figure 6.18 reflects this.

45

Figure 6.11: Simulation run with no wind and no crown acceleration.

Figure 6.12: Simulation run with eastbound wind and no crown acceleration.

46

Figure 6.13: Simulation run with no wind and crown acceleration.

Figure 6.14: Simulation run with eastbound wind and crown acceleration.

47

Figure 6.15: Execution times with 576,752 cells simulated.

Figure 6.16: Average update time with 576,752 cells simulated.

48

Figure 6.17: Execution times with a timestep of 500 seconds.

Figure 6.18: Average update times with a timestep of 500 seconds.

49

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Wildfire modeling is a field rife with complexities. At even the simplest level, sim-

ulation of wildfire can be a time-consuming endeavor, reducing its effectiveness as a

predictive tool or a real-time training tool. Increasing the computational power by

increasing the number of CPUs in a machine or machines in order to move towards

this goal of rapid feedback may not be particularly cost-effective. On the other hand,

the increasing power and low cost of commodity graphics cards offers a possible alter-

native. However, special techniques must be employed to harness this computational

power.

Techniques to achieve wildfire simulation on the GPU were presented. A method

for essentially determining shortest paths in a lattice with static costs using depth

buffering was discussed and applied to spreading fire with no acceleration. Fire ac-

celeration was examined along with the problem that comes with adding it to the

simulator. A solution to that problem was presented, allowing one to find the short-

est path in the same lattice with dynamic path costs.

The resulting simulator is capable of simulating the spread of surface and crown

fires. It incorporates the concept of fire acceleration and allows the calling application

to introduce events that alter the progression of the simulation. The simulator does

the bulk of its work on the GPU and provides the calling application with access

to its data textures for visualization purposes. Mechanisms for co-simulation across

50

multiple GPUs is also provided.

Initial results showed that fire propagation using this lattice setup resulted in

underestimation. Some of the underestimation in the case of winds seemed to be

mitigated by oscillating the wind direction, which suggests that these distortions may

be resolved by introducing some sort of noise. Still, fire spread behaved as expected

with varying winds, slopes, and fuel models, and performance measurements indicate

that depending on the resolution and step size, the simulator may be used as a

component of a real-time simulation application. That being said, there are several

areas where this work can be expanded.

7.2 Future Work

Spotting

As a wildfire progresses, burning embers can be lofted into the air by wind and smoke.

Should these embers land on some sort of burnable object, these embers can ignite

more fires. This effect is particularly of interest since these embers can jump over fire

barriers that would have stopped a surface fire.

Preliminary work suggests that this effect can be modeled by sweeping the data

textures using a geometry shader and emitting embers into the air which can then be

controlled by several existing models, by some wind model, or some combination of

the two.

Weather Simulation

The fuel moistures in the simulation are currently static. Weather patterns can have

an impact on these moistures as well as other spread characteristics. Integration of a

weather simulator would increase the utility and accuracy of the simulation. Such a

simulator could also account for weather and moisture changes caused by the wildfire

spreading in some sort of feedback loop.

51

Validation

While some basic properties of the simulator’s fire spread model were discussed in

this work, comparisons of the results to actual fires or the results of other simulators

was not performed. Such comparisons would be necessary to not only validate the

model but also determine any necessary refinements.

GPU Clustering and CUDA

Although a single GPU provides a considerable amount of processing power, it may

not be enough. Extending the simulator to run on multiple GPUs in parallel is a

logical path to obtaining the necessary power. Such an effort would likely introduce

considerable complications in regards to the amount of data that would need to be

shared and synchronized across GPUs.

While the simulator runs on the GPU, it currently does so by employing a set of

tricks through the OpenGL API to force computation of the simulation. NVIDIA’s

CUDA [36] may provide speed increases by providing more direct access to a GPU’s

processing cores. At the same time, some of the graphics functionality, such as inter-

polation, employed by the simulator may become unavailable as the result of such a

switch and must also be resolved.

Improved Fractional Burning

The limited number of direct cell connections can cause a rather large amount of un-

derprediction. To a point, this can be ameliorated by increasing the number of direct

connections at the cost of memory and computational complexity. A more scalable

solution would involve determining any possible contribution of burned distances to

links other than the one presently being burned; that is, a burning ellipse expanding

into another cell horizontally will at least burn away some component in every other

direction.

52

Interactive Simulation Tool

The ability to rapidly set up a simulation environment and try various scenarios would

be of great use not only for model development but also for training purposes. The

simulator itself can run in real-time, but a user-friendly tool geared towards training

firefighters to orchestrate fire suppression strategies is needed to truly extend its

applicability. In the same vein, user studies would need to be done to evaluate the

effectiveness of such tools compared to more traditional training methods.

53

Bibliography

[1] H. E. Anderson. Predicting wind-driven wild land fire size and shape. Technical
report, US Forest Service, 1983.

[2] P. L. Andrews. BEHAVE: fire behavior prediction and fuel modeling system -
burn subsystem, part 1. Technical report, U.S. Forest Service, 1986.

[3] P.L. Andrews. BehavePlus fire modeling system: Past, present, and future. In
Proceedings of 7th Symposium on Fire and Forest Meteorological Society, page
J2.1, 2007.

[4] P. Billing. Otways fire no 22 – 1982/83. Technical report, Department of Sus-
tainability and Environment, 1983.

[5] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: stream computing on graphics
hardware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 777–786,
New York, NY, USA, 2004. ACM Press.

[6] Canadian Interagency Forest Fire Centre. PROMETHEUS.
http://www.firegrowthmodel.com/index.cfm, May 2008. Accessed De-
cember 5th, 2008.

[7] J.R. Coleman and A.L. Sullivan. A real-time computer application for the pre-
diction of fire spread across the australian landscape. Simulation, 67(4):230,
1996.

[8] Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real-time simulation and ren-
dering of 3D fluids. In Hubert Nguyen, editor, GPU Gems 3, chapter 30. Addison
Wesley Professional, August 2007.

[9] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

[10] M. A. Finney. An overview of FlamMap fire modeling capabilities. In Fuels
Management - How to Measure Success: Conference Proceedings, pages 213–220,
2006.

[11] M.A. Finney. FARSITE: Fire area simulator-model. development and evaluation.
Technical report, USDA Forest Service, 1998.

54

[12] M.A. Finney. Spatial modeling of post-frontal fire behavior. Technical report,
Rocky Mountain Research Station, 1999.

[13] D. G. Green, A. M. Gill, and I. R. Noble. Fire shapes and the adequacy of
fire-spread models. Ecological Modelling, 20(1):33 – 45, 1983.

[14] Gold Standard Group. OpenGL Shading Language. http://www.opengl.org/
documentation/glsl/. Accessed December 4th, 2008.

[15] Gary J. Katz and Jr Joseph T. Kider. All-pairs shortest-paths for large
graphs on the GPU. In GH ’08: Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 47–55,
Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association.

[16] Emmett Kilgariff and Randima Fernando. The GeForce 6 series GPU architec-
ture. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page 29, New York,
NY, USA, 2005. ACM.

[17] Lutz Lata. Building a million particle system. In Proceedings of the Game
Developers Conference 2004, pages 54–60, 2004.

[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A
unified graphics and computing architecture. Micro, IEEE, 28(2):39–55, 2008.

[19] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju, Ian
Buck, Cliff Woolley, and Aaron Lefohn. GPGPU: general purpose computation
on graphics hardware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Course
Notes, page 33, New York, NY, USA, 2004. ACM.

[20] David Luebke and Greg Humphreys. How GPUs work. Computer, 40(2):96–100,
2007.

[21] Finney M.A. Fire growth using minimum travel time methods. Canadian Journal
of Forest Research, 32:1420–1424(5), 2002.

[22] M. Macedonia. The GPU enters computing’s mainstream. Computer, 36(10):106,
2003.

[23] M. E. Morais. Comparing spatially explicit models of fire spread through cha-
parral fuels: A new algorithm based upon the rothermel fire spread equation.
Master’s thesis, University of California, Santa Barbara, 2001.

[24] Douglas C. Morton, Megan E. Roessing, Ann E. Camp, and Mary L. Tyrrell.
Assessing the environmental, social, and economic impact of wildfire. Technical
report, The Global Institute of Sustainable Forestry, 2003.

[25] Nvidia Corporation. NVIDIA Tesla: GPU Computing Technical Brief.
http://www.nvidia.com/docs/IO/43395/Compute_Tech_Brief_v1-0-0_
final__Dec07.pdf. Accessed December 3rd, 2008.

[26] Nvidia Corporation. OpenGL floating point depth buffer extension.
http://developer.download.nvidia.com/opengl/specs/GL_NV_depth_
buffer_float.txt. Accessed December 3rd, 2008.

55

[27] Nvidia Corporation. OpenGL floating point texture extension. http:
//developer.download.nvidia.com/opengl/specs/GL_ARB_texture_float.
txt. Accessed December 3rd, 2008.

[28] Nvidia Corporation. OpenGL framebuffer object extension. http:
//www.nvidia.com/dev_content/nvopenglspecs/GL_EXT_framebuffer_
object.txt. Accessed December 3rd, 2008.

[29] Nvidia Corporation. OpenGL geometry shader extension. http://developer.
download.nvidia.com/opengl/specs/GL_EXT_geometry_shader4.txt.

[30] Nvidia Corporation. OpenGL integer texture extension. http://developer.
download.nvidia.com/opengl/specs/GL_EXT_texture_integer.txt. Ac-
cessed December 3rd, 2008.

[31] Nvidia Corporation. OpenGL occlusion query extension. http://www.nvidia.
com/dev_content/nvopenglspecs/GL_ARB_occlusion_query.txt. Accessed
December 3rd, 2008.

[32] Nvidia Corporation. OpenGL shader model 4 extension. http://developer.
download.nvidia.com/opengl/specs/GL_EXT_gpu_shader4.txt. Accessed
December 3rd, 2008.

[33] Nvidia Corporation. OpenGL texture buffer object extension. http:
//developer.download.nvidia.com/opengl/specs/GL_EXT_texture_
buffer_object.txt. Accessed December 3rd, 2008.

[34] Nvidia Corporation. OpenGL transform feedback extension. http:
//developer.download.nvidia.com/opengl/specs/GL_NV_transform_
feedback.txt. Accessed December 3rd, 2008.

[35] Nvidia Corporation. OpenGL vertex buffer object extension. http:
//www.nvidia.com/dev_content/nvopenglspecs/GL_ARB_vertex_buffer_
object.txt. Accessed December 3rd, 2008.

[36] Nvidia Corporation. NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide, 2007.

[37] Lars Nyland, Mark Harris, and Jan Prins. Fast n-body simulation with CUDA. In
Hubert Nguyen, editor, GPU Gems 3, chapter 31. Addison Wesley Professional,
August 2007.

[38] OpenGL.org. OpenGL fragment shader extension. http://www.opengl.org/
registry/specs/ARB/fragment_shader.txt. Accessed December 3rd, 2008.

[39] OpenGL.org. OpenGL shader object extension. http://www.opengl.org/
registry/specs/ARB/shader_objects.txt. Accessed December 3rd, 2008.

[40] OpenGL.org. OpenGL vertex shader extension. http://www.opengl.org/
registry/specs/ARB/vertex_shader.txt. Accessed December 3rd, 2008.

56

[41] E. Pastor, L. Zrate, E. Planas, and J. Arnaldos. Mathematical models and
calculation systems for the study of wildland fire behaviour. Progress in Energy
and Combustion Science, 29(2):139 – 153, 2003.

[42] G.L.W. Perry. Current approaches to modelling the spread of wildland fire: a
review. Progress in Physical Geography, 22(2):p222 – 245, 1998.

[43] G.D. Richards. An elliptical growth model of forest fire fronts and its nu-
merical solution. International Journal for Numerical Methods in Engineering,
30(6):1163–1179, 1990.

[44] R. C. Rothermel. A mathematical model for predicting fire spread in wildland
fuels. Technical report, U.S. Forest Service, 1972.

[45] R. C. Rothermel. Predicting behavior and size of crown fires in the northern
rocky mountains. Technical report, U.S. Forest Service, 1991.

[46] Nicolas Sardoy, Jean-Louis Consalvi, Bernard Porterie, and A. Carlos Fernandez-
Pello. Modeling transport and combustion of firebrands from burning trees.
Combustion and Flame, 150(3):151 – 169, 2007.

[47] Mark Segal and Kurt Akeley. The design of the OpenGL graphics interface.
Technical report, Silicon Graphics Computer Systems, 1994.

[48] R. D. Stratton. Assessing the effectiveness of landscape fuel treatments on fire
growth and behavior. Journal of Forestry, 102(7):32–40.

[49] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism
to program GPUs for general-purpose uses. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural support for programming lan-
guages and operating systems, pages 325–335, New York, NY, USA, 2006. ACM.

[50] C.E. Van Wagner. Conditions for the start and spread of crown fire. Canadian
Journal of Forestry Research, 7(1):23–40, 1977.

[51] J.W. Wagtendonk. Use of a deterministic fire growth model to test fuel treat-
ments. Sierra Nevada Ecosystem Project: Final Report to Congress, II, 1996.

[52] J. P. Woycheese and P. J. Pagni. Brand lofting above large-scale fires. In Interna-
tional Conference on Fire Research and Engineering Proceedings, pages 137–150,
1998.

[53] John P. Woycheese, Patrick J. Pagni, and Dorian Liepmann. Brand propagation
from large-scale fires. Journal of Fire Protection Engineering, 10(2):32–44, 1999.

