Immersive Visualization and Analysis of Ground Penetrating Radar Data

By Matthew Sgambati

Committee

Dr. Daniel Coming

Dr. Frederick C. Harris, Jr.

Dr. Nicholas Lancaster

Overview

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- > Results
- Conclusion
- > Future Work

Sand Dunes

4 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

5 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

6 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

7 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Shapes

- Crescentic
- Linear
- Star
- Dome
- Parabolic
- Transverse
- Reversing

LINEAR DUNES. Arrows show probable dominant winds.

STAR DUNES. Arrows show effective wind directions.

REVERSING DUNES. Arrows show wind directions.

Figure 4. From McKee, 1979

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Types
 - Sub-aqueous
 - Lithified
 - Coastal
 - Desert

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Forms
 - Simple
 - Compound
 - Complex

10 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Ground Penetrating Radar

11 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Ground Penetrating Radar

2 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Ground Penetrating Radar

3 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Brunton Compass

14 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Brunton Compass

15 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Brunton Compass

16 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Volume Rendering

17 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

 Display of data sampled in three dimensions

Volume Rendering

18 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Volume Rendering

19 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Volume Rendering

20 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Methodologies
 - Indirect
 - Direct
- Algorithm categories
 - Object-order
 - Image-order
 - Hybrid

Indirect

21 of 84

Background

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Iso-surfaces

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Assumptions
 - Iso-surfaces exist
 - Rendered within a reasonable degree of accuracy
- Complexity is an issue

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Requirement

- Every sample point is mapped to an opacity and color
- Techniques
 - Ray Casting
 - Splatting
 - Shear-Warp
 - Texture Mapping
 - Hardware Accelerated

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Image-order algorithm
- Produces some of the highest quality images
- Very computationally expensive

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Object-order algorithm
- Less computationally expensive than Ray Casting
- Throw paint balls onto a surface to obtain an image

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Maps every voxel to the viewing plane
- Footprint
 - Reconstruction Kernel
- Speed
 - Precompute footprints
- Issue
 - Reconstruction Kernel selection
 - Too larger results in a blurry image
 - Too small results in gaps in the image

Splatting

28 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Shear-Warp

29 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Hybrid algorithm
- Fastest purely software-based algorithm

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Sheared object space

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Speed
 - Run-length encoding
- Issues
 - Run-length encoding
 - One for each axis, 3 x memory consumption
 - Interpolation is per slice
 - Aliasing
 - Staircasing

Texture Mapping

33 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Uses Graphics Hardware
 - Texture Mapping
 - Interpolation
- Types
 - 2D-texture mapping
 - 3D-texture mapping

2D-Texture Mapping

34 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Splits data into axis-aligned slices
- Composited in back-to-front order

2D-Texture Mapping

35 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Advantages

- Simplicity
- Takes advantage of graphics hardware (Bilinear interpolation)
- Disadvantages
 - Slices created for each axis, 3 x memory consumption
 - Flickering
 - Aliasing occurs when magnified

3D-Texture Mapping

36 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Stores data as a 3D-texture
- Creates viewport aligned slices

3D-Texture Mapping

37 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Advantages

- Overcomes disadvantages of 2D-texture mapping
- Takes advantage of graphics hardware (Trilinear interpolation)

3D-Texture Mapping

38 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Disadvantages

- Bricking mechanism required for large data sets
 - Limited by bandwidth between system memory and graphics hardware
 - Brick size
 - Too large wont fit into graphics hardware's memory cache
 - Too small increases memory footprint and number of intersection tests

Hardware Accelerated

39 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

 Uses Programmable Pipeline instead of the Fixed
Functionality Pipeline

Virtual Reality

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Notion of mental immersion through feedback
 - Visual
 - Haptic
 - Olfactory
 - Auditory
- Depth Cues
 - Monoscopic
 - Stereoscopic
 - Motion

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Stereo Vision
 - Active
 - Passive
- Stereoscopic Displays
 - Fishtank
 - Head Mounted Display
 - Projection-based
- Input Devices
- Toolkits

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Monoscopic
 - Provide information from only one eye
 - Information
 - Interposition
 - Size
 - Linear perspective
 - Motion parallax

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Stereoscopic

- Provide information from two eyes
- Images are different perspectives of the same location
 - Provides spatial information
 - Obtained from the parallax between objects in the image

Motion

- Same as motion parallax
- Not always present

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Active
 - 1 Projector with 120Hz refresh rate (60Hz each eye)
 - Synchronized signals between projector and glasses

Stereo Vision

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Passive
 - 2 Projectors (60Hz refresh rate)
 - Polarized filters

Stereoscopic Displays

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Types
 - Fishtank
 - Head Mounted Display
 - Projection-based

Stereoscopic Displays

47 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Stereoscopic Displays

48 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Stereoscopic Displays

49 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Input Devices

50 of 84

- Sand Dunes
- Ground Penetrating Radar and Brunton Compass
- Volume Rendering
- Virtual Reality
- > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Designed to help users deal with VR systems
 - Specialized hardware
 - Specialized devices
 - Unique environments
- Examples
 - FreeVR
 - VR Juggler
 - Virtual reality user interface (Vrui)
 - Hydra

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- VR development toolkit written by Oliver Kreylos
- Goal is to shield developer from a particular configuration of a VR environment
 - Display abstraction
 - Distribution abstraction
 - Input abstraction

Toirt-Samhlaigh

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- > The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

- Volume rendering library
 - Patrick O'Leary
- 3D-texture mapping, hardware accelerated DVR type of algorithm
 - Slice-based rendering
- Heavily integrated with Vrui

Toirt-Samhlaigh

54 of 84

- Background
 - Sand Dunes
 - Ground Penetrating Radar and Brunton Compass
 - Volume Rendering
 - Virtual Reality
 - > Toirt-Samhlaigh
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Provides many features

- Transfer functions
- Directional lighting
- Volume manipulation
- Color maps
- Tools, such as clipping plane tool
- Modifiable slice factor
- Load several data types

55 of 84

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Create a program capable of visualizing GPR data in an IVE and create tools to assist in the analysis of the GPR data

This was done by taking Toirt-Samhlaigh and performing enhancements and expansions to the library

Software Specification

- Background
- > The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - > Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Requirements
 - Functional
 - Nonfunctional

Requirements

57 of 84

- Background
- The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - > Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Functional

- The program shall be able to load GPR data in SEGY revision 1 format.
- The program shall allow the user to turn the data visualization on and off.
- The program shall allow the user to change the orientation and position of the data.
- The program shall allow the user to take dip and strike measurements.
- The program shall allow the user to take distance and angle measurements.

Requirements

58 of 84

- Background
- The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - > Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Nonfunctional

- The program shall maintain interactive frame rates.
- The program shall written in C/C++.
- The program shall use a hardware accelerated, texture mapping DVR algorithm for its rendering.
- The program shall use VRUI and Toirt-Samhlaigh for its prototype application.
- The program's rendering algorithm shall use OpenGL.
- The program shall be implemented on the Linux platform.

Use Cases

- Background
- > The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

System Overview

- Background
- The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - > Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Toirt-Samhlaigh

- Background
- The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - > Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Iterative Design Process

- Background
- > The Project
- Software Specification and Design Process
 - Requirements
 - Use Cases
 - System Overview
 - > Iterative Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Conducted with a researcher at DRI
 - Valuable feedback
 - Valuable learning experience

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- SEGY file loader
- Toirt-Samhlaigh tools tested
- Modified Slicing Tool
 - Handle scaling of GPR data
 - Double as a clipping tool
- Added Topographic correction to SEGY file loader
- Surface Visualization
 - Transparency modifiable

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Two tools created
 - Distance Measurement Tool
 - Brunton Compass Tool
- GUIs were created as needed
- Save/Load Functionality

Topographic Correction

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Store values read in from a file into a 2D grid structure
 - x-coordinate, y-coordinate, elevation
 - Samples taken at regular intervals, plus at the peaks
- Performed linear interpolation

Topographic Correction

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Topographic Correction

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Surface Visualization

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Distance Measurement Tool

- Background
- The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Brunton Compass Tool

- Background
- The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Brunton Compass Tool

- Background
- The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Results

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Videos

- Volume orientation and position
- Directional lighting
- Color Maps
- Slice Tool
- 1D Transfer Function
- Surface Visualization
- Distance Measurement Tool
- Brunton Compass Tool

Volume Orientation and Position

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Directional Lighting

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Color Maps

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Slice Tool

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

1D Transfer Function

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- > Results
- Conclusion
- Future Work

Surface Visualization

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Distance Measurement Tool

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

Brunton Compass Tool

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- > Results
- Conclusion
- Future Work

Conclusion

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Background
- The Project
- Software Specification and Design Process
- Implementation
- Results
- Conclusion
- Future Work

Future Work

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Improve User Friendliness
 - File selection menu
- Change the scale of the data
- Change the loaded data set
- Tools
 - Custom shaped viewing tool
 - Layer peeling tool
 - Auto subsurface generating tool
- Load more GPR file formats and different types of data

- Background
- > The Project
- Software Specification and Design Process
- > Implementation
- Results
- Conclusion
- Future Work

- Have more than one volume loaded at a time
- Perform automatic or semiautomatic segmentation of the data into layers
- Clipping Plane issue
- Replace Toirt-Samhlaigh
 - Implements newer DVR algorithms
 - Takes better advantage of graphics hardware
 - Not integrated with a VR toolkit

Questions

Thank you for coming

Demo at 2:00 p.m.