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Abstract 
 
 While educators have been working to teach introductory programming for 

between 40 and 50 years, the research has not supported either the value or the 

effectiveness of this endeavor. Recent research has found that teaching some thinking 

components along with the programming actions can provide positive results. A pilot 

study was conducted with college students learning a formalized and structured 

programming process in order to evaluate the efficacy of the process. Some positive, but 

limited, results were found from the study, although one of the interesting results 

discovered directly from students' responses is the need to further support this kind of 

activity. Preliminary results are reported, and opportunities for further study are 

identified. 
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Chapter 1 

Introduction 
 
 
 There are many opinions posited about the quality and effectiveness of teaching 

introductory computer programming, commonly called Computer Science I or CS1. 

However, one of the boldest and as it turns out, one of the best supported with research is 

that "many students do not know how to program at the conclusion of their introductory 

courses" [39]. This is a pretty strong indictment considering that computer programming 

is the first or second course taught in almost all Computer Science programs around the 

country. Another strong statement made by Robins, Rountree, and Rountree who recently 

reviewed the literature on learning and teaching programming is that "the average student 

does not make much progress in an introductory programming course" [52]. This same 

review quoted several others who offered comparable commentary (see for example, list 

in [52], p156). 

 The news is not all bad in this arena because there has been a significant amount 

of research conducted in the past three decades. The beginnings of this research were 

based on the idea that learning to program would help with students acquiring cognitive 

skills "such as planning abilities, problem-solving heuristics, and reflectiveness" [44], or 

"proper habits of mind" [38]. These results seem intuitively obvious, although Pea and 

Kurland went on to compare the efficacy of this kind of learning to that of Latin or other 

disciplines such as mathematics or logic that were previously thought to improve 
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students' minds. The other problem, and the one addressed in this thesis is that, as Pears, 

et al. [45] argued,  the research -- active as it may be -- is not making inroads into 

classroom teaching practices. 

 The response to the present state of this discipline is to seek ways to make 

introductory computer programming learning more effective by attempting to move the 

research into the classroom. For example, cognitive researchers who have been studying 

memory organization in the form of chunks have provided a vehicle for researchers who 

have studied the "content and structure of programming knowledge" [52]. The memory 

chunk is a construct that explains how humans can hold individual items of information 

(e.g., names, ages, telephone numbers, change amounts, etc.), or large-scale semantically 

organized procedures (e.g., how to sum or average a list of numbers, how to find a 

maximum value in a list, etc.), sometimes called plans or schemas [41]. The concept of 

chunking, and to a significant extent the limitations of human memory chunks, is an 

important driver to the research reported herein. 

 Beyond the fundamentals of memory content or management, there is also the 

issue of what researchers should be studying in order to support improved programming 

learning. Davies [22] noted that just having content knowledge of programming may not 

be enough; he argued that a strategic model of knowledge representation is important, not 

just for organizing present knowledge, but for understanding the changes that occur as 

expertise develops. Thus, beyond teaching with consideration for human memory 

limitations, this research will also attempt to address the systematic organization of 

learner program development as both the learners and the programs evolve. 
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 The third leg of the research driving the present study is related to the original 

argument, or question, related to the integration of teaching thinking processes with 

programming. Kirkwood [36] worked to integrate higher-order thinking and problem 

solving with a secondary school programming course. The results of her research were 

that the students found success at the programming endeavor by demonstrating well-

designed programs, experiencing few syntactical or logical errors, and so on. In addition 

however, students also found success at the higher-level thinking endeavors with 

specifically improved cognitive and metacognitive characteristics. 

 Thuné and Eckerdal [61] conducted a qualitative analysis of student perceptions 

and found, among others, that "Computer programming is seen as a way of thinking, to 

solve problems, leading to the production of computer programs such as those that appear 

in everyday life. In addition, computer programming is experienced as a skill that can be 

used outside the programming course, and for other purposes than computer 

programming" [61]. Another study observing student learning included problem solving 

as one of the ways students go about learning to program [14], and still another study that 

included a lighter pre-CS1 course still included the learning of problem-solving abilities 

[2]. 

 To summarize, even with a significant amount of research being conducted at 

present, the CS1 classroom does not seem to be benefiting from these endeavors. This 

thesis will report on a pilot study using a process that is driven by research in learner 

memory management, using the chunking construct, and other research-driven 

components. The process also seeks to provide a systematic vehicle that should support 

both better quality programming and improved student success with the development of 
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programs. And finally, the process attempts to teach and to apply higher-level thinking 

abilities in students so that their problem-solving abilities are improved, both within the 

CS1 classroom and without. 

 This thesis continues in Chapter 2 with extended background research on the 

issues and problems found in teaching and learning computer programming in CS1 

courses, and then a review in Chapter 3 that includes the apparent needs identified to 

move the introductory programming teaching and learning discipline forward. In Chapter 

4, the Five Step Programming Process will be proposed and in Chapter 5, a pilot study 

using this process will be evaluated for student usability and efficacy. Finally in Chapter 

6, research conclusions from the pilot study will be presented, and future work that will 

include using this process in larger-scale studies will be proposed. 

 

 



5 

 
 
 
 
 

Chapter 2 

Issues with CS1 Teaching 
 
 
 This chapter begins the discussion with some history and background of 

introductory computer programming education, and some of the more significant issues 

that have been researched related to CS1 teaching and learning. 

2.1 Attitudes About Programming 
 

 While the number of Computer Science majors has experienced a small uptick in 

the past couple of years, it had declined by about 50% between 2002 and 2007 [55]. 

Failure rates vary but have been reported at 30% during that time [60]. This is 

unfortunate for two reasons: 1) computer programming is only part of the Computer 

Science discipline, but since students have to program to get through most CS courses, 

they must get started early; and 2) these kinds of losses make the future bleak for both 

industrial and academic institutions that need the kind of talent and fresh ideas that CS 

students can bring to the discipline. 

 Research from Simon, et al. [55] found that about 52% of about 300 CS majors 

made positive statements about taking CS1, but 26% provided negative responses. By 

itself, that statistic does not seem to bode well. However, when non-majors reported their 

opinions, only 45% provided positive responses and more than a third (36%) provided 
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negative responses. Within the total group, 22.9% of the responses stated that the course 

was hard or difficult, 15.3% made other generally negative statements, and 10.3% of the 

respondents reporting that the process was frustrating or stressful. While there were 

several other response categories, the last one of interest reported here is that 8.6% of the 

students reported that the course required a lot of time. 

 Other research can be used to show student frustration or student departure from 

Computer Science as a result of the introductory programming courses. Beaubouef and 

Mason [7] discussed the loss of students and summarize a variety of problems such as 

poor advising, poor math and problem-solving skills on the students' parts, poor lab 

courses and teaching issues on the institutions' parts, and so on. However, Computer 

Science and computer programming specifically can be really enjoyable when students 

experience successful interactions with their work. The reality found in the research is 

that this does not appear to be happening in the CS1 courses. 

2.2 Cognitive Issues in Programming 
 

 Assuming that most students who take the CS1 course approach it with a belief 

that they will be successful, what kinds of problems could either frustrate them and/or 

stop them from continuing or striving in a course where many others have previously 

succeeded? One of the first considerations is cognitive ability. This is not meant to say 

that differential cognitive abilities are what make or break an introductory CS student's 

success in the course. Instead, it is analyzing the teaching process from the learners' 

cognitive characteristics. 
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 Cognitive load is one of the key terms addressed in this study. This is the amount 

of processing ability needed by an individual at a given moment under given 

circumstances. The concept of cognitive load grew out of the need to model the access 

and use of limited real-time memory storage known as working memory [6]. While there 

is significant argument related to the size of working memory, the most recent research 

on this places the size at about four chunks (see [21] and associated articles for a 

comprehensive discussion of this topic). This would be a significant restriction that 

should be considered by any educator of any course, but when the educator is teaching a 

process that solves problems in a sequential and formal way using a language previously 

unknown to students in the programming environment that includes managing source 

code, compiled programs, and related data, this limitation is more than significant; it is 

critical. 

 Unfortunately, it is generally agreed that the memory capacity decreases when 

interactive elements such as, for example: using variables, in order to → conduct math, in 

order to → display a result, are combined. Paas, Renkl, and Sweller [42] and Sweller, van 

Merrienboer, and Paas [59] argued that working memory can only hold two or three 

novel interacting elements at a given moment. Adding to this issue, Yuen [65] argued that 

cognitive load is additive, which makes the addition of learning actions to the core 

learning quantity part of the problem. As early as 1985, Anderson and Jeffries studying 

students using the LISP programming language concluded that mistakes were made as a 

result of loss of working memory information [4]. This means that teaching the 

programming process must be highly refined to respond to this issue, and it also provides 

evidence as to why it may not have been done as well up to this point. 
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 The good news about the limit is that once a human does integrate or internalize a 

concept or quantity of knowledge, it is moved toward the long-term memory area, and 

can then be recalled on command. This includes more complicated structures than simply 

memorized values which can then be recalled, and stored, as a chunk in working memory 

[52]. This can lead to the goal of this study by synthesizing a path that includes "a 

starting cue, a direction, a level, and a type of link to explore next" [52]. If this direct 

implementation of memory access can be used, students can learn to develop a program 

in concert with their memory operations as opposed to in conflict with them. Rist [51] 

used this approach when discussing how novices can transition to expert-like 

characteristics with both consideration for memory retrieval and program development. 

 Green, Bellamy, and Parker [32] created what they called the "parsing-gnisrap" 

model which, in the gnisrap condition, builds the program from known schemas found in 

memory; and in the parsing condition, works the memory process by essentially creating 

a large chunk representing a whole task or programming, and then taking the large chunk 

down to its pieces to understand the program. Ormerod [41] continued this discussion by 

referring to propositional representations formed in memory that can again hold whole 

plans, called scripts or schemas, and Rist discussed the evolution of what he calls a "plan 

schema" [51]. This is not to say that whole programs can be retrieved and replayed, but 

blocks or modules can be retrieved as components and programs can be created 

"opportunistically and incrementally" [31]. While this proposal takes advantage of human 

thought, it is clearly more of an expert action considering the assumption that a 

programmer has these blocks of schemas available to working memory. This is where 

educators must seek to make better novices rather than trying to create experts 
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considering that novices are working from a nearly empty set of retrievable modules. The 

expert-novice issue will be discussed later in this chapter. 

 Nevertheless, supporting the learning by novices leads to the issue discussed by 

Merrill [40] that teaching anything of complexity cannot be left to the learner, or as he 

puts it, "receiving little or no guidance (sink-or-swim) is not effective" [40]. As Merrill 

argued, students must be carefully guided from the simple to the complex. As one 

example of this process in the course of moving the student toward increasing skill, it 

should be noted that the translation of information into schemas (i.e., working chunks) 

takes more than an individual experience. The process of converting learned schemas into 

storable chunks requires a conscious effort and must be learned to a point where its parts 

do not have to be separately organized and manipulated. Sweller points out that this 

automaticity is required in order to bypass the limits of working memory and may require 

"extensive practice" [59]. While this is a requirement of managing the cognitive 

load/memory limitation issue, it is not difficult to overcome primarily with practice 

dedicated to the particular activity that is to be encoded as a schema. However, it is 

incumbent on the educator to see to the successful implementation of this activity. 

 Complexity and quantity of information can overwhelm a student who in the 

course of trying to manage and manipulate information in the limited working memory 

resources experiences cognitive overload [63]. This can be resolved by teaching whole 

programs that are light on details, and then breaking these holistic components down to 

comparable modules that as individual components are not cognitively expensive, but 

help the student gain the important schemas required for larger-scale components one at a 
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time. This is a critical component of the process proposed in this thesis. van Merrienboer, 

Kirschner, and Kester concluded their article with the following: 

"limited working memory is no doubt the most central aspect of human cognitive 

architecture. There are many factors that an instructional designer must consider, but the 

cognitive load imposed by instructional designs should be the preeminent consideration 

when determining design structures" [63]. 

 As part of developing the background for a programming/learning process, it 

should also be noted that the addition of this kind of process, much like the learning of 

so-called weak problem-solving skills such as top-down, means-ends, and so on, will also 

cost working memory or cognitive load overhead [63], a condition reiterated by Sweller, 

van Merrienboer, and Paas [59]. This is an issue that must be considered during the 

development of this kind of process, and it will need to be resolved in order to make the 

process effective. 

 All of the above issues come down to the management or limitation of cognitive 

load and the potential manipulation of the memory chunks holding those pieces of 

knowledge that will support the solution to a given problem. Gerjets, Scheiter, and 

Catrambone [25] argued for a modular approach to the learning, as opposed to what they 

called a "molar" view that attempts to identify and teach toward problem categories or 

patterns, which of course cost more cognitive load. This is an important consideration for 

an educator who wishes to place a learning tool in the hands of novice students; it is also 

a very convenient one for a programming teacher. Modularity is one of the most powerful 

and appropriate ways to support reliability and fault tolerance [37] in a program; and 
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using modularity has the potential to align student learning effectiveness with proper 

program development in a natural way. 

 For the cognitive issues identified in this section, there seem to be more problems 

than there are solutions. However, it is the identification of these issues that is important. 

Once these are known and/or made explicit, they can be addressed. The limitations of 

memory and cognitive load are severe, but knowing about them and adapting the learning 

to these limitations is really only a matter of scaling. It is admittedly a small scale, but it 

is nevertheless a somewhat quantifiable entity, and it should be possible to work with 

this. 

2.3 Perception Issues in Programming 
 

 While it is not as significant or possibly well-recognized as the cognitive issue, 

human perception specifically related to programming is still a consideration. David 

Gilmore's [28] early work identified program organization characteristics that he showed 

to have an impact on program understanding by students. As early as 1980, Hartley [33] 

found that the use of white space (i.e., areas of programming text without any characters 

or text) has the potential to improve reader comprehension. This is important to students 

trying to manipulate interrelated items in their working memory, and could lead to 

assistance with organizing the information in the structured way required for moving 

program actions into long term memory as schemas. 

 Payne, Sime, and Green [43] showed that even a simple change in the perceptual 

characteristic of program text such as capitalizing some of the keywords significantly 

reduced errors. Gilmore [28] went on to provide signs that the comprehension of text and 
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other materials can be improved by clearly showing the underlying structure of the 

information. Gilmore's own research found that "structural visibility enables a general 

improvement in performance through a reduction in the demands on cognitive processes" 

[28]. 

 One of the implications of Gilmore's research was that while languages 

themselves may not contribute to reduced cognitive load, the appropriate structural use of 

the language can drive increased programmer performance. In his conclusion, Gilmore 

argued as a result of his research that this improved performance can be a result of 

improved perceptual processing, improved programmer understanding, and an 

understanding of how to use a language's organization to drive these improvements. 

 To reiterate, the organization and presentation of text in a source code file is not 

as big a consideration as cognitive load and memory limitations. Nonetheless, it does 

exist, it has been researched to some extent, and it is a way to make inroads on program 

understanding and processing or cognitive load reduction. This part of the research will 

contribute to the proposed solution. 

2.4 Focal Quantity Issues in Programming 
 

 The last component studied under the umbrella of cognitive processes is, like text 

structure, not as widely researched as for example, cognitive load. However, the 

recognition of this cognitive quantity is still important. Rist [51] found that if students did 

not already have a schema available to them, they would identify a piece of the problem -

- essentially a short-term goal -- as a focal point, and then expand outward from the focal 
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point generating solution components necessary for solving the short-term goal. His label 

for this process was plan creation. 

 Rist found that this was a natural result for novice programmers who did not have 

experience in the form of a schema to use in a top-down programming process. He also 

noted that once this schema was developed, it would be re-used by the novice when a 

comparable, but new or novel problem was presented later. Rist called this "the start of 

detailed design in the domain of the program" [51]. In a later paper, Davies pointed out 

that "expert programmers were seen to generate significantly more focal lines during the 

early stages of the development of a program, whereas novice programmers generated 

significantly more non-focal lines" [22]. The important thing to note here is that these 

were essentially observations of the natural course of program development, without any 

attempt to modify either the expert or the novice approach. Another key point in 

following these observations was Davies' note that the "focal lines may represent a 

discrete level of design abstraction" [22]. 

 Robins, Rountree, and Rountree [52] summed this up by saying that the best 

evidence that novices do not have the needed schemas is that they struggle with the 

appropriate use of focal design. Once again however, this commentary and the research 

supporting it is generally observational as to the natural order of beginning and 

experienced programmers. Understanding the value of focal components of a program, 

and knowing that they can be identified and exposed to student programmers provides 

another consideration for how to teach the process. 
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2.5 Expert/Novice Issues in Programming 
 

 A chapter on introductory programming issues would not be complete without 

consideration for the large amount of research in the area of experts and novices. To this 

point in the chapter, attitudinal and cognitive issues have been considered, as have issues 

related to perception and to conditions that drive or focus programmers' next steps. With 

these fundamental components provided, the broader -- but still primarily observational -- 

delineation between people with a significant number of discipline-specific skills, called 

experts, and those first learning a discipline, called novices, must be provided. This 

discussion will be presented here. 

 The novice approach to programming is considered to be superficial, tending 

toward a line-by-line development strategy. They do not have a complete picture -- called 

a mental model -- of the problem or solution in mind, and they tend to use superficial 

strategies or general problem-solving strategies that may or may not fit a specific 

problem [64]. For an individual with limited historical experiences and/or operational and 

retained schemas, this would seem appropriate. Novices tend to focus on the local or 

concrete components of a program [52], and while novices might be considering the 

syntax, experts tend to view the organization [28]. 

 It would seem obvious then that as novices are focusing on the details, they will 

have trouble gaining an abstract view of their program [51]. With this limitation, they 

would obviously have a difficult time creating program plans -- as experts do -- and/or 

synthesizing a program solution [50, 52, 64]. Beyond simply causing problems with 

program development, the novices' inabilities to abstract segments of problem solution or 
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code means that they will have difficulty thinking their way through or test-running 

larger segments of their program or solution as experts do [51]. Rist's research went on to 

show that novices move through programs in a depth-first modality while experts move 

through them in a breadth-first way. Rist posited that this may be the novices' way to 

manage cognitive load [51]. 

 Pennington [46] also conducted research on comprehension strategies, finding 

that individuals who were more able to comprehend programs provided more vague 

statements about the program and fewer details then individuals who were less competent 

at comprehending the programs. Her research tended to support Brooks' model that relies 

on an effective mapping between the problem and the program [13]. 

 Brooks also posited that program comprehension is studied by experts as a top-

down and hypothesis-driven activity. This concept -- as a model -- works for both experts 

and novices with the difference that experts will have an abstracted "view" of the larger 

program where novices will tend to have a narrow, or again, line-by-line view. When 

experts read programs, they chunk components into schema groups and can generate a 

more abstract or large-scale view of the program. When novices attempt this, they do not 

have the library of schemas as support, and as a result of that, cannot comprehend the 

whole program as the abstraction it could be. 

 As Robins, Rountree, and Rountree noted, "Experts can typically retrieve relevant 

plans from memory" and "Novices must typically create plans" [52]. This could make 

programs that may have the same general characteristics or patterns all look unique to the 

novice programmer. Beyond simply understanding a program, even when novices begin 

to understand parts of programming processing, Rogalski and Samurçay [53] posited that 
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novices continue to have difficulty with data structuring and problem modeling, which 

again represent more abstracted quantities. 

 One of the results of this difference, as mentioned previously, is the approach 

toward development of a program. In the actual creation of a program, experts tend to 

apply a top-down approach while novices tend to work bottom-up. It was also noted that 

as they evolve, novices tend more toward using a top-down development process [51]. 

For purposes of driving the novice toward expertise, this knowledge can be valuable. 

This is especially helpful when it is known that in spite of the expert/novice difference, 

the fundamental assumption related to human working memory capacity -- and discussed 

earlier in this chapter -- is that it is not different between experts and novices [22]. 

 One of the last considerations for expert vs. novice discussion is the simple act of 

reading code. Perkins and Martin  [48] found through interviews that while novices 

would commonly be able to write a segment of code, they did not commonly work 

through the code in their heads, a process called desk-checking by some [1], and close 

tracking by these authors. Very likely from experience, experts will commonly run a 

brief test of code segments to verify that they work within the appropriate constraints or 

limitations, but novices do not have the experience to drive this activity. In fact, it is 

common for novices to write segments of code and then resort to trial and error actions 

rather than trying to understand the program actions at the present level of scale or above 

[2]. It is also argued that this is further evidence of the narrow perspective held by 

novices. 

 To be clear, the issues found in this research do not by themselves oppose the 

teaching of introductory students to program. It is knowledge of, recognition of, and 
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finally adaptation to, these issues that can lead to improving the educational process. For 

example, it is generally accepted that experts have a significant base of experiences, 

memories, and schemas that are organized and contextualized as opposed to maintaining 

a large list of individual memories (see for example [10]). Incoming computer 

programming students by definition do not have these characteristics. And as novices, 

they will not acquire the quantity and quality of experiences in the short period of time 

offered by one or two semesters of programming study. Thus the appropriate strategy, 

and the findings of this section, should not lead to an attempt to create experts, but to 

provide tools that use the abilities novices do have to build the steps or provide the 

scaffolding [63] toward their improvement in the direction of expertise. 

2.6 Hypothesis-Testing, Experimentation, and Hacking 
 

 While the expert/novice topic is an important combination of both the researched 

background and the practical foreground of programming, the last topic addressed in this 

chapter will lean more in the direction of the practical. There are parts of learning 

introductory programming that naturally require management as a result of students' 

natural desire to experiment or play with the tools available. Experimentation is not bad 

in and of itself. Indeed, as mentioned previously, both experts and novices will generate 

hypotheses and in most cases test them. However, too much experimentation on the part 

of any programmer regardless of ability will require much more time than should be 

required whether or not the experiments work. This can lead to frustration, incomplete 

project execution, or both, on the part of the beginning programmer. 
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 Kirkwood identified "failing to plan or reflect, rushing straight to computers, 

constant floundering, and using random trial-and-error to debug programs" as evidence of 

"undesirable characteristics" [36] of student programmers. Rist [51] pointed out that 

experts do move into detailed coding operations during program design sessions, and 

they move easily between these modalities as needed for component design. He also 

noted that since novice programmers do not have access to the high-level design process, 

"they tend to flounder and search for a solution with little overall plan or organization" 

[51]. Again, the time used and the frustration generated by this process is not conducive 

to learning, or in some cases, to staying with the course. 

 In the course of evaluating the use of a number of programming languages by 

experts, Green, Bellamy, and Parker [32] found further evidence that programmers jump 

around to a certain extent when programming, and this tended to be related to the 

language. However, even in this study with fairly simple programs, the researchers were 

surprised to find that some of the programmers -- using the PASCAL language -- were 

using a stepwise refinement process (i.e., repeated passes through a program making 

improvements by degrees) that indicated global-view analysis  and development of the 

program. And again, the experts in this case had the option to move between high-level 

and low-level programming activities. 

 In still another study, van Merrienboer [62] found that trying to compensate for 

measured impulsive and reflective student characteristics did not work, although when 

the students were given a choice as to the support they needed, they tended to fare better. 

Robins, Rountree, and Rountree [52] suggested that opportunistic exploration might be 

appropriate for novice students, but this was after pointing out the incremental 
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development and management of  highly complex procedures that should be part of the 

process.  

 There certainly seems to be a place for experimentation and exploration in the 

programming process, and indeed it is certainly part of the creative endeavor that is 

programming. However, if this is the only strategy, unsupported by other more focused 

guidance, the evidence suggests that students will not experience as much success. 

Goldensen [29] pointed out that in many cases, procedural abstraction is put off for 

students until they get to more advanced courses. Perhaps the present state of 

introductory programming is evidence that this teaching strategy should be modified. 

 Robins, Rountree, and Rountree suggested that programming workbooks should 

teach and support "an explicit software development method to give some structure to the 

process" [52]. Soloway [57] suggested that in addition to learning stepwise refinement 

and planning skills, students should be taught a standard set of communication tools for 

discussing and understanding the programming process. Later in the same article, he 

pointed out that very few textbooks discuss appropriate programming organization, and 

that students are expected to pick up what he calls the "rules of programming discourse" 

[57] by observing examples of other programs. 

 The suggestions from research support a systematic format for learning to 

program, but this does not seem to be happening in the classroom. As mentioned earlier, 

programming is to a certain extent considered an artistic endeavor since there are so 

many different ways to solve any given problem. The unfortunate result of this tends to 

be that students experiment, they naturally generate short-term hypotheses, and then they 

follow their testing process, an activity commonly called "hacking". However, before 
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students can be allowed to try their own approaches, it would appear from the evidence 

that they should be provided a more secure foundation. 

2.7 Chapter Conclusions 
 

 There are some human considerations related to learning to program, or to 

learning any new discipline, such as the limitations of memory and the potential for 

cognitive overload. There are also strategies that apply research to appropriate program 

text organization and the use of white space that can help. Moreover, using constructs 

such as the focal quantity that are recognizable and manageable are additional support. 

Finally, in order to fend off student "floundering", there is evidence for, and a call for, a 

structured and/or standardized programming process. The key to all of this knowledge as 

evidence, and as potentially actionable information, is that these programming and 

learning components are based in research and have a reasonable chance of supporting 

educational success. The next chapter will address more questions focused on the 

practical needs found in the research that will drive the proposed solution. 
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Chapter 3 

Identified Needs for Teaching CS1 
 

 In the previous chapter, a review of the problems identified in introductory 

computer programming (CS1) courses, and researched over roughly the past 30 years was 

provided. While other characteristics may have been observed by the researcher or other 

CS1 educators, only those components with significantly supported research were 

provided. In this chapter, the same conditions are applied to specifically identified needs 

as related to the teaching of CS1. There are three primary needs identified and a small 

group of other needs identified in a fourth subsection. 

3.1 The Need for Structured Programming 
 

 In their study of novice mistakes, Spohrer and Soloway stated, "we conclude that 

students are not given sufficient instruction in how to 'put the pieces together.' Focusing 

explicitly on specific strategies for carrying out the coordination and integration of the 

goals and plans that underlie program code may help to reverse this trend" [58]. The 

specific strategies will help students create both readable and operational program code. 

Davies [22] added to this with the idea that an incremental problem-solving process be 

used with individual program conditions and with frequent problem review. 
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 Structured programming as its own term grew out of initial problems with 

disorganized program code [26] that was difficult to read and understand. It had its own 

name: "spaghetti code" [9] that was an appropriate descriptor as the program flow moved 

both forward and backward in the program with little organization. It was difficult for 

individual programmers to understand some of these kinds of programs [27]. The essence 

of structured programming was the difference between what were called jump programs 

that used the "goto" statement, which could lead to anywhere else in the program, or 

confined blocks of program code within nested conditional conditions (i.e., decision-

making or branching areas).  

 However, structured programming as pertains to this thesis is not as formally 

related to its original concepts as it is a term used to provide students a standardized 

scheme with which to design and build a program. In fact, while the proposed program 

organization does follow the block-organized and nested structures suggested by 

structured programming, the emphasis herein is on using "some" structured process as 

opposed to a specifically identified "correct" process. 

 To begin with, the structure proposed includes a systematic design process prior 

to actual coding. Perkins, et al. [47] pointed out that students do not synthesize their own 

programming plans for a variety of reasons, and the result is a lack of success. Davies 

[22] added that programming strategies may be more important than individual 

components of programming knowledge. Spohrer and Soloway [58] argued that many 

bugs, or programming failures, are introduced into programs as a result of poor design, a 

condition they termed "plan composition problems" [58]. Providing a formal structure for 

the students is a way to support their learning by giving them a concrete scaffolding step 
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to stand on when they are first developing their programs. While much more on program 

planning and design will be found in the next section, it is organized planning that drives 

the development of structure. 

 To use Soloway's [57] example, students can observe a geometric proof on the 

board, but it is a different thing to replicate it, or synthesize a comparable proof once the 

students are on their own. This is a rationale that drives forming the structure itself before 

the programming process begins. If the structure in its simplest form is applied before the 

content is added, students can incrementally move the structure toward the desired 

programming goal, as suggested by Davies [22]. 

 The next step to supporting the learning of structure is to systematically increase 

the complexity and depth of the program with repeated passes over the original structure 

and adding small scale improvements or refinements, a process called iterative or 

stepwise refinement. This means that every pass through the evolving program is a small 

step toward the solution, but the critical point is that no pass or step is very complicated 

or difficult, and the process is systematically repeated which supports consistency and 

familiarity with the process early on. Soloway [57] proposed this process but pointed out 

the failures of instruction and textbooks in the process of how to break down the 

problems into sub problems. In addition, one of the unfortunate points about this process 

is that it is dynamic and transitional; it is difficult to grade the steps and it can be difficult 

to see how the steps and the design went together in the final product [11]. 

 Returning to the concept of advanced design, it is known that experts tend to 

retain program structures as mental models or schemas [52], but it is also known that 

novices do not have the schema libraries to hold these kinds of things, although they 
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move in that direction during this process. In addition, Robins, Rountree, and Rountree 

note that these mental models are hierarchical, as might be intuitively expected. This 

requires cognitive management and organization that novices are known not to have; 

however if this limitation could be overcome, the design and refinement process could be 

successful. 

 The next arguments for structure follow the research related to student perception 

of text organization. The block structure of what are called "nested" programs (i.e., 

programs with confined blocks of conditionally selected code as opposed to programs 

with goto statements) reduces the potential problems that Green [30] called "shopping", 

"treasure hunting", or "negation". The structure of the program helps organize the 

processing in a hierarchical way, which can lead to the structures students need for 

cognitive organization. Furthermore, as Gilmore pointed out the structural organization 

on the page or computer screen "are an effective means of supplying access to 

information which is not immediately apparent from the programming language" [27]. As 

mentioned in the previous chapter, this offers extra help to students who are trying to 

organize the programming structures into their mental models, and working memories. 

 It is not just the working mental models that can be improved by effective 

program structure. Merrill proposed a series of "First Principles of Instruction" which 

included research showing that not only is the local learning improved by structural 

organization, "problem solving (far transfer) is promoted when the structural features are 

carefully identified and explicitly mapped for the student" [40]. Again, the introductory 

student does not arrive in class with these abilities, but if a way can be found to support 

this, it will clearly be helpful. 
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 One more strategy for teaching structure was proposed by Sweller, van 

Merrienboer, and Paas [59] based on other research that showed that worked examples 

could also provide both learning and guidance as well as models of structure. Worked 

examples by themselves may not be as effective; however, using the process of fading, 

which means starting with fully worked examples and working with the students away 

from the answers and toward their own programming knowledge [42]. Forward fading 

includes leaving out parts of the beginning of a problem solution and backward fading 

includes leaving out ending parts. Renkl, et al. [49] found that the backward fading 

worked better perhaps because students were given help starting and then could continue 

generating solutions even as the supporting components were being removed from the 

end of the problem-solving process. While the use of worked problems is not directly 

involved with the process of programming, it is certainly a tool that could be used by 

students who are still learning the structures necessary for design and development. 

 Program structure has the benefit of being both operationally and pedagogically 

appropriate for teaching introductory programming. Poorly structured programs, 

including the ones that might work, are not the desired product of successful students in a 

CS1 course. As mentioned, they may not represent good design and planning, and they 

may be difficult to read and understand, and later to debug or upgrade if they are not 

structured well [27]. In addition however, providing structure, organization, and clear 

guidance [40] to students is known to be effective. In one form or another, structure must 

be part of the teaching solution. 
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3.2 The Need for Planning and Strategy 
 

 As mentioned previously, it seems to be natural for students to want to get straight 

to the programming process when they are given a problem to solve [36]. However, in 

the conclusion of their comprehensive review, Robins, Rountree, and Rountree suggested 

"that the most significant differences between effective and ineffective novices relate to 

strategies rather than knowledge" [52]. It is interesting to note that this is a comment 

related directly to the learners, but it could also be directly associated to programs 

themselves [58].   

 Programs can be written without planning if the problems are trivial, but they are 

unlikely to be successful for non-trivial or more complex problems. One of the first 

actions that must occur is that the programmer must specify a detailed plan which must 

then be decomposed [56]. This would seem to be good advice for anyone tackling any 

large-scale project, but as mentioned in the previous chapter, even the student who stops 

to create the plan will have trouble maintaining the plan in working memory. In the 

course of beginning the programming tasks, some or all of the parts of any plan will be 

lost unless they are "stored" in the text of a stated plan [22], or in some other way while 

the programming tasks are conducted. 

 Spohrer and Soloway [58] argued that goals and plans should be specified for 

students, in addition to other explicitly specified design actions. Rist [50] discussed top-

down planning as the global strategy and bottom-up development as separated from the 

original problem structure, but more manageable given working memory limitations. It 

would appear that both of these strategies are necessary, although they need to be 
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managed. Top-down planning gives the programmer the abstracted "birds-eye view" of 

the program; this is critical in order to identify the major steps needed to solve the 

original problem. However in an attempt to model the comprehension of a programming 

solution, Brooks [12] identified stages between the problem domain and the 

programming domain. It appears to be a key point that there must be at least some 

delineation between the problem and the program for a successful problem-

solving/programming process to be conducted. 

 The alternate offered by Rist [50] is the bottom-up strategy which he stated, 

"separates the solution structure from the problem structure" [50]. There appears to be a 

natural but complementary division here that shows the value and the usefulness of both 

top-down and bottom-up strategies. The top-down strategy maps the overlying solution to 

the problem, and the bottom-up strategy solves the little problems driven by the overlying 

strategy. 

 Certainly in the course of devising a plan, some amount of working backwards 

from the goal must be conducted, as Rist pointed out [51]. On the other hand, once the 

needs of the program are defined, an abstracted top-down overview of the program 

should be devised that provides "overarching supportive information" first, but then 

"procedural information should be presented only at the particular point where it is 

required", as stated by Paas, Renkl, and Sweller [42]. It should also be noted that in a 

later paper, Rist [50] discussed the process of working from the abstracted quantities to 

the concrete ones for both the actions of program design and program understanding. 

 Merrill [40] offered a generalized four-stage approach to problem solving, and to 

teaching problem solving that begins with the problem statement and ends with the 
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actions that conduct the process, with an abstract-to-concrete evolution in between. 

Enough evidence has been discovered to support this general strategy, although some of 

the same people who called for this also noted that novices may not have the remembered 

schemas for thinking at this higher level [51]. Nevertheless, Rist continued later in this 

paper to point out that plan-building methods could become a focus for teaching novices. 

 One key to resolving the higher-level to lower-level program development may 

simply be the writing process. In a research process that studied the teaching of higher-

level thinking with program development, Kirkwood [36] found that the students who 

were developing quality programs viewed the possession or construction of a written 

design as important for several reasons associated with developing a good program and 

for minimizing programming problems (e.g., early elimination of problems, and later bug 

tracking). 

 With or without prior student knowledge of programming schemas, one way to 

minimize problems is to break them down into smaller quantities, which is obviously an 

extension of the top-down program development structure. van Merrienboer, Kirschner, 

and Kester [63] argued for teaching smaller or more simplified whole parts of a larger 

task in order to reduce cognitive load. This turns out to be a natural fit for programming 

because the top-down process breaks the larger program into smaller, modular 

components. Gerjets, Scheiter, and Catrambone [25] concurred arguing with their 

research that teaching and working with modules is superior to teaching groups of 

concepts or related concepts which they call a molar approach. 

 Catrambone [18] found that students were improved both in conducting 

mathematical operations and in understanding them by breaking them down into smaller 
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"sub goals", also noting that the use of abstract labels was less likely to lead to mistakes. 

Even when Ayres [5] found errors in sub goals, it was proposed to be due to cognitive 

overload due to the complexity of the sub goal, a condition called stage effect. These 

mathematics problems could not be broken down to a small enough level to reduce the 

cognitive load and to support successful problem-solving actions. This issue led Robins, 

Rountree, and Rountree to identify "the schema/plan as the most important building block 

of programming knowledge" [52] although they also noted that the schema/plan is an "ill-

defined concept" [52]. 

 Breaking a program into more easily understandable and less complex modules 

can lead to improvement in problem-solving performance for students with either low or 

high levels of previous knowledge [25]. This is both intuitively reasonable and 

empirically evident. The two issues that must be resolved in order for this knowledge to 

be valuable are: 1) how small does a module need to be in order not to overload learner 

cognition? and 2) how are the modules managed during the breaking down and 

reassembly process?  

 The answer to both of these questions can be driven by the stepwise refinement 

process mentioned earlier [57].  The problem is stated at the abstract level and then 

slowly but consistently expanded [51] toward smaller sub goals or modules until the 

modules are within the cognitive "reach" of the novice learner [25]. This process of 

expansion will in itself cost cognitive overhead; however students would not have to 

maintain the process in working memory, but instead can effectively "store" the levels 

and sub goals on the screen of the computer, or on paper [32]. Working through this 

process itself synthesizes a complex knowledge structure that can help structure 
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knowledge in working memory [25] with the caveat that the structure may not -- and in 

fact, probably will not -- be internalized at first. Nevertheless, the evolution of this 

activity will naturally go through the fading process that is known to be effective with 

learning complex tasks [42]. The planning and design process is by nature complex; 

however, once this is recognized and addressed, there is potential for working through it. 

3.3 The Need for Cognitive Considerations 
 

 One thing that many people might not consider teaching in an introductory 

computer programming course would be cognitive considerations. By itself, this is 

unfortunate because teaching cognitive and metacognitive strategies have been shown to 

improve learning [10]. In the particular case of designing a program, which is really just a 

formalized process for solving a problem, it would seem even more important. Mayer, 

Dyck, and Vilberg's [38] research concluded that while the evidence is weak in relation to 

general intellectual skills, focusing on specific cognitive skills that are related to 

programming could be more fruitful. 

 Soloway [57] pointed out that knowledge and strategies must be explicitly taught 

in order to get to the higher-order or more transferable problem-solving strategies. 

Stimulating mental models that may support or encompass the new learning is important 

[40], and although it is known that introductory programming students have few if any 

pertinent programming mental models, they do have at least primitive schemas related to 

solving problems and step-by-step operations. These students can start with the simplest 

of approaches to developing the program and once they have a small scale model, this 

can be manipulated and expanded [51]. 
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 Beyond directly introducing cognitive characteristics, the process of reflection 

and review can help [40]. In programming, this can be accomplished at two levels. 

Reviewing the program as the large-scale solution actions can result in both an 

understanding of the program, and it can lead to identifying semantic or logical issues 

that might keep the program from solving the problem. In addition, reviewing segments 

of program code (i.e., working through the code in one's mind or on paper) can lead to 

identifying the smaller bugs and problems in the program, or verify that this particular 

module of the program works correctly. 

 Besides reviewing programs at various levels in ones mind, it is also suggested 

that they engage in self-explanations [19]. Again, the act of talking through a problem, 

whether out loud or not, supports the reflection and review process that supports 

cognitive improvement and therefore better learning. One other result of the review 

process is actually finding mistakes. As Merrill pointed out "Most learners learn from the 

errors they make," [40] and continued to note that the learning is strengthened when they 

are given error finding, error correcting, and error avoidance strategies. 

 Another somewhat intuitive condition is that abstractions cannot commonly be 

learned directly, they must be introduced and practiced as smaller, more atomic 

components [3]. This can occur during a stepwise refinement process, but while it may 

not be immediately obvious, the program must be written for both the programmer and 

the computer [57]. Obviously the computer must be provided the correct instructions in 

order to accomplish its tasks, but the programmer "needs to have an explanation as to 

why the program solves the given problem" [57]. Even if novice programmers can 
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understand the process, if they are struggling to understand it due to the clarity of the 

program, their cognitive load will be increased. 

 A final cognitive consideration is that of cognitive styles. Some correlations have 

been found between programming and field independence, high reflectivity, locus of 

control, and introversion, however not enough research has been conducted to find 

empirically sound relationships [8]. This supports the present thesis in that the more 

fundamental human characteristics such as working memory and cognitive load can be 

the focus of the research. 

 Cognitive components are an integral part of the programming process.  Indeed, a 

computer program is a cognitive process, even if it is not a highly intelligent one. As a 

result, cognition has been strongly integrated into this thesis. However, where certain 

cognitive considerations were not integrated elsewhere, they have been presented in this 

topic. As expected, cognitive components will continue to contribute to parts of this 

thesis, including the next topic which will wrap up this "Needs" chapter with smaller 

contributors to the identified needs for a teaching process. 

3.4 Other Contributing Needs and Considerations 
 

 While the major needs previously identified in this chapter are supported by 

significant quantities of research, the final group of components are of a smaller scale. 

Nevertheless, each of them was found to contribute considerations for the effective 

education of introductory programming students. Thus, these will be presented in this 

section. 
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 The first small group of considerations would commonly be good ideas in any 

classroom. However, as Robins, Rountree, and Rountree pointed out, providing "clearly 

stated course goals and objectives, stimulating the students' interest and involvement with 

the course, actively engaging students with the course material, and appropriate 

assessment and feedback" [52] do lead to a student-centered and effective learning 

environment [10, 23]. These teaching components must play a part in any educational 

tool being considered. 

 The next consideration is also a generally accepted one, with some clarifying 

conditions. Practice is obviously a need, but Merrill [40] pointed out that consistent focus 

on the learning goal as well as consistent and appropriate feedback are important 

contributors to the student learning experience. Sweller, van Merrienboer, and Paas [59] 

showed several findings that while simple repetition may not be helpful, varying practice 

conditions demonstrates improvement in students. They noted that this may seem 

inconsistent with the possibility of increased cognitive load, but hypothesized that as long 

as the focus was on the appropriate learning outcome, cognitive load was not 

significantly increased. 

 As previously mentioned, there is evidence that worked out problems might be of 

help toward the learning; however while commenting that both tools were helpful, Bunch 

[15] noted that there was little difference in student feedback between worked out 

problems and progressive practice which includes working with increasingly complex 

scenarios. Renkl, et al. [49] argued that worked out problems are no longer preferred for 

supporting what they called automatic performance, and what would be called 

synthesizing a program in this thesis. Then again, with reference to the other research, 
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they also noted that worked out problems are preferred by novices and can be more 

effective if they are managed appropriately with components such as fading, as 

mentioned previously in this chapter. 

 The problem/scenario learning environment must also be a consideration. 

Generally speaking, all the research supported whole program learning with some 

variability. For example, van Merrienboer, Kirschner, and Kester [63] used whole-task 

operations but tended to start with low intensity sub goals, to mitigate problems with 

cognitive load. Merrill also used a problem-centered, or what he called "real-world 

activities" [40] approach, but did not directly address the cognitive load issue. Robins, 

Rountree, and Rountree [52] supported the case-based or problem based learning 

activities as well.  

 Interestingly, all the cognitive studies reviewed showed a propensity toward 

programming whole-task conditions (i.e., whole programs) while there were no cognitive 

studies found that reported on the so-called "programming in the large" teaching strategy 

that has come into being in recent years (see for example [20]). While this was not the 

focus of this research, the programming in the large paradigm seems driven by the large-

scale characteristics of present-day programs in industry, while the researchers -- and 

especially cognitive researchers -- continue to study what is sometimes called 

"programming in the small" which is focused more on the achievements of students on 

whole programming products. 

 There are other tools that can support novice programmers including as examples: 

computer tutorials [24], graphical tools such as RAPTOR [16], and interactive 

environments such as Alice [54]. These are all tools designed with the interaction and 
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engagement specified previously in this section; however, with small exceptions, they 

tend to be line-by-line programming interactions. RAPTOR and Alice allow for the use 

of subroutines, and RAPTOR's graphical presentation allows for a kind of graphical 

abstraction using boxes that represent sub goal modules.  

 As a tool, RAPTOR has the capacity to be developed in a stepwise refinement 

process, developing the large scale program and then developing sub goal/module 

components in iterative passes. RAPTOR was developed for non-CS major students and 

has been successful with this audience [16, 17]. Students can also translate from the flow 

chart organization of this tool to their own program development; unfortunately this adds 

steps and time that are both precious to introductory programming students. 

 There are certainly more identifiable needs for the effective teaching of 

introductory computer programming, but the ones provided in this section were the ones 

found in the research and can be empirically substantiated. This section did allow for the 

identification and elucidation of individual components that did not fit under the umbrella 

of the previous sections in this chapter, so the research could be as thorough as possible. 

3.5 Chapter Conclusions 
 

 As this chapter has shown, there are specific needs of students learning to 

program computers, and of the educators attempting to accomplish this feat. The 

characteristic that makes these needs synergistic is that they parallel each other. The 

development of reasonable, non-trivial programs requires appropriate structure; any other 

format will become ineffective and/or unusable before its life cycle should be completed. 

Indeed, this may even occur before the program is completed. In addition however, the 
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teaching of students in virtually any discipline of substance also requires appropriate 

organization, structure, and guidance. 

 The same argument aligns with the need for planning and strategy. Learning must 

be strategic, and programming must be strategic. With appropriate planning and 

strategies, both can be successful. Even cognition works in parallel. Student cognition 

will lead to development of the "cognitive" abilities of the program that will solve 

specified problems. 

 This makes the teaching of introductory computer programming somewhat 

unique. And arguably, it offers unique opportunities to improve this educational task, and 

to contribute to the educators who attempt it. Having provided the background in this and 

the previous chapters, a proposal will be made in the next chapter based on this research, 

to develop a learning process for developing effective programs along with successful 

learners. 
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Chapter 4 

Proposal: The Five Step Programming 
Process 
 

 Perkins and Martin wrote, "Rather than expecting programming instruction of 

itself to boost cognitive strategies, one should teach cognitive strategies as part of better 

programming instruction" [48]. It is not only intuitively appropriate, but the concept of 

teaching strategies that support both cognitive and programming improvement are 

supported by the research, which also states that just teaching programming has not been 

linked to cognitive improvement to any significant extent [38]. 

 This chapter will introduce a proposed learning process based on the research 

reported in the previous chapters. The three sections of this chapter will be as responsive 

to and as guided by the research, as possible. Components of the process that are not 

directly supported by the research will be primarily informed by logistical needs and 

local classroom conditions. 

4.1 The Proposed Procedure 
 

 The procedure is broken into five parts or steps. Part of the process of knowing 

where to break the parts is supported by the research, and part of it is related to the 

functional operation of creating a program. For example, the first step is purposely very 

simple and requires very little time while the cognitive involvement and the time required 
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is larger for each succeeding step thereafter. The steps will be presented in order and with 

supporting information. 

4.1.1 Step 1 - Creating a simple high-level solution 
 

 The first step starts with a previously specified "complete program" format 

provided to the students. This format includes: 1) one or more header files, 2) zero or 

more global constants, 3) zero or more function prototypes, 4) exactly one main function, 

including an appropriate return statement, and 5) zero or more "supporting" function 

implementations (i.e., functions with the program code written as needed and/or 

specified). All functions other than the main function are considered supporting functions 

for purposes of this standard. An example of this program format is provided in Figure 

4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

// Header files
#include <iostream> 
 
using namespace std; 
 
// Global Constants 
   // none 
 
// Function Prototypes 
   // none 
 
// Main Program 
int main() 
   { 
 
    return 0; 
   } 
 
// Supporting Function Implementations 
   // none 

 

Figure 4.1. Standardized Program Format 
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 Starting from the base program format or template, the students are directed to 

write the five to seven main actions of the program in the form of comments, meaning in 

English text that is not processed by the compiler. These main actions are simple 

statements that will drive the remainder of the program and in fact become the 

abstractions that define the overall program. Still, as simple statements provided at the 

start, they do not require students to be competent with or fully knowledgeable of the 

concept of abstractions at this point. 

 The key points to development of this step are as follows. First, just by writing the 

major steps, the students are developing the recommended plans or goals, even if they are 

in a very simple format. Second, by writing a few statements in their own language, as 

opposed to the programming language being learned, students are separating the problem 

from the program right from the start. Third, by limiting the number of statements to no 

more than eight to ten, the working memory storage itself is not significantly taxed. It 

should be noted that this number of items is greater than the three to four to seven chunks 

identified as limits in the research, however since these items are written down into the 

text file, the external "storage" process also discussed in the research is supported.  

 Finally, this step is a simple beginning to an abstracted top-down process that will 

guide the students to synthesizing a programming solution to the specified problem. The 

concepts of both abstraction and top-down strategies will have been discussed with the 

students prior to this point; however, these concepts do not have to be involved in the 

actual problem-solving process. This is an important condition as the research points out 

the problems with increased cognitive load in novices due to maintaining the rules of 

structure in working memory while actually trying to solve the problem. 
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 Figure 4.2 shows the basic structure of a program that calculates the roots of a 

quadratic equation. Note that in order to minimize distractions, only the main part of the 

program will be shown until other parts of the program become pertinent. Also note that 

the text is organized with indenting and is separated for easy visibility. This is again from 

the research related to white space and text organization. Finally, to repeat, the important 

point about this step is that it is very simple and does not appear threatening to students 

who are not familiar with the programming process. This is specifically designed to 

address the issues of frustration and potentially weak problem-solving skills with which 

the students may be starting. 

// Main Program
int main() 
   { 
    // initialize program/function 
 
       // initialize variables 
 
       // show title 
 
    // input coefficients 
 
    // process the data 
 
    // display roots 
 
    // shut down program 
    return 0; 
   } 
 

 

Figure 4.2. First Step of Programming Process 
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4.1.2 Step 2 - Expanding on the original solution 
 

 Having begun the problem-solving process with the first step, students recognize 

that they have not moved very far into writing the program; however, they also recognize 

that they have taken a first step, and with presumably some sense of accomplishment. 

The second step of the process requires the students to expand on the individual 

statements they have already written. At this point, students have been given a "starting 

cue", and as the research calls for "direction", the first step, and subsequent steps, 

provides this in an ongoing fashion. For the most part after the first step, no large scale 

synthesis is required of the students since each step will be guidance as to the next sub 

goal steps. Cognitive load should never increase significantly, and at the same time, the 

library of schemas held by experts -- which is known not to be available to novices -- is 

not required in the guidance process. The expanded statements for the second step of the 

example program are presented in Figure 4.3. 

 Examples of expansion on the first step statements are to show input of the three 

coefficients under the statement "input coefficients". A more expanded example is the 

specification to calculate the discriminant, then calculate its square root, then calculate 

the denominator, and finally calculate the roots of the equation which are sub goals of the 

"process the data" statement. These are four steps that do require the student to think 

through the quadratic equation seeking small steps that will solve it.  

 The increased value of this process is that students are guided to keep the steps 

small, which will keep the cognitive load down, but by its nature, they will also be 

increasing the modularity of the program, which is a desired part of quality program 

 



42 

structure. Note also the use of both white space and the indented structure from the 

research that provides students with a hierarchical structure that will support their 

understanding of the top-down structure as it evolves. 

// Main Program
int main() 
   { 
   // initialize program/function 
 
       // initialize variables 
 
       // show title 
 
    // input coefficients 
       // input coef a, b, c 
 
    // process the data 
       // calculate the discriminant 
 
       // calculate the square root of disc 
 
       // calculate the denominator 
 
       // calculate roots 1, 2 
 
    // display roots 
       // display root 1 
 
       // display root 2 
 
    // shut down program 
 
       // hold screen for user 
 
       // return 0 
    return 0; 

}

 

Figure 4.3. Second Step of Programming Process 

 

 The "display roots" step is broken down into the obvious two steps required of the 

two roots, and the "shut down program" step is expanded to include holding the screen 

for the user to view it before the program stops. A key point related to separating the 

problem from the program is that when step two is completed, students should be able to 
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"run" the program in their minds in an attempt to verify that their program conducts the 

appropriate operations. They should be able to identify how the program will, or will not, 

work and they should be able to understand if an important part of the process is missing. 

The key to this is that the students are still doing this in a language they understand, again 

without the cognitive load of trying to remember what certain programming statements 

would, or would not, do.  

 It should also be noted that even though the students are fully involved in a top-

down development process, they do not have to keep the management, or even significant 

awareness, of this process in their working memory in order to continue forward. 

4.1.3 Step 3 - Identifying and specifying program modules 
 

 At this point, students have made one small initial step with a few lines of 

commented text, and then they have expanded each of those lines where appropriate with 

a few lines of text related to the sub goals needed. The second step was slightly more 

complicated than the first, especially since students should have really been trying to 

verify the correct operation of their program. At this point in step three, little more is 

done to actually solve the problem, although this could occur if students notice a part of 

the solution that they had previously missed. Instead, implementing step three moves the 

students into expansion of the modular components into which their program has been 

broken. 

 For example, where the program calls for showing the title, the tool to be used for 

this operation would be the combination of the cout object and the insertion operator 

(i.e., <<). Again with consideration for cognitive load, the student is only required to 
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consider one commented program step at a time, but they must also consider which tool 

is appropriate for implementing this step. Figure 4.4 shows how the students indicate the 

use of the tool.  

 

 
       // show title 
          // function: cout, insertion (<<) 

Figure 4.4. Indication of the tool(s) to be used 

 

 According to the research, there should be room in working memory for this to 

occur. However, not all the modules will be tools or subroutines -- called functions in the 

C++ programming language -- that have been previously created. Students will need to 

synthesize their own subroutines for some of the actions unique to their particular 

program. 

 For example, this particular program will need to prompt the user for each of the 

three coefficients, acquire each of them, and return them to the program for processing. 

Since this is a task unique to this program, students should recognize that they must 

create the tool themselves. At this point, they must conduct two tasks: They must indicate 

the use of the tool, as shown in Figure 4.5, and then they must specify information about 

the function, which will indicate its characteristics and actions. 

 
           // input coefficients 
       // input coef a, b, c 
          // function: getCoef 

 

Figure 4.5. Indication of the student-generated tool to be used 
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 The specification part of this process occurs above in the program's "Function 

Prototypes" area. This part of the process will again elevate the cognitive challenge to 

students, although it continues to be guided and structured to minimize cognitive 

overload and/or frustration. There are five parts to the specification. The first is the 

function name - this should be one or more combined words starting with a verb to 

indicate action; getCoef indicates that the function will "get" or acquire data from the 

user. The second specification part is the function input - students must think about what 

the function "needs to know" to accomplish its task, and they must think about what data 

type would be appropriate for the input data. In this case, since each coefficient must be 

prompted with a different message, a string prompt is needed. 

The third specification part is the function output - the function may return output back to 

the calling function (i.e., the main program) as this function in fact does by returning the 

acquired user input, but it could also output data to the screen or to a file. Again, students 

should indicate what is output and what data types might be involved in the process. The 

fourth specification part are the function dependencies. Many times functions must rely 

on other functions to accomplish their goals. For example, the getCoef function will be 

prompting the user for input and capturing it, so it will need to use some input/output 

(I/O) tools in the iostream library. Finally, the fifth specification part is the function 

process - what is it that the function will be doing, written in two or three lines of text at 

most; this function will prompt the user, acquire input from the user, and then return the 

input value to the calling function. An example of the format for the specification 

component is shown in Figure 4.6. 
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 The specification process is somewhat larger scale than the one line at a time 

process conducted down in the main program. Nevertheless, it is still a stepwise process 

with specific actions associated to a specific set of given terms. The students still only 

have to address the name issue, and then the input issue, and then the output issue, and so 

on, one item at a time. Again, the appearance of following a series of steps is less 

daunting, and again, the cognitive load is managed. 

/* 
Name: getCoef 
Input: prompt string (string) 
Output - returned: coefficient value (int) 
Dependencies: cout, cin 
Process: prompt user for coef, get coef, 
         return coef 
*/ 

 

Figure 4.6. Specification of a student-generated function 

 

 As was found in the research, it is desirable to implement iterative or stepwise 

refinement in order to develop a program. As was also noted, this has the functional and 

pedagogical value of slicing the program development process into smaller, more 

cognitively appropriate, chunks. Step three continues to be conducted this way with 

students looking at the next required step of their program, making a decision on the 

tool(s) to be used, and then specifying their own tools (i.e., functions) as needed. This is 

literally a top-down process on their source code text page, and continues to be carefully 

managed in terms of working memory and cognitive load demands. A sample of other 

function specifications is shown in Figure 4.7, and a continued sample of the program 

development is shown in Figure 4.8. 
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/* 
Name: calcDisc 
Input: three coefficients (int) 
Output - returned: discriminant (double) 
Dependencies: none 
Process: calculate discriminant and return 
*/ 
 
/* 
Name: calcDenom 
Input: coefficient a (int) 
Output - returned: denominator (double) 
Dependencies: none 
Process: calculate denominator and return 
*/ 
 
/* 
Name: calcRoot 
Input: denominator, discriminant (double), 
coefficient b (int) 
Output - returned: root (double) 
Dependencies: none 
Process: calculate root and return 
*/

 

Figure 4.7. Further examples of function specifications 

 

    // process the data
       // calculate the discriminant 
          // function: calcDisc 
 
       // calculate the square root of disc 
          // function: sqrt 
 
       // calc the denominator 
          // function: calcDenom 
 
       // calculate roots 1, 2 
          // function: calcRoot 

 

Figure 4.8. Continuation of the program function development 
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4.1.4 Step 4 - Developing the skeleton program 
 
 Each step in this process moves in the direction from the problem solution to the 

programming solution. Step one was the simple outline of the program, step two was the 

expanded outline, but still all in text. Step three continued to be developed in text, but this 

was the transition step where program code was conceptualized, even if it was not 

actually written. Step four begins the process of actually writing the program code. The 

process will continue with the stepwise refinement format, but once again, the "next 

steps" required of students are guided by the results of all the previous steps. For 

example, where the program was previously written in text with the tools specified, the 

actions are now put into play in the main program. Figure 4.9 shows the evolution of the 

example shown previously in Figure 4.8. 

 

    // process the data
       // calc the discriminant 
          // function: calcDisc 
          disc = calcDisc( coefA, coefB, coefC ); 
 
       // calculate the square root of disc 
          // function: sqrt 
          discRoot = sqrt( disc ); 
 
       // calculate the denominator 
          // function: calcDenom 
          denom = calcDenom( coefA ); 
 
       // calculate roots 1, 2 
          // function: calcRoot 
          root1 = calcRoot( denom, discRoot, coefB ); 
          root2 = calcRoot( denom, -discRoot, coefB ); 

 

Figure 4.9. Program code provided for processing operations 
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 Note that each line of code is guided by the comments provided, and the 

appropriate tool (i.e., function) is used at the appropriate location. Also note the 

continuation of the white space and structural organization of the comment text that is 

now being translated into program code. The other two components that must accompany 

each line of code that contains a new function are the function prototype that will now be 

placed in the "Function Prototypes" area immediately under the step three specifications 

at the beginning of the source code file, and the now stubbed out functions that are placed 

in the "Supporting Function Implementations" area below. 

 There is a critical order for this process that incorporates both the iterative top-

down process and the functional need to write a program without syntax errors. Thus, the 

following protocol must be conducted by the students. First, they write appropriate 

program code in the main function starting at the top. When they arrive at a location that 

requires one of the student-generated functions, they must first go to the "Function 

Prototypes" area of the program under the location of the function specifications and 

create a function prototype.  

 The prototype has a standardized form that will be driven by the specifications 

generated in step three. The return (i.e., output) value is placed as specified, the name of 

the function is placed as specified, and then the parameters (i.e., the input value(s)) is/are 

placed as specified. Once again, this is small step cognitively because all of the 

requirements for the prototype have already been specified. This is primarily a translation 

process. At this point, the students must compile the program, which will work correctly 

if there are no syntax errors. An example prototype is shown in Figure 4.10.  
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/* 
Name: getCoef 
Input: prompt string (string) 
Output - returned: coefficient value (int) 
Dependencies: cout, cin 
Process: prompt user for coef, get coef, 
         return coef 
*/ 
int getCoef( const string &prompt ); 

 

Figure 4.10. Function prototype under the specifications area 

 

 The key to keeping this process cognitively managed is that if students do make a 

mistake with creating the prototype, they only have one line of code to resolve. While 

most compilers may provide cryptic error messages, students are not overloaded by the 

possibility of problems elsewhere in the program. They have only to resolve issues that 

occurred in the one line of code. 

  The next step continues this support as well as the cognitive management. 

Students must now create an empty function, called a stub function, down in the 

"Supplemental Function Implementation" area. This involves copying the prototype 

exactly as it is, pasting it in the area below, creating open and closed curly braces for the 

function, and finally, if the function requires a return value, placing a dummy return 

value in the function code block. 

 Creating the stub function now requires placing at most two lines of code in 

addition to the two curly braces in the "Supplemental Function Implementation" area. 

Once again, if any syntax errors result from this process, it is clear where the errors are, 
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and where the corrective actions must be focused. An example stub function is shown in 

Figure 4.11. 

int getCoef( const string &prompt )
   { 
 
    return 0; // temporary stub return 
   } 

 

Figure 4.11. Stub function example 

 

 The final step for installing this function into the program is placing it in the 

program code as shown previously in Figure 4.9, and again in Figure 4.12. Again, the 

student places one line of code that includes the function operation, then compiles, and 

then resolves any issues that may have arisen. The focus of the learning is on this one 

step, and the cognitive load is not overloaded if an error is introduced at this point. 

    // input coefficients
       // input coef a, b, c 
          // function: getCoef 
          coefA = getCoef( "Enter coefficient A: " ); 
          coefB = getCoef( "Enter coefficient B: " ); 
          coefC = getCoef( "Enter coefficient C: " ); 

 

Figure 4.12. Usage of student-generated function in the program 

 

 When students are finished with step four, they have a fully written main 

program. If they followed through with their original design from steps one and two, and 

if their functional operations from steps three and four are consistent with their plans, this 

function should work. It will not work correctly at this point because the supporting 

functions are not operational. However, students should have a reasonable feeling of 
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confidence that they do not have to make any further modifications to this part of the 

program. As discussed in the research, there are places in programs where some 

experimentation may need to occur and this could happen in the main function when the 

program is completed.  

 One benefit of this process is that if a semantic or logical error is discovered at the 

end of the programming process, the program is already broken into modules so that the 

overlying process can be understood and errors resolved. Again, this is both effective 

programming and pedagogically appropriate since students have worked their way 

through a top-down process, and should have a reasonable understanding of how their 

program works. One of the important points about understanding the program is that as 

long as they created the text comments and developed the program with clear steps, they 

are not required to hold the whole program in working memory, which the research says 

they cannot do. They should be able to review their program steps in a way that does not 

lead to cognitive overload, and yet still leads them in small steps to how the program 

works. 

 To continue with this "small step" strategy, the last component of completing step 

four is to write brief comments into each of the stub functions. These are essentially step 

two operational descriptions of the functions, which are by nature, already somewhat 

small operations since they are sub goals of the main process (i.e., the program). Writing 

these comments allows the students to think ahead about their next steps; however since 

they do not write code at this point, the number of steps and the complexity of the 

operations remains simple. An example of the required comments in the stub function is 

provided in Figure 4.13. 
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int getCoef( const string &prompt )
   { 
    // initialize function/variables 
 
    // display prompt to user 
 
    // acquire user input 
 
    // return acquired value 
    return 0; // temporary stub return 

}
 

Figure 4.13. Creation of descriptive comments in stub functions 

 

 When the students have had some practice with writing these simple comments on 

several assignments, they are then required to develop one level of the functions in the 

step three format which includes identifying and then specifying functions that will be 

required for only the functions called directly by the main function/program. Toward the 

end of the semester, students will be expected to write step three comments, function 

identification, and function specifications for almost all of the functions that will 

ultimately be required by the program. While it is expected that the students will have 

developed a level of competence at the end of the semester, the stepwise process 

continues to only require attention to small quantities for tasks involving each module. 

4.1.5 Step 5 - Completing the program 
 

 The final step of the process effectively applies a bottom-up strategy even though 

the program itself has been written. Students are now required to implement (i.e., write 

the code for) each of their function modules. If the program has been well-developed to 

this point, the function/modules will address one programming task and will be relatively 

easy to code. This is especially true since they should have a reasonable set of 
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instructions provided for them to follow as a result of the last part of step four. An 

example of the implementation of a function is shown in Figure 4.14. 

int getCoef( const string &prompt )
   { 
    // initialize function/variables 
    int userInput; 
 
    // display prompt to user 
    cout << prompt; 
 
    // acquire user input 
    cin >> userInput; 
 
    // return acquired value 
    return userInput; 
   } 

 

Figure 4.14. Creation of descriptive comments in stub functions 

 

 Again, this strategy asks the students to make small forward steps with each 

module, but because the "memory" of the program evolution is "stored" in the text of 

their program, their cognitive load consists of following their instructions and solving 

smaller problems. One of the strategies continued from the step four process is to make 

sure that they compile their programs after every line or two of writing code. This again 

makes the error-resolution process very narrow, requiring minimum cognitive load, and 

supports a continuation of the stepwise process through the coding activities. 

 At this point, the program should run correctly, and in many cases, when this 

procedure is followed, it does. However, under those circumstances where a semantic or 

logical error has been introduced into either the main function or one of the supporting 

functions, the process of diagnosing and resolving is made significantly easier as a result 

of the program modularity. Students can view the output and identify problems that may 
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have occurred in the input or output operations, or in the mathematical processing. If 

viewing the program's displayed operations is not informative, students can still trace 

through the program in a variety of ways that will continue to be aided by the integrated 

program modularity. 

4.2 Reviewing the process 
 

 Managing cognitive overload is the primary focus of the Five Step Programming 

Process, and it is managed in several ways. First, the problem and the programming are 

kept separate for as long as possible, while students actually design the solution in a 

stepwise format but without concern for program code. Next, by the time steps one and 

two are complete, there is little need to tax the working memory for more than what it 

takes to resolve each previously written step. Students can apply their limited working 

memory tools to the task, but at the same time, they don't have the immediately at-hand 

experience memories to which experts have access. However, students can call upon the 

small-scale problem-solving abilities that they do have and/or are being trained with, and 

resolve small issues one at a time. 

 Another important part of the process is the use of top-down stepwise refinement. 

This is not just an effective way to write a program. It also offers the students both 

focused and varied task repetition. For example, step one calls for one primary pass 

through the commented statements to solve the problem in a very general way. Step two 

calls for a second pass that expands on the individual commented steps of step one. Once 

the commented steps have been written in step two, students should take another pass or 
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two through these steps to make sure that the program will work as expected when 

following their instructions. 

 Step three continues with multiple stage-like steps. First students can go through 

identifying where the module/functions are needed, and having completed that pass, they 

can go back through and implement the individual function specification process. As a 

note, the creation of specifications can be incorporated into the module/function needs 

pass, but this only changes the number and length of the varied repetition experienced by 

the students. 

 In step four, the development of the main function program code is one large-

scale pass while the integration of using, prototyping, and stubbing the functions are 

again, small but consistent passes. There is one more pass made through the stub 

functions to provide the descriptive comments. Even after the development of one 

program, students will have established an experience base of some depth, even though 

the items passed through are not significantly deep or complex.  

 Step five wraps up the iterative process by making one more pass through the stub 

functions to fill out the code. The master pass is over the individual functions, but the 

"sub goal" passes occur within the functions. To reiterate, the process is systematic and 

consistent, and there are several stepwise refinement passes throughout the process whose 

operational structure is the same, but whose contents vary almost every time. Having 

worked through a small number of full programs this way, students will have begun the 

process of developing schemas in an orderly way, and in a way that does not overload 

cognition or working memory. This is the goal. 
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4.3 Evaluating the Process 
 

 The goal of this research was to begin the process of both evaluating the Five Step 

Programming Process and refining it where needed. The first step in the direction of 

conducting this evaluation was a pilot study to observe how the students felt about the 

process, what suggestions they might have had for refining it, and how it might have 

helped them learn to program. 

 The process was taught to the students in the stages mentioned in the previous 

sections across most of a semester. Near the end of the semester in the twelfth of fifteen 

weeks, the students were provided the opportunity to respond to an anonymous survey. 

They were not required to do this, but they were offered food gift card incentives for their 

participation. The survey itself was online, anonymous, and administered by the thesis 

Advisor who was not involved with the teaching of the course. Nine questions including 

one open-ended question were provided in the survey. These are provided as Appendix A 

of this thesis in the completed form which includes the IRB consent information and 

decision-making question. Further explanation of the process and the results are provided 

in the next chapter. 
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Chapter 5 

Implementation and Results 
 

5.1 Implementation overview 
 

 The research was conducted using an online anonymous survey tool during a one 

week period starting on a Monday morning at 8:00 a.m. and ending on the following 

Monday morning at the same time. Students were formally recruited by an Institutional 

Review Board (IRB) trained staff member who read a scripted informational document to 

the two introductory programming classes in the Computer Science and Engineering 

Department during the beginning of each class during the one week period.  

 The nine survey questions described in the previous chapter and also provided in 

Appendix I of this thesis provided some opportunities for simple quantitative information 

using multiple-choice questions which included how much they used the Five Step 

Programming Processes (hereinafter called the "process"), how helpful it was in their 

development process, how it may have helped with the time taken to develop their 

programs, and how much the process may have helped with learning to program. The 

data was analyzed and is reported in this chapter. 

 The remaining questions offered students the opportunity to respond in their own 

words to questions related to difficulties they may have had with the process, the 
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potential applicability of using this kind of process in other courses, and ways the process 

might be condensed down or expanded out. In addition, an open-ended question was 

asked of the students offering them the opportunity to bring up any other issues they 

might have related to their experience with the process. This data was organized 

generally by the focus of the various responses and is also reported in this chapter. 

Examples of each grouped response are provided in this chapter, and the entire data set is 

provided as Appendix II. 

 Twenty-eight students signed into the survey system, but only twenty-six students 

completed most or all of the questions. While this response represents 1/3 of the 78 

students who could have taken it -- which is a good response rate -- the number of 

students was not quite high enough to support significance in any of the quantitative 

analyses. This will be reported in the next section of this thesis along with a discussion of 

the other findings of these questions. 

 The remainder of this chapter is divided into two main sections. The first section 

reports on the quantitative data collected, and the second section provides analysis and 

reporting on the written student feedback. Brief concluding remarks related to the data 

collection and analysis will be provided at the end of the chapter. 

5.2 Quantitative Questions 
 

 This section will discuss and report on the data collected on the four multiple-

choice questions provided in the survey. 
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5.2.1 Usage Percentages 
 

 The first question asked was "How much do you think you used the Five Step 

Programming Process for working out your most recent laboratory program?". The 

question offered five choices between 0% and 100% in increments of 20%. The overall 

results are shown in Figure 5.1. 
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Figure 5.1. Students' percent usage of the process. 

 

 Eighteen students -- slightly less than 70% of the group -- indicated that they used 

the process 60% or more for working out their most recent program, as opposed to 8 

students, or just over 30% of the group which includes one student who indicated no use 

of the process at all. 
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5.2.2 Development Percentages 
 

 To the question, "How much do you think the Five Step Programming Process 

helped you develop your most recent laboratory program?", fifteen students, or about 

57.7% of them stated that the process provided 60% or more of the help with developing 

their most recent program. In spite of only one student indicating no use of the process, 

five students indicated that the process did not help them with their program 

development, and three students each indicated that it provided 20% or 40% of the 

development help. Figure 5.2 shows the distribution of the students' perceived 

developmental help from the process. 

0

1

2

3

4

5

6

7

8

9

10

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Percentage Development Help

N
u

m
b

er
 o

f 
S

tu
d

en
t 

R
es

p
o

n
se

s

 

Figure 5.2. Students' perceptions of development help from the process. 
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5.2.3 Time Taken Percentages 
 

 This question did not ask students to estimate relative percentages. Instead, the 

question, "Do you think that using the Five Step Programming Process allowed you to 

complete your most recent laboratory program in more, less, or about the same amount of 

time?" provided relative or comparative answers, such as "it helped me complete the 

program in a little less time", or " it caused me to take a lot more time to complete my 

program". The range of responses is shown in Figure 5.3. 
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Figure 5.3. Students' perceptions of time taken to complete their laboratories 

 

 While Figure 5.3 shows bimodality, it is almost centered on the middle showing 

that 8 students or 30.8% of them felt that it took a little more time, and 10 or 38.5% of 

them felt it took a little less time. The perceived difference between taking a lot less time 
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and taking a lot more time only varied by one student, and the students reporting no 

difference in the time taken was also within one student. 

5.2.4 Learning Help Percentages 
 

 The question, "How much do you think that using the Five Step Programming 

Process helped or hindered your learning in this programming course so far?" elicited the 

strongest response of all of the multiple-choice questions. Nineteen of the 26 students, or 

slightly more than 73% of the students responded with "it helped me learn about 

programming a little", or "... a lot". Figure 5.4 shows that the remaining students 

diminished from " it didn't make a difference with my learning to program" down to " it 

was a hindrance to my learning to program". 
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Figure 5.4. Students' perceptions of learning help provided by the process 
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5.2.5 Relationships Between Quantitative Data 
 

 As specified in the previous chapter, each of the quantitative items were tested for 

correlations to the students' actual usage of the process. Some of the correlations were 

promising; however the student numbers were not large enough to demonstrate 

significance (i.e., that the correlation was not a random result in a normal population). 

Since non-significant correlations are not considered to be verifiable, the relationships 

will be reported here, but caution and consideration must be applied to the results since 

none were found to be significant. 

 Using the Pearson Correlation Coefficient, the relationship between usage of the 

process and how much it supported development was .588 with a significance (two-

tailed) ≤ .220, and while the significance could not validate the results, it would appear 

that a greater number of students might strengthen this result. The relationship between 

usage and the time taken was not strong and the significance was also not very close 

(.450 with a two-tailed significance ≤ .447); this result was not very promising. The 

strongest relationship was the correlation between usage and the learning help that the 

process might provide. A correlation coefficient of .712 with a two-tailed significance of 

≤ .178 brought this relationship closest to potential significance. With a larger sample, a 

relationship between these two variables might be found. 
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5.3 Student Written Responses 
 

 Students were offered the opportunity to provide their opinions on difficulties 

they might have had with the process, use of the process in other areas, suggested 

modifications to the process, and finally, they were offered an open-ended question to 

contribute any further ideas or opinions they might have related to learning with and 

using the programming process. The questions were kept simple and the students were 

asked to "explain briefly" their ideas and/or opinions. The student responses were 

grouped by general category of the response and are reported in this section. Note that the 

student response quotations were copied directly from the data collection results, and no 

grammatical or spelling changes were made. 

5.3.1 Difficulties 
 

 The question, "Did you have any difficulties when using the Five Step 

Programming Process for developing your most recent program?" was asked of the 

students with a request to provide a brief explanation. Of 23 responses, 9 of them 

indicated that there were no significant difficulties. Two further students indicated that 

they did not like how it worked at first, but began to appreciate it later. For example, one 

student stated, "Some times it seems like it generated more busy work when the programs 

were simple but when they became more complex it really helped". 

 Three students found it hard to complete the process, with statements such as, 

"...because i would forget areas of the program that needed to be implented until the final 

step so i would have to back and add code in.", or "When you're adding new information 
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to an assignment based on the 5 step programming process design assignment, or if the 

design assignment was incomplete, it's discouraging and more time consuming having to 

edit additional information related to the programming assignment". 

 Three students felt that writing code before drawing out the design would be the 

more appropriate way to develop a program. One example statement was, " I always want 

to start writing out the code while commenting it out because I feel like I'll forget my idea 

later." Another student stated, "The 5 step process is not the best way to write the 

program. Writing down what one plans to do to complete the entire program before 

writing code is a bad idea.".  

 Five students found the process difficult to do or to understand. Representative 

responses were, "It's a good concept, but it's difficult to actually do and it doesn't always 

help.", and "sometimes your brain would naturally take you off course and it would be 

hard to get your mind back into the way the five step process wanted you to do it.". One 

interesting response showed what the student perceived to be a difference in 

programming method, as opposed to not being able to abstract a solution: "It is more 

difficult for me to think from a top down manner than from a tool use method. I would 

rather build the smaller components before and then utilize the working tools then try to 

do an overall and guess at what I will need. Finally, one student simply stated, "step 5 is 

hard". 

 The only other response to this question was a commentary on how the 

programming process might be taught because the student indicated that s/he did not 

"understand the process at first". One of the students who indicated no difficulties also 

made a recommendation on how the process might be taught more clearly. 
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5.3.2 Application of the Process to Non-Programming Areas 
 

 One of the goals of teaching problem solving targets the goal of transfer to other 

problem-solving conditions that are not directly related to the original context. The 

question, "Do you think using the Five Step Programming Process might help with other 

courses, such as math, science, etc?" was designed to find out if students might see the 

value of using this standardized process in other problem-solving venues. 

 Only two of the 26 students responded positively and directly to the question. 

Both responses demonstrated recognition and application of the process: "I think the 

methodology behind it, taking a big problem and splitting that problem into little parts, 

is uesable whenever you want to solve any problem." and "Yes, I believe it's applicable to 

other courses and I have used it in other courses for projects and essays.". The positive 

responses were separated in the research from a second group who believed it might be 

useful elsewhere, but either had not tried it, or may have not thought about it prior to 

answering the question. 

 There were 15 students who considered that it was possible that the process -- or 

its parallel practice -- might be used elsewhere. Example student responses are: "Maybe 

writing English essays though I haven't tried it.", "The program could really be used for 

any other class. It is basically saying what you should do in an assignment then actually 

doing it.", "The process itself seems to be related to only computer science; however, the 

logic behind it definitely carries over into courses of other fields such as mathematics and 

physics. The idea of finding the main goal of a problem and breaking it down into smaller 

problems is essential to both this course and others.", and "Possibly for really complex 
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problems for calculus. I've actually never really thought about it." Again, these responses 

were not accepted as directly positive answers to the questions, but were accepted as 

students who appeared to be considering the possibility that the process might be 

transferrable. 

 There was only one unqualified "no" in the remaining group of responses. Like 

the previous group, the remaining students stated "no" or "I don't think it will", and then 

expanded on their response with their own considerations. Example student responses 

are: "I do not think the process will be helpful with other courses in its specific structure. 

I think it does help to teach how to break a problem down into smaller chunks.", "not 

really in math, but it could be helpful to developing an idea in a science.", "No i dont 

think it would be useful. Since most other courses do not solve problems in a manner that 

can be modularized.", and "no, I won't be taking other courses like that".  

 Two more directly negative responses still seemed to be considering the use of the 

process, even if they did not think it would work elsewhere: "no For math, one would not 

write down pages of commentary on how they thought they were going to solve the 

problem before attempting the problem.", and " No, it is more or less a step made for 

planning, which I could do just as well without this five-step process. In fact, I would 

find it a large bother to translate its application to something other than coding, given my 

other subjects are more about learning specific equivalents of functions rather than a 

large algorithm." 
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5.3.3 Condensing Steps Together 
 

 To find out what the students think about the individual steps, and the overall 

stepwise process as a whole, one question was asked about condensing two or more steps 

into one, and the other was asked about expanding any of the steps. The data from these 

are treated separately, and the condensing down question is presented here. Eleven of 24 

students indicated that the steps were okay as they were. Example responses were: "I like 

keeping the steps individually, as taken one step at a time it develops very well.", "It's 

great the way it is because of the way each step builds on the previous one." These 

responses address the goal of stepwise progress toward the solution, but one student 

addressed the motivational and to some extent the psychological considerations: "Having 

5 steps is a good way to go, mainly because it helps the student focus on the problems at 

hand. Stepping through each large problem, and solving smaller problems to accomplish 

it relieves a lot of stress. Also, the feeling of accomplishment after each step acts as a 

great motivator to continue through the rest of the program." 

 The question for this item was, "Are there parts of the five steps you think should 

be condensed down? For example, because step 1 is so brief, do you think it would help 

to combine steps 1 and 2?" Because the example given is actually a consideration, this 

question is somewhat leading. This was done purposely to see if students would argue for 

or against condensing questions 1 and 2 into one. Some students concurred, but 

apparently for reasons of managing the larger process: "I think consolidating 1 and 2 

would be helpful because if anyone else is like me, they don't remember the 

specifications of all five steps. I pretty much know what step 4 is supposed to look like 
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from the design assignments.", and "Combining steps 1 and 2 would be helpful in that the 

steps would all be very distinct; it would be easier to follow if you knew exactly what 

step you're on. In my mind the line between step 1 and 2 is not clear." 

 As was found in a previous question, there were students who felt that working 

out the program before coding was not important: "In my personal execution of the 

process, I would almost always start at step 3/4. The reason is because, in my opinion, the 

first 2 steps outline things that I don't really feel are too confusing or complex to need 

commenting. (i.e. basic understood functions, obvious coding needed in main() ). 

However, steps 3 and 4 are great in helping with the complexity of the code that can arise 

inside functions. (i.e. loop iteration, array augmentation, etc.)", and "I think steps 1, 2, 

and 3 can be condensed down into one step. In the beginning, it helped a lot to be able to 

do 5 steps but as the semester carries on, step one and two become vestigial steps." 

 One student suggested removing the function specifications part of one step: 

"Step 3: function specifications. I'm usually only guessing what my functions are or what 

they can do. To base my program in step 4 around these functions can be bad. I'm a think 

as I go person, planning things out too far ahead usually results in bad work. I would cut 

step 3 out, and just go from step 2 to step 4." Another student suggested condensing steps 

4 and 5 due to problems with later program modification: "The only complaint that I have 

about the 5 step process is step 4 and 5 should be condensed because often times I find 

that I need to adjust or modify my main program code when I am writing my functions 

which can often render my step 4 work useless." 

 The last group of students did not see the value of a stepwise process: "I never do 

this step on at a time. I think it would be ridiculous to do them one at a time. So yes I 
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think they could be condensed down.", "outline work on the functions and what they are 

doing place the funcitons where they need to go comment the functions finish 

everything", and "I like to break down problems as I see fit for each individual problem, 

it is a waste of time to have a single approach that you try to use for every problem since 

many problems are handled differently". 

5.3.4 Expanding Steps Out 
 

 Of 24 responses, 15 of them felt that no expansion was necessary, most with little 

qualification, and some with rationale for keeping them as the are: "I think the expanding 

is not beneficial at this level of CS", " No, I think step 3 and 4 are great as they are, 

because they help you get prepared for coding in a fairly concise manner, and I see no 

reason to arbitrarily expand on the process.", and "Commenting out the stub functions in 

step 4 helps keep track of what the main program is supposed to do; therefore, I believe it 

should be left the same.".  

 The question for expanding out the process was, "Are there parts of the five steps 

that you think should be expanded upon? For example, because you write both the main 

program and the stub function comments in Step 4, do you think it would help to break 

this process into two unique steps?" This was also somewhat leading, but again this was a 

clear example to the students as to what was being requested. Three students did suggest 

breaking up step 4, with specific arguments: "There is a lot in step 4. Breaking it up 

would help.", "The only aspect that could be elaborated on would be step 4. I found it 

difficult to know what exactly i wanted a function to do and how it was going to be 

implemented.", and "Step four is very big, and should be break down in multiple parts".  
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 The remaining responses to this question were not so much related to expanding 

steps, but are added here for completeness, and will contribute to the discussion in the 

next chapter: "I do think that stubbing out the functions should be step 4 and writing main 

should be added to step 5.", and "Step 2 should include that it is a form of step 1 applied 

to segments and then reapplied until the function is split into small enough pieces." One 

student apparently continued supporting the idea that all the coding should happen as it is 

approached: "It would help to actually write the functions instead of just stubbing them. 

Sometimes, it would help wirting the main program." 

5.3.5 Other Comments 
 

 In order to provide students an opening to provide any other ideas, suggestions, 

issues, and so on, an open-ended question, "If you have any other opinions or thoughts on 

your use of the Five Step Programming Process, please share them here.", was provided 

at the end of the survey. There were a variety of responses starting with four students 

who indicated that they had no issues to discuss. Four students stated that they liked the 

process, although two of them offered suggestions about how to improve the delivery of 

it: "It's a good process, but it could use a better description online. The steps listed above 

in this survey is a nice summary. Put that online.", and "This process is a very powerful 

tool, and is helpful in writing efficient code. The only suggestion I have is to introduce 

the process earlier in the course, saving students much frustration toward the class, and 

even the instructor :)". 

 Two students stated that it worked for them, but with some qualifications: 

"Originally I hated having to use the programming process as I felt it made me spend 
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extra time outlining when I didn't need to. This was because I hadn't really encountered 

anything in class that was really of any conceptual difficulty. When we started getting 

into loop, array, and file streaming design, the use of the process really became more 

important in my programming. Once I embraced actually taking the time to outline 

everything it really helped me conceptualize code structure and potential problems a 

whole lot easier. I really feel like a much stronger coder now, and I am very glad that I 

came around to using the programming process.", and "The process is tediuous, and 

certainly not something I enjoy doing, however it allowed my programs to come out 

looking relatively clean and usually I understood more of my program coming out than 

going in." 

 Four students did not see the value of the process. One student, who felt that 

many of his classmates agreed with him stated, "…Many students don't use their design 

assignments at all when completing their programming assignments. I use mine, but I 

don't follow the process to complete the design assignment, I just make it follow the 

format in the end.". Another student believed that other methods should be offered for 

use: "People’s minds work differently. All students should not be required to follow the 

same formula. If the students understands what is needed to be done to achieve a goal 

(writing a program ), they should not be forced to do it a certain way. The students should 

be shown different methods and be allowed to chose which method works best. CS 135 

would be a better class if the students were only graded on the programming assignment 

and not the design assignment." 

 Another student did not see the value of integrating the comments into the 

program: "For a beginner to programming, the five step process is solid. It makes 
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readable, easy to follow code for you and other users. Later on, I would be more 

concerned with finishing a programming assignment rather than completing a design 

assignment that may not accomplish my original goals, and therefore be scrapped. I'm 

essentially writing my thoughts down in english with the 5 step programming process. If 

I'm doing that, why can't I just write down my thoughts in english outside of the 

program?" The last of the students who did not like the process stated, "I found actually 

coding a skeleton of the main program while commenting what I was doing was most 

effective. From there, I would add on flags, additional features, and the like. Even while 

doing a design assignment and no actually coding, I still confused myself with all the 

parts going on. I think having a partial program running helped me see what I did and did 

not have, which allowed me to handle the next task without thinking about how it 

interacted with every other task. I'll point out that when just planning, I was not sure if all 

the parts would mesh correctly which led to a lot of mental stress over handling the 

seperate parts appropriately. Step 1 should take care of this, but it did not. Finally, one 

program I wrote out the entire design assignment, then could not follow it when I had to 

code it. Instead, I simultaneously coded and commented it. When I compared the 

comments, they were almost exactly the same." 

 Two more students argued that the process should be optional, one simply making 

the statement, and the other stating, "I think it should be optional. I don't see the need for 

this tool, in fact I find my self witting the code as I do it anyway, going back commenting 

on it then deleting the code I wrote. this seems very counter productive. I guess it might 

help some people but I really had no use for it." Three students offered further 

suggestions for how to introduce or teach the process, and three other students 
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commented on how hard the lab was, how s/he was graded, and in one case, the feeling 

that s/he was not getting it right. 

5.3.6 Chapter Conclusion 
 

 This chapter reported on both the quantitative data, and examples of the written 

data, that were collected from the students. As was noted, the number of students was too 

small to show significance in the quantitative data, but as a pilot study, both the 

quantitative data and the student comments provided information and insight from the 

students as to their perceptions of, and interaction with, the programming process tool. In 

addition, all of this data shows promise if a comparable study could be re-implemented 

with a larger student population. In the next chapter, this data will be evaluated with 

consideration for how the students were thinking, and how the process might be adapted 

to become more effective for their use. 
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Chapter 6 

Conclusions and Future Work 
 

 This research project represents a first step pilot assessment of the use of the Five 

Step Programming Process. While it was primarily meant to get a first layer look at what 

students thought about the process, some interesting results were found. There were 

students who considered the process helpful, and there were students who did not 

understand, or outright rejected, the use of the process. The data from both groups is 

important to future work in this area. This chapter will present discussion and tentative 

conclusions on the information from the research, and then -- with the understanding that 

this pilot activity was specifically designed to be continued -- the chapter will discuss 

how the knowledge found in this study can support further research. Finally, a brief 

discussion will be provided related to the academic areas, journals, and conferences to 

which the results of this research may be directed. 

6.1 Concluding Remarks 
 

 A large percentage of students stated that they used the process on the most recent 

programming project. This is promising, but could be a result of being required to 

provide part of their homework in the step 4 and later the step 5 format. However, some 

students noted that they simply organized the homework to fit the format without using 
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the process, and one student reported that s/he did not use the process at all. Thus there is 

evidence that the students reporting usage really did take advantage of the process. 

 The assistance with program development also showed some promise, but showed 

quite a bit of variability among the students. It was somewhat surprising that the time 

taken by the students did not show a better response (i.e., more evidence of less time 

required for a program). In the previous semester, the most often anecdotally reported 

benefit of using the process was the time savings. At least two of the potential variables 

here are: 1) classes of students do vary from semester to semester; as an example, the 

previous semester contained a group of Honors students; and 2) students during this 

semester -- again anecdotally -- seemed to have more trouble with the length of time the 

projects required than previous semesters.  

 The relationships found between usage of the process and development 

assistance, and usage of the process and learning help were both promising. As stated in 

the previous chapter, these values were not found to be significant and therefore cannot 

be relied upon for a firm conclusion. Nevertheless, the correlations and the levels of 

significance found hint that for a larger scale research study, the statistical evidence 

might be strengthened for both. If this could be verified, there would be evidence of the 

process' support of the double goal of both improved programming and improved 

learning. 

 Beyond the quantitative data acquired, the students' written responses were 

enlightening, and as mentioned, both the positive and the negative responses provided 

important feedback. Almost 40% of the students had no difficulty with the process, but 

the students who did mention problems identified issues that the process should have 
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mitigated had they used it appropriately. Students who stated that they needed to write 

code first so they would not forget and students who stated that they would get off course 

were not experiencing the value of the advanced and focused thinking that this kind of 

process should have provided them. 

 The question related to use of the process outside of programming was a gentle 

probe to seek student thought on how organized and/or systematic planning might work 

elsewhere, and as an assessment tool, it was effective. Sixty percent of the students made 

statements about how the process might work elsewhere. These responses demonstrated 

hypothetical thinking about where else an advanced planning process might work. In fact, 

most of the negative responses still hypothesized how the process might or might not 

work, which is evidence that they were understanding the overlying structure of this kind 

of process. 

 As far as modification of the process, no strong feedback was provided for 

making significant changes. Even with the slightly leading example of condensing steps 1 

and 2 of the process, the students who agreed did so because they were not feeling 

completely clear on how the steps worked uniquely within the whole process. Virtually 

all of the remaining students who argued for reducing steps did so from the perspective 

that they did not see the value of a complete plan before beginning the coding process. 

This is of significant interest and will be discussed next. 

 Students arguing for expansion of the process were fewer. Sixty percent of these 

students stated that there was little or no need for an expansion of the steps. However, 

some students did support the somewhat leading example of condensing steps 4 and 5 

although again, the arguments tended to be toward getting into the coding sooner. The 
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contraction and expansion questions both seemed to identify the problem that the 

programming process is focused on resolving. Many of the student responses in this data 

demonstrate the apparent student "need" to start coding without serious consideration for 

an organized planning process.  

 The responses were almost dichotomous between the students who acquired an 

understanding of the value of the process, "Once I embraced actually taking the time to 

outline everything it really helped me conceptualize code structure and potential 

problems a whole lot easier.", and the students who did not, "I found actually coding a 

skeleton of the main program while commenting what I was doing was most effective." 

This second response represents students who do not understand the problems with 

designing or managing a non-trivial program, and will continue to be the target at which 

teaching a development procedure will be aimed. 

 Probably the most telling response from a student unfamiliar with designing non-

trivial programs was the statement, "Writing down what one plans to do to complete the 

entire program before writing code is a bad idea.". Whether the student thought through 

this statement before typing it or not, it is the best evidence that students -- and not just 

programming students -- must be taught the value of advance planning and/or design. It 

might be conjectured that this is a capable or possibly advanced student who has been 

able to create the mental model required of the moderately non-trivial programming 

assignments assigned in the CS1 course, but who has not been challenged by a program 

at a scale that would demonstrate the value of advanced design. 

 In any event, the results of this pilot study have been helpful. The primary goal of 

the research was to get feedback from the students using, and potentially learning with, 
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the Five Step Programming Process. The feedback seems to be both positive and 

supportive; it appears that students are gaining value from use of the process. In addition, 

no significant evidence has been provided to support major changes to the process. There 

was some feedback requesting better communication (i.e., teaching) of the process, and 

the somewhat unexpected outcome was the fairly strong evidence that this kind of 

process is needed. 

6.2 Future Improvements and Research 
 

 Since this was a pilot study and was purposely limited to building a background 

or framework for future studies, there are a number of modifications to teaching and 

identified areas for further research generated from this research project. Some of these 

are provided in this section. 

6.2.1 Changes to the Educational Process 
 

 The first significant action that will be driven by this research is the development 

of a more complete, but somewhat simpler training system for use of the process. The 

process was presented briefly in class, and supported in the laboratories and with a web 

site. Responses to this research show that the students need both a more concise overview 

of the process as well as more examples of its use. 

 The second action made in direct response to some of the feedback will be to start 

teaching the process earlier in the course albeit in a simplified way that will not involve 

the use of concepts to which they will not have been exposed to at first (e.g., functions). 

Using the process in the classroom from the earliest part of the semester will make the 
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students comfortable with it at an earlier stage, and more prepared for it when the 

programs become complex enough to require modular breakdown. 

 The third, and probably the most needed action, is problematic. As with virtually 

any other learners, beginning CS1 students must start out with trivial or non-complex 

programs in order to gain the experience that will become mental and long-term memory 

constructs later. While this "training wheels" approach is necessary and seemingly 

appropriate, it may lead to the result found in this research that some students believe 

they do not need a design process for their programs. The programs assigned in this 

particular CS1 course tend to be moderately non-trivial as soon as the students have 

learned about some of the basic tools of programming.  

 However, this appears to be where the dichotomy mentioned previously opens up. 

From frequent student feedback, both anecdotally and formally provided in course 

evaluations, many of the students say that the programming assignments take too much 

time outside of class. On the other hand, this research shows that there are still students 

who feel -- somewhat strongly in some cases -- that they can develop these programs 

without a design process. As mentioned in Chapter 4, this has led some educators to want 

to teach the "programming in the large" process, but as the research showed, this strategy 

has not resulted in significant improvements, and the "programming in the large" process 

loses the value of trying to solve a problem from start to finish with a program. This 

would seem to make the CS1 course more an industrial programming course, and less a 

problem-solving course. 

 As also mentioned in Chapter 4, the problems with teaching this course are not 

trivial, but identifying these problems allows educators to focus on, analyze, and attempt 
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to resolve them. New strategies need to be found to address this part of the CS1 

educational endeavor, and this research provides some support for how to develop these 

strategies. 

6.2.2 Future Research 
 

 While the focus is on problem solving and programming, there are several 

supporting areas that can be extended with further research. The cognitive load 

component [6], and the related working memory capacity issues [21] that are pertinent to 

this project and research are well supported, and continue to be actively pursued. 

Conversely, components such as Gilmore's [28] study of program organization, Hartley's 

[33] study of white space, and Payne, Sime, and Green's [43] study of perceptual 

characteristics of a program need further consideration. It may be possible to identify 

conditions of understanding as a result of organization and perception with individuals 

other than student programmers, and this would likely be more generalizable to 

educational practices beyond introductory programming. 

 As mentioned in the previous section, it will be critical to get students to use and 

trust the programming process, but it will be more critical that the organization and 

structure of the process helps them stay on track with a reasonable planning or designing 

process. Research on motivational aspects of the process, or motivational strategies for 

using the process could be helpful to finding greater student success. It may be 

productive to pursue focal quantities in programming since they are apparently a natural 

student, or possibly human, attribute as discussed by Davies [22], Rist [50], and Robins, 

Rountree, and Rountree [52]. 
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 In addition, a next important step for this research would be to conduct an 

experimental comparison between students using this process and students using another 

formalized process, or none at all. This may be conducted between colleges and 

universities in the local area since they have the same course structures, but it can be 

difficult due to differences in teaching style and strategy. It is nevertheless worth the 

efforts that might prove necessary.  

 Finally, a longer term study will be conducted on students who have been exposed 

to this development strategy by assessing third- and/or fourth- year students with 

questions on their possible use of the process. Given appropriate numbers of students, 

comparison studies between students who have learned this strategy and students who 

have not should be conducted. Another interesting study that would be logistically 

challenging, but potentially rewarding would be to study the non-Computer Science 

students such as the Electrical Engineering, Physics, or Mathematics students who were 

required to take the CS1 class but very likely did not continue with a significant amount 

of programming. 

6.2.3 Dissemination of the Research 
 

 There is a significant amount of discussion related to integrating CS1 into high 

school and/or K-12 education [34] at this time, although as discussed in Chapter 1, there 

is not much research support to back this action up right now. In addition, there continues 

to be much discussion related to problem solving in technical and other fields [35]. This 

provides a number of opportunities to contribute research related to CS1 teaching to the 

scientific and education communities. 
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 For example, the Association of Computing Machines' (ACM) Special Interest 

Group: Computer Science Education (SIGCSE) publishes four large bulletins per year 

focused on this topic, as does the ACM Transactions on Computing Education. In 

addition, the Consortium for Computing Sciences in Colleges (CCSC) publishes four 

Journals and conducts regionalized conferences every year as well. Other venues that 

directly address technology education are the IEEE Transactions for Education and the 

related annual Frontiers of Education (FIE) conference; and the American Society of 

Engineering Education (ASEE) which also supports the FIE conference, sponsors both 

the Prism magazine that includes a teaching component, and the Journal of Engineering 

Education. These Engineering publications are not focused only on Computing Science, 

but CS articles are among others that are published. 

 All of the above publications are likely forums for disseminating research such as 

that found in this thesis, and parts of this research will be proposed to one or more of 

them. This document began with a discussion of the difficulties -- and indeed the failures 

-- with teaching introductory Computer Science. It continued with evidence that just 

teaching people to program does not necessarily support higher level, advanced thinking, 

or even programming particularly well. However, some of the research showed that 

teaching the thinking process and the programming process together can provide 

effective support toward helping students program and solve problems. This research has 

found preliminary evidence that a process can help students learn effective programming 

skills and gain a larger-scale picture of solving non-trivial problems. This project and 

future research can offer contributions to the educators and researchers working in this 
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arena, and to the students who benefit from the knowledge that is gained through these 

endeavors. 
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Appendix A - Survey Materials 
 
1. IRB Consent Request 
 
UNIVERSITY OF NEVADA, RENO  
SOCIAL BEHAVIORAL INSTITUTIONAL REVIEW BOARD 
CONSENT TO PARTICIPATE IN A RESEARCH STUDY 
 
TITLE OF STUDY: The Five Step Programming Process 
INVESTIGATOR(S):  Frederick Harris, 775.784.6571, Michael Leverington, 
775.784.1414 
PROTOCOL #:  SB09/10-122 
 
PURPOSE/PARTICIPANTS 
 
If you are at least an 18 year old adult student in this semester's CS 135 course, you are 
being asked to participate in a pilot research study to evaluate the helpfulness and 
usability of a tool you are presently using in your CS 135 course. At least 30 students are 
expected to respond to this survey. 
 
PROCEDURES 
 
If you agree to participate in this research study, data from the assessment you are about 
to take will be used in a Master's Degree thesis research project. If you do not wish to 
participate in the study, you may leave this web survey at any time. 
 
Your actions will be the following: 
 
1. You will read this consent information and then, at your discretion, select to participate 
in the survey. 
  
2. You will then answer a small number of survey questions on subsequent pages. There 
are four multiple-choice questions, four brief explanation questions, and one open-ended 
opinion question. 
 
3. You may choose to withdraw from the research at any time by simply closing the 
WebCampus survey. 
 
4. About a week after you have taken the survey, you will be able to pick up your food 
gift card from the Computer Science & Engineering office at SEM 242. 
 
BENEFITS, DISCOMFORTS, INCONVENIENCES, AND/OR RISKS 
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1. There may be no direct benefits to you as a participant in this study but we wish to 
acquire your feedback so that we can improve the Five Step Programming Process 
learning tool. 
 
2. As this is an opinion survey, there is very little likelihood of significant discomfort or 
risk, and any inconvenience would only be a result of the 10 to 20 minutes that the survey 
may require. None of the questions should offer any discomfort. 
  
CONFIDENTIALITY 
 
1. Your identity will be protected to the extent allowed by law.  You will not be 
personally identified in any reports or publications that may result from this study. 
 
2. The Department of Health and Human Service (HHS), other federal agencies as 
necessary, the University of Nevada, Reno Social Behavioral Institutional Review Board 
may inspect the data collected during this research project.  
 
3. You will not provide your name, and it will never be known by your Instructor. 
However, it will be known to the person collecting the research data, Dr. Frederick Harris 
so that he can manage the disbursement of the food gift card incentives. As soon as the 
food gift cards have been disbursed, all data resources containing participant names will 
be deleted. In addition, once the research has been completed, the WebCampus survey 
itself will be removed. 
 
4. Servers housing survey applications record and collect incoming IP addresses for 
system administration and record keeping. These data are analyzed only in aggregate; no 
connection is made between participants and their computers’ IP addresses. These servers 
also use cookies to recognize visitors and more quickly provide personalized content, 
grant unimpeded access to the website, and to track usage behavior and compile data, in 
aggregate form only, for website improvement purposes.  
 
5. You may close your Internet browser immediately after completing the survey to limit 
access to your survey responses, especially if you are using a computer in a public 
domain. If, after exiting the survey, you wish to remove the cookies from a personal 
computer, you may obtain instructions for deleting cookies from the help menu or with 
assistance from your Internet provider. 
 
COSTS/COMPENSATION 
 
1. There will be no cost to you for participating in this research study. 
 
2. As an incentive to participate in the research study, you will be given a $5.00 coupon 
for food at Cantina Del Lobo at the Joe Crowley Student Union. 
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3. In addition, you will be entered into random drawings for $25.00 food coupons for the 
Cantina Del Lobo restaurant. The odds of winning the $25.00 coupons are fixed at 1 in 5. 
 
DISCLOSURE OF FINANCIAL INTERESTS 
 
The researcher involved with this study has no conflict of interest that would bias the 
study, and will not gain or lose any financial benefit as a result of any of the possible 
outcomes of the study. 
 
RIGHT TO REFUSE OR WITHDRAW 
 
1. You may refuse to participate or withdraw from the research study at any time by 
simply closing the WebCampus survey item. 
 
2. You may skip questions that you do not want to answer. 
 
3. If the study design or use of the data is to be changed, you will be so informed and 
your consent re-obtained. 
 
4. You will be told of any significant new findings developed during the course of this 
study, which may relate to your willingness to continue participation. 
 
RESEARCHER CONTACT INFORMATION 
 
If you have questions about this study, please contact Michael Leverington at (775) 784-
1414 or Dr. Frederick Harris at (775) 784-6571 at any time. 
 
PARTICIPANT RIGHTS CONTACT INFORMATION 
 
You may ask about your rights as a research subject or you may report (anonymously if 
you so choose) any comments, concerns, or complaints to the University of Nevada, 
Reno Social Behavioral Institutional Review Board, telephone number (775) 327-2368, 
or by addressing a letter to the Chair of the Board, c/o UNR Office of Human Research 
Protection, 205 Ross Hall / 331, University of Nevada, Reno, Reno, Nevada, 89557. 
 
 
O 1. I voluntarily consent to participate in this research study. 
O 2. I do not wish to participate in this research study. 
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2. USE of the Five Step Programming Process 
 
How much do you think you used the Five Step Programming Process for working out 
your most recent laboratory program? 
 

a. 0% 
b. 20% 
c. 40% 
d. 60% 
e. 80% 
f. 100% 

 
3. DEVELOPMENT using the Five Step Programming Process 
 
 How much do you think the Five Step Programming Process helped you develop your 
most recent laboratory program? 
 

a. 0% 
b. 20% 
c. 40% 
d. 60% 
e. 80% 
f. 100% 

 
4. TIME TAKEN using the Five Step Programming Process 
 
Do you think that using the Five Step Programming Process allowed you to complete 
your most recent laboratory program in more, less, or about the same amount of time? 
 

a. it helped me complete the program in a lot less time 
b. it helped me complete the program a little less time 
c. it didn't make a difference with my program completion 
d. it caused me to take a little more time to complete my program 
e. it caused me to take a lot more time to complete my program 

 
5. DIFFICULTIES with the Five Step Programming Process 
 
Did you have any difficulties when using the Five Step Programming Process for 
developing your most recent program? If you did, please explain briefly. 
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6. LEARNING with the Five Step Programming Process 
 
How much do you think that using the Five Step Programming Process helped or 
hindered your learning in this programming course so far? 
 

a. it helped me learn about programming a lot 
b. it helped me learn about programming a little 
c. it didn't make a difference with my learning to program 
d. it was not very helpful with my learning to program 
e. it was a hindrance to my learning to program 

 
7. USING the Five Step Programming Process FOR OTHER COURSES 
 
Do you think using the Five Step Programming Process might help with other courses, 
such as math, science, etc? Please explain briefly. 
 

 

 
8. CONDENSING DOWN PARTS of the Five Step Programming Process 
 
Consider the brief description of each of the five steps below: 
 
 Step 1: very brief program overview, written in comments 
 Step 2: extended program overview, written in comments 
 Step 3: program overview with function specifications, written in comments 
 Step 4: main program code developed, other functions prototyped and stubbed 
 Step 5: whole program completed 
 
Are there parts of the five steps you think should be condensed down? For example, 
because step 1 is so brief, do you think it would help to combine steps 1 and 2? Please 
answer with a brief explanation below. 
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9. EXPANDING OUT PARTS of the Five Step Programming Process 
 
Consider the brief description of each of the five steps below: 
 
 Step 1: very brief program overview, written in comments 
 Step 2: extended program overview, written in comments 
 Step 3: program overview with function specifications, written in comments 
 Step 4: main program code developed, other functions prototyped and stubbed 
 Step 5: whole program completed 
 
Are there parts of the five steps that you think should be expanded upon? For example, 
because you write both the main program and the stub function comments in Step 4, do 
you think it would help to break this process into two unique steps? Please answer with a 
brief explanation below. 
 

 

 
10. ANY OTHER ISSUES  with the Five Step Programming Process 
 
If you have any other opinions or thoughts on your use of the Five Step Programming 
Process, please share them here. 
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Appendix B - Complete Data Set 
 
The following data set constitutes all the information collected from the students. The 
written comment data is organized in groups as explained in Chapter 5. 
 

Q 1 Q2 Q3 Q5
Usage Development Time Taken Learning Help

0.00% 1 3.85% 0.00% 5 19.23% lot more 2 7.69% hindrance 1 3.85%
20.00% 6 23.08% 20.00% 3 11.54% little more 8 30.77% not helpful 2 7.69%
40.00% 1 3.85% 40.00% 3 11.54% no difference 3 11.54% no difference 4 15.38%
60.00% 5 19.23% 60.00% 2 7.69% little less 10 38.46% helped a little 13 50.00%
80.00% 10 38.46% 80.00% 9 34.62% lot less 3 11.54% helped a lot 6 23.08%

100.00% 3 11.54% 100.00% 4 15.38% sum: 26 sum: 26
sum: 26 sum: 26  
 
Q4 Difficulties           
           
NONE                
           
No           
           
No.           
           
no           
           
none           
           
No, it pretty self-explanatory.        
           
No difficulties. I think the 5 step programming process helps with a rough outline of the program 
but not beyond that detail level.        
           
No, not at all. I have had problems in the past but it was more due to unfamiliarity with the code 
concepts, not the process.        
           
No problems, it's pretty straight forward.      
           
The Five Step Programming process is necessary for developing large programs. I didn't have any 
difficulty using it in my last program, and have had very little trouble using it in programs past. My 
only issue with the five step programming process is with its description on WebCampus: the 
directions should be a little more clear, such as in Step 3, where the only explanation used is an 
example.           
           
GOT BETTER LATER            
           
Yes, at the beginnig of the semester the Five Step Programming Process was a waste of time, it 
caused me to take a lot more time to complete my program. But at the opposite I think it helped 
me do complete my program a little bit faster for the last two labs.   
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Some times it seems like it generated more busy work when the programs were simple but when 
they became more complex it really helped      
           
HARD TO COMPLETE THE PROCESS      
           
I found that using the five step programming system helped in some areas but hindered others, 
because i would forget areas of the program that needed to be implented until the final step so i 
would have to back and add code in.       
           
When you're adding new information to an assignment based on the 5 step programming process 
design assignment, or if the design assignment was incomplete, it's discouraging and more time 
consuming having to edit additional information related to the programming assignment 
           
The fourth step almost never translates well into the fifth step. Often, coding that I am unfamiliar 
with or not acquanted will cause massive errors in my program that force me to restructure it. 
           
WANT TO CODE FIRST          
           
I always want to start writing out the code while commenting it out because I feel like I'll forget 
my idea later.          
           
I wouldn't say that the 5 step process is diffucult, it is just faster and easier for me to work the 
other way around (writing the functions first).      
           
The 5 step process is not the best way to write the program. Writing down what one plans to do to 
complete the entire program before writing code is a bad idea. First, if and when there is a problem 
the programmer must look at pages of unfinished code to find the problem. If one instead writs a 
small test program and starts with a getting one function working than going from there, problems 
can be easily found and fixed.        
           
DIFFICULT TO DO OR UNDERSTAND        
           
It's a good concept, but it's difficult to actually do and it doesn't always help.  
           
sometimes your brain would naturally take you off course and it would be hard to get your mind 
back into the way the five step process wanted you to do it.    
           
It is more difficult for me to think from a top down manner than from a tool use method. I would 
rather build the smaller components before and then utilize the working tools then try to do an 
overall and guess at what I will need.       
           
It is good as a framework of developing the porgram (the thought process), but tyring to adhere to 
it in developing the actual program has caused me to mess up the logic and unable to complete my 
assignment properly.         
           
step 5 is hard          
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NO POSITION               
           
I didn't understand the process at first. Dr. Louis did not cover it in class, so maybe next time the 
process should be covered in the Lab. That would be much more beneficial, I think. 
           

Q6 
Using 5-S for other 
courses       

           
HELPFUL ELSEWHERE          
           
I think the methodology behind it, taking a big problem and splitting that problem into little parts, 
is uesable whenever you want to solve any problem.     
           
Yes, I believe it's applicable to other courses and I have used it in other courses for projects and 
essays.           
           
MAYBE HELPFUL ELSEWHERE          
           
Not sure, but it is definitely a great process for coding. As coding can require intense problem 
solving it was really helpful do document everything in small chunks so it was easier to digest. 
When it comes to math, I think it is much easier to solve equations and problems without having to 
plan things this thoroughly.        
           
I believe that it would help other subjects because it teaches a person to build a foundation and 
understand the smallest component of something before going on to the more complex information 
           
The program could really be used for any other class. It is basically saying what you should do in 
an assignment then actually doing it.       
           
It's always good to have a strategy or plan of attack for solving problems. If the problem is 
complicated and takes several steps to complete, the five step programming process would be very 
effective. For math, there's usually one formula or way to solve an equation. In programming, 
there is an infinite number of ways to being coding a program. Oftentimes, overthinking your 
program can be counterproductive. You're less likely to overthink stoichiometry or an integral. 
           
Sure. Basically the 5 Step Programming process is an outline, but it might be more trouble that it's 
worth for other subjects, as other subjects' problems tend to be more trivial.  
           
I don't think so. Maybe witting essay, but who doesn't already plan out there essay before witting 
them?           
           
The process itself seems to be related to only computer science; however, the logic behind it 
definitely carries over into courses of other fields such as mathematics and physics. The idea of 
finding the main goal of a problem and breaking it down into smaller problems is essential to both 
this course and others.         
           
It has possible uses dependant on each students learning ability.   
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Possibly for really complex problems for calculus. I've actually never really thought about it. 
           
I don't think it will help me in courses other than computer science, but it is possible that it could 
and I just don't know it yet.        
           
It is a systematic thinking process that can be learned in other ways, esp. thorugh other subjects. I 
think the concept is good, however, the way the class is designed made this process a little too 
rigid to be useful. In fact, it is easier for me to write my entrie program and remove my codes in 
order to complete the "Design Assignment" part of the homework.   
           
Yes, the idea of moving from the general to the specific and breaking problems up into smaller 
pieces I can see helping in other courses.      
           
maybe           
           
Yes i think it will help in assignment such a designing big project. For my major (Civil engineering) 
it is usefull to proceed as the Five Step Programming Process, consider the biggest, and then move 
on the smallest part.         
           
DON'T THINK SO            
           
I do not think the process will be helpful with other courses in its specific structure. I think it does 
help to teach how to break a problem down into smaller chunks.   
           
no For math, one would not write down pages of commentary on how they thought they were 
going to solve the problem before attempting the problem.    
           
No, I dont think I will. I dont know how it would apply to my other classes  
           
No, I find it easier to piece small pieces together to understand something larger rather than 
breaking down large things into smaller ones.      
           
No           
           
No, it is more or less a step made for planning, which I could do just as well without this five-step 
process. In fact, I would find it a large bother to translate its application to something other than 
coding, given my other subjects are more about learning specific equivalents of functions rather 
than a large algorithm.         
           
not really in math, but it could be helpful to developing an idea in a science.  
           
no, I won't be taking other courses like that      
           
No i dont think it would be useful. Since most other courses do not solve problems in a manner 
that can be modularized.        
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Q7 Condensing Down         
           
OKAY AS IT IS              
           
I like keeping the steps individually, as taken one step at a time it develops very well. 
           
It's great the way it is because of the way each step builds on the previous one.  
           
step one and step two should be different becuase it helps to design the program as a whole. 
           
I dont believe that any of the steps should be combined or condensed down. Every step helps the 
user understand what is needed for programming      
           
N. -- assume this means no --       
           
No, it seems properly condensed.        
           
No. 5 is a nice number.         
           
Having 5 steps is a good way to go, mainly because it helps the student focus on the problems at 
hand. Stepping through each large problem, and solving smaller problems to accomplish it relieves 
a lot of stress. Also, the feeling of accomplishment after each step acts as a great motivator to 
continue through the rest of the program.      
           
No, because a 5 step program with only 3 steps would be misleading.  
           
No, I think it's all necessary to the development of the process.    
           
I think it's fine the way it is. Each step adds just the right amount of information to the process. 
           
CONDENSE STEP 1/2            
           
I think consolidating 1 and 2 would be helpful because if anyone else is like me, they don't 
remember the specifications of all five steps. I pretty much know what step 4 is supposed to look 
like from the design assignments.        
           
Step 1 & 2 are pretty much the same, so they should be condensed together.  
           
Combining steps 1 and 2 would be helpful in that the steps would all be very distinct; it would be 
easier to follow if you knew exactly what step you're on. In my mind the line between step 1 and 2 
is not clear.          
           
Steps one and two could be easily merged. I sometimes even did the first three all at the same 
time.           
           
Maybe the step one and two can be combined...      
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CONDENSE STEP 1/2/3          
           
In my personal execution of the process, I would almost always start at step 3/4. The reason is 
because, in my opinion, the first 2 steps outline things that I don't really feel are too confusing or 
complex to need commenting. (i.e. basic understood functions, obvious coding needed in main() ). 
However, steps 3 and 4 are great in helping with the complexity of the code that can arise inside 
functions. (i.e. loop iteration, array augmentation, etc.)    
           
I think steps 1, 2, and 3 can be condensed down into one step. In the beginning, it helped a lot to 
be able to do 5 steps but as the semester carries on, step one and two become vestigial steps. 
           
I would have only three steps Step 1: Think of a function that will be needed. Step 2: Write the 
function. Step 3: Test the function.        
           
REMOVE STEP 3            
           
Step 3: function specifications. I'm usually only guessing what my functions are or what they can 
do. To base my program in step 4 around these functions can be bad. I'm a think as I go person, 
planning things out too far ahead usually results in bad work. I would cut step 3 out, and just go 
from step 2 to step 4.         
           
CONDENSE STEP 4/5            
           
The only complaint that I have about the 5 step process is step 4 and 5 should be condensed 
because often times I find that I need to adjust or modify my main program code when I am 
writing my functions which can often render my step 4 work useless.  
           
CONDENSE ALL              
           
I never do this step on at a time. I think it would be ridiculous to do them one at a time. So yes I 
think they could be condensed down.       
           
outline work on the functions and what they are doing place the funcitons where they need to go 
comment the functions finish everything      
           
DON'T USE STEPS            
           
I like to break down problems as I see fit for each individual problem, it is a waste of time to have 
a single approach that you try to use for every problem since many problems are handled 
differently           
           
Q8 Expanding out         
           
OKAY AS IT IS              
           
No           
           
No.           
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No           
           
I think 5 steps is plenty.        
           
No.           
           
no           
           
Not really. I like the number 5.        
           
No, I think it is expanded enough as it is.      
           
No.           
           
I think it's fine the way it is.        
           
I think the expanding is not beneficial at this level of CS    
           
No, I think step 3 and 4 are great as they are, because they help you get prepared for coding in a 
fairly concise manner, and I see no reason to arbitrarily expand on the process.  
           
I think consolidation is more beneficial than expansion.    
           
Commenting out the stub functions in step 4 helps keep track of what the main program is 
supposed to do; therefore, I believe it should be left the same.    
           
Instructionis for step one should emphasize the importance of keeping it very basic, other than 
that the process worked very well for me.      
           
BREAK DOWN STEP FOUR          
           
There is a lot in step 4. Breaking it up would help.     
           
The only aspect that could be elaborated on would be step 4. I found it difficult to know what 
exactly i wanted a function to do and how it was going to be implemented.  
           
Step four is very big, and should be break down in multiple parts   
           
OTHER                
           
I do think that stubbing out the functions should be step 4 and writing main should be added to 
step 5.           
           
Step 2 should include that it is a form of step 1 applied to segments and then reapplied until the 
function is split into small enough pieces.      
           
for all steps make it work and have your ideas formulated    
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See above 
answer.          
           
It would help to actually write the functions instead of just stubbing them. Sometimes, it would 
help wirting the main program.        
           
yes           
           
Q9 Other Comments         
           
NO ISSUES              
           
I have no other issues with the five step process.      
           
No.           
           
I dont have any other issues        
           
No.           
           
LIKED IT                
           
I enjoyed it, however, i found that sometimes it was more of an annoyance than help. 
           
It's a good process, but it could use a better description online. The steps listed above in this 
survey is a nice summary. Put that online.      
           
it can help but it can take a while to get your brain to think in computer terms and what it really 
going on, sometimes your can over simplify something and miss an easier way  
           
This process is a very powerful tool, and is helpful in writing efficient code. The only suggestion I 
have is to introduce the process earlier in the course, saving students much frustration toward the 
class, and even the instructor :)        
           
STARTED OUT ROUGH, GOT BETTER      
           
Originally I hated having to use the programming process as I felt it made me spend extra time 
outlining when I didn't need to. This was because I hadn't really encountered anything in class that 
was really of any conceptual difficulty. When we started getting into loop, array, and file streaming 
design, the use of the process really became more important in my programming. Once I 
embraced actually taking the time to outline everything it really helped me conceptualize code 
structure and potential problems a whole lot easier. I really feel like a much stronger coder now, 
and I am very glad that I came around to using the programming process. CS 135 was easily my 
most time consuming class this semester, but because I feel that I learned so much, it was far and 
away my favorite. It also helps greatly that Michael is a very approachable and extremely 
competent instructor who does a great job of outlining classroom concepts.  
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DIDN'T LIKE IT, BUT IT HELPED          
           
The process is tediuous, and certainly not something I enjoy doing, however it allowed my 
programs to come out looking relatively clean and usually I understood more of my program 
coming out than going in.        
           
DIDN'T LIKE IT              
           
The general consensus in our lab (just going off overheard comments) is that the process is not 
particularly helpful. Many students don't use their design assignments at all when completing their 
programming assignments. I use mine, but I don't follow the process to complete the design 
assignment, I just make it follow the format in the end.    
           
People’s minds work differently. All students should not be required to follow the same formula. If 
the students understands what is needed to be done to achieve a goal ( writing a program ), they 
should not be forced to do it a certain way. The students should be shown different methods and 
be allowed to chose which method works best. CS 135 would be a better class if the students were 
only graded on the programming assignment and not the design assignment.  
           
For a beginner to programming, the five step process is solid. It makes readable, easy to follow 
code for you and other users. Later on, I would be more concerned with finishing a programming 
assignment rather than completing a design assignment that may not accomplish my original 
goals, and therefore be scrapped. I'm essentially writing my thoughts down in english with the 5 
step programming process. If I'm doing that, why can't I just write down my thoughts in english 
outside of the program?         
           
I found actually coding a skeleton of the main program while commenting what I was doing was 
most effective. From there, I would add on flags, additional features, and the like. Even while doing 
a design assignment and no actually coding, I still confused myself with all the parts going on. I 
think having a partial program running helped me see what I did and did not have, which allowed 
me to handle the next task without thinking about how it interacted with every other task. I'll point 
out that when just planning, I was not sure if all the parts would mesh correctly which led to a lot 
of mental stress over handling the seperate parts appropriately. Step 1 should take care of this, 
but it did not. Finally, one program I wrote out the entire design assignment, then could not follow 
it when I had to code it. Instead, I simultaneously coded and commented it. When I compared the 
comments, they were almost exactly the same.      
           
SHOULD BE OPTIONAL          
           
It should be 
optional          
           
I think it should be optional. I don't see the need for this tool, in fact I find my self witting the code 
as I do it anyway, going back commenting on it then deleting the code I wrote. this seems very 
counter productive. I guess it might help some people but I really had no use for it. 
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SUGGESTIONS FOR IMPROVED TEACHING      
           
Like I said, the programming process should be covered in lab one week, instead of class. 
           
Although code is not generally allowed, I believe code up to step 4 should be allowed to be shared 
among students. The code is not at completion, so the students can still struggle learning but in an 
easier fashion. It is the equivalent of helping a person with code orally except it is on the screen. 
           
You should introduce the Five Step Programming Process slowler. Probably make the students to 
write step one the first week, and release the programming file on friday with step one through 
five written by the teacher Then make the student write the step 1 and 2 for the second 
assignment, etc.          
           
NOT RELEVANT              
           
As a grading criteria, it was acceptable, though sometimes vague on the grading ruberic. It 
seemed to get 20 points I only need to spend 20 minutes typing random stuff, to get the last 5 
points took several hours of reasoning and trial and error. While I appreciate the free points, it was 
only the last 5 points that accomplished the task of the 5 step Programming Process. 
           
Some times I feel like I'm doing it incorrectly.      
           
lab is hard          
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