
University of Nevada
Reno

The Five Step Programming Process

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in Computer Science

by

Michael Ernest Leverington

Frederick C. Harris, Jr., PhD./Thesis Advisor

December 2010

We recommend that the thesis
prepared under our supervision by

MICHAEL ERNEST LEVERINGTON

entitled

The Five Step Programming Process

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Frederick C. Harris, Jr., Ph. D., Advisor

Yaakov Varol, Ph. D., Committee Member

Jennifer Mahon, Ph. D., Graduate School Representative

Marsha H. Read, Ph. D., Associate Dean, Graduate School

 December, 2010

THE GRADUATE SCHOOL

i

Abstract

 While educators have been working to teach introductory programming for

between 40 and 50 years, the research has not supported either the value or the

effectiveness of this endeavor. Recent research has found that teaching some thinking

components along with the programming actions can provide positive results. A pilot

study was conducted with college students learning a formalized and structured

programming process in order to evaluate the efficacy of the process. Some positive, but

limited, results were found from the study, although one of the interesting results

discovered directly from students' responses is the need to further support this kind of

activity. Preliminary results are reported, and opportunities for further study are

identified.

ii

Acknowledgements

 I must first acknowledge my wife Sheryl who has been paying most of the bills

for the past six years, and the support of my family of furry critters who help me keep

perspective every day.

 I also wish to thank Yaakov Varol for his exceptional support of my endeavors as

a Computer Science student, researcher, and educator; and I must particularly thank my

Advisors Jenny Mahon and Fred Harris for their constant and ongoing support of what

has become a high quality education.

iii

Contents

Abstract i

Acknowledgements ii

List of Figures v

1 Introduction... 1

2 Issues with CS1 Teaching... 5

2.1 Attitudes About Programming.. 5
2.2 Cognitive Issues in Programming... 6
2.3 Perception Issues in Programming.. 11
2.4 Focal Quantity Issues in Programming... 12
2.5 Expert/Novice Issues in Programming ... 14
2.6 Hypothesis-Testing, Experimentation, and Hacking .. 17
2.7 Chapter Conclusions ... 20

3 Identified Needs for Teaching CS1... 21

3.1 The Need for Structured Programming... 21
3.2 The Need for Planning and Strategy... 26
3.3 The Need for Cognitive Considerations ... 30
3.4 Other Contributing Needs and Considerations ... 32
3.5 Chapter Conclusions ... 35

4 Proposal: The Five Step Programming Process.. 37

4.1 The Proposed Procedure ... 37
4.1.1 Step 1 - Creating a simple high-level solution.. 38
4.1.2 Step 2 - Expanding on the original solution.. 41
4.1.3 Step 3 - Identifying and specifying program modules.............................. 43
4.1.4 Step 4 - Developing the skeleton program.. 48
4.1.5 Step 5 - Completing the program.. 53

4.2 Reviewing the process .. 55
4.3 Evaluating the Process .. 57

iv

5 Implementation and Results.. 58
5.1 Implementation overview ... 58
5.2 Quantitative Questions.. 59

5.2.1 Usage Percentages .. 60
5.2.2 Development Percentages... 61
5.2.3 Time Taken Percentages ... 62
5.2.4 Learning Help Percentages ... 63
5.2.5 Relationships Between Quantitative Data .. 64

5.3 Student Written Responses ... 65
5.3.1 Difficulties .. 65
5.3.2 Application of the Process to Non-Programming Areas........................... 67
5.3.3 Condensing Steps Together .. 69
5.3.4 Expanding Steps Out... 71
5.3.5 Other Comments ... 72
5.3.6 Chapter Conclusion... 75

6 Conclusions and Future Work .. 76

6.1 Concluding Remarks... 76
6.2 Future Improvements and Research.. 80

6.2.1 Changes to the Educational Process ... 80
6.2.2 Future Research .. 82
6.2.3 Dissemination of the Research.. 83

Bibliography ... 86

Appendix A - Survey Materials .. 93

Appendix B - Complete Data Set.. 99

Appendix C - IRB Approval Letter .. 109

v

List of Figures

Figure 4.1. Standardized Program Format.. 38
Figure 4.2. First Step of Programming Process .. 40
Figure 4.3. Second Step of Programming Process.. 42
Figure 4.4. Indication of the tool(s) to be used ... 44
Figure 4.5. Indication of the student-generated tool to be used.. 44
Figure 4.6. Specification of a student-generated function .. 46
Figure 4.7. Further examples of function specifications... 47
Figure 4.8. Continuation of the program function development 47
Figure 4.9. Program code provided for processing operations ... 48
Figure 4.10. Function prototype under the specifications area... 50
Figure 4.11. Stub function example.. 51
Figure 4.12. Usage of student-generated function in the program 51
Figure 4.13. Creation of descriptive comments in stub functions 53
Figure 4.14. Creation of descriptive comments in stub functions 54
Figure 5.1. Students' percent usage of the process. .. 60
Figure 5.2. Students' perceptions of development help from the process......................... 61
Figure 5.3. Students' perceptions of time taken to complete their laboratories 62
Figure 5.4. Students' perceptions of learning help provided by the process..................... 63

1

Chapter 1

Introduction

 There are many opinions posited about the quality and effectiveness of teaching

introductory computer programming, commonly called Computer Science I or CS1.

However, one of the boldest and as it turns out, one of the best supported with research is

that "many students do not know how to program at the conclusion of their introductory

courses" [39]. This is a pretty strong indictment considering that computer programming

is the first or second course taught in almost all Computer Science programs around the

country. Another strong statement made by Robins, Rountree, and Rountree who recently

reviewed the literature on learning and teaching programming is that "the average student

does not make much progress in an introductory programming course" [52]. This same

review quoted several others who offered comparable commentary (see for example, list

in [52], p156).

 The news is not all bad in this arena because there has been a significant amount

of research conducted in the past three decades. The beginnings of this research were

based on the idea that learning to program would help with students acquiring cognitive

skills "such as planning abilities, problem-solving heuristics, and reflectiveness" [44], or

"proper habits of mind" [38]. These results seem intuitively obvious, although Pea and

Kurland went on to compare the efficacy of this kind of learning to that of Latin or other

disciplines such as mathematics or logic that were previously thought to improve

2

students' minds. The other problem, and the one addressed in this thesis is that, as Pears,

et al. [45] argued, the research -- active as it may be -- is not making inroads into

classroom teaching practices.

 The response to the present state of this discipline is to seek ways to make

introductory computer programming learning more effective by attempting to move the

research into the classroom. For example, cognitive researchers who have been studying

memory organization in the form of chunks have provided a vehicle for researchers who

have studied the "content and structure of programming knowledge" [52]. The memory

chunk is a construct that explains how humans can hold individual items of information

(e.g., names, ages, telephone numbers, change amounts, etc.), or large-scale semantically

organized procedures (e.g., how to sum or average a list of numbers, how to find a

maximum value in a list, etc.), sometimes called plans or schemas [41]. The concept of

chunking, and to a significant extent the limitations of human memory chunks, is an

important driver to the research reported herein.

 Beyond the fundamentals of memory content or management, there is also the

issue of what researchers should be studying in order to support improved programming

learning. Davies [22] noted that just having content knowledge of programming may not

be enough; he argued that a strategic model of knowledge representation is important, not

just for organizing present knowledge, but for understanding the changes that occur as

expertise develops. Thus, beyond teaching with consideration for human memory

limitations, this research will also attempt to address the systematic organization of

learner program development as both the learners and the programs evolve.

3

 The third leg of the research driving the present study is related to the original

argument, or question, related to the integration of teaching thinking processes with

programming. Kirkwood [36] worked to integrate higher-order thinking and problem

solving with a secondary school programming course. The results of her research were

that the students found success at the programming endeavor by demonstrating well-

designed programs, experiencing few syntactical or logical errors, and so on. In addition

however, students also found success at the higher-level thinking endeavors with

specifically improved cognitive and metacognitive characteristics.

 Thuné and Eckerdal [61] conducted a qualitative analysis of student perceptions

and found, among others, that "Computer programming is seen as a way of thinking, to

solve problems, leading to the production of computer programs such as those that appear

in everyday life. In addition, computer programming is experienced as a skill that can be

used outside the programming course, and for other purposes than computer

programming" [61]. Another study observing student learning included problem solving

as one of the ways students go about learning to program [14], and still another study that

included a lighter pre-CS1 course still included the learning of problem-solving abilities

[2].

 To summarize, even with a significant amount of research being conducted at

present, the CS1 classroom does not seem to be benefiting from these endeavors. This

thesis will report on a pilot study using a process that is driven by research in learner

memory management, using the chunking construct, and other research-driven

components. The process also seeks to provide a systematic vehicle that should support

both better quality programming and improved student success with the development of

4

programs. And finally, the process attempts to teach and to apply higher-level thinking

abilities in students so that their problem-solving abilities are improved, both within the

CS1 classroom and without.

 This thesis continues in Chapter 2 with extended background research on the

issues and problems found in teaching and learning computer programming in CS1

courses, and then a review in Chapter 3 that includes the apparent needs identified to

move the introductory programming teaching and learning discipline forward. In Chapter

4, the Five Step Programming Process will be proposed and in Chapter 5, a pilot study

using this process will be evaluated for student usability and efficacy. Finally in Chapter

6, research conclusions from the pilot study will be presented, and future work that will

include using this process in larger-scale studies will be proposed.

5

Chapter 2

Issues with CS1 Teaching

 This chapter begins the discussion with some history and background of

introductory computer programming education, and some of the more significant issues

that have been researched related to CS1 teaching and learning.

2.1 Attitudes About Programming

 While the number of Computer Science majors has experienced a small uptick in

the past couple of years, it had declined by about 50% between 2002 and 2007 [55].

Failure rates vary but have been reported at 30% during that time [60]. This is

unfortunate for two reasons: 1) computer programming is only part of the Computer

Science discipline, but since students have to program to get through most CS courses,

they must get started early; and 2) these kinds of losses make the future bleak for both

industrial and academic institutions that need the kind of talent and fresh ideas that CS

students can bring to the discipline.

 Research from Simon, et al. [55] found that about 52% of about 300 CS majors

made positive statements about taking CS1, but 26% provided negative responses. By

itself, that statistic does not seem to bode well. However, when non-majors reported their

opinions, only 45% provided positive responses and more than a third (36%) provided

6

negative responses. Within the total group, 22.9% of the responses stated that the course

was hard or difficult, 15.3% made other generally negative statements, and 10.3% of the

respondents reporting that the process was frustrating or stressful. While there were

several other response categories, the last one of interest reported here is that 8.6% of the

students reported that the course required a lot of time.

 Other research can be used to show student frustration or student departure from

Computer Science as a result of the introductory programming courses. Beaubouef and

Mason [7] discussed the loss of students and summarize a variety of problems such as

poor advising, poor math and problem-solving skills on the students' parts, poor lab

courses and teaching issues on the institutions' parts, and so on. However, Computer

Science and computer programming specifically can be really enjoyable when students

experience successful interactions with their work. The reality found in the research is

that this does not appear to be happening in the CS1 courses.

2.2 Cognitive Issues in Programming

 Assuming that most students who take the CS1 course approach it with a belief

that they will be successful, what kinds of problems could either frustrate them and/or

stop them from continuing or striving in a course where many others have previously

succeeded? One of the first considerations is cognitive ability. This is not meant to say

that differential cognitive abilities are what make or break an introductory CS student's

success in the course. Instead, it is analyzing the teaching process from the learners'

cognitive characteristics.

7

 Cognitive load is one of the key terms addressed in this study. This is the amount

of processing ability needed by an individual at a given moment under given

circumstances. The concept of cognitive load grew out of the need to model the access

and use of limited real-time memory storage known as working memory [6]. While there

is significant argument related to the size of working memory, the most recent research

on this places the size at about four chunks (see [21] and associated articles for a

comprehensive discussion of this topic). This would be a significant restriction that

should be considered by any educator of any course, but when the educator is teaching a

process that solves problems in a sequential and formal way using a language previously

unknown to students in the programming environment that includes managing source

code, compiled programs, and related data, this limitation is more than significant; it is

critical.

 Unfortunately, it is generally agreed that the memory capacity decreases when

interactive elements such as, for example: using variables, in order to → conduct math, in

order to → display a result, are combined. Paas, Renkl, and Sweller [42] and Sweller, van

Merrienboer, and Paas [59] argued that working memory can only hold two or three

novel interacting elements at a given moment. Adding to this issue, Yuen [65] argued that

cognitive load is additive, which makes the addition of learning actions to the core

learning quantity part of the problem. As early as 1985, Anderson and Jeffries studying

students using the LISP programming language concluded that mistakes were made as a

result of loss of working memory information [4]. This means that teaching the

programming process must be highly refined to respond to this issue, and it also provides

evidence as to why it may not have been done as well up to this point.

8

 The good news about the limit is that once a human does integrate or internalize a

concept or quantity of knowledge, it is moved toward the long-term memory area, and

can then be recalled on command. This includes more complicated structures than simply

memorized values which can then be recalled, and stored, as a chunk in working memory

[52]. This can lead to the goal of this study by synthesizing a path that includes "a

starting cue, a direction, a level, and a type of link to explore next" [52]. If this direct

implementation of memory access can be used, students can learn to develop a program

in concert with their memory operations as opposed to in conflict with them. Rist [51]

used this approach when discussing how novices can transition to expert-like

characteristics with both consideration for memory retrieval and program development.

 Green, Bellamy, and Parker [32] created what they called the "parsing-gnisrap"

model which, in the gnisrap condition, builds the program from known schemas found in

memory; and in the parsing condition, works the memory process by essentially creating

a large chunk representing a whole task or programming, and then taking the large chunk

down to its pieces to understand the program. Ormerod [41] continued this discussion by

referring to propositional representations formed in memory that can again hold whole

plans, called scripts or schemas, and Rist discussed the evolution of what he calls a "plan

schema" [51]. This is not to say that whole programs can be retrieved and replayed, but

blocks or modules can be retrieved as components and programs can be created

"opportunistically and incrementally" [31]. While this proposal takes advantage of human

thought, it is clearly more of an expert action considering the assumption that a

programmer has these blocks of schemas available to working memory. This is where

educators must seek to make better novices rather than trying to create experts

9

considering that novices are working from a nearly empty set of retrievable modules. The

expert-novice issue will be discussed later in this chapter.

 Nevertheless, supporting the learning by novices leads to the issue discussed by

Merrill [40] that teaching anything of complexity cannot be left to the learner, or as he

puts it, "receiving little or no guidance (sink-or-swim) is not effective" [40]. As Merrill

argued, students must be carefully guided from the simple to the complex. As one

example of this process in the course of moving the student toward increasing skill, it

should be noted that the translation of information into schemas (i.e., working chunks)

takes more than an individual experience. The process of converting learned schemas into

storable chunks requires a conscious effort and must be learned to a point where its parts

do not have to be separately organized and manipulated. Sweller points out that this

automaticity is required in order to bypass the limits of working memory and may require

"extensive practice" [59]. While this is a requirement of managing the cognitive

load/memory limitation issue, it is not difficult to overcome primarily with practice

dedicated to the particular activity that is to be encoded as a schema. However, it is

incumbent on the educator to see to the successful implementation of this activity.

 Complexity and quantity of information can overwhelm a student who in the

course of trying to manage and manipulate information in the limited working memory

resources experiences cognitive overload [63]. This can be resolved by teaching whole

programs that are light on details, and then breaking these holistic components down to

comparable modules that as individual components are not cognitively expensive, but

help the student gain the important schemas required for larger-scale components one at a

10

time. This is a critical component of the process proposed in this thesis. van Merrienboer,

Kirschner, and Kester concluded their article with the following:

"limited working memory is no doubt the most central aspect of human cognitive

architecture. There are many factors that an instructional designer must consider, but the

cognitive load imposed by instructional designs should be the preeminent consideration

when determining design structures" [63].

 As part of developing the background for a programming/learning process, it

should also be noted that the addition of this kind of process, much like the learning of

so-called weak problem-solving skills such as top-down, means-ends, and so on, will also

cost working memory or cognitive load overhead [63], a condition reiterated by Sweller,

van Merrienboer, and Paas [59]. This is an issue that must be considered during the

development of this kind of process, and it will need to be resolved in order to make the

process effective.

 All of the above issues come down to the management or limitation of cognitive

load and the potential manipulation of the memory chunks holding those pieces of

knowledge that will support the solution to a given problem. Gerjets, Scheiter, and

Catrambone [25] argued for a modular approach to the learning, as opposed to what they

called a "molar" view that attempts to identify and teach toward problem categories or

patterns, which of course cost more cognitive load. This is an important consideration for

an educator who wishes to place a learning tool in the hands of novice students; it is also

a very convenient one for a programming teacher. Modularity is one of the most powerful

and appropriate ways to support reliability and fault tolerance [37] in a program; and

11

using modularity has the potential to align student learning effectiveness with proper

program development in a natural way.

 For the cognitive issues identified in this section, there seem to be more problems

than there are solutions. However, it is the identification of these issues that is important.

Once these are known and/or made explicit, they can be addressed. The limitations of

memory and cognitive load are severe, but knowing about them and adapting the learning

to these limitations is really only a matter of scaling. It is admittedly a small scale, but it

is nevertheless a somewhat quantifiable entity, and it should be possible to work with

this.

2.3 Perception Issues in Programming

 While it is not as significant or possibly well-recognized as the cognitive issue,

human perception specifically related to programming is still a consideration. David

Gilmore's [28] early work identified program organization characteristics that he showed

to have an impact on program understanding by students. As early as 1980, Hartley [33]

found that the use of white space (i.e., areas of programming text without any characters

or text) has the potential to improve reader comprehension. This is important to students

trying to manipulate interrelated items in their working memory, and could lead to

assistance with organizing the information in the structured way required for moving

program actions into long term memory as schemas.

 Payne, Sime, and Green [43] showed that even a simple change in the perceptual

characteristic of program text such as capitalizing some of the keywords significantly

reduced errors. Gilmore [28] went on to provide signs that the comprehension of text and

12

other materials can be improved by clearly showing the underlying structure of the

information. Gilmore's own research found that "structural visibility enables a general

improvement in performance through a reduction in the demands on cognitive processes"

[28].

 One of the implications of Gilmore's research was that while languages

themselves may not contribute to reduced cognitive load, the appropriate structural use of

the language can drive increased programmer performance. In his conclusion, Gilmore

argued as a result of his research that this improved performance can be a result of

improved perceptual processing, improved programmer understanding, and an

understanding of how to use a language's organization to drive these improvements.

 To reiterate, the organization and presentation of text in a source code file is not

as big a consideration as cognitive load and memory limitations. Nonetheless, it does

exist, it has been researched to some extent, and it is a way to make inroads on program

understanding and processing or cognitive load reduction. This part of the research will

contribute to the proposed solution.

2.4 Focal Quantity Issues in Programming

 The last component studied under the umbrella of cognitive processes is, like text

structure, not as widely researched as for example, cognitive load. However, the

recognition of this cognitive quantity is still important. Rist [51] found that if students did

not already have a schema available to them, they would identify a piece of the problem -

- essentially a short-term goal -- as a focal point, and then expand outward from the focal

13

point generating solution components necessary for solving the short-term goal. His label

for this process was plan creation.

 Rist found that this was a natural result for novice programmers who did not have

experience in the form of a schema to use in a top-down programming process. He also

noted that once this schema was developed, it would be re-used by the novice when a

comparable, but new or novel problem was presented later. Rist called this "the start of

detailed design in the domain of the program" [51]. In a later paper, Davies pointed out

that "expert programmers were seen to generate significantly more focal lines during the

early stages of the development of a program, whereas novice programmers generated

significantly more non-focal lines" [22]. The important thing to note here is that these

were essentially observations of the natural course of program development, without any

attempt to modify either the expert or the novice approach. Another key point in

following these observations was Davies' note that the "focal lines may represent a

discrete level of design abstraction" [22].

 Robins, Rountree, and Rountree [52] summed this up by saying that the best

evidence that novices do not have the needed schemas is that they struggle with the

appropriate use of focal design. Once again however, this commentary and the research

supporting it is generally observational as to the natural order of beginning and

experienced programmers. Understanding the value of focal components of a program,

and knowing that they can be identified and exposed to student programmers provides

another consideration for how to teach the process.

14

2.5 Expert/Novice Issues in Programming

 A chapter on introductory programming issues would not be complete without

consideration for the large amount of research in the area of experts and novices. To this

point in the chapter, attitudinal and cognitive issues have been considered, as have issues

related to perception and to conditions that drive or focus programmers' next steps. With

these fundamental components provided, the broader -- but still primarily observational --

delineation between people with a significant number of discipline-specific skills, called

experts, and those first learning a discipline, called novices, must be provided. This

discussion will be presented here.

 The novice approach to programming is considered to be superficial, tending

toward a line-by-line development strategy. They do not have a complete picture -- called

a mental model -- of the problem or solution in mind, and they tend to use superficial

strategies or general problem-solving strategies that may or may not fit a specific

problem [64]. For an individual with limited historical experiences and/or operational and

retained schemas, this would seem appropriate. Novices tend to focus on the local or

concrete components of a program [52], and while novices might be considering the

syntax, experts tend to view the organization [28].

 It would seem obvious then that as novices are focusing on the details, they will

have trouble gaining an abstract view of their program [51]. With this limitation, they

would obviously have a difficult time creating program plans -- as experts do -- and/or

synthesizing a program solution [50, 52, 64]. Beyond simply causing problems with

program development, the novices' inabilities to abstract segments of problem solution or

15

code means that they will have difficulty thinking their way through or test-running

larger segments of their program or solution as experts do [51]. Rist's research went on to

show that novices move through programs in a depth-first modality while experts move

through them in a breadth-first way. Rist posited that this may be the novices' way to

manage cognitive load [51].

 Pennington [46] also conducted research on comprehension strategies, finding

that individuals who were more able to comprehend programs provided more vague

statements about the program and fewer details then individuals who were less competent

at comprehending the programs. Her research tended to support Brooks' model that relies

on an effective mapping between the problem and the program [13].

 Brooks also posited that program comprehension is studied by experts as a top-

down and hypothesis-driven activity. This concept -- as a model -- works for both experts

and novices with the difference that experts will have an abstracted "view" of the larger

program where novices will tend to have a narrow, or again, line-by-line view. When

experts read programs, they chunk components into schema groups and can generate a

more abstract or large-scale view of the program. When novices attempt this, they do not

have the library of schemas as support, and as a result of that, cannot comprehend the

whole program as the abstraction it could be.

 As Robins, Rountree, and Rountree noted, "Experts can typically retrieve relevant

plans from memory" and "Novices must typically create plans" [52]. This could make

programs that may have the same general characteristics or patterns all look unique to the

novice programmer. Beyond simply understanding a program, even when novices begin

to understand parts of programming processing, Rogalski and Samurçay [53] posited that

16

novices continue to have difficulty with data structuring and problem modeling, which

again represent more abstracted quantities.

 One of the results of this difference, as mentioned previously, is the approach

toward development of a program. In the actual creation of a program, experts tend to

apply a top-down approach while novices tend to work bottom-up. It was also noted that

as they evolve, novices tend more toward using a top-down development process [51].

For purposes of driving the novice toward expertise, this knowledge can be valuable.

This is especially helpful when it is known that in spite of the expert/novice difference,

the fundamental assumption related to human working memory capacity -- and discussed

earlier in this chapter -- is that it is not different between experts and novices [22].

 One of the last considerations for expert vs. novice discussion is the simple act of

reading code. Perkins and Martin [48] found through interviews that while novices

would commonly be able to write a segment of code, they did not commonly work

through the code in their heads, a process called desk-checking by some [1], and close

tracking by these authors. Very likely from experience, experts will commonly run a

brief test of code segments to verify that they work within the appropriate constraints or

limitations, but novices do not have the experience to drive this activity. In fact, it is

common for novices to write segments of code and then resort to trial and error actions

rather than trying to understand the program actions at the present level of scale or above

[2]. It is also argued that this is further evidence of the narrow perspective held by

novices.

 To be clear, the issues found in this research do not by themselves oppose the

teaching of introductory students to program. It is knowledge of, recognition of, and

17

finally adaptation to, these issues that can lead to improving the educational process. For

example, it is generally accepted that experts have a significant base of experiences,

memories, and schemas that are organized and contextualized as opposed to maintaining

a large list of individual memories (see for example [10]). Incoming computer

programming students by definition do not have these characteristics. And as novices,

they will not acquire the quantity and quality of experiences in the short period of time

offered by one or two semesters of programming study. Thus the appropriate strategy,

and the findings of this section, should not lead to an attempt to create experts, but to

provide tools that use the abilities novices do have to build the steps or provide the

scaffolding [63] toward their improvement in the direction of expertise.

2.6 Hypothesis-Testing, Experimentation, and Hacking

 While the expert/novice topic is an important combination of both the researched

background and the practical foreground of programming, the last topic addressed in this

chapter will lean more in the direction of the practical. There are parts of learning

introductory programming that naturally require management as a result of students'

natural desire to experiment or play with the tools available. Experimentation is not bad

in and of itself. Indeed, as mentioned previously, both experts and novices will generate

hypotheses and in most cases test them. However, too much experimentation on the part

of any programmer regardless of ability will require much more time than should be

required whether or not the experiments work. This can lead to frustration, incomplete

project execution, or both, on the part of the beginning programmer.

18

 Kirkwood identified "failing to plan or reflect, rushing straight to computers,

constant floundering, and using random trial-and-error to debug programs" as evidence of

"undesirable characteristics" [36] of student programmers. Rist [51] pointed out that

experts do move into detailed coding operations during program design sessions, and

they move easily between these modalities as needed for component design. He also

noted that since novice programmers do not have access to the high-level design process,

"they tend to flounder and search for a solution with little overall plan or organization"

[51]. Again, the time used and the frustration generated by this process is not conducive

to learning, or in some cases, to staying with the course.

 In the course of evaluating the use of a number of programming languages by

experts, Green, Bellamy, and Parker [32] found further evidence that programmers jump

around to a certain extent when programming, and this tended to be related to the

language. However, even in this study with fairly simple programs, the researchers were

surprised to find that some of the programmers -- using the PASCAL language -- were

using a stepwise refinement process (i.e., repeated passes through a program making

improvements by degrees) that indicated global-view analysis and development of the

program. And again, the experts in this case had the option to move between high-level

and low-level programming activities.

 In still another study, van Merrienboer [62] found that trying to compensate for

measured impulsive and reflective student characteristics did not work, although when

the students were given a choice as to the support they needed, they tended to fare better.

Robins, Rountree, and Rountree [52] suggested that opportunistic exploration might be

appropriate for novice students, but this was after pointing out the incremental

19

development and management of highly complex procedures that should be part of the

process.

 There certainly seems to be a place for experimentation and exploration in the

programming process, and indeed it is certainly part of the creative endeavor that is

programming. However, if this is the only strategy, unsupported by other more focused

guidance, the evidence suggests that students will not experience as much success.

Goldensen [29] pointed out that in many cases, procedural abstraction is put off for

students until they get to more advanced courses. Perhaps the present state of

introductory programming is evidence that this teaching strategy should be modified.

 Robins, Rountree, and Rountree suggested that programming workbooks should

teach and support "an explicit software development method to give some structure to the

process" [52]. Soloway [57] suggested that in addition to learning stepwise refinement

and planning skills, students should be taught a standard set of communication tools for

discussing and understanding the programming process. Later in the same article, he

pointed out that very few textbooks discuss appropriate programming organization, and

that students are expected to pick up what he calls the "rules of programming discourse"

[57] by observing examples of other programs.

 The suggestions from research support a systematic format for learning to

program, but this does not seem to be happening in the classroom. As mentioned earlier,

programming is to a certain extent considered an artistic endeavor since there are so

many different ways to solve any given problem. The unfortunate result of this tends to

be that students experiment, they naturally generate short-term hypotheses, and then they

follow their testing process, an activity commonly called "hacking". However, before

20

students can be allowed to try their own approaches, it would appear from the evidence

that they should be provided a more secure foundation.

2.7 Chapter Conclusions

 There are some human considerations related to learning to program, or to

learning any new discipline, such as the limitations of memory and the potential for

cognitive overload. There are also strategies that apply research to appropriate program

text organization and the use of white space that can help. Moreover, using constructs

such as the focal quantity that are recognizable and manageable are additional support.

Finally, in order to fend off student "floundering", there is evidence for, and a call for, a

structured and/or standardized programming process. The key to all of this knowledge as

evidence, and as potentially actionable information, is that these programming and

learning components are based in research and have a reasonable chance of supporting

educational success. The next chapter will address more questions focused on the

practical needs found in the research that will drive the proposed solution.

21

Chapter 3

Identified Needs for Teaching CS1

 In the previous chapter, a review of the problems identified in introductory

computer programming (CS1) courses, and researched over roughly the past 30 years was

provided. While other characteristics may have been observed by the researcher or other

CS1 educators, only those components with significantly supported research were

provided. In this chapter, the same conditions are applied to specifically identified needs

as related to the teaching of CS1. There are three primary needs identified and a small

group of other needs identified in a fourth subsection.

3.1 The Need for Structured Programming

 In their study of novice mistakes, Spohrer and Soloway stated, "we conclude that

students are not given sufficient instruction in how to 'put the pieces together.' Focusing

explicitly on specific strategies for carrying out the coordination and integration of the

goals and plans that underlie program code may help to reverse this trend" [58]. The

specific strategies will help students create both readable and operational program code.

Davies [22] added to this with the idea that an incremental problem-solving process be

used with individual program conditions and with frequent problem review.

22

 Structured programming as its own term grew out of initial problems with

disorganized program code [26] that was difficult to read and understand. It had its own

name: "spaghetti code" [9] that was an appropriate descriptor as the program flow moved

both forward and backward in the program with little organization. It was difficult for

individual programmers to understand some of these kinds of programs [27]. The essence

of structured programming was the difference between what were called jump programs

that used the "goto" statement, which could lead to anywhere else in the program, or

confined blocks of program code within nested conditional conditions (i.e., decision-

making or branching areas).

 However, structured programming as pertains to this thesis is not as formally

related to its original concepts as it is a term used to provide students a standardized

scheme with which to design and build a program. In fact, while the proposed program

organization does follow the block-organized and nested structures suggested by

structured programming, the emphasis herein is on using "some" structured process as

opposed to a specifically identified "correct" process.

 To begin with, the structure proposed includes a systematic design process prior

to actual coding. Perkins, et al. [47] pointed out that students do not synthesize their own

programming plans for a variety of reasons, and the result is a lack of success. Davies

[22] added that programming strategies may be more important than individual

components of programming knowledge. Spohrer and Soloway [58] argued that many

bugs, or programming failures, are introduced into programs as a result of poor design, a

condition they termed "plan composition problems" [58]. Providing a formal structure for

the students is a way to support their learning by giving them a concrete scaffolding step

23

to stand on when they are first developing their programs. While much more on program

planning and design will be found in the next section, it is organized planning that drives

the development of structure.

 To use Soloway's [57] example, students can observe a geometric proof on the

board, but it is a different thing to replicate it, or synthesize a comparable proof once the

students are on their own. This is a rationale that drives forming the structure itself before

the programming process begins. If the structure in its simplest form is applied before the

content is added, students can incrementally move the structure toward the desired

programming goal, as suggested by Davies [22].

 The next step to supporting the learning of structure is to systematically increase

the complexity and depth of the program with repeated passes over the original structure

and adding small scale improvements or refinements, a process called iterative or

stepwise refinement. This means that every pass through the evolving program is a small

step toward the solution, but the critical point is that no pass or step is very complicated

or difficult, and the process is systematically repeated which supports consistency and

familiarity with the process early on. Soloway [57] proposed this process but pointed out

the failures of instruction and textbooks in the process of how to break down the

problems into sub problems. In addition, one of the unfortunate points about this process

is that it is dynamic and transitional; it is difficult to grade the steps and it can be difficult

to see how the steps and the design went together in the final product [11].

 Returning to the concept of advanced design, it is known that experts tend to

retain program structures as mental models or schemas [52], but it is also known that

novices do not have the schema libraries to hold these kinds of things, although they

24

move in that direction during this process. In addition, Robins, Rountree, and Rountree

note that these mental models are hierarchical, as might be intuitively expected. This

requires cognitive management and organization that novices are known not to have;

however if this limitation could be overcome, the design and refinement process could be

successful.

 The next arguments for structure follow the research related to student perception

of text organization. The block structure of what are called "nested" programs (i.e.,

programs with confined blocks of conditionally selected code as opposed to programs

with goto statements) reduces the potential problems that Green [30] called "shopping",

"treasure hunting", or "negation". The structure of the program helps organize the

processing in a hierarchical way, which can lead to the structures students need for

cognitive organization. Furthermore, as Gilmore pointed out the structural organization

on the page or computer screen "are an effective means of supplying access to

information which is not immediately apparent from the programming language" [27]. As

mentioned in the previous chapter, this offers extra help to students who are trying to

organize the programming structures into their mental models, and working memories.

 It is not just the working mental models that can be improved by effective

program structure. Merrill proposed a series of "First Principles of Instruction" which

included research showing that not only is the local learning improved by structural

organization, "problem solving (far transfer) is promoted when the structural features are

carefully identified and explicitly mapped for the student" [40]. Again, the introductory

student does not arrive in class with these abilities, but if a way can be found to support

this, it will clearly be helpful.

25

 One more strategy for teaching structure was proposed by Sweller, van

Merrienboer, and Paas [59] based on other research that showed that worked examples

could also provide both learning and guidance as well as models of structure. Worked

examples by themselves may not be as effective; however, using the process of fading,

which means starting with fully worked examples and working with the students away

from the answers and toward their own programming knowledge [42]. Forward fading

includes leaving out parts of the beginning of a problem solution and backward fading

includes leaving out ending parts. Renkl, et al. [49] found that the backward fading

worked better perhaps because students were given help starting and then could continue

generating solutions even as the supporting components were being removed from the

end of the problem-solving process. While the use of worked problems is not directly

involved with the process of programming, it is certainly a tool that could be used by

students who are still learning the structures necessary for design and development.

 Program structure has the benefit of being both operationally and pedagogically

appropriate for teaching introductory programming. Poorly structured programs,

including the ones that might work, are not the desired product of successful students in a

CS1 course. As mentioned, they may not represent good design and planning, and they

may be difficult to read and understand, and later to debug or upgrade if they are not

structured well [27]. In addition however, providing structure, organization, and clear

guidance [40] to students is known to be effective. In one form or another, structure must

be part of the teaching solution.

26

3.2 The Need for Planning and Strategy

 As mentioned previously, it seems to be natural for students to want to get straight

to the programming process when they are given a problem to solve [36]. However, in

the conclusion of their comprehensive review, Robins, Rountree, and Rountree suggested

"that the most significant differences between effective and ineffective novices relate to

strategies rather than knowledge" [52]. It is interesting to note that this is a comment

related directly to the learners, but it could also be directly associated to programs

themselves [58].

 Programs can be written without planning if the problems are trivial, but they are

unlikely to be successful for non-trivial or more complex problems. One of the first

actions that must occur is that the programmer must specify a detailed plan which must

then be decomposed [56]. This would seem to be good advice for anyone tackling any

large-scale project, but as mentioned in the previous chapter, even the student who stops

to create the plan will have trouble maintaining the plan in working memory. In the

course of beginning the programming tasks, some or all of the parts of any plan will be

lost unless they are "stored" in the text of a stated plan [22], or in some other way while

the programming tasks are conducted.

 Spohrer and Soloway [58] argued that goals and plans should be specified for

students, in addition to other explicitly specified design actions. Rist [50] discussed top-

down planning as the global strategy and bottom-up development as separated from the

original problem structure, but more manageable given working memory limitations. It

would appear that both of these strategies are necessary, although they need to be

27

managed. Top-down planning gives the programmer the abstracted "birds-eye view" of

the program; this is critical in order to identify the major steps needed to solve the

original problem. However in an attempt to model the comprehension of a programming

solution, Brooks [12] identified stages between the problem domain and the

programming domain. It appears to be a key point that there must be at least some

delineation between the problem and the program for a successful problem-

solving/programming process to be conducted.

 The alternate offered by Rist [50] is the bottom-up strategy which he stated,

"separates the solution structure from the problem structure" [50]. There appears to be a

natural but complementary division here that shows the value and the usefulness of both

top-down and bottom-up strategies. The top-down strategy maps the overlying solution to

the problem, and the bottom-up strategy solves the little problems driven by the overlying

strategy.

 Certainly in the course of devising a plan, some amount of working backwards

from the goal must be conducted, as Rist pointed out [51]. On the other hand, once the

needs of the program are defined, an abstracted top-down overview of the program

should be devised that provides "overarching supportive information" first, but then

"procedural information should be presented only at the particular point where it is

required", as stated by Paas, Renkl, and Sweller [42]. It should also be noted that in a

later paper, Rist [50] discussed the process of working from the abstracted quantities to

the concrete ones for both the actions of program design and program understanding.

 Merrill [40] offered a generalized four-stage approach to problem solving, and to

teaching problem solving that begins with the problem statement and ends with the

28

actions that conduct the process, with an abstract-to-concrete evolution in between.

Enough evidence has been discovered to support this general strategy, although some of

the same people who called for this also noted that novices may not have the remembered

schemas for thinking at this higher level [51]. Nevertheless, Rist continued later in this

paper to point out that plan-building methods could become a focus for teaching novices.

 One key to resolving the higher-level to lower-level program development may

simply be the writing process. In a research process that studied the teaching of higher-

level thinking with program development, Kirkwood [36] found that the students who

were developing quality programs viewed the possession or construction of a written

design as important for several reasons associated with developing a good program and

for minimizing programming problems (e.g., early elimination of problems, and later bug

tracking).

 With or without prior student knowledge of programming schemas, one way to

minimize problems is to break them down into smaller quantities, which is obviously an

extension of the top-down program development structure. van Merrienboer, Kirschner,

and Kester [63] argued for teaching smaller or more simplified whole parts of a larger

task in order to reduce cognitive load. This turns out to be a natural fit for programming

because the top-down process breaks the larger program into smaller, modular

components. Gerjets, Scheiter, and Catrambone [25] concurred arguing with their

research that teaching and working with modules is superior to teaching groups of

concepts or related concepts which they call a molar approach.

 Catrambone [18] found that students were improved both in conducting

mathematical operations and in understanding them by breaking them down into smaller

29

"sub goals", also noting that the use of abstract labels was less likely to lead to mistakes.

Even when Ayres [5] found errors in sub goals, it was proposed to be due to cognitive

overload due to the complexity of the sub goal, a condition called stage effect. These

mathematics problems could not be broken down to a small enough level to reduce the

cognitive load and to support successful problem-solving actions. This issue led Robins,

Rountree, and Rountree to identify "the schema/plan as the most important building block

of programming knowledge" [52] although they also noted that the schema/plan is an "ill-

defined concept" [52].

 Breaking a program into more easily understandable and less complex modules

can lead to improvement in problem-solving performance for students with either low or

high levels of previous knowledge [25]. This is both intuitively reasonable and

empirically evident. The two issues that must be resolved in order for this knowledge to

be valuable are: 1) how small does a module need to be in order not to overload learner

cognition? and 2) how are the modules managed during the breaking down and

reassembly process?

 The answer to both of these questions can be driven by the stepwise refinement

process mentioned earlier [57]. The problem is stated at the abstract level and then

slowly but consistently expanded [51] toward smaller sub goals or modules until the

modules are within the cognitive "reach" of the novice learner [25]. This process of

expansion will in itself cost cognitive overhead; however students would not have to

maintain the process in working memory, but instead can effectively "store" the levels

and sub goals on the screen of the computer, or on paper [32]. Working through this

process itself synthesizes a complex knowledge structure that can help structure

30

knowledge in working memory [25] with the caveat that the structure may not -- and in

fact, probably will not -- be internalized at first. Nevertheless, the evolution of this

activity will naturally go through the fading process that is known to be effective with

learning complex tasks [42]. The planning and design process is by nature complex;

however, once this is recognized and addressed, there is potential for working through it.

3.3 The Need for Cognitive Considerations

 One thing that many people might not consider teaching in an introductory

computer programming course would be cognitive considerations. By itself, this is

unfortunate because teaching cognitive and metacognitive strategies have been shown to

improve learning [10]. In the particular case of designing a program, which is really just a

formalized process for solving a problem, it would seem even more important. Mayer,

Dyck, and Vilberg's [38] research concluded that while the evidence is weak in relation to

general intellectual skills, focusing on specific cognitive skills that are related to

programming could be more fruitful.

 Soloway [57] pointed out that knowledge and strategies must be explicitly taught

in order to get to the higher-order or more transferable problem-solving strategies.

Stimulating mental models that may support or encompass the new learning is important

[40], and although it is known that introductory programming students have few if any

pertinent programming mental models, they do have at least primitive schemas related to

solving problems and step-by-step operations. These students can start with the simplest

of approaches to developing the program and once they have a small scale model, this

can be manipulated and expanded [51].

31

 Beyond directly introducing cognitive characteristics, the process of reflection

and review can help [40]. In programming, this can be accomplished at two levels.

Reviewing the program as the large-scale solution actions can result in both an

understanding of the program, and it can lead to identifying semantic or logical issues

that might keep the program from solving the problem. In addition, reviewing segments

of program code (i.e., working through the code in one's mind or on paper) can lead to

identifying the smaller bugs and problems in the program, or verify that this particular

module of the program works correctly.

 Besides reviewing programs at various levels in ones mind, it is also suggested

that they engage in self-explanations [19]. Again, the act of talking through a problem,

whether out loud or not, supports the reflection and review process that supports

cognitive improvement and therefore better learning. One other result of the review

process is actually finding mistakes. As Merrill pointed out "Most learners learn from the

errors they make," [40] and continued to note that the learning is strengthened when they

are given error finding, error correcting, and error avoidance strategies.

 Another somewhat intuitive condition is that abstractions cannot commonly be

learned directly, they must be introduced and practiced as smaller, more atomic

components [3]. This can occur during a stepwise refinement process, but while it may

not be immediately obvious, the program must be written for both the programmer and

the computer [57]. Obviously the computer must be provided the correct instructions in

order to accomplish its tasks, but the programmer "needs to have an explanation as to

why the program solves the given problem" [57]. Even if novice programmers can

32

understand the process, if they are struggling to understand it due to the clarity of the

program, their cognitive load will be increased.

 A final cognitive consideration is that of cognitive styles. Some correlations have

been found between programming and field independence, high reflectivity, locus of

control, and introversion, however not enough research has been conducted to find

empirically sound relationships [8]. This supports the present thesis in that the more

fundamental human characteristics such as working memory and cognitive load can be

the focus of the research.

 Cognitive components are an integral part of the programming process. Indeed, a

computer program is a cognitive process, even if it is not a highly intelligent one. As a

result, cognition has been strongly integrated into this thesis. However, where certain

cognitive considerations were not integrated elsewhere, they have been presented in this

topic. As expected, cognitive components will continue to contribute to parts of this

thesis, including the next topic which will wrap up this "Needs" chapter with smaller

contributors to the identified needs for a teaching process.

3.4 Other Contributing Needs and Considerations

 While the major needs previously identified in this chapter are supported by

significant quantities of research, the final group of components are of a smaller scale.

Nevertheless, each of them was found to contribute considerations for the effective

education of introductory programming students. Thus, these will be presented in this

section.

33

 The first small group of considerations would commonly be good ideas in any

classroom. However, as Robins, Rountree, and Rountree pointed out, providing "clearly

stated course goals and objectives, stimulating the students' interest and involvement with

the course, actively engaging students with the course material, and appropriate

assessment and feedback" [52] do lead to a student-centered and effective learning

environment [10, 23]. These teaching components must play a part in any educational

tool being considered.

 The next consideration is also a generally accepted one, with some clarifying

conditions. Practice is obviously a need, but Merrill [40] pointed out that consistent focus

on the learning goal as well as consistent and appropriate feedback are important

contributors to the student learning experience. Sweller, van Merrienboer, and Paas [59]

showed several findings that while simple repetition may not be helpful, varying practice

conditions demonstrates improvement in students. They noted that this may seem

inconsistent with the possibility of increased cognitive load, but hypothesized that as long

as the focus was on the appropriate learning outcome, cognitive load was not

significantly increased.

 As previously mentioned, there is evidence that worked out problems might be of

help toward the learning; however while commenting that both tools were helpful, Bunch

[15] noted that there was little difference in student feedback between worked out

problems and progressive practice which includes working with increasingly complex

scenarios. Renkl, et al. [49] argued that worked out problems are no longer preferred for

supporting what they called automatic performance, and what would be called

synthesizing a program in this thesis. Then again, with reference to the other research,

34

they also noted that worked out problems are preferred by novices and can be more

effective if they are managed appropriately with components such as fading, as

mentioned previously in this chapter.

 The problem/scenario learning environment must also be a consideration.

Generally speaking, all the research supported whole program learning with some

variability. For example, van Merrienboer, Kirschner, and Kester [63] used whole-task

operations but tended to start with low intensity sub goals, to mitigate problems with

cognitive load. Merrill also used a problem-centered, or what he called "real-world

activities" [40] approach, but did not directly address the cognitive load issue. Robins,

Rountree, and Rountree [52] supported the case-based or problem based learning

activities as well.

 Interestingly, all the cognitive studies reviewed showed a propensity toward

programming whole-task conditions (i.e., whole programs) while there were no cognitive

studies found that reported on the so-called "programming in the large" teaching strategy

that has come into being in recent years (see for example [20]). While this was not the

focus of this research, the programming in the large paradigm seems driven by the large-

scale characteristics of present-day programs in industry, while the researchers -- and

especially cognitive researchers -- continue to study what is sometimes called

"programming in the small" which is focused more on the achievements of students on

whole programming products.

 There are other tools that can support novice programmers including as examples:

computer tutorials [24], graphical tools such as RAPTOR [16], and interactive

environments such as Alice [54]. These are all tools designed with the interaction and

35

engagement specified previously in this section; however, with small exceptions, they

tend to be line-by-line programming interactions. RAPTOR and Alice allow for the use

of subroutines, and RAPTOR's graphical presentation allows for a kind of graphical

abstraction using boxes that represent sub goal modules.

 As a tool, RAPTOR has the capacity to be developed in a stepwise refinement

process, developing the large scale program and then developing sub goal/module

components in iterative passes. RAPTOR was developed for non-CS major students and

has been successful with this audience [16, 17]. Students can also translate from the flow

chart organization of this tool to their own program development; unfortunately this adds

steps and time that are both precious to introductory programming students.

 There are certainly more identifiable needs for the effective teaching of

introductory computer programming, but the ones provided in this section were the ones

found in the research and can be empirically substantiated. This section did allow for the

identification and elucidation of individual components that did not fit under the umbrella

of the previous sections in this chapter, so the research could be as thorough as possible.

3.5 Chapter Conclusions

 As this chapter has shown, there are specific needs of students learning to

program computers, and of the educators attempting to accomplish this feat. The

characteristic that makes these needs synergistic is that they parallel each other. The

development of reasonable, non-trivial programs requires appropriate structure; any other

format will become ineffective and/or unusable before its life cycle should be completed.

Indeed, this may even occur before the program is completed. In addition however, the

36

teaching of students in virtually any discipline of substance also requires appropriate

organization, structure, and guidance.

 The same argument aligns with the need for planning and strategy. Learning must

be strategic, and programming must be strategic. With appropriate planning and

strategies, both can be successful. Even cognition works in parallel. Student cognition

will lead to development of the "cognitive" abilities of the program that will solve

specified problems.

 This makes the teaching of introductory computer programming somewhat

unique. And arguably, it offers unique opportunities to improve this educational task, and

to contribute to the educators who attempt it. Having provided the background in this and

the previous chapters, a proposal will be made in the next chapter based on this research,

to develop a learning process for developing effective programs along with successful

learners.

37

Chapter 4

Proposal: The Five Step Programming
Process

 Perkins and Martin wrote, "Rather than expecting programming instruction of

itself to boost cognitive strategies, one should teach cognitive strategies as part of better

programming instruction" [48]. It is not only intuitively appropriate, but the concept of

teaching strategies that support both cognitive and programming improvement are

supported by the research, which also states that just teaching programming has not been

linked to cognitive improvement to any significant extent [38].

 This chapter will introduce a proposed learning process based on the research

reported in the previous chapters. The three sections of this chapter will be as responsive

to and as guided by the research, as possible. Components of the process that are not

directly supported by the research will be primarily informed by logistical needs and

local classroom conditions.

4.1 The Proposed Procedure

 The procedure is broken into five parts or steps. Part of the process of knowing

where to break the parts is supported by the research, and part of it is related to the

functional operation of creating a program. For example, the first step is purposely very

simple and requires very little time while the cognitive involvement and the time required

38

is larger for each succeeding step thereafter. The steps will be presented in order and with

supporting information.

4.1.1 Step 1 - Creating a simple high-level solution

 The first step starts with a previously specified "complete program" format

provided to the students. This format includes: 1) one or more header files, 2) zero or

more global constants, 3) zero or more function prototypes, 4) exactly one main function,

including an appropriate return statement, and 5) zero or more "supporting" function

implementations (i.e., functions with the program code written as needed and/or

specified). All functions other than the main function are considered supporting functions

for purposes of this standard. An example of this program format is provided in Figure

4.1.

// Header files
#include <iostream>

using namespace std;

// Global Constants
 // none

// Function Prototypes
 // none

// Main Program
int main()
 {

 return 0;
 }

// Supporting Function Implementations
 // none

Figure 4.1. Standardized Program Format

39

 Starting from the base program format or template, the students are directed to

write the five to seven main actions of the program in the form of comments, meaning in

English text that is not processed by the compiler. These main actions are simple

statements that will drive the remainder of the program and in fact become the

abstractions that define the overall program. Still, as simple statements provided at the

start, they do not require students to be competent with or fully knowledgeable of the

concept of abstractions at this point.

 The key points to development of this step are as follows. First, just by writing the

major steps, the students are developing the recommended plans or goals, even if they are

in a very simple format. Second, by writing a few statements in their own language, as

opposed to the programming language being learned, students are separating the problem

from the program right from the start. Third, by limiting the number of statements to no

more than eight to ten, the working memory storage itself is not significantly taxed. It

should be noted that this number of items is greater than the three to four to seven chunks

identified as limits in the research, however since these items are written down into the

text file, the external "storage" process also discussed in the research is supported.

 Finally, this step is a simple beginning to an abstracted top-down process that will

guide the students to synthesizing a programming solution to the specified problem. The

concepts of both abstraction and top-down strategies will have been discussed with the

students prior to this point; however, these concepts do not have to be involved in the

actual problem-solving process. This is an important condition as the research points out

the problems with increased cognitive load in novices due to maintaining the rules of

structure in working memory while actually trying to solve the problem.

40

 Figure 4.2 shows the basic structure of a program that calculates the roots of a

quadratic equation. Note that in order to minimize distractions, only the main part of the

program will be shown until other parts of the program become pertinent. Also note that

the text is organized with indenting and is separated for easy visibility. This is again from

the research related to white space and text organization. Finally, to repeat, the important

point about this step is that it is very simple and does not appear threatening to students

who are not familiar with the programming process. This is specifically designed to

address the issues of frustration and potentially weak problem-solving skills with which

the students may be starting.

// Main Program
int main()
 {
 // initialize program/function

 // initialize variables

 // show title

 // input coefficients

 // process the data

 // display roots

 // shut down program
 return 0;
 }

Figure 4.2. First Step of Programming Process

41

4.1.2 Step 2 - Expanding on the original solution

 Having begun the problem-solving process with the first step, students recognize

that they have not moved very far into writing the program; however, they also recognize

that they have taken a first step, and with presumably some sense of accomplishment.

The second step of the process requires the students to expand on the individual

statements they have already written. At this point, students have been given a "starting

cue", and as the research calls for "direction", the first step, and subsequent steps,

provides this in an ongoing fashion. For the most part after the first step, no large scale

synthesis is required of the students since each step will be guidance as to the next sub

goal steps. Cognitive load should never increase significantly, and at the same time, the

library of schemas held by experts -- which is known not to be available to novices -- is

not required in the guidance process. The expanded statements for the second step of the

example program are presented in Figure 4.3.

 Examples of expansion on the first step statements are to show input of the three

coefficients under the statement "input coefficients". A more expanded example is the

specification to calculate the discriminant, then calculate its square root, then calculate

the denominator, and finally calculate the roots of the equation which are sub goals of the

"process the data" statement. These are four steps that do require the student to think

through the quadratic equation seeking small steps that will solve it.

 The increased value of this process is that students are guided to keep the steps

small, which will keep the cognitive load down, but by its nature, they will also be

increasing the modularity of the program, which is a desired part of quality program

42

structure. Note also the use of both white space and the indented structure from the

research that provides students with a hierarchical structure that will support their

understanding of the top-down structure as it evolves.

// Main Program
int main()
 {
 // initialize program/function

 // initialize variables

 // show title

 // input coefficients
 // input coef a, b, c

 // process the data
 // calculate the discriminant

 // calculate the square root of disc

 // calculate the denominator

 // calculate roots 1, 2

 // display roots
 // display root 1

 // display root 2

 // shut down program

 // hold screen for user

 // return 0
 return 0;

}

Figure 4.3. Second Step of Programming Process

 The "display roots" step is broken down into the obvious two steps required of the

two roots, and the "shut down program" step is expanded to include holding the screen

for the user to view it before the program stops. A key point related to separating the

problem from the program is that when step two is completed, students should be able to

43

"run" the program in their minds in an attempt to verify that their program conducts the

appropriate operations. They should be able to identify how the program will, or will not,

work and they should be able to understand if an important part of the process is missing.

The key to this is that the students are still doing this in a language they understand, again

without the cognitive load of trying to remember what certain programming statements

would, or would not, do.

 It should also be noted that even though the students are fully involved in a top-

down development process, they do not have to keep the management, or even significant

awareness, of this process in their working memory in order to continue forward.

4.1.3 Step 3 - Identifying and specifying program modules

 At this point, students have made one small initial step with a few lines of

commented text, and then they have expanded each of those lines where appropriate with

a few lines of text related to the sub goals needed. The second step was slightly more

complicated than the first, especially since students should have really been trying to

verify the correct operation of their program. At this point in step three, little more is

done to actually solve the problem, although this could occur if students notice a part of

the solution that they had previously missed. Instead, implementing step three moves the

students into expansion of the modular components into which their program has been

broken.

 For example, where the program calls for showing the title, the tool to be used for

this operation would be the combination of the cout object and the insertion operator

(i.e., <<). Again with consideration for cognitive load, the student is only required to

44

consider one commented program step at a time, but they must also consider which tool

is appropriate for implementing this step. Figure 4.4 shows how the students indicate the

use of the tool.

 // show title
 // function: cout, insertion (<<)

Figure 4.4. Indication of the tool(s) to be used

 According to the research, there should be room in working memory for this to

occur. However, not all the modules will be tools or subroutines -- called functions in the

C++ programming language -- that have been previously created. Students will need to

synthesize their own subroutines for some of the actions unique to their particular

program.

 For example, this particular program will need to prompt the user for each of the

three coefficients, acquire each of them, and return them to the program for processing.

Since this is a task unique to this program, students should recognize that they must

create the tool themselves. At this point, they must conduct two tasks: They must indicate

the use of the tool, as shown in Figure 4.5, and then they must specify information about

the function, which will indicate its characteristics and actions.

 // input coefficients
 // input coef a, b, c
 // function: getCoef

Figure 4.5. Indication of the student-generated tool to be used

45

 The specification part of this process occurs above in the program's "Function

Prototypes" area. This part of the process will again elevate the cognitive challenge to

students, although it continues to be guided and structured to minimize cognitive

overload and/or frustration. There are five parts to the specification. The first is the

function name - this should be one or more combined words starting with a verb to

indicate action; getCoef indicates that the function will "get" or acquire data from the

user. The second specification part is the function input - students must think about what

the function "needs to know" to accomplish its task, and they must think about what data

type would be appropriate for the input data. In this case, since each coefficient must be

prompted with a different message, a string prompt is needed.

The third specification part is the function output - the function may return output back to

the calling function (i.e., the main program) as this function in fact does by returning the

acquired user input, but it could also output data to the screen or to a file. Again, students

should indicate what is output and what data types might be involved in the process. The

fourth specification part are the function dependencies. Many times functions must rely

on other functions to accomplish their goals. For example, the getCoef function will be

prompting the user for input and capturing it, so it will need to use some input/output

(I/O) tools in the iostream library. Finally, the fifth specification part is the function

process - what is it that the function will be doing, written in two or three lines of text at

most; this function will prompt the user, acquire input from the user, and then return the

input value to the calling function. An example of the format for the specification

component is shown in Figure 4.6.

46

 The specification process is somewhat larger scale than the one line at a time

process conducted down in the main program. Nevertheless, it is still a stepwise process

with specific actions associated to a specific set of given terms. The students still only

have to address the name issue, and then the input issue, and then the output issue, and so

on, one item at a time. Again, the appearance of following a series of steps is less

daunting, and again, the cognitive load is managed.

/*
Name: getCoef
Input: prompt string (string)
Output - returned: coefficient value (int)
Dependencies: cout, cin
Process: prompt user for coef, get coef,
 return coef
*/

Figure 4.6. Specification of a student-generated function

 As was found in the research, it is desirable to implement iterative or stepwise

refinement in order to develop a program. As was also noted, this has the functional and

pedagogical value of slicing the program development process into smaller, more

cognitively appropriate, chunks. Step three continues to be conducted this way with

students looking at the next required step of their program, making a decision on the

tool(s) to be used, and then specifying their own tools (i.e., functions) as needed. This is

literally a top-down process on their source code text page, and continues to be carefully

managed in terms of working memory and cognitive load demands. A sample of other

function specifications is shown in Figure 4.7, and a continued sample of the program

development is shown in Figure 4.8.

47

/*
Name: calcDisc
Input: three coefficients (int)
Output - returned: discriminant (double)
Dependencies: none
Process: calculate discriminant and return
*/

/*
Name: calcDenom
Input: coefficient a (int)
Output - returned: denominator (double)
Dependencies: none
Process: calculate denominator and return
*/

/*
Name: calcRoot
Input: denominator, discriminant (double),
coefficient b (int)
Output - returned: root (double)
Dependencies: none
Process: calculate root and return
*/

Figure 4.7. Further examples of function specifications

 // process the data
 // calculate the discriminant
 // function: calcDisc

 // calculate the square root of disc
 // function: sqrt

 // calc the denominator
 // function: calcDenom

 // calculate roots 1, 2
 // function: calcRoot

Figure 4.8. Continuation of the program function development

48

4.1.4 Step 4 - Developing the skeleton program

 Each step in this process moves in the direction from the problem solution to the

programming solution. Step one was the simple outline of the program, step two was the

expanded outline, but still all in text. Step three continued to be developed in text, but this

was the transition step where program code was conceptualized, even if it was not

actually written. Step four begins the process of actually writing the program code. The

process will continue with the stepwise refinement format, but once again, the "next

steps" required of students are guided by the results of all the previous steps. For

example, where the program was previously written in text with the tools specified, the

actions are now put into play in the main program. Figure 4.9 shows the evolution of the

example shown previously in Figure 4.8.

 // process the data
 // calc the discriminant
 // function: calcDisc
 disc = calcDisc(coefA, coefB, coefC);

 // calculate the square root of disc
 // function: sqrt
 discRoot = sqrt(disc);

 // calculate the denominator
 // function: calcDenom
 denom = calcDenom(coefA);

 // calculate roots 1, 2
 // function: calcRoot
 root1 = calcRoot(denom, discRoot, coefB);
 root2 = calcRoot(denom, -discRoot, coefB);

Figure 4.9. Program code provided for processing operations

49

 Note that each line of code is guided by the comments provided, and the

appropriate tool (i.e., function) is used at the appropriate location. Also note the

continuation of the white space and structural organization of the comment text that is

now being translated into program code. The other two components that must accompany

each line of code that contains a new function are the function prototype that will now be

placed in the "Function Prototypes" area immediately under the step three specifications

at the beginning of the source code file, and the now stubbed out functions that are placed

in the "Supporting Function Implementations" area below.

 There is a critical order for this process that incorporates both the iterative top-

down process and the functional need to write a program without syntax errors. Thus, the

following protocol must be conducted by the students. First, they write appropriate

program code in the main function starting at the top. When they arrive at a location that

requires one of the student-generated functions, they must first go to the "Function

Prototypes" area of the program under the location of the function specifications and

create a function prototype.

 The prototype has a standardized form that will be driven by the specifications

generated in step three. The return (i.e., output) value is placed as specified, the name of

the function is placed as specified, and then the parameters (i.e., the input value(s)) is/are

placed as specified. Once again, this is small step cognitively because all of the

requirements for the prototype have already been specified. This is primarily a translation

process. At this point, the students must compile the program, which will work correctly

if there are no syntax errors. An example prototype is shown in Figure 4.10.

50

/*
Name: getCoef
Input: prompt string (string)
Output - returned: coefficient value (int)
Dependencies: cout, cin
Process: prompt user for coef, get coef,
 return coef
*/
int getCoef(const string &prompt);

Figure 4.10. Function prototype under the specifications area

 The key to keeping this process cognitively managed is that if students do make a

mistake with creating the prototype, they only have one line of code to resolve. While

most compilers may provide cryptic error messages, students are not overloaded by the

possibility of problems elsewhere in the program. They have only to resolve issues that

occurred in the one line of code.

 The next step continues this support as well as the cognitive management.

Students must now create an empty function, called a stub function, down in the

"Supplemental Function Implementation" area. This involves copying the prototype

exactly as it is, pasting it in the area below, creating open and closed curly braces for the

function, and finally, if the function requires a return value, placing a dummy return

value in the function code block.

 Creating the stub function now requires placing at most two lines of code in

addition to the two curly braces in the "Supplemental Function Implementation" area.

Once again, if any syntax errors result from this process, it is clear where the errors are,

51

and where the corrective actions must be focused. An example stub function is shown in

Figure 4.11.

int getCoef(const string &prompt)
 {

 return 0; // temporary stub return
 }

Figure 4.11. Stub function example

 The final step for installing this function into the program is placing it in the

program code as shown previously in Figure 4.9, and again in Figure 4.12. Again, the

student places one line of code that includes the function operation, then compiles, and

then resolves any issues that may have arisen. The focus of the learning is on this one

step, and the cognitive load is not overloaded if an error is introduced at this point.

 // input coefficients
 // input coef a, b, c
 // function: getCoef
 coefA = getCoef("Enter coefficient A: ");
 coefB = getCoef("Enter coefficient B: ");
 coefC = getCoef("Enter coefficient C: ");

Figure 4.12. Usage of student-generated function in the program

 When students are finished with step four, they have a fully written main

program. If they followed through with their original design from steps one and two, and

if their functional operations from steps three and four are consistent with their plans, this

function should work. It will not work correctly at this point because the supporting

functions are not operational. However, students should have a reasonable feeling of

52

confidence that they do not have to make any further modifications to this part of the

program. As discussed in the research, there are places in programs where some

experimentation may need to occur and this could happen in the main function when the

program is completed.

 One benefit of this process is that if a semantic or logical error is discovered at the

end of the programming process, the program is already broken into modules so that the

overlying process can be understood and errors resolved. Again, this is both effective

programming and pedagogically appropriate since students have worked their way

through a top-down process, and should have a reasonable understanding of how their

program works. One of the important points about understanding the program is that as

long as they created the text comments and developed the program with clear steps, they

are not required to hold the whole program in working memory, which the research says

they cannot do. They should be able to review their program steps in a way that does not

lead to cognitive overload, and yet still leads them in small steps to how the program

works.

 To continue with this "small step" strategy, the last component of completing step

four is to write brief comments into each of the stub functions. These are essentially step

two operational descriptions of the functions, which are by nature, already somewhat

small operations since they are sub goals of the main process (i.e., the program). Writing

these comments allows the students to think ahead about their next steps; however since

they do not write code at this point, the number of steps and the complexity of the

operations remains simple. An example of the required comments in the stub function is

provided in Figure 4.13.

53

int getCoef(const string &prompt)
 {
 // initialize function/variables

 // display prompt to user

 // acquire user input

 // return acquired value
 return 0; // temporary stub return

}

Figure 4.13. Creation of descriptive comments in stub functions

 When the students have had some practice with writing these simple comments on

several assignments, they are then required to develop one level of the functions in the

step three format which includes identifying and then specifying functions that will be

required for only the functions called directly by the main function/program. Toward the

end of the semester, students will be expected to write step three comments, function

identification, and function specifications for almost all of the functions that will

ultimately be required by the program. While it is expected that the students will have

developed a level of competence at the end of the semester, the stepwise process

continues to only require attention to small quantities for tasks involving each module.

4.1.5 Step 5 - Completing the program

 The final step of the process effectively applies a bottom-up strategy even though

the program itself has been written. Students are now required to implement (i.e., write

the code for) each of their function modules. If the program has been well-developed to

this point, the function/modules will address one programming task and will be relatively

easy to code. This is especially true since they should have a reasonable set of

54

instructions provided for them to follow as a result of the last part of step four. An

example of the implementation of a function is shown in Figure 4.14.

int getCoef(const string &prompt)
 {
 // initialize function/variables
 int userInput;

 // display prompt to user
 cout << prompt;

 // acquire user input
 cin >> userInput;

 // return acquired value
 return userInput;
 }

Figure 4.14. Creation of descriptive comments in stub functions

 Again, this strategy asks the students to make small forward steps with each

module, but because the "memory" of the program evolution is "stored" in the text of

their program, their cognitive load consists of following their instructions and solving

smaller problems. One of the strategies continued from the step four process is to make

sure that they compile their programs after every line or two of writing code. This again

makes the error-resolution process very narrow, requiring minimum cognitive load, and

supports a continuation of the stepwise process through the coding activities.

 At this point, the program should run correctly, and in many cases, when this

procedure is followed, it does. However, under those circumstances where a semantic or

logical error has been introduced into either the main function or one of the supporting

functions, the process of diagnosing and resolving is made significantly easier as a result

of the program modularity. Students can view the output and identify problems that may

55

have occurred in the input or output operations, or in the mathematical processing. If

viewing the program's displayed operations is not informative, students can still trace

through the program in a variety of ways that will continue to be aided by the integrated

program modularity.

4.2 Reviewing the process

 Managing cognitive overload is the primary focus of the Five Step Programming

Process, and it is managed in several ways. First, the problem and the programming are

kept separate for as long as possible, while students actually design the solution in a

stepwise format but without concern for program code. Next, by the time steps one and

two are complete, there is little need to tax the working memory for more than what it

takes to resolve each previously written step. Students can apply their limited working

memory tools to the task, but at the same time, they don't have the immediately at-hand

experience memories to which experts have access. However, students can call upon the

small-scale problem-solving abilities that they do have and/or are being trained with, and

resolve small issues one at a time.

 Another important part of the process is the use of top-down stepwise refinement.

This is not just an effective way to write a program. It also offers the students both

focused and varied task repetition. For example, step one calls for one primary pass

through the commented statements to solve the problem in a very general way. Step two

calls for a second pass that expands on the individual commented steps of step one. Once

the commented steps have been written in step two, students should take another pass or

56

two through these steps to make sure that the program will work as expected when

following their instructions.

 Step three continues with multiple stage-like steps. First students can go through

identifying where the module/functions are needed, and having completed that pass, they

can go back through and implement the individual function specification process. As a

note, the creation of specifications can be incorporated into the module/function needs

pass, but this only changes the number and length of the varied repetition experienced by

the students.

 In step four, the development of the main function program code is one large-

scale pass while the integration of using, prototyping, and stubbing the functions are

again, small but consistent passes. There is one more pass made through the stub

functions to provide the descriptive comments. Even after the development of one

program, students will have established an experience base of some depth, even though

the items passed through are not significantly deep or complex.

 Step five wraps up the iterative process by making one more pass through the stub

functions to fill out the code. The master pass is over the individual functions, but the

"sub goal" passes occur within the functions. To reiterate, the process is systematic and

consistent, and there are several stepwise refinement passes throughout the process whose

operational structure is the same, but whose contents vary almost every time. Having

worked through a small number of full programs this way, students will have begun the

process of developing schemas in an orderly way, and in a way that does not overload

cognition or working memory. This is the goal.

57

4.3 Evaluating the Process

 The goal of this research was to begin the process of both evaluating the Five Step

Programming Process and refining it where needed. The first step in the direction of

conducting this evaluation was a pilot study to observe how the students felt about the

process, what suggestions they might have had for refining it, and how it might have

helped them learn to program.

 The process was taught to the students in the stages mentioned in the previous

sections across most of a semester. Near the end of the semester in the twelfth of fifteen

weeks, the students were provided the opportunity to respond to an anonymous survey.

They were not required to do this, but they were offered food gift card incentives for their

participation. The survey itself was online, anonymous, and administered by the thesis

Advisor who was not involved with the teaching of the course. Nine questions including

one open-ended question were provided in the survey. These are provided as Appendix A

of this thesis in the completed form which includes the IRB consent information and

decision-making question. Further explanation of the process and the results are provided

in the next chapter.

58

Chapter 5

Implementation and Results

5.1 Implementation overview

 The research was conducted using an online anonymous survey tool during a one

week period starting on a Monday morning at 8:00 a.m. and ending on the following

Monday morning at the same time. Students were formally recruited by an Institutional

Review Board (IRB) trained staff member who read a scripted informational document to

the two introductory programming classes in the Computer Science and Engineering

Department during the beginning of each class during the one week period.

 The nine survey questions described in the previous chapter and also provided in

Appendix I of this thesis provided some opportunities for simple quantitative information

using multiple-choice questions which included how much they used the Five Step

Programming Processes (hereinafter called the "process"), how helpful it was in their

development process, how it may have helped with the time taken to develop their

programs, and how much the process may have helped with learning to program. The

data was analyzed and is reported in this chapter.

 The remaining questions offered students the opportunity to respond in their own

words to questions related to difficulties they may have had with the process, the

59

potential applicability of using this kind of process in other courses, and ways the process

might be condensed down or expanded out. In addition, an open-ended question was

asked of the students offering them the opportunity to bring up any other issues they

might have related to their experience with the process. This data was organized

generally by the focus of the various responses and is also reported in this chapter.

Examples of each grouped response are provided in this chapter, and the entire data set is

provided as Appendix II.

 Twenty-eight students signed into the survey system, but only twenty-six students

completed most or all of the questions. While this response represents 1/3 of the 78

students who could have taken it -- which is a good response rate -- the number of

students was not quite high enough to support significance in any of the quantitative

analyses. This will be reported in the next section of this thesis along with a discussion of

the other findings of these questions.

 The remainder of this chapter is divided into two main sections. The first section

reports on the quantitative data collected, and the second section provides analysis and

reporting on the written student feedback. Brief concluding remarks related to the data

collection and analysis will be provided at the end of the chapter.

5.2 Quantitative Questions

 This section will discuss and report on the data collected on the four multiple-

choice questions provided in the survey.

60

5.2.1 Usage Percentages

 The first question asked was "How much do you think you used the Five Step

Programming Process for working out your most recent laboratory program?". The

question offered five choices between 0% and 100% in increments of 20%. The overall

results are shown in Figure 5.1.

0

2

4

6

8

10

12

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Percentage Use of the Tool

N
u

m
b

er
 o

f
S

tu
d

en
t

R
es

p
o

n
se

s

Figure 5.1. Students' percent usage of the process.

 Eighteen students -- slightly less than 70% of the group -- indicated that they used

the process 60% or more for working out their most recent program, as opposed to 8

students, or just over 30% of the group which includes one student who indicated no use

of the process at all.

61

5.2.2 Development Percentages

 To the question, "How much do you think the Five Step Programming Process

helped you develop your most recent laboratory program?", fifteen students, or about

57.7% of them stated that the process provided 60% or more of the help with developing

their most recent program. In spite of only one student indicating no use of the process,

five students indicated that the process did not help them with their program

development, and three students each indicated that it provided 20% or 40% of the

development help. Figure 5.2 shows the distribution of the students' perceived

developmental help from the process.

0

1

2

3

4

5

6

7

8

9

10

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Percentage Development Help

N
u

m
b

er
 o

f
S

tu
d

en
t

R
es

p
o

n
se

s

Figure 5.2. Students' perceptions of development help from the process.

62

5.2.3 Time Taken Percentages

 This question did not ask students to estimate relative percentages. Instead, the

question, "Do you think that using the Five Step Programming Process allowed you to

complete your most recent laboratory program in more, less, or about the same amount of

time?" provided relative or comparative answers, such as "it helped me complete the

program in a little less time", or " it caused me to take a lot more time to complete my

program". The range of responses is shown in Figure 5.3.

0

2

4

6

8

10

12

lot more little more no difference little less lot less

Relative Time Taken using Tool

N
u

m
b

er
 o

f
S

tu
d

en
t

R
es

p
o

n
se

s

Figure 5.3. Students' perceptions of time taken to complete their laboratories

 While Figure 5.3 shows bimodality, it is almost centered on the middle showing

that 8 students or 30.8% of them felt that it took a little more time, and 10 or 38.5% of

them felt it took a little less time. The perceived difference between taking a lot less time

63

and taking a lot more time only varied by one student, and the students reporting no

difference in the time taken was also within one student.

5.2.4 Learning Help Percentages

 The question, "How much do you think that using the Five Step Programming

Process helped or hindered your learning in this programming course so far?" elicited the

strongest response of all of the multiple-choice questions. Nineteen of the 26 students, or

slightly more than 73% of the students responded with "it helped me learn about

programming a little", or "... a lot". Figure 5.4 shows that the remaining students

diminished from " it didn't make a difference with my learning to program" down to " it

was a hindrance to my learning to program".

0

2

4

6

8

10

12

14

hindrance not helpful no difference helped a little helped a lot

Help Learning to Program

N
u

m
b

er
 o

f
S

tu
d

en
ts

 R
es

p
o

n
d

in
g

Figure 5.4. Students' perceptions of learning help provided by the process

64

5.2.5 Relationships Between Quantitative Data

 As specified in the previous chapter, each of the quantitative items were tested for

correlations to the students' actual usage of the process. Some of the correlations were

promising; however the student numbers were not large enough to demonstrate

significance (i.e., that the correlation was not a random result in a normal population).

Since non-significant correlations are not considered to be verifiable, the relationships

will be reported here, but caution and consideration must be applied to the results since

none were found to be significant.

 Using the Pearson Correlation Coefficient, the relationship between usage of the

process and how much it supported development was .588 with a significance (two-

tailed) ≤ .220, and while the significance could not validate the results, it would appear

that a greater number of students might strengthen this result. The relationship between

usage and the time taken was not strong and the significance was also not very close

(.450 with a two-tailed significance ≤ .447); this result was not very promising. The

strongest relationship was the correlation between usage and the learning help that the

process might provide. A correlation coefficient of .712 with a two-tailed significance of

≤ .178 brought this relationship closest to potential significance. With a larger sample, a

relationship between these two variables might be found.

65

5.3 Student Written Responses

 Students were offered the opportunity to provide their opinions on difficulties

they might have had with the process, use of the process in other areas, suggested

modifications to the process, and finally, they were offered an open-ended question to

contribute any further ideas or opinions they might have related to learning with and

using the programming process. The questions were kept simple and the students were

asked to "explain briefly" their ideas and/or opinions. The student responses were

grouped by general category of the response and are reported in this section. Note that the

student response quotations were copied directly from the data collection results, and no

grammatical or spelling changes were made.

5.3.1 Difficulties

 The question, "Did you have any difficulties when using the Five Step

Programming Process for developing your most recent program?" was asked of the

students with a request to provide a brief explanation. Of 23 responses, 9 of them

indicated that there were no significant difficulties. Two further students indicated that

they did not like how it worked at first, but began to appreciate it later. For example, one

student stated, "Some times it seems like it generated more busy work when the programs

were simple but when they became more complex it really helped".

 Three students found it hard to complete the process, with statements such as,

"...because i would forget areas of the program that needed to be implented until the final

step so i would have to back and add code in.", or "When you're adding new information

66

to an assignment based on the 5 step programming process design assignment, or if the

design assignment was incomplete, it's discouraging and more time consuming having to

edit additional information related to the programming assignment".

 Three students felt that writing code before drawing out the design would be the

more appropriate way to develop a program. One example statement was, " I always want

to start writing out the code while commenting it out because I feel like I'll forget my idea

later." Another student stated, "The 5 step process is not the best way to write the

program. Writing down what one plans to do to complete the entire program before

writing code is a bad idea.".

 Five students found the process difficult to do or to understand. Representative

responses were, "It's a good concept, but it's difficult to actually do and it doesn't always

help.", and "sometimes your brain would naturally take you off course and it would be

hard to get your mind back into the way the five step process wanted you to do it.". One

interesting response showed what the student perceived to be a difference in

programming method, as opposed to not being able to abstract a solution: "It is more

difficult for me to think from a top down manner than from a tool use method. I would

rather build the smaller components before and then utilize the working tools then try to

do an overall and guess at what I will need. Finally, one student simply stated, "step 5 is

hard".

 The only other response to this question was a commentary on how the

programming process might be taught because the student indicated that s/he did not

"understand the process at first". One of the students who indicated no difficulties also

made a recommendation on how the process might be taught more clearly.

67

5.3.2 Application of the Process to Non-Programming Areas

 One of the goals of teaching problem solving targets the goal of transfer to other

problem-solving conditions that are not directly related to the original context. The

question, "Do you think using the Five Step Programming Process might help with other

courses, such as math, science, etc?" was designed to find out if students might see the

value of using this standardized process in other problem-solving venues.

 Only two of the 26 students responded positively and directly to the question.

Both responses demonstrated recognition and application of the process: "I think the

methodology behind it, taking a big problem and splitting that problem into little parts,

is uesable whenever you want to solve any problem." and "Yes, I believe it's applicable to

other courses and I have used it in other courses for projects and essays.". The positive

responses were separated in the research from a second group who believed it might be

useful elsewhere, but either had not tried it, or may have not thought about it prior to

answering the question.

 There were 15 students who considered that it was possible that the process -- or

its parallel practice -- might be used elsewhere. Example student responses are: "Maybe

writing English essays though I haven't tried it.", "The program could really be used for

any other class. It is basically saying what you should do in an assignment then actually

doing it.", "The process itself seems to be related to only computer science; however, the

logic behind it definitely carries over into courses of other fields such as mathematics and

physics. The idea of finding the main goal of a problem and breaking it down into smaller

problems is essential to both this course and others.", and "Possibly for really complex

68

problems for calculus. I've actually never really thought about it." Again, these responses

were not accepted as directly positive answers to the questions, but were accepted as

students who appeared to be considering the possibility that the process might be

transferrable.

 There was only one unqualified "no" in the remaining group of responses. Like

the previous group, the remaining students stated "no" or "I don't think it will", and then

expanded on their response with their own considerations. Example student responses

are: "I do not think the process will be helpful with other courses in its specific structure.

I think it does help to teach how to break a problem down into smaller chunks.", "not

really in math, but it could be helpful to developing an idea in a science.", "No i dont

think it would be useful. Since most other courses do not solve problems in a manner that

can be modularized.", and "no, I won't be taking other courses like that".

 Two more directly negative responses still seemed to be considering the use of the

process, even if they did not think it would work elsewhere: "no For math, one would not

write down pages of commentary on how they thought they were going to solve the

problem before attempting the problem.", and " No, it is more or less a step made for

planning, which I could do just as well without this five-step process. In fact, I would

find it a large bother to translate its application to something other than coding, given my

other subjects are more about learning specific equivalents of functions rather than a

large algorithm."

69

5.3.3 Condensing Steps Together

 To find out what the students think about the individual steps, and the overall

stepwise process as a whole, one question was asked about condensing two or more steps

into one, and the other was asked about expanding any of the steps. The data from these

are treated separately, and the condensing down question is presented here. Eleven of 24

students indicated that the steps were okay as they were. Example responses were: "I like

keeping the steps individually, as taken one step at a time it develops very well.", "It's

great the way it is because of the way each step builds on the previous one." These

responses address the goal of stepwise progress toward the solution, but one student

addressed the motivational and to some extent the psychological considerations: "Having

5 steps is a good way to go, mainly because it helps the student focus on the problems at

hand. Stepping through each large problem, and solving smaller problems to accomplish

it relieves a lot of stress. Also, the feeling of accomplishment after each step acts as a

great motivator to continue through the rest of the program."

 The question for this item was, "Are there parts of the five steps you think should

be condensed down? For example, because step 1 is so brief, do you think it would help

to combine steps 1 and 2?" Because the example given is actually a consideration, this

question is somewhat leading. This was done purposely to see if students would argue for

or against condensing questions 1 and 2 into one. Some students concurred, but

apparently for reasons of managing the larger process: "I think consolidating 1 and 2

would be helpful because if anyone else is like me, they don't remember the

specifications of all five steps. I pretty much know what step 4 is supposed to look like

70

from the design assignments.", and "Combining steps 1 and 2 would be helpful in that the

steps would all be very distinct; it would be easier to follow if you knew exactly what

step you're on. In my mind the line between step 1 and 2 is not clear."

 As was found in a previous question, there were students who felt that working

out the program before coding was not important: "In my personal execution of the

process, I would almost always start at step 3/4. The reason is because, in my opinion, the

first 2 steps outline things that I don't really feel are too confusing or complex to need

commenting. (i.e. basic understood functions, obvious coding needed in main()).

However, steps 3 and 4 are great in helping with the complexity of the code that can arise

inside functions. (i.e. loop iteration, array augmentation, etc.)", and "I think steps 1, 2,

and 3 can be condensed down into one step. In the beginning, it helped a lot to be able to

do 5 steps but as the semester carries on, step one and two become vestigial steps."

 One student suggested removing the function specifications part of one step:

"Step 3: function specifications. I'm usually only guessing what my functions are or what

they can do. To base my program in step 4 around these functions can be bad. I'm a think

as I go person, planning things out too far ahead usually results in bad work. I would cut

step 3 out, and just go from step 2 to step 4." Another student suggested condensing steps

4 and 5 due to problems with later program modification: "The only complaint that I have

about the 5 step process is step 4 and 5 should be condensed because often times I find

that I need to adjust or modify my main program code when I am writing my functions

which can often render my step 4 work useless."

 The last group of students did not see the value of a stepwise process: "I never do

this step on at a time. I think it would be ridiculous to do them one at a time. So yes I

71

think they could be condensed down.", "outline work on the functions and what they are

doing place the funcitons where they need to go comment the functions finish

everything", and "I like to break down problems as I see fit for each individual problem,

it is a waste of time to have a single approach that you try to use for every problem since

many problems are handled differently".

5.3.4 Expanding Steps Out

 Of 24 responses, 15 of them felt that no expansion was necessary, most with little

qualification, and some with rationale for keeping them as the are: "I think the expanding

is not beneficial at this level of CS", " No, I think step 3 and 4 are great as they are,

because they help you get prepared for coding in a fairly concise manner, and I see no

reason to arbitrarily expand on the process.", and "Commenting out the stub functions in

step 4 helps keep track of what the main program is supposed to do; therefore, I believe it

should be left the same.".

 The question for expanding out the process was, "Are there parts of the five steps

that you think should be expanded upon? For example, because you write both the main

program and the stub function comments in Step 4, do you think it would help to break

this process into two unique steps?" This was also somewhat leading, but again this was a

clear example to the students as to what was being requested. Three students did suggest

breaking up step 4, with specific arguments: "There is a lot in step 4. Breaking it up

would help.", "The only aspect that could be elaborated on would be step 4. I found it

difficult to know what exactly i wanted a function to do and how it was going to be

implemented.", and "Step four is very big, and should be break down in multiple parts".

72

 The remaining responses to this question were not so much related to expanding

steps, but are added here for completeness, and will contribute to the discussion in the

next chapter: "I do think that stubbing out the functions should be step 4 and writing main

should be added to step 5.", and "Step 2 should include that it is a form of step 1 applied

to segments and then reapplied until the function is split into small enough pieces." One

student apparently continued supporting the idea that all the coding should happen as it is

approached: "It would help to actually write the functions instead of just stubbing them.

Sometimes, it would help wirting the main program."

5.3.5 Other Comments

 In order to provide students an opening to provide any other ideas, suggestions,

issues, and so on, an open-ended question, "If you have any other opinions or thoughts on

your use of the Five Step Programming Process, please share them here.", was provided

at the end of the survey. There were a variety of responses starting with four students

who indicated that they had no issues to discuss. Four students stated that they liked the

process, although two of them offered suggestions about how to improve the delivery of

it: "It's a good process, but it could use a better description online. The steps listed above

in this survey is a nice summary. Put that online.", and "This process is a very powerful

tool, and is helpful in writing efficient code. The only suggestion I have is to introduce

the process earlier in the course, saving students much frustration toward the class, and

even the instructor :)".

 Two students stated that it worked for them, but with some qualifications:

"Originally I hated having to use the programming process as I felt it made me spend

73

extra time outlining when I didn't need to. This was because I hadn't really encountered

anything in class that was really of any conceptual difficulty. When we started getting

into loop, array, and file streaming design, the use of the process really became more

important in my programming. Once I embraced actually taking the time to outline

everything it really helped me conceptualize code structure and potential problems a

whole lot easier. I really feel like a much stronger coder now, and I am very glad that I

came around to using the programming process.", and "The process is tediuous, and

certainly not something I enjoy doing, however it allowed my programs to come out

looking relatively clean and usually I understood more of my program coming out than

going in."

 Four students did not see the value of the process. One student, who felt that

many of his classmates agreed with him stated, "…Many students don't use their design

assignments at all when completing their programming assignments. I use mine, but I

don't follow the process to complete the design assignment, I just make it follow the

format in the end.". Another student believed that other methods should be offered for

use: "People’s minds work differently. All students should not be required to follow the

same formula. If the students understands what is needed to be done to achieve a goal

(writing a program), they should not be forced to do it a certain way. The students should

be shown different methods and be allowed to chose which method works best. CS 135

would be a better class if the students were only graded on the programming assignment

and not the design assignment."

 Another student did not see the value of integrating the comments into the

program: "For a beginner to programming, the five step process is solid. It makes

74

readable, easy to follow code for you and other users. Later on, I would be more

concerned with finishing a programming assignment rather than completing a design

assignment that may not accomplish my original goals, and therefore be scrapped. I'm

essentially writing my thoughts down in english with the 5 step programming process. If

I'm doing that, why can't I just write down my thoughts in english outside of the

program?" The last of the students who did not like the process stated, "I found actually

coding a skeleton of the main program while commenting what I was doing was most

effective. From there, I would add on flags, additional features, and the like. Even while

doing a design assignment and no actually coding, I still confused myself with all the

parts going on. I think having a partial program running helped me see what I did and did

not have, which allowed me to handle the next task without thinking about how it

interacted with every other task. I'll point out that when just planning, I was not sure if all

the parts would mesh correctly which led to a lot of mental stress over handling the

seperate parts appropriately. Step 1 should take care of this, but it did not. Finally, one

program I wrote out the entire design assignment, then could not follow it when I had to

code it. Instead, I simultaneously coded and commented it. When I compared the

comments, they were almost exactly the same."

 Two more students argued that the process should be optional, one simply making

the statement, and the other stating, "I think it should be optional. I don't see the need for

this tool, in fact I find my self witting the code as I do it anyway, going back commenting

on it then deleting the code I wrote. this seems very counter productive. I guess it might

help some people but I really had no use for it." Three students offered further

suggestions for how to introduce or teach the process, and three other students

75

commented on how hard the lab was, how s/he was graded, and in one case, the feeling

that s/he was not getting it right.

5.3.6 Chapter Conclusion

 This chapter reported on both the quantitative data, and examples of the written

data, that were collected from the students. As was noted, the number of students was too

small to show significance in the quantitative data, but as a pilot study, both the

quantitative data and the student comments provided information and insight from the

students as to their perceptions of, and interaction with, the programming process tool. In

addition, all of this data shows promise if a comparable study could be re-implemented

with a larger student population. In the next chapter, this data will be evaluated with

consideration for how the students were thinking, and how the process might be adapted

to become more effective for their use.

76

Chapter 6

Conclusions and Future Work

 This research project represents a first step pilot assessment of the use of the Five

Step Programming Process. While it was primarily meant to get a first layer look at what

students thought about the process, some interesting results were found. There were

students who considered the process helpful, and there were students who did not

understand, or outright rejected, the use of the process. The data from both groups is

important to future work in this area. This chapter will present discussion and tentative

conclusions on the information from the research, and then -- with the understanding that

this pilot activity was specifically designed to be continued -- the chapter will discuss

how the knowledge found in this study can support further research. Finally, a brief

discussion will be provided related to the academic areas, journals, and conferences to

which the results of this research may be directed.

6.1 Concluding Remarks

 A large percentage of students stated that they used the process on the most recent

programming project. This is promising, but could be a result of being required to

provide part of their homework in the step 4 and later the step 5 format. However, some

students noted that they simply organized the homework to fit the format without using

77

the process, and one student reported that s/he did not use the process at all. Thus there is

evidence that the students reporting usage really did take advantage of the process.

 The assistance with program development also showed some promise, but showed

quite a bit of variability among the students. It was somewhat surprising that the time

taken by the students did not show a better response (i.e., more evidence of less time

required for a program). In the previous semester, the most often anecdotally reported

benefit of using the process was the time savings. At least two of the potential variables

here are: 1) classes of students do vary from semester to semester; as an example, the

previous semester contained a group of Honors students; and 2) students during this

semester -- again anecdotally -- seemed to have more trouble with the length of time the

projects required than previous semesters.

 The relationships found between usage of the process and development

assistance, and usage of the process and learning help were both promising. As stated in

the previous chapter, these values were not found to be significant and therefore cannot

be relied upon for a firm conclusion. Nevertheless, the correlations and the levels of

significance found hint that for a larger scale research study, the statistical evidence

might be strengthened for both. If this could be verified, there would be evidence of the

process' support of the double goal of both improved programming and improved

learning.

 Beyond the quantitative data acquired, the students' written responses were

enlightening, and as mentioned, both the positive and the negative responses provided

important feedback. Almost 40% of the students had no difficulty with the process, but

the students who did mention problems identified issues that the process should have

78

mitigated had they used it appropriately. Students who stated that they needed to write

code first so they would not forget and students who stated that they would get off course

were not experiencing the value of the advanced and focused thinking that this kind of

process should have provided them.

 The question related to use of the process outside of programming was a gentle

probe to seek student thought on how organized and/or systematic planning might work

elsewhere, and as an assessment tool, it was effective. Sixty percent of the students made

statements about how the process might work elsewhere. These responses demonstrated

hypothetical thinking about where else an advanced planning process might work. In fact,

most of the negative responses still hypothesized how the process might or might not

work, which is evidence that they were understanding the overlying structure of this kind

of process.

 As far as modification of the process, no strong feedback was provided for

making significant changes. Even with the slightly leading example of condensing steps 1

and 2 of the process, the students who agreed did so because they were not feeling

completely clear on how the steps worked uniquely within the whole process. Virtually

all of the remaining students who argued for reducing steps did so from the perspective

that they did not see the value of a complete plan before beginning the coding process.

This is of significant interest and will be discussed next.

 Students arguing for expansion of the process were fewer. Sixty percent of these

students stated that there was little or no need for an expansion of the steps. However,

some students did support the somewhat leading example of condensing steps 4 and 5

although again, the arguments tended to be toward getting into the coding sooner. The

79

contraction and expansion questions both seemed to identify the problem that the

programming process is focused on resolving. Many of the student responses in this data

demonstrate the apparent student "need" to start coding without serious consideration for

an organized planning process.

 The responses were almost dichotomous between the students who acquired an

understanding of the value of the process, "Once I embraced actually taking the time to

outline everything it really helped me conceptualize code structure and potential

problems a whole lot easier.", and the students who did not, "I found actually coding a

skeleton of the main program while commenting what I was doing was most effective."

This second response represents students who do not understand the problems with

designing or managing a non-trivial program, and will continue to be the target at which

teaching a development procedure will be aimed.

 Probably the most telling response from a student unfamiliar with designing non-

trivial programs was the statement, "Writing down what one plans to do to complete the

entire program before writing code is a bad idea.". Whether the student thought through

this statement before typing it or not, it is the best evidence that students -- and not just

programming students -- must be taught the value of advance planning and/or design. It

might be conjectured that this is a capable or possibly advanced student who has been

able to create the mental model required of the moderately non-trivial programming

assignments assigned in the CS1 course, but who has not been challenged by a program

at a scale that would demonstrate the value of advanced design.

 In any event, the results of this pilot study have been helpful. The primary goal of

the research was to get feedback from the students using, and potentially learning with,

80

the Five Step Programming Process. The feedback seems to be both positive and

supportive; it appears that students are gaining value from use of the process. In addition,

no significant evidence has been provided to support major changes to the process. There

was some feedback requesting better communication (i.e., teaching) of the process, and

the somewhat unexpected outcome was the fairly strong evidence that this kind of

process is needed.

6.2 Future Improvements and Research

 Since this was a pilot study and was purposely limited to building a background

or framework for future studies, there are a number of modifications to teaching and

identified areas for further research generated from this research project. Some of these

are provided in this section.

6.2.1 Changes to the Educational Process

 The first significant action that will be driven by this research is the development

of a more complete, but somewhat simpler training system for use of the process. The

process was presented briefly in class, and supported in the laboratories and with a web

site. Responses to this research show that the students need both a more concise overview

of the process as well as more examples of its use.

 The second action made in direct response to some of the feedback will be to start

teaching the process earlier in the course albeit in a simplified way that will not involve

the use of concepts to which they will not have been exposed to at first (e.g., functions).

Using the process in the classroom from the earliest part of the semester will make the

81

students comfortable with it at an earlier stage, and more prepared for it when the

programs become complex enough to require modular breakdown.

 The third, and probably the most needed action, is problematic. As with virtually

any other learners, beginning CS1 students must start out with trivial or non-complex

programs in order to gain the experience that will become mental and long-term memory

constructs later. While this "training wheels" approach is necessary and seemingly

appropriate, it may lead to the result found in this research that some students believe

they do not need a design process for their programs. The programs assigned in this

particular CS1 course tend to be moderately non-trivial as soon as the students have

learned about some of the basic tools of programming.

 However, this appears to be where the dichotomy mentioned previously opens up.

From frequent student feedback, both anecdotally and formally provided in course

evaluations, many of the students say that the programming assignments take too much

time outside of class. On the other hand, this research shows that there are still students

who feel -- somewhat strongly in some cases -- that they can develop these programs

without a design process. As mentioned in Chapter 4, this has led some educators to want

to teach the "programming in the large" process, but as the research showed, this strategy

has not resulted in significant improvements, and the "programming in the large" process

loses the value of trying to solve a problem from start to finish with a program. This

would seem to make the CS1 course more an industrial programming course, and less a

problem-solving course.

 As also mentioned in Chapter 4, the problems with teaching this course are not

trivial, but identifying these problems allows educators to focus on, analyze, and attempt

82

to resolve them. New strategies need to be found to address this part of the CS1

educational endeavor, and this research provides some support for how to develop these

strategies.

6.2.2 Future Research

 While the focus is on problem solving and programming, there are several

supporting areas that can be extended with further research. The cognitive load

component [6], and the related working memory capacity issues [21] that are pertinent to

this project and research are well supported, and continue to be actively pursued.

Conversely, components such as Gilmore's [28] study of program organization, Hartley's

[33] study of white space, and Payne, Sime, and Green's [43] study of perceptual

characteristics of a program need further consideration. It may be possible to identify

conditions of understanding as a result of organization and perception with individuals

other than student programmers, and this would likely be more generalizable to

educational practices beyond introductory programming.

 As mentioned in the previous section, it will be critical to get students to use and

trust the programming process, but it will be more critical that the organization and

structure of the process helps them stay on track with a reasonable planning or designing

process. Research on motivational aspects of the process, or motivational strategies for

using the process could be helpful to finding greater student success. It may be

productive to pursue focal quantities in programming since they are apparently a natural

student, or possibly human, attribute as discussed by Davies [22], Rist [50], and Robins,

Rountree, and Rountree [52].

83

 In addition, a next important step for this research would be to conduct an

experimental comparison between students using this process and students using another

formalized process, or none at all. This may be conducted between colleges and

universities in the local area since they have the same course structures, but it can be

difficult due to differences in teaching style and strategy. It is nevertheless worth the

efforts that might prove necessary.

 Finally, a longer term study will be conducted on students who have been exposed

to this development strategy by assessing third- and/or fourth- year students with

questions on their possible use of the process. Given appropriate numbers of students,

comparison studies between students who have learned this strategy and students who

have not should be conducted. Another interesting study that would be logistically

challenging, but potentially rewarding would be to study the non-Computer Science

students such as the Electrical Engineering, Physics, or Mathematics students who were

required to take the CS1 class but very likely did not continue with a significant amount

of programming.

6.2.3 Dissemination of the Research

 There is a significant amount of discussion related to integrating CS1 into high

school and/or K-12 education [34] at this time, although as discussed in Chapter 1, there

is not much research support to back this action up right now. In addition, there continues

to be much discussion related to problem solving in technical and other fields [35]. This

provides a number of opportunities to contribute research related to CS1 teaching to the

scientific and education communities.

84

 For example, the Association of Computing Machines' (ACM) Special Interest

Group: Computer Science Education (SIGCSE) publishes four large bulletins per year

focused on this topic, as does the ACM Transactions on Computing Education. In

addition, the Consortium for Computing Sciences in Colleges (CCSC) publishes four

Journals and conducts regionalized conferences every year as well. Other venues that

directly address technology education are the IEEE Transactions for Education and the

related annual Frontiers of Education (FIE) conference; and the American Society of

Engineering Education (ASEE) which also supports the FIE conference, sponsors both

the Prism magazine that includes a teaching component, and the Journal of Engineering

Education. These Engineering publications are not focused only on Computing Science,

but CS articles are among others that are published.

 All of the above publications are likely forums for disseminating research such as

that found in this thesis, and parts of this research will be proposed to one or more of

them. This document began with a discussion of the difficulties -- and indeed the failures

-- with teaching introductory Computer Science. It continued with evidence that just

teaching people to program does not necessarily support higher level, advanced thinking,

or even programming particularly well. However, some of the research showed that

teaching the thinking process and the programming process together can provide

effective support toward helping students program and solve problems. This research has

found preliminary evidence that a process can help students learn effective programming

skills and gain a larger-scale picture of solving non-trivial problems. This project and

future research can offer contributions to the educators and researchers working in this

85

arena, and to the students who benefit from the knowledge that is gained through these

endeavors.

86

Bibliography

[1] Afsharian, S., Giacomobono, M. and Inverardi, P. A framework for software project

estimation based on cosmic, dsm and rework characterization. In Proceedings of the
1st international workshop on Business impact of process improvements (Leipzig,
Germany, 2008). ACM, City, 2008.

[2] Allan, V. H. and Kolesar, M. V. Teaching Computer Science: A Problem Solving
Approach that Works. SIGCUE Outlook, 25(1,2): 2-10, 1997.

[3] Anderson, J. R. Rules of the Mind. Lawrence Erlbaum Associates, Publishers,
Hillsdale, NJ, 1993.

[4] Anderson, J. R. and Jeffries, R. Novice LISP Errors: Undetected Losses of
Information from Working Memory. Human-Computer Interaction, 1(2): 107-131,
1985.

[5] Ayres, P. L. Why Goal-Free Problems Can Facilitate Learning. Contemporary
Educational Psychology, 18(3): 376-381, 1993.

[6] Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E. and Camos, V. Time and
Cognitive Load in Working Memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 33(3): 570-585, 2007.

[7] Beaubouef, T. and Mason, J. Why the high attrition rate for computer science
students: some thoughts and observations. SIGCSE Bulletin, 37(2): 103-106, 2005.

[8] Bishop-Clark, C. Cognitive Style, Personality, and Computer Programming.
Computers in Human Behavior, 11(2): 241-260, 1995.

[9] Boehm, B. A View of 20th and 21st Century Software Engineering. In Proceedings of
the 28th International Conference on Software Engineering (Shanghai, China, 2006).
ACM, City, 2006.

87

[10] Bransford, J. D., Brown, A. L. and Cocking, R. R. How People Learn: Brain, Mind,
Experience, and School. National Academy Press, Washington, D.C., 1999.

[11] Brooks, R. Categories of Programming Knowledge and Their Application.
International Journal of Man-Machine Studies, 33(3): 241-246, 1990.

[12] Brooks, R. Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9(6): 737-751, 1977.

[13] Brooks, R. Towards a Theory of the Comprehension of Computer Programs.
International Journal of Man-Machine Studies, 18(6): 543-554, 1983.

[14] Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M. and Stoodley,
I. Ways of Experiencing the Act of Learning to Program: A Phenomenographic
Study of Introductory Programming Students at University. The Journal of
Information Technology Education, 3(1): 143-160, 2004.

[15] Bunch, J. M. An Approach to Reducing Cognitive Load in the Teaching of
Introductory Database Concepts. Journal of Information Systems Education, 20(3):
269-275, 2009.

[16] Carlisle, M. C. Raptor: A Visual Programming Environment for Teaching Object-
Oriented Programming. Journal of Computing Science in Colleges, 24(4): 275-281,
2009.

[17] Carlisle, M. C., Wilson, T. A., Humphries, J. W. and Hadfield, S. M. RAPTOR: A
Visual Programming Environment for Teaching Algorithmic Problem Solving. ACM
SIGCSE Bulletin, 37(1): 176-180, 2005.

[18] Catrambone, R. The Subgoal Learning Model: Creating Better Examples So That
Students Can Solve Novel Problems. Journal of Experimental Psychology: General,
127(4): 355-376, 1998.

[19] Chi, M. T. H., Bassock, M., Lewis, M. W., Reimann, P. and Glaser, R. Self
Explanations: How Students Study and Use Examples in Learning to Solve
Problems. Cognitive Science, 13(2): 145-182, 1989.

88

[20] Clear, T. "Programming in the Large" and the Need for Professional Discrimination.
SIGCSE Bulletin, 33(4): 9-10, 2001.

[21] Cowan, N. The Magical Number 4 in Short-Term Memory: A Reconsideration of
Storage Capacity. Behavioral and Brain Sciences, 24(1): 87-114, 2001.

[22] Davies, S. P. Models and Theories of Programming Strategy. International Journal
of Man-Machine Studies, 39(2): 237-267, 1993.

[23] Donovan, M. S. and Bransford, J. D. How Students Learn: Mathematics in the
Classroom. The National Academies Press, City, 2004.

[24] Eisenstadt, M. and Brayshaw, M. (1989). An Integrated Textbook, Video, and
Software Environment. In J. C. Spohrer and E. Soloway (Eds.), Studying the Novice
Programmer (pp. 447-466). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

[25] Gerjets, P., Scheiter, K. and Catrambone, R. Designing Instructional Examples to
Reduce Intrinsic Cognitive Load: Molar versus Modular Presentation of Solution
Procedures. Instructional Science, 32(1-2): 33-58, 2004.

[26] Giangrande, E., Jr CS1 Programming Language Options. Journal of Computing
Sciences in Colleges, 22(3): 153-160, 2007.

[27] Gilmore, D. J. Comprehension and recall of miniature programs. International
Journal of Man-Machine Studies, 21(1): 31-48, 1984.

[28] Gilmore, D. J. Structural Visibility and Program Comprehension. Cambridge
University Press, City, 1986.

[29] Goldensen, D. Why Teach Computer Programming? Some Evidence about
Generalization and Transfer. In Proceedings of the Annual National Educational
Computing Conference (Minneapolis, MN, 1996), City, 1996.

[30] Green, T. R. G. Conditional program statements and their comprehensibility to
professional programmers. Journal of Occupational Psychology, 50(2): 93-109,
1977.

89

[31] Green, T. R. G. (1990). Programming Languages as Information Structures. In J.-M.
Hoc, T. R. G. Green, R. Samurcay and D. J. Gilmore (Eds.), Psychology of
Programming (pp. 117-138). San Diego, CA: Academic Press Inc.

[32] Green, T. R. G., Bellamy, R. K. E. and Parker, M. (1987). Parsing and Gnisrap: a
model of device use Empirical studies of programmers: second workshop (pp. 132-
146): Ablex Publishing Corp.

[33] Hartley, J. Spatial Cues in Text: Some Comments on the Paper by Frase & Schwartz.
Visible Language, 14(1): 62-79, 1980.

[34] Hazzan, O., Gal-Ezer, J. and Blum, L. A model for high school computer science
education: the four key elements that make it! ACM SIGCSE Bulletin, 40(1): 281-
285, 2008.

[35] Kiesmuller, U. Diagnosing Learners’ Problem-Solving Strategies Using Learning
Environments with Algorithmic Problems in Secondary Education. ACM
Transactions on Computing Education, 9(3): 17:11-17:26, 2009.

[36] Kirkwood, M. Infusing higher-order thinking and learning to learn into content
instruction: a case study of secondary computing studies in Scotland. Journal of
Curriculum Studies, 32(4): 509-535, 2000.

[37] Lyu, M. R. Software Reliability Engineering: A Roadmap. In Proceedings of the
2007 Future of Software Engineering (2007). IEEE Computer Society, City, 2007.

[38] Mayer, R. E., Dyck, J. L. and Vilberg, W. (1989). Learning to Program and Learning
to Think: What's the Connection? In E. Soloway and J. C. Spohrer (Eds.), Studying
the Novice Programmer (pp. 113-124). Hillsdale, NJ: Lawrence Erlbaum Associates.

[39] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-
D., Laxer, C., Thomas, L., Utting, I. and Wilusz, T. A Multi-National, Multi-
Institutional Study of Assessment of Programming Skills of First-Year CS Students.
ACM SIGCSE Bulletin, 33(4): 125-180, 2001.

[40] Merrill, M. D. First Principles of Instruction. Educational Technology Research &
Development, 50(3): 43-59, 2002.

90

[41] Ormerod, T. (1990). Human Cognition and Programming. In J.-M. Hoc, T. R. G.
Green, R. Samurcay and D. J. Gilmore (Eds.), Psychology of Programming (pp. 63-
82). San Diego, CA: Academic Press Inc.

[42] Paas, F., Renkl, A. and Sweller, J. Cognitive Load Theory and Instructional Design:
Recent Developments. Educational Psychologist, 38(1): 1-4, 2003.

[43] Payne, S. J., Sime, M. E. and Green, T. R. G. Perceptual Structure Cueing in a
Simple Command Language. INternational Journal of Man-Machine Studies, 21(1):
19-29, 1984.

[44] Pea, R. D. and Kurland, D. M. On the Cognitive Effects of Learning Computer
Programming. New Ideas in Psychology, 2(2): 137-168, 1984.

[45] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E. S., Bennedsen, J., Devlin,
M. and Paterson, J. A Survey of Literature on the Teaching of Introductory
Programming. ACM SIGCSE Bulletin, 39(4): 204-223, 2007.

[46] Pennington, N. (1987). Comprehension Strategies in Programming. In G. M. Olson,
S. Sheppard and E. Soloway (Eds.), Empirical Studies of Programmers: Second
Workshop (pp. 100-113). Norwood, NJ: Ablex Publishing Company.

[47] Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. and Simmons, R. (1989).
Conditions of Learning in Novice Programmers. In E. Soloway and J. C. Spohrer
(Eds.), Studying the Novice Programmer (pp. 261-280). Hillsdale, NJ: Lawrence
Erlbaum Associates.

[48] Perkins, D. N. and Martin, F. (1986). Fragile Knowledge and Neglected Strategies in
Novice Programmers. In E. Soloway and S. Iyengar (Eds.), Empirical Studies of
Programmers: Papers presented at the First Workshop on Empirical Studies of
Programmers June 5-6, Washington, DC (pp. 213-229). Norwood, NJ: Ablex
Publishing Company.

[49] Renkl, A., Atkinson, R. K., Maier, U. H. and Staley, R. From Example Study to
Problem Solving: Smooth Transitions Help Learning. The Journal of Experimental
Education, 70(4): 293-315, 2002.

[50] Rist, R. S. Program Structure and Design. Cognitive Science, 19(4): 507-562, 1995.

91

[51] Rist, R. S. Schema Creation in Programming. Cognitive Science, 13(3): 389-414,
1989.

[52] Robins, A., Rountree, J. and Rountree, N. Learning and Teaching Programming: A
Review and Discussion. Computer Science Education, 13(2): 137-172, 2003.

[53] Rogalski, J. and Samurcay, R. (1990). Acquisition of programming Knowledge and
Skills. In J.-M. Hoc, T. R. G. Green, R. Samurcay and D. J. Gilmore (Eds.),
Psychology of Programming (pp. 157-174). San Diego, CA: Academic Press Inc.

[54] Sattar, A. and Lorenzen, T. Teach Alice Programming to Non-Majors. SIGSCE
Bulletin, 41(2): 118-121, 2009.

[55] Simon, B., Hanks, B., McCauley, R., Morrison, B., Murphy, L. and Zander, C. For
Me, Programming is ... ACM, City, 2009.

[56] Sleeman, D. The challenges of teaching computer programming. Communications of
the ACM, 29(9): 840-841, 1986.

[57] Soloway, E. Learning to Program = Learning to Construct Mechanisms and
Explanations. Communications of the ACM, 29(9): 850-858, 1986.

[58] Spohrer, J. C. and Soloway, E. (1989). Novice Mistakes: Are the Folk Wisdoms
Correct? In E. Soloway and J. C. Spohrer (Eds.), Studying the Novice Programmer
(pp. 401-416). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

[59] Sweller, J., van Merrienboer, J. J. G. and Paas, F. G. W. C. Cognitive Architecture
and Instructional Design. Educational Psychology Review, 10(3): 251-296, 1998.

[60] Tew, A. E., Fowler, C. and Guzdial, M. Tracking an innovation in introductory CS
education from a research university to a two-year college. SIGCSE Bulletin, 37(1):
416-420, 2005.

[61] Thune, M. and Eckerdal, A. Variation theory applied to students’ conceptions of
computer programming. European Journal of Engineering Education, 34(4): 339-
347, 2009.

92

[62] Van Merrienboer, J. J. G. Instructional Strategies for Teaching Computer
Programming: Interactions with the Cognitive Style Reflection-Impulsivity. Journal
of Research on Computing in Education, 23(1): 45-54, 1990.

[63] Van Merrienboer, J. J. G., Kirschner, P. A. and Kester, L. Taking the Load Off a
Learner’s Mind: Instructional Design for Complex Learning. Educational
Psychologist, 38(1): 5-13, 2003.

[64] Winslow, L. E. Programming Pedagogy - A Psychological Overview. ACM SIGCSE
Bulletin, 28(3): 17-22, 1996.

[65] Yuen, A. H. K. Teaching Computer Programming: A Connectionist View of
Pedagogical Change. Australian Journal of Education, 44(3): 239-253, 2000.

93

Appendix A - Survey Materials

1. IRB Consent Request

UNIVERSITY OF NEVADA, RENO
SOCIAL BEHAVIORAL INSTITUTIONAL REVIEW BOARD
CONSENT TO PARTICIPATE IN A RESEARCH STUDY

TITLE OF STUDY: The Five Step Programming Process
INVESTIGATOR(S): Frederick Harris, 775.784.6571, Michael Leverington,
775.784.1414
PROTOCOL #: SB09/10-122

PURPOSE/PARTICIPANTS

If you are at least an 18 year old adult student in this semester's CS 135 course, you are
being asked to participate in a pilot research study to evaluate the helpfulness and
usability of a tool you are presently using in your CS 135 course. At least 30 students are
expected to respond to this survey.

PROCEDURES

If you agree to participate in this research study, data from the assessment you are about
to take will be used in a Master's Degree thesis research project. If you do not wish to
participate in the study, you may leave this web survey at any time.

Your actions will be the following:

1. You will read this consent information and then, at your discretion, select to participate
in the survey.

2. You will then answer a small number of survey questions on subsequent pages. There
are four multiple-choice questions, four brief explanation questions, and one open-ended
opinion question.

3. You may choose to withdraw from the research at any time by simply closing the
WebCampus survey.

4. About a week after you have taken the survey, you will be able to pick up your food
gift card from the Computer Science & Engineering office at SEM 242.

BENEFITS, DISCOMFORTS, INCONVENIENCES, AND/OR RISKS

94

1. There may be no direct benefits to you as a participant in this study but we wish to
acquire your feedback so that we can improve the Five Step Programming Process
learning tool.

2. As this is an opinion survey, there is very little likelihood of significant discomfort or
risk, and any inconvenience would only be a result of the 10 to 20 minutes that the survey
may require. None of the questions should offer any discomfort.

CONFIDENTIALITY

1. Your identity will be protected to the extent allowed by law. You will not be
personally identified in any reports or publications that may result from this study.

2. The Department of Health and Human Service (HHS), other federal agencies as
necessary, the University of Nevada, Reno Social Behavioral Institutional Review Board
may inspect the data collected during this research project.

3. You will not provide your name, and it will never be known by your Instructor.
However, it will be known to the person collecting the research data, Dr. Frederick Harris
so that he can manage the disbursement of the food gift card incentives. As soon as the
food gift cards have been disbursed, all data resources containing participant names will
be deleted. In addition, once the research has been completed, the WebCampus survey
itself will be removed.

4. Servers housing survey applications record and collect incoming IP addresses for
system administration and record keeping. These data are analyzed only in aggregate; no
connection is made between participants and their computers’ IP addresses. These servers
also use cookies to recognize visitors and more quickly provide personalized content,
grant unimpeded access to the website, and to track usage behavior and compile data, in
aggregate form only, for website improvement purposes.

5. You may close your Internet browser immediately after completing the survey to limit
access to your survey responses, especially if you are using a computer in a public
domain. If, after exiting the survey, you wish to remove the cookies from a personal
computer, you may obtain instructions for deleting cookies from the help menu or with
assistance from your Internet provider.

COSTS/COMPENSATION

1. There will be no cost to you for participating in this research study.

2. As an incentive to participate in the research study, you will be given a $5.00 coupon
for food at Cantina Del Lobo at the Joe Crowley Student Union.

95

3. In addition, you will be entered into random drawings for $25.00 food coupons for the
Cantina Del Lobo restaurant. The odds of winning the $25.00 coupons are fixed at 1 in 5.

DISCLOSURE OF FINANCIAL INTERESTS

The researcher involved with this study has no conflict of interest that would bias the
study, and will not gain or lose any financial benefit as a result of any of the possible
outcomes of the study.

RIGHT TO REFUSE OR WITHDRAW

1. You may refuse to participate or withdraw from the research study at any time by
simply closing the WebCampus survey item.

2. You may skip questions that you do not want to answer.

3. If the study design or use of the data is to be changed, you will be so informed and
your consent re-obtained.

4. You will be told of any significant new findings developed during the course of this
study, which may relate to your willingness to continue participation.

RESEARCHER CONTACT INFORMATION

If you have questions about this study, please contact Michael Leverington at (775) 784-
1414 or Dr. Frederick Harris at (775) 784-6571 at any time.

PARTICIPANT RIGHTS CONTACT INFORMATION

You may ask about your rights as a research subject or you may report (anonymously if
you so choose) any comments, concerns, or complaints to the University of Nevada,
Reno Social Behavioral Institutional Review Board, telephone number (775) 327-2368,
or by addressing a letter to the Chair of the Board, c/o UNR Office of Human Research
Protection, 205 Ross Hall / 331, University of Nevada, Reno, Reno, Nevada, 89557.

O 1. I voluntarily consent to participate in this research study.
O 2. I do not wish to participate in this research study.

96

2. USE of the Five Step Programming Process

How much do you think you used the Five Step Programming Process for working out
your most recent laboratory program?

a. 0%
b. 20%
c. 40%
d. 60%
e. 80%
f. 100%

3. DEVELOPMENT using the Five Step Programming Process

 How much do you think the Five Step Programming Process helped you develop your
most recent laboratory program?

a. 0%
b. 20%
c. 40%
d. 60%
e. 80%
f. 100%

4. TIME TAKEN using the Five Step Programming Process

Do you think that using the Five Step Programming Process allowed you to complete
your most recent laboratory program in more, less, or about the same amount of time?

a. it helped me complete the program in a lot less time
b. it helped me complete the program a little less time
c. it didn't make a difference with my program completion
d. it caused me to take a little more time to complete my program
e. it caused me to take a lot more time to complete my program

5. DIFFICULTIES with the Five Step Programming Process

Did you have any difficulties when using the Five Step Programming Process for
developing your most recent program? If you did, please explain briefly.

97

6. LEARNING with the Five Step Programming Process

How much do you think that using the Five Step Programming Process helped or
hindered your learning in this programming course so far?

a. it helped me learn about programming a lot
b. it helped me learn about programming a little
c. it didn't make a difference with my learning to program
d. it was not very helpful with my learning to program
e. it was a hindrance to my learning to program

7. USING the Five Step Programming Process FOR OTHER COURSES

Do you think using the Five Step Programming Process might help with other courses,
such as math, science, etc? Please explain briefly.

8. CONDENSING DOWN PARTS of the Five Step Programming Process

Consider the brief description of each of the five steps below:

 Step 1: very brief program overview, written in comments
 Step 2: extended program overview, written in comments
 Step 3: program overview with function specifications, written in comments
 Step 4: main program code developed, other functions prototyped and stubbed
 Step 5: whole program completed

Are there parts of the five steps you think should be condensed down? For example,
because step 1 is so brief, do you think it would help to combine steps 1 and 2? Please
answer with a brief explanation below.

98

9. EXPANDING OUT PARTS of the Five Step Programming Process

Consider the brief description of each of the five steps below:

 Step 1: very brief program overview, written in comments
 Step 2: extended program overview, written in comments
 Step 3: program overview with function specifications, written in comments
 Step 4: main program code developed, other functions prototyped and stubbed
 Step 5: whole program completed

Are there parts of the five steps that you think should be expanded upon? For example,
because you write both the main program and the stub function comments in Step 4, do
you think it would help to break this process into two unique steps? Please answer with a
brief explanation below.

10. ANY OTHER ISSUES with the Five Step Programming Process

If you have any other opinions or thoughts on your use of the Five Step Programming
Process, please share them here.

99

Appendix B - Complete Data Set

The following data set constitutes all the information collected from the students. The
written comment data is organized in groups as explained in Chapter 5.

Q 1 Q2 Q3 Q5
Usage Development Time Taken Learning Help

0.00% 1 3.85% 0.00% 5 19.23% lot more 2 7.69% hindrance 1 3.85%
20.00% 6 23.08% 20.00% 3 11.54% little more 8 30.77% not helpful 2 7.69%
40.00% 1 3.85% 40.00% 3 11.54% no difference 3 11.54% no difference 4 15.38%
60.00% 5 19.23% 60.00% 2 7.69% little less 10 38.46% helped a little 13 50.00%
80.00% 10 38.46% 80.00% 9 34.62% lot less 3 11.54% helped a lot 6 23.08%

100.00% 3 11.54% 100.00% 4 15.38% sum: 26 sum: 26
sum: 26 sum: 26

Q4 Difficulties

NONE

No

No.

no

none

No, it pretty self-explanatory.

No difficulties. I think the 5 step programming process helps with a rough outline of the program
but not beyond that detail level.

No, not at all. I have had problems in the past but it was more due to unfamiliarity with the code
concepts, not the process.

No problems, it's pretty straight forward.

The Five Step Programming process is necessary for developing large programs. I didn't have any
difficulty using it in my last program, and have had very little trouble using it in programs past. My
only issue with the five step programming process is with its description on WebCampus: the
directions should be a little more clear, such as in Step 3, where the only explanation used is an
example.

GOT BETTER LATER

Yes, at the beginnig of the semester the Five Step Programming Process was a waste of time, it
caused me to take a lot more time to complete my program. But at the opposite I think it helped
me do complete my program a little bit faster for the last two labs.

100

Some times it seems like it generated more busy work when the programs were simple but when
they became more complex it really helped

HARD TO COMPLETE THE PROCESS

I found that using the five step programming system helped in some areas but hindered others,
because i would forget areas of the program that needed to be implented until the final step so i
would have to back and add code in.

When you're adding new information to an assignment based on the 5 step programming process
design assignment, or if the design assignment was incomplete, it's discouraging and more time
consuming having to edit additional information related to the programming assignment

The fourth step almost never translates well into the fifth step. Often, coding that I am unfamiliar
with or not acquanted will cause massive errors in my program that force me to restructure it.

WANT TO CODE FIRST

I always want to start writing out the code while commenting it out because I feel like I'll forget
my idea later.

I wouldn't say that the 5 step process is diffucult, it is just faster and easier for me to work the
other way around (writing the functions first).

The 5 step process is not the best way to write the program. Writing down what one plans to do to
complete the entire program before writing code is a bad idea. First, if and when there is a problem
the programmer must look at pages of unfinished code to find the problem. If one instead writs a
small test program and starts with a getting one function working than going from there, problems
can be easily found and fixed.

DIFFICULT TO DO OR UNDERSTAND

It's a good concept, but it's difficult to actually do and it doesn't always help.

sometimes your brain would naturally take you off course and it would be hard to get your mind
back into the way the five step process wanted you to do it.

It is more difficult for me to think from a top down manner than from a tool use method. I would
rather build the smaller components before and then utilize the working tools then try to do an
overall and guess at what I will need.

It is good as a framework of developing the porgram (the thought process), but tyring to adhere to
it in developing the actual program has caused me to mess up the logic and unable to complete my
assignment properly.

step 5 is hard

101

NO POSITION

I didn't understand the process at first. Dr. Louis did not cover it in class, so maybe next time the
process should be covered in the Lab. That would be much more beneficial, I think.

Q6
Using 5-S for other
courses

HELPFUL ELSEWHERE

I think the methodology behind it, taking a big problem and splitting that problem into little parts,
is uesable whenever you want to solve any problem.

Yes, I believe it's applicable to other courses and I have used it in other courses for projects and
essays.

MAYBE HELPFUL ELSEWHERE

Not sure, but it is definitely a great process for coding. As coding can require intense problem
solving it was really helpful do document everything in small chunks so it was easier to digest.
When it comes to math, I think it is much easier to solve equations and problems without having to
plan things this thoroughly.

I believe that it would help other subjects because it teaches a person to build a foundation and
understand the smallest component of something before going on to the more complex information

The program could really be used for any other class. It is basically saying what you should do in
an assignment then actually doing it.

It's always good to have a strategy or plan of attack for solving problems. If the problem is
complicated and takes several steps to complete, the five step programming process would be very
effective. For math, there's usually one formula or way to solve an equation. In programming,
there is an infinite number of ways to being coding a program. Oftentimes, overthinking your
program can be counterproductive. You're less likely to overthink stoichiometry or an integral.

Sure. Basically the 5 Step Programming process is an outline, but it might be more trouble that it's
worth for other subjects, as other subjects' problems tend to be more trivial.

I don't think so. Maybe witting essay, but who doesn't already plan out there essay before witting
them?

The process itself seems to be related to only computer science; however, the logic behind it
definitely carries over into courses of other fields such as mathematics and physics. The idea of
finding the main goal of a problem and breaking it down into smaller problems is essential to both
this course and others.

It has possible uses dependant on each students learning ability.

102

Possibly for really complex problems for calculus. I've actually never really thought about it.

I don't think it will help me in courses other than computer science, but it is possible that it could
and I just don't know it yet.

It is a systematic thinking process that can be learned in other ways, esp. thorugh other subjects. I
think the concept is good, however, the way the class is designed made this process a little too
rigid to be useful. In fact, it is easier for me to write my entrie program and remove my codes in
order to complete the "Design Assignment" part of the homework.

Yes, the idea of moving from the general to the specific and breaking problems up into smaller
pieces I can see helping in other courses.

maybe

Yes i think it will help in assignment such a designing big project. For my major (Civil engineering)
it is usefull to proceed as the Five Step Programming Process, consider the biggest, and then move
on the smallest part.

DON'T THINK SO

I do not think the process will be helpful with other courses in its specific structure. I think it does
help to teach how to break a problem down into smaller chunks.

no For math, one would not write down pages of commentary on how they thought they were
going to solve the problem before attempting the problem.

No, I dont think I will. I dont know how it would apply to my other classes

No, I find it easier to piece small pieces together to understand something larger rather than
breaking down large things into smaller ones.

No

No, it is more or less a step made for planning, which I could do just as well without this five-step
process. In fact, I would find it a large bother to translate its application to something other than
coding, given my other subjects are more about learning specific equivalents of functions rather
than a large algorithm.

not really in math, but it could be helpful to developing an idea in a science.

no, I won't be taking other courses like that

No i dont think it would be useful. Since most other courses do not solve problems in a manner
that can be modularized.

103

Q7 Condensing Down

OKAY AS IT IS

I like keeping the steps individually, as taken one step at a time it develops very well.

It's great the way it is because of the way each step builds on the previous one.

step one and step two should be different becuase it helps to design the program as a whole.

I dont believe that any of the steps should be combined or condensed down. Every step helps the
user understand what is needed for programming

N. -- assume this means no --

No, it seems properly condensed.

No. 5 is a nice number.

Having 5 steps is a good way to go, mainly because it helps the student focus on the problems at
hand. Stepping through each large problem, and solving smaller problems to accomplish it relieves
a lot of stress. Also, the feeling of accomplishment after each step acts as a great motivator to
continue through the rest of the program.

No, because a 5 step program with only 3 steps would be misleading.

No, I think it's all necessary to the development of the process.

I think it's fine the way it is. Each step adds just the right amount of information to the process.

CONDENSE STEP 1/2

I think consolidating 1 and 2 would be helpful because if anyone else is like me, they don't
remember the specifications of all five steps. I pretty much know what step 4 is supposed to look
like from the design assignments.

Step 1 & 2 are pretty much the same, so they should be condensed together.

Combining steps 1 and 2 would be helpful in that the steps would all be very distinct; it would be
easier to follow if you knew exactly what step you're on. In my mind the line between step 1 and 2
is not clear.

Steps one and two could be easily merged. I sometimes even did the first three all at the same
time.

Maybe the step one and two can be combined...

104

CONDENSE STEP 1/2/3

In my personal execution of the process, I would almost always start at step 3/4. The reason is
because, in my opinion, the first 2 steps outline things that I don't really feel are too confusing or
complex to need commenting. (i.e. basic understood functions, obvious coding needed in main()).
However, steps 3 and 4 are great in helping with the complexity of the code that can arise inside
functions. (i.e. loop iteration, array augmentation, etc.)

I think steps 1, 2, and 3 can be condensed down into one step. In the beginning, it helped a lot to
be able to do 5 steps but as the semester carries on, step one and two become vestigial steps.

I would have only three steps Step 1: Think of a function that will be needed. Step 2: Write the
function. Step 3: Test the function.

REMOVE STEP 3

Step 3: function specifications. I'm usually only guessing what my functions are or what they can
do. To base my program in step 4 around these functions can be bad. I'm a think as I go person,
planning things out too far ahead usually results in bad work. I would cut step 3 out, and just go
from step 2 to step 4.

CONDENSE STEP 4/5

The only complaint that I have about the 5 step process is step 4 and 5 should be condensed
because often times I find that I need to adjust or modify my main program code when I am
writing my functions which can often render my step 4 work useless.

CONDENSE ALL

I never do this step on at a time. I think it would be ridiculous to do them one at a time. So yes I
think they could be condensed down.

outline work on the functions and what they are doing place the funcitons where they need to go
comment the functions finish everything

DON'T USE STEPS

I like to break down problems as I see fit for each individual problem, it is a waste of time to have
a single approach that you try to use for every problem since many problems are handled
differently

Q8 Expanding out

OKAY AS IT IS

No

No.

105

No

I think 5 steps is plenty.

No.

no

Not really. I like the number 5.

No, I think it is expanded enough as it is.

No.

I think it's fine the way it is.

I think the expanding is not beneficial at this level of CS

No, I think step 3 and 4 are great as they are, because they help you get prepared for coding in a
fairly concise manner, and I see no reason to arbitrarily expand on the process.

I think consolidation is more beneficial than expansion.

Commenting out the stub functions in step 4 helps keep track of what the main program is
supposed to do; therefore, I believe it should be left the same.

Instructionis for step one should emphasize the importance of keeping it very basic, other than
that the process worked very well for me.

BREAK DOWN STEP FOUR

There is a lot in step 4. Breaking it up would help.

The only aspect that could be elaborated on would be step 4. I found it difficult to know what
exactly i wanted a function to do and how it was going to be implemented.

Step four is very big, and should be break down in multiple parts

OTHER

I do think that stubbing out the functions should be step 4 and writing main should be added to
step 5.

Step 2 should include that it is a form of step 1 applied to segments and then reapplied until the
function is split into small enough pieces.

for all steps make it work and have your ideas formulated

106

See above
answer.

It would help to actually write the functions instead of just stubbing them. Sometimes, it would
help wirting the main program.

yes

Q9 Other Comments

NO ISSUES

I have no other issues with the five step process.

No.

I dont have any other issues

No.

LIKED IT

I enjoyed it, however, i found that sometimes it was more of an annoyance than help.

It's a good process, but it could use a better description online. The steps listed above in this
survey is a nice summary. Put that online.

it can help but it can take a while to get your brain to think in computer terms and what it really
going on, sometimes your can over simplify something and miss an easier way

This process is a very powerful tool, and is helpful in writing efficient code. The only suggestion I
have is to introduce the process earlier in the course, saving students much frustration toward the
class, and even the instructor :)

STARTED OUT ROUGH, GOT BETTER

Originally I hated having to use the programming process as I felt it made me spend extra time
outlining when I didn't need to. This was because I hadn't really encountered anything in class that
was really of any conceptual difficulty. When we started getting into loop, array, and file streaming
design, the use of the process really became more important in my programming. Once I
embraced actually taking the time to outline everything it really helped me conceptualize code
structure and potential problems a whole lot easier. I really feel like a much stronger coder now,
and I am very glad that I came around to using the programming process. CS 135 was easily my
most time consuming class this semester, but because I feel that I learned so much, it was far and
away my favorite. It also helps greatly that Michael is a very approachable and extremely
competent instructor who does a great job of outlining classroom concepts.

107

DIDN'T LIKE IT, BUT IT HELPED

The process is tediuous, and certainly not something I enjoy doing, however it allowed my
programs to come out looking relatively clean and usually I understood more of my program
coming out than going in.

DIDN'T LIKE IT

The general consensus in our lab (just going off overheard comments) is that the process is not
particularly helpful. Many students don't use their design assignments at all when completing their
programming assignments. I use mine, but I don't follow the process to complete the design
assignment, I just make it follow the format in the end.

People’s minds work differently. All students should not be required to follow the same formula. If
the students understands what is needed to be done to achieve a goal (writing a program), they
should not be forced to do it a certain way. The students should be shown different methods and
be allowed to chose which method works best. CS 135 would be a better class if the students were
only graded on the programming assignment and not the design assignment.

For a beginner to programming, the five step process is solid. It makes readable, easy to follow
code for you and other users. Later on, I would be more concerned with finishing a programming
assignment rather than completing a design assignment that may not accomplish my original
goals, and therefore be scrapped. I'm essentially writing my thoughts down in english with the 5
step programming process. If I'm doing that, why can't I just write down my thoughts in english
outside of the program?

I found actually coding a skeleton of the main program while commenting what I was doing was
most effective. From there, I would add on flags, additional features, and the like. Even while doing
a design assignment and no actually coding, I still confused myself with all the parts going on. I
think having a partial program running helped me see what I did and did not have, which allowed
me to handle the next task without thinking about how it interacted with every other task. I'll point
out that when just planning, I was not sure if all the parts would mesh correctly which led to a lot
of mental stress over handling the seperate parts appropriately. Step 1 should take care of this,
but it did not. Finally, one program I wrote out the entire design assignment, then could not follow
it when I had to code it. Instead, I simultaneously coded and commented it. When I compared the
comments, they were almost exactly the same.

SHOULD BE OPTIONAL

It should be
optional

I think it should be optional. I don't see the need for this tool, in fact I find my self witting the code
as I do it anyway, going back commenting on it then deleting the code I wrote. this seems very
counter productive. I guess it might help some people but I really had no use for it.

108

SUGGESTIONS FOR IMPROVED TEACHING

Like I said, the programming process should be covered in lab one week, instead of class.

Although code is not generally allowed, I believe code up to step 4 should be allowed to be shared
among students. The code is not at completion, so the students can still struggle learning but in an
easier fashion. It is the equivalent of helping a person with code orally except it is on the screen.

You should introduce the Five Step Programming Process slowler. Probably make the students to
write step one the first week, and release the programming file on friday with step one through
five written by the teacher Then make the student write the step 1 and 2 for the second
assignment, etc.

NOT RELEVANT

As a grading criteria, it was acceptable, though sometimes vague on the grading ruberic. It
seemed to get 20 points I only need to spend 20 minutes typing random stuff, to get the last 5
points took several hours of reasoning and trial and error. While I appreciate the free points, it was
only the last 5 points that accomplished the task of the 5 step Programming Process.

Some times I feel like I'm doing it incorrectly.

lab is hard

109

Appendix C - IRB Approval Letter

	Introduction
	Issues with CS1 Teaching
	2.1 Attitudes About Programming
	2.2 Cognitive Issues in Programming
	2.3 Perception Issues in Programming
	2.4 Focal Quantity Issues in Programming
	2.5 Expert/Novice Issues in Programming
	2.6 Hypothesis-Testing, Experimentation, and Hacking
	2.7 Chapter Conclusions

	Identified Needs for Teaching CS1
	3.1 The Need for Structured Programming
	3.2 The Need for Planning and Strategy
	3.3 The Need for Cognitive Considerations
	3.4 Other Contributing Needs and Considerations
	3.5 Chapter Conclusions

	Proposal: The Five Step Programming Process
	4.1 The Proposed Procedure
	4.1.1 Step 1 - Creating a simple high-level solution
	4.1.2 Step 2 - Expanding on the original solution
	4.1.3 Step 3 - Identifying and specifying program modules
	4.1.4 Step 4 - Developing the skeleton program
	4.1.5 Step 5 - Completing the program

	4.2 Reviewing the process
	4.3 Evaluating the Process

	Implementation and Results
	5.1 Implementation overview
	5.2 Quantitative Questions
	5.2.1 Usage Percentages
	5.2.2 Development Percentages
	5.2.3 Time Taken Percentages
	5.2.4 Learning Help Percentages
	5.2.5 Relationships Between Quantitative Data

	5.3 Student Written Responses
	5.3.1 Difficulties
	5.3.2 Application of the Process to Non-Programming Areas
	5.3.3 Condensing Steps Together
	5.3.4 Expanding Steps Out
	5.3.5 Other Comments
	5.3.6 Chapter Conclusion

	Conclusions and Future Work
	6.1 Concluding Remarks
	6.2 Future Improvements and Research
	6.2.1 Changes to the Educational Process
	6.2.2 Future Research
	6.2.3 Dissemination of the Research

	Bibliography
	Appendix A - Survey Materials
	Appendix B - Complete Data Set
	Appendix C - IRB Approval Letter

