
University of Nevada
Reno

Out-of-Core Data Management

for Planetary Terrain

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science

by

Cody J. White

Dr. Frederick C. Harris, Jr., Thesis Advisor

August 2011



 

 

 
 

 

 

We recommend that the thesis 

prepared under our supervision by 

 

CODY JAMES WHITE 

 

entitled 

 

Out-Of-Core Data Caching For Planetary Terrain 

 

be accepted in partial fulfillment of the  

requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

 

Frederick C. Harris, Jr., Ph.D, Advisor 

 

 

Sergiu Dascalu, Ph.D, Committee Member 

 

 

Scott Bassett, D.Des, Graduate School Representative 

 

 

Marsha H. Read, Ph. D., Associate Dean, Graduate School 

 

 

   August, 2011 

 

THE GRADUATE SCHOOL 



i

Abstract

Rendering terrain on a planetary scale can quickly become a large problem. Aside

from the challenges of rendering terrain over a spherical body, the amount of data

that needs to be processed to accurately render such terrain can reach the terabytes

and beyond. Most terrain renderers focus on a particular region of a planet and are

therefore limited to only a very few datasets to generate a proper rendering of that

area. However, since planets are made up of such large areas, a different approach

needs to be taken in order to display high-detail terrain around a viewer while sorting

through the large amounts of planetary data available. Additionally, since modern

desktops have a relatively small amount of memory, a system to swap data from

the hard drive into graphics processing unit (GPU) memory needs to be created.

Therefore, we present a data caching mechanism for planetary terrain rendering which

can efficiently swap only the data around a viewer into and out of GPU memory in

real-time. In order to speedup the process, we utilize the multi-core processing power

of the GPU to perform data composition for use by a terrain renderer. Using this

method, the CPU is able to perform search operations for new datasets and swap out

old datasets while the previous ones are being rendered by the system. Additionally,

we present a method for adding new datasets at runtime using the parallel processing

abilities of the CPU. We achieve efficient framerates for high-quality views of terrain

while minimizing the amount of time it takes to find data centered around a viewer

and display it to the screen.



ii

Acknowledgments

This work is funded by NASA EPSCoR, grant # NSHE 08-51, and Nevada NASA

EPSCoR, grants # NSHE 08-52, NSHE 09-41, NSHE 10-69.

Thanks to my committee: Dr. Frederick C. Harris, Jr., Dr. Sergiu M. Dascalu,

and Dr. Scott Basset.

Additionally, I’d like to make a special thank you to Joseph Mahsman because

without him, this work would have never come to be. He helped me by providing

interesting ideas and gave me a basis for my work. Also, thanks to Roger Hoang for

his unparalleled technical expertise.

Overall, I’d like to thank my family for putting up with me for all this time and

understanding when I had to get a lot of work done.



iii

Contents

Abstract i

List of Figures iv

List of Tables vi

1 Introduction 1

2 Background 5

2.1 Multi-Resolution Deformation in Out-of-Core Terrain Rendering . . . 7

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 P-BDAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Planetary-Scale Terrain Composition . . . . . . . . . . . . . . . . . . 11

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Summary of Previous Work . . . . . . . . . . . . . . . . . . . . . . . 13

3 Out-of-Core Data Management for Planetary Terrain 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Geospatial Data Abstraction Library (GDAL) . . . . . . . . . 17

3.2.2 Quadtree Creation . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 BVH Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 LOD Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.4 Insertion of New Data . . . . . . . . . . . . . . . . . . . . . . 27



iv

3.3.5 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Context-Safe Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Global Height Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Implementation 30

4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Geometry Shader . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Fragment Shader . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Desktop Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Results 42
5.1 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Visual Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions and Future Work 51

Bibiliography 53



v

List of Figures

2.1 A heightmap generated from Viking imagery of Mars [22]. . . . . . . 6

2.2 Subdivision of an image into a quadtree structure. . . . . . . . . . . . 6

2.3 A rendering of Hawaii from [5]. . . . . . . . . . . . . . . . . . . . . . 8

2.4 Resulting image from P-BDAM overlaid with the triangle mesh [4]. . 10

2.5 Resulting image from [15]. . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Flow chart depicting the various stages of the proposed algorithm. . . 16

3.2 Quadtree views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Terrain features such as mountain tips can still load high-quality data. 19

3.4 Construction of texture coordinates for the point G. . . . . . . . . . . 20

3.5 Mipmap hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 BVH containing spherical datasets, represented in two dimensions. . . 22

3.7 Texture atlas of loaded color datasets. . . . . . . . . . . . . . . . . . 26

4.1 Use cases for the data-caching library. . . . . . . . . . . . . . . . . . . 33

4.2 Implemented class diagram for the data-caching library. . . . . . . . . 34

4.3 A CAVE display environment which utilizes multiple rendering con-
texts for visualization [6]. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Activity diagram showing the generation of screen-aligned quads per
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Activity diagram showing the algorithm used to composite datasets
into the final texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Deployment diagram for the system. . . . . . . . . . . . . . . . . . . 39

4.7 The system running in a Qt environment. . . . . . . . . . . . . . . . 41

5.1 Global view of Mars. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Olympus Mons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Rendering of the planet Mars from Hesperian. . . . . . . . . . . . . . 46

5.4 Rendering of Olympus Mons from Hesperian . . . . . . . . . . . . . . 47

5.5 Mariner Valley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



vi

5.6 Large rock formations near the south pole. . . . . . . . . . . . . . . . 48

5.7 The dark areas have not yet been loaded into the texture atlas. . . . 49

5.8 The fully loaded planet data. . . . . . . . . . . . . . . . . . . . . . . 50



vii

List of Tables

4.1 Functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Non-functional requirements. . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Information about the datasets used for timing the algorithm, with a
total of 5335.39MB of data. . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 FPS results with a comparison to Hesperian. . . . . . . . . . . . . . . 45

5.3 Timing results of the rendering algorithm. . . . . . . . . . . . . . . . 45



1

Chapter 1

Introduction

For many years, there has been a large amount of research pertaining to the rendering

of realistic-terrain. This research spans the fields of video games, scientific visualiza-

tion, and training simulations, just to name a few. However, there has been a very

small amount of research that attempts to solve the problems of rendering full-scale

planetary terrain in high-detail.

When rendering terrain on a planetary level, there are several things to consider,

such as the shape of the planet and the datasets available which make up the planet

surface. These datasets can range from being very small in size to several terabytes

of information. Additionally, there can be hundreds to thousands of datasets which

need to be used to accurately render the entire surface of a planet, making much of

the research in terrain rendering inapplicable to addressing this problem.

Rendering terrain with large datasets has already largely been researched by

many authors as it is the first step to accurately modeling realistic-terrain [7, 11, 15].

Typically, data is organized into some hierarchy and then chosen for rendering based

on a user-specified search criteria. Therefore, only small amounts of the data are

being processed at any one time, alleviating the need to process all the data at once.

However, much of this work is focused on rendering a specific region of a planet and

not the whole planet itself, using only one dataset at a time. While this research is

extremely helpful in handling large datasets efficiently, it does not solve the problem

of multiple datasets needing to be considered.

More than likely, planets will also be made up of a large amount of datasets which



2

are both big and small in terms of information. On top of this problem, the amount of

graphics processing unit (GPU) memory available to desktop machines is not capable

of storing these datasets at runtime. Therefore, only a few of the datasets exist in

memory (in-core) at any one time, specifically the datasets which aid in rendering the

visible terrain, while the rest are stored on the hard drive (out-of-core) until needed.

The problem then, is how to determine what is and is not in view if the data is existing

on the hard drive and not in the main system memory of the computer. The use of a

spatial subdivision hierarchy can be used to alleviate this problem as datasets can be

grouped based on their relative geographic locations. This hierarchy can then remain

in memory without any data loaded simply to determine which datasets should be

tested for rendering when the user makes a search query. As the number of datasets is

large, creation of the hierarchy should happen in a preprocessing step and written to

the hard drive, obviating the need for the runtime version of the algorithm to recreate

it.

As a core requirement of terrain renderers, the algorithm should work in realtime.

Therefore, the user must be able to move around the virtual world while seeing high-

detail terrain at all times. To achieve this, the data caching mechanism should take

advantage of both parallel processing on the CPU and offloading data to the GPU

for later rendering. Much of the searching and swapping procedures can happen

in parallel to the rendering algorithm so that the system is not slowed down by

searching through the multitude of datasets. As well, the GPU can be utilized to

perform composition of the terrain into a final image for the terrain renderer to

use in generation of the three-dimensional mesh. Recently, the advances in graphics

hardware have made joint CPU-GPU processing both available and easy through the

use of programmable shaders which run directly on the GPU. Therefore, the GPU is

an easy candidate to use for speeding up a potentially slow part of the algorithm.

In order to properly utilize the computing resources available, a level-of-detail

(LOD) algorithm must also be devised in order to choose the correct LOD for a given

dataset. As the viewer gets closer to a dataset, the LOD should increase and a more



3

detailed terrain mesh should be rendered. However, as the viewer gets farther away

from a dataset, the LOD should decrease and terrain at a lower detail should be

rendered. This approach is commonly used in terrain rendering algorithms in order

to only create realistic terrain around the viewer and not waste time processing both

occluded and distant terrain [5, 11, 17].

We present a method for taking large datasets and transforming them into man-

ageable chunks as well as organizing the data into a user-searchable hierarchy that

exists on the hard drive which can be used for any terrain renderer. As data is needed,

it is swapped in-core and used in the creation of a group of textures which makes up

the renderable terrain (a texture atlas). Once the user-defined maximum amount of

memory has been reached, data which is no longer being rendered is discarded back

to the hard disk for future search queries. As mentioned above, once a texture atlas

has been created, it is uploaded to the GPU for further processing into the final im-

age while the next search query is being performed. Additionally, our algorithm is

capable of adding new datasets and using them for rendering at runtime.

In addition to the data caching of planetary datasets, we also present a method

for selecting the proper LOD of a given dataset based upon the distance to the terrain

of the viewer and the error introduced by the creation of a LOD hierarchy. Using this

method, a terrain renderer does not need to know anything about the datasets which

it is rendering in order for a continuous LOD to be performed and close datasets will

have a high LOD while datasets farther away will have a lower one.

This work includes several contributions:

• We adapt common out-of-core data caching techniques [5, 8] for planetary scale-

data. This is accomplished by placing datasets into volumes based on their

geographic locations (Chapter 3).

• We adapt an error-based algorithm for a continuous LOD for heightmap data [17].

The error of a given piece of a dataset is computed as the difference of the max-

imum value of a data chunk and the maximum of the new averaged chunk for



4

different mipmapping levels (Section 3.3.2).

• The GPU is utilized to speedup terrain composition and allow for simultaneous

searching and rendering. Additionally, multiple cores of the CPU are used to

speedup the searching process (Section 3.3.3).

• New datasets can be created and rendered at run time. Our algorithm is capable

of allowing the user to specify new datasets which can be fit into the planetary

bounding volume hierarchy (BVH) for rendering (Section 3.3.4).

• Our algorithm is easily used in a virtual reality environment. We perform our

GPU data uploads per context, allowing for multiple views of the same data to

be rendered (Section 3.4).

Our algorithm efficiently swaps data into main memory and back out again based

on the viewer’s position in the virtual world (Chapter 3). This is performed by

partitioning a dataset into tiles and organizing them into a quadtree where each level

of the tree represents a different LOD for rendering. Each dataset is then organized

into a planetary BVH which orders the datasets based on their geographic locations

on the planet. For searching purposes, the geographic coordinates of the camera are

supplied to the algorithm and it determines both what is visible as well as what

LOD to use based on the distance of the viewer to the dataset and the user-definable

maximum screen-error threshold. Once this data has been obtained, it is uploaded to

the GPU for rendering and another search query can begin. The datasets can contain

both height, color, and normal maps.

We implemented the algorithm as a data caching library linked with a terrain

renderer in order to meet our requirements (Chapter 4) and found that the algorithm

provided both fast frame rates as well as quick searches for finding the appropriate

datasets to use for the rendering of high-quality terrain (Chapter 5).

Additionally, we present some ideas for how the research can be expanded to

allow for data compression, optimal hard-drive layout, and addressing some visual

caveats of the system (Chapter 6).



5

Chapter 2

Background

In order to generate realistic terrain, there must be an adequate number of datasets

available to the terrain renderer. These datasets are typically stored in a texture

format so that they can be uploaded to the GPU where standard texture mapping

algorithms are applied. The most common type of dataset is the heightmap, which

is a one-channel grey-scale image which stores the heights of the terrain covered by

the image in each of its pixels, as shown in Figure 2.1. Using heightmaps, a terrain

renderer is capable of offsetting the vertices of a polygon according to the heights

defined by a heightmap, generating terrain defined by the resolution of the image.

Once the mesh has been generated, any color and normal maps can be applied in

order to produce the final image. As these datasets are stored as images, they can be

trivially combined on the GPU for the final rendering.

A common approach to breaking down datasets into smaller, more memory co-

hesive chunks is to subdivide them with a quadtree hierarchy [5, 10, 19]. This type of

structure makes sense because it splits its data into four equal-sized chunks per node

until a predefined threshold has been met. Figure 2.2 illustrates quadtree subdivision

of an image. Using this approach, datasets can be broken down and stored as pieces

of the whole image so that only the parts that are needed can be used for render-

ing. Typically, the high-resolution imagery is stored in the leaf nodes of the tree and

the parent nodes contain successively lower resolution versions of their four children.

Therefore, different levels of the tree relate to a different LOD for the given dataset.

Many algorithms also use an adaptive LOD approach to rendering the terrain [12,



6

Figure 2.1: A heightmap generated from Viking imagery of Mars [22].

Figure 2.2: Subdivision of an image into a quadtree structure.

20]. This means that areas farther away from the viewer are rendered with lower

detail whereas areas that are closer to the viewer are rendered with a higher detail.

Therefore, processing time for farther away areas is reduced since the details of such

areas are not discernible to the viewer. These algorithms are referred to as adaptive



7

because the LOD will change with the viewer’s movements in the virtual world.

One of the main hardware advances in the past few years has been the pro-

grammability of the GPU, allowing access to the world of GPGPU programming [24].

This has allowed many algorithms to use the multi-core power of the GPU for parallel

rendering of terrain. This leap forward has allowed many terrain renderers to ren-

der high-quality terrain in realtime by generating and maintaining a mesh that lies

entirely on the GPU. For data caching purposes, the GPU can be used to speedup

composition of multiple datasets into one image for use with a terrain renderer which

generates and/or stores the terrain mesh on the GPU.

The rest of this chapter describes three papers that have addressed the prob-

lem of out-of-core data caching for terrain rendering. These papers were selected

because they use many common out-of-core techniques and represent the body of the

previously done work.

2.1 Multi-Resolution Deformation in Out-of-Core

Terrain Rendering

2.1.1 Overview

Brandstetter et al. [5] present a data caching mechanism for swapping data both

into core and out of core for deformable terrain. This is accomplished by a lengthy

preprocessing step in which a dataset is split into a quadtree and stored on the

hard drive for later rendering. As the quadtree is built, vertices are created from the

heightmap data and stored in the child nodes of the tree. Each parent then represents

a coarse version of its child nodes by removing data until the top of the tree is reached.

Therefore, a simple LOD system can be used based on the distance of the viewer to

a given patch of data to be rendered.

At runtime, a separate thread is launched to either load patches into memory

or write them back out to the hard disk. This thread maintains a queue of terrain

patches that are ready for rendering. Once a user-defined memory footprint has been



8

reached, the thread determines which nodes to write back out to the hard drive via a

least recently used (LRU) algorithm. Therefore, terrain patches that have not been

rendered for some time are assumed to no longer be needed and are discarded to disk.

As nodes are constantly being allocated and deallocated in system memory, a

free list is also used to avoid the new and delete operators available to standard

C++. This way, the time of waiting for the system to allocate a contiguous region

of memory is removed. Additionally, this approach helps to remove the penalties of

memory fragmentation that can arise from constant allocations and deallocations on

the heap.

A resulting view of rendered terrain from [5] can be see in Figure 2.3.

Figure 2.3: A rendering of Hawaii from [5].



9

2.1.2 Evaluation

The approach suggested is very useful for realistically modeling a certain area of

terrain, allowing for realtime deformation, helping to alleviate the problems of dealing

with large datasets that do not fit within system memory. Additionally, a simple LOD

mechanism is used for rendering terrain patches at differing LODs. However, as this

approach is only designed for one dataset at a time, it will not handle the problem

of dealing with multiple datasets and compositing them over each other for a terrain

renderer to use. Much of the algorithm is designed with planar terrain rendering in

mind making the adaptation to a planetary body a very difficult process.

2.2 P-BDAM

2.2.1 Overview

Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM) [7], from 2003, is an

extension to the BDAM [8] terrain renderer for planetary rendering of terrain. In

this paper, the authors determine how to render terrain over a spherical body in

realtime. An out-of-core data caching mechanism is used which takes the dataset for

the planet and builds a texture hierarchy utilizing a quadtree data structure as well

as the triangulated mesh during a preprocessing step. As is common, each level of

the texture hierarchy has less detail than the level below it, constructing a mipmap

pyramid for use in their LOD algorithm. Once preprocessed, the data is laid out in an

optimal fashion on the hard drive to lower the probability of time costing page faults

for faster rendering. Additionally, the optional DX1 compression scheme can be used

to compress data on the hard drive so that less information needs to be read into

memory from the disk. An LRU system is implemented to determine what patches

of terrain can be safely discarded to the hard drive.

The LOD scheme used is based on the screen-space error of nodes in the geo-

metrical hierarchy containing the triangle mesh. As the bottom of the tree contains

the highest-resolution data and the parents contain coarser and coarser data, errors



10

accumulate from one level of the tree to the next. This error is calculated as the

difference of the highest point of the terrain at one LOD and the highest point at the

next LOD. Once projected into screen-space, the error can be determined. Utilizing

an error threshold, nodes can be determined to be at an acceptable LOD based on

their screen-space error.

During each frame render, the texture and geometry tree hierarchies are searched

for data pertaining to the area around the viewer. Once data is found, it is uncom-

pressed and uploaded to the GPU for rendering at the determined LOD. The GPU

then combines the geometry and texture data for the final image, as shown in Fig-

ure 2.4.

Figure 2.4: Resulting image from P-BDAM overlaid with the triangle mesh [4].



11

2.2.2 Evaluation

P-BDAM presents some interesting data-caching ideas. Compression of the terrain

into smaller files which are laid out on the hard drive in an optimal read-in fashion

can produce a great speedup for dataset chunk swapping. The LOD scheme is simple

to implement with any dataset and quick to compute. However, as the algorithm only

supports the use of one dataset at a time, the visual accuracy of the planet is limited

as well as the usability of the algorithm as a planetary renderer. As their approach

is triangle based, the addition of multiple datasets could be a challenge to implement

because the combination of separate terrain meshes at runtime from one frame to

the next could be difficult to implement, especially in realtime. Therefore, while this

approach does deal with the data-caching issues of reading data efficiently from the

hard drive, it does not address the problem of full planetary rendering for multiple

datasets. Additionally, P-BDAM waits for all searches through its hierarchies to end

before rendering which forces the terrain renderer to wait until all disk writes and

reads have finished. Without the use of background threads to perform the data

caching work, the terrain renderer’s performance is limited by the hard disk speed.

2.3 Planetary-Scale Terrain Composition

2.3.1 Overview

Kooima et al. [15] present a full planetary terrain renderer with out-of-core support for

both the terrain and textures. Each dataset is subdivided into a quadtree hierarchy

and written to the hard drive for later paging into system memory. As each dataset

has a rectangular shape, a rectangular bounding box can be created around them

to serve as a container for any search mechanism. Using the viewing frustum of the

camera, the datasets can be searched and paged into system memory. Once the pages

have been loaded, they are drawn to a pixel buffer object (PBO) for later use on the

GPU as a texture atlas. These textures are then composited over each other and used

for geometry mesh generation directly on the GPU, the result of which can be seen in



12

Figure 2.5. Along with the texture atlas, a different texture is created which details

the locations of individual terrain patches in the texture atlas. Therefore, the GPU

has knowledge of where each terrain patch exists in the texture atlas for composition

into the final terrain image. As is common for out-of-core data-caching algorithms, an

LRU approach is used to determine which data patches should be left in memory and

which should be discarded back to the hard disk once a predefined memory threshold

has been hit.

A simple screen-space error metric is used to determine the acceptable LOD of a

given terrain patch, as described in [7]. As the viewer moves closer to a dataset, it is

rendered with a higher LOD. This process is performed so that compute resources are

not wasted in rendering details of far-off datasets that cannot be seen by the viewer.

Figure 2.5: Resulting image from [15].

2.3.2 Evaluation

The planetary terrain rendering algorithm proposed by Kooima seems to accurately

deal with the nuances of rendering an entire planet. The creation of a texture atlas



13

serves to simplify the combination of multiple datasets into one final image which

the terrain renderer can then use for mesh generation. Additionally, the common use

of the quadtree as the hierarchy for splitting datasets into chunks is performed as in

many other out-of-core rendering techniques, simplifying the processing of regions of

the dataset as well as providing a simple mechanism for displaying multiple LODs.

It would seem that all of the problems of dealing with planetary terrain rendering

have been solved here. However, as it is unspecified as to how the multiple datasets

are ordered and searched through (aside from knowing that the datasets form a box)

we cannot make any assumptions as to how the data is laid out on the hard drive

and therefore how a terrain renderer can interface with the data-caching mechanism.

Additionally, each frame waits for all datasets to be searched through, limiting the

speed of the terrain renderer to that of the searching process. Lastly, this algorithm

does not support the addition of new datasets at runtime which would force the user

to recreate the entire texture cache hierarchy in order to display new data, which

could be an extremely lengthy process depending on how much data would need to

be reprocessed.

2.4 Summary of Previous Work

We have presented an overview of several previous works in the area of out-of-core

data caching for planetary terrain rendering and have evaluated them based on the

problems that they both do and do not solve. Each algorithm presented [5, 7, 15]

deals with the problem of datasets that are too large to fit in system memory and

therefore must be partitioned and stored on the hard drive. As shown above, the

most common way of doing this is using a quadtree hierarchy and creating a mipmap

pyramid which can also serve as a simple mechanism for storing data at different

LODs. In terms of multiple datasets, the only one that solves this problem is [15],

which also proposes a simple way of compositing them together on the GPU. Each

of these works is missing some important aspects of planetary terrain rendering such

as ordering multiple datasets on the hard drive and efficiently searching through



14

them, use of CPU parallel processing to decouple the renderer from the data caching

mechanism, the ability to add new datasets to the data cache at runtime, and a

generalization to work with either a triangle or ray-based terrain rendering approach.

In Chapter 3, we will present our ideas for handling such problems.



15

Chapter 3

Out-of-Core Data Management for
Planetary Terrain

3.1 Overview

In this chapter we present an out-of-core and level-of-detail algorithm that can be

integrated into a planetary terrain renderer. We combine the approaches described

in Chapter 2 in order to accomplish this by dealing with both datasets that are too

large for system memory and a hard drive limited number of datasets. As well, we

will extend this approach in order to decouple the data-caching mechanism from the

renderer, allow for new data to be added at runtime, and overlay multiple datasets

on top of each other.

As the number of datasets is suitably large, we will need to have a non-trivial

preprocessing step which creates the hierarchies for each dataset and orders them

into a BVH. After the data has been preprocessed, it is ready for use by a terrain

rendering algorithm. Skeleton versions of the hierarchies, which have no image data,

are loaded into main memory in order to perform searching operations. Once data

has been found, it is loaded into a queue of terrain patches which are then uploaded

to the GPU for composition. We sort the terrain patches based on their distance to

the user. When the user-defined memory threshold is hit, patches are removed from

the queue as to not exceed the system resources. As our algorithm takes advantage of

parallel processing on the CPU, all of the above operations can happen simultaneously,

making the rendering algorithm independent on the performance of the searching



16

algorithm and the memory hardware. A graphical overview of the algorithm is shown

in Figure 3.1.

Figure 3.1: Flow chart depicting the various stages of the proposed algorithm.

3.2 Preprocessing

As the number of datasets is suitably large, a non-trivial preprocessing step must

occur in order to get the data ready for both searching and rendering. Since the data

does not change once this process has happened, preprocessing only needs to be run

once and not each time the algorithm is used. Therefore, the datafiles output by the



17

preprocessing step can be copied to any runtime version of the algorithm and used

for rendering. The preprocessing step contains three separate phases:

1. Break all datasets into smaller chunks based on a user-defined maximum image

size using GDAL (Section 3.2.1).

2. Once the datasets are broken down, they are placed into a quadtree hierar-

chy. This allows for the creation of a mipmapping pyramid of data for the

LOD scheme to use based on the resolution of the data for a given dataset

(Section 3.2.2).

3. Order all datasets into a BVH for searching purposes. Once the structure has

been created, it can be written to the hard drive (Section 3.2.3).

3.2.1 Geospatial Data Abstraction Library (GDAL)

GDAL [14] is an open-source library which can be used to extract regions of an image

along with the geographical data pertaining to that specific sub-region of the dataset.

We use this libray to get dataset specific information such as the local radius of the

planet, geographic coordinates of each corner of the dataset, and the central latitude

and longitude for projection purposes. Additionally, this library is used to extract

pixel data for each leaf node of the quadtree hierarchy.

Most datasets will also contain pixels which are actually not part of the dataset

but are included to make the dataset appear as a rectangular image. These pixels will

contain what are known as no-data values. Each dataset can potentially use different

numbers to represent its no-data value so we extract this information from GDAL.

Any pixels being processed that equal this value are discarded from further processing

so that they do not distort the final image.

3.2.2 Quadtree Creation

A quadtree is a spatial subdivision hierarchy which is defined as all nodes either

having zero or four children. If a node needs to be subdivided, it is done so into



18

four equal-sized children. Figure 3.2 shows a hierarchical view of a quadtree as well

as the subdivision of space that is represents. Any nodes that do not have children

are declared to be leaf nodes. This hierarchy was chosen because it allows for both a

simple mipmapping algorithm and LOD selection for the data contained within the

tree. Each node contains data either at the resolution of the original dataset or at

the resolution of an average of its children [15].

Figure 3.2: Quadtree views.

As each node of the tree is created, we create a bounding sphere around it that

is centered at the center of the node with a radius which is as long as half of the

distance of the longest axis of the dataset. Using this sphere, we can perform simple

sphere-frustum culling to determine if a given patch of data is in view. We use the

sphere because, without any knowledge of the terrain that a data patch represents,

it can be used to contain any geometry which might protrude along the dataset’s

normal. Therefore, a high-quality mesh is visible for regions of data where the tip of

a mountain is directly in front of the user but the base of the dataset which contains

the mountain is not (Figure 3.3). Additionally, we represent the sphere in world-space

coordinates so that no special operations need to be applied to the camera frustum

in order to intersect with the tree.



19

Figure 3.3: Terrain features such as mountain tips can still load high-quality data.

In order to speedup the later composition step, we can create the transformation

variables from projection to texture coordinates now as opposed to having to recre-

ate it for each composition pass. To do this, we can use the geotransform matrix

provided by GDAL per dataset. This 2x3 matrix represents the transformation of

pixel coordinates into projection coordinates for a given dataset. Using this, we can

calculate L and U , the lower-left and upper-right corners of the dataset respectively,

by converting their pixel locations. Once we have these, we can determine the width

and height of the dataset S in projection coordinates and store these for use by the

compositor by subtracting U from L. During composition, these values are used to

calculate texture coordinates as shown in Figure 3.4. These texture coordinates for

the given point G are calculated by determining the relative position D of G to L.

For each component of D, we can determine the texture coordinates (s, t) by D/S.

These values can be calculated and stored per data patch for reading later. In

order to increase GPU performance, we store the inverse of the dataset height and

width in projection coordinates therefore preventing the GPU from performing costly

divides for each fragment of the dataset.

Our quadtree is created with a bottom-up approach, meaning that the leaves of

the tree are created first, followed by the parents. This is done so that the highest-

resolution data is stored in the leaves of the tree while the parents store lower and lower



20

Figure 3.4: Construction of texture coordinates for the point G.

resolution imagery. This type of hierarchy is known as a mipmap [1]. A mipmap is

defined as each node having either the highest-possible resolution data or an average

of its children. For the parent node, each pixel of image data is the result of the

average of the four corresponding pixels from its child nodes, resulting in a lower-

quality image that still covers the same area (Figure 3.5). As shown in Figure 3.5,

the four child nodes contain high-resolution imagery of a region of a heightmap. The

parent node then contains the same regional area but at a lower resolution.

Once the build reaches the root node, it creates the lowest-resolution version of

the data and finishes. As nodes are created, they are written to the hard drive to

not overload the system memory for datasets that are too large. Along with the node

data itself, a table file is written to the hard drive that details the structure of the

particular dataset. This includes data such as the bounding sphere for the whole

dataset, projection information, and offsets into the node file detailing exactly where

the image data for a particular node is located. This file can then be used at runtime

for quick access to per-dataset information.



21

Figure 3.5: Mipmap hierarchy.

3.2.3 BVH Creation

After all datasets have been preprocessed, we then turn our attention to building

the BVH which contains all of the datasets so that they can be efficiently searched.

The BVH is constructed as three-dimensional axis-aligned bounding-boxes (AABBs)

which are partitioned based on the spherical datasets that they contain in world

coordinates (Figure 3.6). Each node determines if it is either a) done splitting and

can stop or b) needs to continue splitting the data further so that less datasets are

searched through per node. If a node decides that it needs to split, it creates two

equal sized bounding boxes which together equal the volume of the parent and inserts

the parent’s data into the respective child. Once all data has been moved, the child

nodes then shrink themselves to tightly contain the datasets within them, effectively

culling empty space in the tree from being searched. As each node is created, it

serializes itself to the hard drive for later reading at runtime. The preprocessing step

is over when the BVH creation process has finished.

3.3 Runtime

In order to utilize the cached datasets at runtime, the first thing that needs to happen

is to read the data files for the structures of the datasets on the disk. A skeleton version



22

Figure 3.6: BVH containing spherical datasets, represented in two dimensions.

of the BVH along with each dataset hierarchy can be read into memory and used for

searching. This means that the structure of the trees is loaded but, until needed,

the data for each patch of terrain remains on the hard drive. In order to make sure

that the reading of these hierarchies does not interfere with the initialization of the

terrain renderer, this process is performed on a separate thread. At any time during

this phase, the renderer will be able to make queries to the interface to determine

the status of this operation. Once all necessary data has been read in, we are ready

to move into the main phase of the runtime algorithm, which contains five separate

steps:

1. Search the BVH and quadtree hierarchies to determine what is visible (Sec-

tion 3.3.1).

2. Determine the appropriate LOD for a dataset currently being searched (Sec-

tion 3.3.2).

3. Upload the data to the GPU and composite all visible datasets into one image

for use by the renderer (Section 3.3.3).

4. Allow for the insertion of new data (Section 3.3.4).



23

5. Maintain a list of data patches that are currently in system memory (Sec-

tion 3.3.5).

3.3.1 Search

In order to perform a search, the renderer must provide the current camera’s viewing

frustum. This frustum is copied into the search object and sent to the BVH for

searching. As the BVH is constructed from AABBs, a simple AABB-frustum collision

detection algorithm can be used to traverse deeper into the tree. Once the search

comes across a node that contains datasets, each dataset is searched by using the

camera’s frustum if and only if two conditions are met:

1. The frustum intersects with the dataset’s bounding sphere.

2. The dot product of the dataset’s normal and the inverse viewing direction is

greater than zero. This test is performed to exclude datasets that intersect the

viewing frustum but are on the other side of the planet relative to the viewer.

If, however, the dataset is a global dataset containing data for the whole planet,

this step is skipped.

Each dataset can be tested simply using a sphere-frustum collision detection

algorithm. As a parent is intersected, its children are then tested until an acceptable

LOD has been determined (Section 3.3.2). Once the proper LOD has been found,

that patch of data is loaded from the hard drive and saved in a list of newly found

patches. If the search algorithm comes across a node that is already loaded into gpu

memory, it will not reload it.

As the search operation can become costly (especially if a majority of found

patches need to be loaded from the hard drive), it is entirely run by a background

thread. Utilizing this approach, we are able to reduce the dependency between the

terrain renderer and the data cacher. Until new data is available, the renderer can

simply render the terrain with the data already cached from the previous frame.



24

3.3.2 LOD Selection

We adapt the approach in [16] to determine if a level of the quadtree hierarchy has

an acceptable LOD for the current position of the camera. As this approach is for

geometry, a simple change to read image data was necessary for adaptation. This

method utilizes screen-space errors to determine if an image is of valid quality or not

for the user based on projecting each data patch into screen space and comparing it

with a user-defined maximum error. As the mipmapping process during preprocessing

happens (Section 3.2.2), errors will accumulate from the averaging of data. This error,

represented as δm, can be calculated by the difference between the highest point in

the child data and the highest point in the new averaged data. As suggested in [16],

we need to ensure that as the data gets coarser, the error gets higher. To do this,

we can add the child error the current parent node. Therefore, the actual error for a

node δc can be determined as given in the following equation.

δc =

{
0 if leaf node

max(δc0, δc1, δc2, δc3) + δm otherwise
(3.1)

As the value calculated in Equation 3.1 does not change, we can safely perform

this in the preprocessing step and serialize it to the hard drive. However, at runtime

we need to calculate the final error for each node. For this, we need the height of

the screen in pixels S, and the field of view of the camera. These parameters can be

supplied to the tree builder at runtime so that the errors can be calculated.

In order to perform the projection into screen-space, the following equation will

be used as presented in [16].

ε = δc
S

2δm| tan fov
2
|

Using this equation, we can determine the minimum distance dm to the terrain

patch given the user-defined error threshold τ . We can then compare dm to d (the

distance to the camera from the terrain patch) while searching. If d is less than dm, a



25

higher LOD is needed because the error at this patch is too large. Therefore the child

nodes will be tested until the end of the tree is found. We calculate dm per patch by

determining the distance d where ε is equal to τ by substituting τ for ε. Therefore,

we end up with a final equation for δm which we can calculate per node and store for

later comparison.

dm = δc
S

2τ | tan fov
2
|

If, at the bottom of the tree, the error is still too large, the child nodes will

be added into the queue of terrain patches for rendering as we cannot supply any

higher-resolution data.

3.3.3 GPU

In order to speedup the composition of multiple datasets, we rely on the multi-

processing power of the GPU. As new data becomes available from searching through

the dataset hierarchies (Section 3.3.1) we need to composite them together so that

the terrain renderer can use a singular image to generate a three-dimensional mesh.

To do this, we need to create what is known as a texture atlas [15] which is all of the

currently loaded data stored in one place for easy access by the GPU. An example

of a texture atlas for color data can be seen in Figure 3.7. In order to create the

atlas, we start with a blank texture and upload each dataset to it individually. Thus,

each dataset covers a region of the texture. As this data is stored in a texture, the

underlying hardware specifies a rigid upper-bound for the size of this atlas, which is

the maximum user-defined memory value that can be used. Modern graphics cards

offer a maximum texture size of 8192 pixels per dimension [25]. Using the OpenGL

API we are able to get this value at runtime so any future cards which allow larger

texture sizes can be utilized without any need to change the algorithm.

While uploading the data to the atlas, we also create a buffer which is sent

along with the atlas texture to the GPU. This buffer contains information pertaining



26

Figure 3.7: Texture atlas of loaded color datasets.

to the individual datasets for use by the GPU composition algorithm. This data

details the (x, y) location of the start of a dataset in the atlas and how large it is, the

center latitude, longitude and local radius for the dataset, what type of projection the

dataset is stored in, and finally the texture coordinate transform variables described

in Section 3.2.2.

Once the data has been uploaded, the GPU takes over for the composition phase.

Using programmable shaders, we can read the texture atlas and composite the data

into a new texture. This is done by rendering, for each dataset in the texture atlas,

a screen-aligned quad which tightly fits the data. This new quad along with its

respective region of the atlas is sent to the fragment shader and drawn into the output

texture. If any regions of the data overlap, their data can be blended to create the

final texture. Once all datasets have been added to the final texture, the GPU can

then be used for mesh creation by the terrain renderer.



27

3.3.4 Insertion of New Data

It may be possible that at runtime, a user will want to see different data that has

not already been cached on the hard drive. Our algorithm supports this process and

is one of the main reasons we chose to use a BVH as our main spatial subdivision

structure as the addition of new data will create nodes that can simply be refit into

the existing hierarchy without having to recreate the entire tree.

To add new data, the data cacher will spawn a new thread to process it. This

way, the system rendering and data searching is not interrupted by the processing of

the new data. In order to get the new data ready for rendering, it must be processed

as in Section 3.2. Once the quadtree hierarchy has been created, the dataset will

need to be fit into the existing BVH. This is done by determining what node the

new dataset fits into and inserting it there. If the new node has been overloaded

by the addition of the new data, it is split into two separate nodes and the data

contained within is stored in the newly created children. As the algorithm cannot

make assumptions about the intentions of the user, the data cacher is able to be

passed a flag which determines whether this new data is serialized to the hard drive

or not. Therefore, the newly processed data can be added to the existing data cache

or it can be discarded upon program exit.

3.3.5 Maintenance

As data is being added to the list of renderable patches, it can grow too large for

the GPU memory to handle. Additionally, there can be patches of data still loaded

into memory that are on the other side of the planet and not relevant for the current

frame. Therefore, we need a maintenance step to be performed in order to discard

old data back to the hard drive for future use.

To implement this functionality, each patch of render data needs to maintain a

value which denotes how far it is from the user. On each update step, the queue

is reordered based on the patch’s respective distance, with the closest patch at the

head of the queue. Once the user-defined maximum amount of memory has been



28

taken up by the patches loaded, we will need to remove patches from the queue until

the memory taken by the queue no longer exceeds the maximum. This can easily be

performed by removing the end element of the queue and checking the memory usage

of the new queue against the maximum.

As the reordering and removal of data from the queue of patches to render can

potentially be slow, we implement this process on a separate thread so as to not

disrupt the renderer from generating terrain.

3.4 Context-Safe Rendering

In order to interface with a renderer which works in a virtual reality (VR) environ-

ment, we need to be able to upload data to different textures to be used as a respective

texture atlas per eye. This is accomplished by the user of a context identifier being

passed into the GPU upload routine so that the data can be placed in the proper

texture. As all of the search operations are performed by background threads, multi-

ple searches can happen simultaneously meaning that both searches for the two eyes

can happen at the same time and not ruin performance. Aside from the need to deal

with the GPU per render context, no changes need to be made to the algorithm for

the adaptation into a VR environment.

3.5 Global Height Dataset

Should the user wish, they can have the system load any global height dataset that

they wish. This dataset resides in system memory and is loaded at runtime using the

same code as the rest of the system. It is never written to the hard drive nor does

it have any mipmapping process performed on it. Using this dataset, the user can

query the height of the terrain at any given latitude and logitude coordinate. This

can be used for rendering operations that do not rely on specific dataset values but

instead a global approximation of the planet. Since it is up to the user to tell the

data cacher what dataset to load in, the resolution of the image is dependent on what



29

they require. Currently, this is only available for height data.



30

Chapter 4

Implementation

This chapter describes the implementation of our algorithm as a data-caching library

for use with the terrain renderer Hesperian [21]. We describe both the functional and

non-functional requirements of the implementation, use-cases, and a description of

the classes which makeup the library.

4.1 Requirements

Our algorithm is designed to work across different display types as well as different

operating systems. In order to do this, we must make our implementation both

thread-safe (via locks [18]) and context-safe (Section 3.4). Additionally, we make use

of cross-platform APIs [9] such as OpenGL [2] and GDAL (Section 3.2.1). This way,

our library can be used on any operating system/display environment without any

change to the algorithm, making it more applicable to any terrain renderer.

For our implementation we chose to render the planet Mars. However, because

we use GDAL to determine the projection information for all of our datasets, any

spherical body can be rendered if the data is available. Most of this data, which

is represented as either height or color data, can be obtained directly from NASA.

If the projection information exists however, any data can be used. Additionally, as

NASA has many missions to map similar regions of planets, there is a large possibility

of there being overlapping data for a given region. For this reason, we have chosen

to implement a composition algorithm in order to accurately deal with overlapping



31

datasets.

At any time, the user is able to add new data to the data-cache for viewing. Once

processed, this data will be shown to the screen if the viewer is in the area where

the new terrain is located. As the data is searched, the proper LOD (Section 3.3.2)

is determined and used, allowing for a continually adaptive LOD rendering of the

terrain. Since we do not want the data-cacher to slow down the user-experience of

realistically rendered terrain, we utilize the multi-core power of modern CPUs and

push all searching and uploading of patch data to separate threads.

Using common projection equations, as given by Eliason [13], we are able to place

any dataset in the proper geographic location. We support both equirectangular and

polar stereographic projections. As different data can be stored in these projections,

it is imperative to use the proper projection when transforming the coordinates into

texture coordinates or the image will have continuity problems.

These functional [29] and non-functional [26] requirements are listed in Table 4.1

and Table 4.2 respectively.

Table 4.1: Functional requirements.

F01 The library will read a standard data format for height, color, and normal data.
F02 The library will allow the data patch size to be changed for different hardware.
F03 The library will allow the addition of new data at runtime.
F04 The library will allow for new data to be added to the data cache.
F05 The library will composite overlapping datasets.
F06 The library will accept a maximum screen error for LOD selection.
F07 The library will accept a maximum amount of system memory to take up.
F08 The library will allow the user to preprocess terrain data.
F09 The library will select the proper LOD at runtime.
F10 The library will display datasets in the correct geographic area.
F11 The library will use threads to decouple the data-cacher from the renderer.
F12 The library will allow for out-of-core terrain rendering.



32

Table 4.2: Non-functional requirements.

N01 The data-cacher will be implemented as a library.
N06 The library will be implemented using C++.
N02 The library will be thread safe.
N03 The library will be rendering context safe.
N04 The library will use OpenGL.
N05 The library will use GLSL.
N06 The library will use GDAL for loading height and texture data.

4.2 Use Cases

The user of this application is considered to be a terrain renderer. Therefore, we

provide a simple interface into our data-caching mechanism library for easy use of it’s

complex features.

Prior to any terrain renderer being able to use the data cacher, a preprocessing

step must be performed which places the data into a state which is suitable for

rendering. This includes building mipmap hierarchies, the dataset BVH, and pre-

determining dataset errors (Section 3.2). This functionality is simple to use in our

library as the interface can accept a list of datasets to preprocess. Once this step has

completed, the renderer is able to use the data cache for rendering purposes.

At runtime, the terrain renderer can add new data to the data cache which can

either be written to the hard drive or discarded upon program exit. Additionally, the

application can search for new data to render and have that data composited into one

final image for use in mesh generation. At program initialization, the renderer can

specify the maximum amount of memory to be in use by the data-caching system as

well as the maximum screen-space error allowable for LOD selection.

These use cases [28] can be see in Figure 4.1.



33

Figure 4.1: Use cases for the data-caching library.

4.3 Classes

As we have strived to maintain usability and simplicity in the use of our implemen-

tation, we have written the code in as few of classes as possible. For easy integration,

the user only interacts with one class which is used to hide the complexities of the

classes beneath it. An overview of the implemented classes can be seen in the class

diagram [31] in Figure 4.2.

The DataCacher class acts as an interface into the rest of the system. With

the class, the user can preprocess data, search for renderable terrain patches, insert

new data, and set the required parameters for library use. At runtime, we initialize

our data by reading the input files and building skeleton versions of the data struc-

tures without any loaded image data. Both the structure of the BVH as well as the

datasets are stored in a file for reading. As each node is built into the structure,

the accompanying datasets are read and created in memory. Each dataset contains a

TextureQuadtree which contains information about the various levels-of-detail that

each dataset supports as well as projection data specific to the dataset. Utilizing the

ProjectionParser class, we are able to obtain this projection information with ease.



34

Figure 4.2: Implemented class diagram for the data-caching library.

To simplify and modularize the code, all GDAL commands are contained within

the DataExtractor class. Therefore, when anything needs to be ascertained from

the original dataset file, this class can oblige. For instance, this class is capable of

providing the projection information, regions of pixel data, and the coordinates of the

corners of the dataset in either projection, geographic, or world coordinates. As the

original dataset is used as input for this class, it is only used during the preprocessing

step and ignored during runtime.

In order to support rendering-context safety, we allow for multiple patch queues

to exist (one per context). This way, different displays that are looking in different

directions in the virtual world are able to load in their own relative data. To make

this process work, we also need to implement the search algorithm using different

search threads per context; therefore, each context can be searched simultaneously



35

without any holdup by one display in the system. We support this type of runtime

environment by utilizing per context data (Section 3.4) which segregates the data for

each context into separate instances of any class that needs to be context-safe. As an

example of the type of display that would need per context data, we can look to the

Cave Automatic Virtual Environment (CAVE) [30], an example of which is shown in

Figure 4.3.

Figure 4.3: A CAVE display environment which utilizes multiple rendering contexts
for visualization [6].

Outside of providing just an interface, the DataCacher class also takes care of

maintaining the patch queue by determining if too much memory has been consumed.

Old data patches are discarded to the hard drive until the system is no longer using

more than the maximum amount of memory should this event occur. For rendering

purposes, this class also uploads all patches to the GPU by the creation of a texture

atlas. While the atlas is being uploaded, a legend is also being created which details

where each dataset resides in the atlas. As a final step, the center of each dataset in

world coordinates is saved in a vertex buffer object (VBO) for rendering. Once the



36

data for the atlas has been uploaded, the GPU takes over for the final steps of the

implementation.

4.4 GPU

Using programmable shaders [27], we are able to speed up the composition step by

use of the GPU. OpenGL gives us easy access to the geometry and fragment shaders

which we can use for texture overlay options in order to create a resulting texture

that the terrain renderer can use for mesh generation. As mentioned in the previous

section, a texture atlas along with a legend for the atlas and a VBO of points is

created for use by the GPU. Both of the shaders work together to produce the final

image.

4.4.1 Geometry Shader

The geometry shader in the graphics pipeline can be used to turn incoming points

into solid geometry. For our purposes, we transform the points defining the center of

each dataset into screen-aligned quads which are received by the fragment shader. An

activity diagram [3] showing the flow of events in this algorithm is shown in Figure 4.4.

Once the quad has been generated, it is automatically sent to the fragment shader

by the GPU.

4.4.2 Fragment Shader

Using the fragment shader, we can directly affect the outcome of a pixel color on the

currently-bound frame buffer. Each fragment of the quad output from Section 4.4.1

gets processed as shown in the algorithm detailed in Figure 4.5.

Using the world-space normal of the sphere at the current fragment, we can

determine the geographic coordinates of this pixel. These coordinates can then be

turned into projection coordinates based on the type of projection this dataset was

created in. Using the newly calculated projection coordinates, we can generate texture

coordinates as shown in Section 3.2.2. Once we have obtained the texture coordinates,



37

Figure 4.4: Activity diagram showing the generation of screen-aligned quads per
dataset.

they need to be translated into atlas-specific texture coordinates, which can be done

with the following equations for s and t respectively.

s =
(Ts ∗Dwidth) +Dx

atlaswidth

t =
(Tt ∗Dheight) +Dy

atlasheight

where T is the texture coordinates calculated specific to the dataset and D is

the legend element for this dataset which contains the (x, y) position of the dataset

in the texture atlas as well as the width and height.



38

Figure 4.5: Activity diagram showing the algorithm used to composite datasets into
the final texture.



39

4.5 Deployment

Figure 4.6: Deployment diagram for the system.

Since the data-cacher is designed to handle three separate types of data (color,



40

height, and normal), a thread is launched for each type to search their respective

subtrees individually. Therefore, each data type is processed independently of each

other so as to not place a large search overhead on the system. The main thread then

takes care of uploading data to the GPU and initiating the composition steps. This

layout can be seen in the deployment diagram [3] in Figure 4.6.

For efficiency, each of the search threads should obtain their own individual cores

of the CPU. This allows for the system to not interrupt a current search operation

for a different data type. Additionally, OpenGL only allows for one rendering context

per-thread [2]. Therefore, only one of the threads can interact with the GPU. For this

reason, the render thread is selected to upload data to the GPU, not the respective

threads themselves.



41

4.6 Desktop Environment

Figure 4.7: The system running in a Qt environment.

To test our algorithm, we chose to implement it in a desktop environment with

the use of the Qt programming library [23]. The developed graphical user interface

exposes the functionality of the data-caching mechansim along with the Hesperian

terrain render library for general use. An example of the running system can be

seen in Figure 4.7. This figure shows the currently loaded datasets which are used to

render the planet along with their enabled/disabled status.



42

Chapter 5

Results

5.1 Experimental Method

To test the execution time of the algorithm, we used a machine with an Intel Core

i7 processor running at 2.8GHz and 8GB of RAM. In addition, we used an Nvidia

GeForce GTX 480 graphics card with 480 shader cores clocked at 1.4MHz per core,

along with 1536MB of graphics memory.

For these tests, the maximum amount of GPU memory is set to 8192×8192 as

this is a common graphics card maximum texture size [25]. We chose to use eight

datasets to make up the color, height, and normal data for the planet of Mars, detailed

in Table 5.1. Additionally, we use the Hesperian [21] terrain renderer and compare

the runtimes of our algorithm with the time Hesperian takes to run for similar scenes.

The screen size is set to 1280×720 with a grid size of 1280×720.

For the tests, we have selected three separate views of Mars. First, we use a

global view which will contain one half of the planet, shown in Figure 5.1. This view

of the planet will have a lower LOD because the viewer is farther away and therefore

less detail needs to be rendered. Therefore, larger tiles of the datasets will make up

the final image. Second, we use a view of Olympus Mons, the largest volcano on Mars

and in the solar system, shown in Figure 5.2. As the viewer is close, higher-resolution

data will be used for the rendering. Last, we perform a flyby of the equator to show

how the data caching mechanism performs while swapping data in and out of GPU

memory. This is performed approximately one hundred meters in the air above the



43

Table 5.1: Information about the datasets used for timing the algorithm, with a total
of 5335.39MB of data.

Name Scale (m/px) Width Height Size (MB)
MOC Tile 1 2604.699 4096 4096 191.84
MOC Tile 2 2604.699 4096 4096 191.84
MOLA Heights 1853.000 11520 5760 126.56
MOLA North Heights 115.000 12288 12288 576.09
Victoria Crater Heights 1.011 1279 1694 8.27
MOLA Tile 1 Normals 1852.230 5760 5760 379.73
MOLA Tile 2 Normals 1852.230 5760 5760 379.73
MOLA North Normals 1 115.000 5760 5760 864.13
MOLA North Normals 2 115.000 5760 5760 864.13
MOLA North Normals 3 115.000 5760 5760 864.13
MOLA North Normals 4 115.000 5760 5760 864.13
Victoria Crater Normals 1.011 1279 1694 24.81

surface of the planet. Therefore, higher-resolution data will be swapped in and out of

the texture atlas for areas around the viewer while lower-resolution data will be used

for views in the far off distance.

Figure 5.1: Global view of Mars.



44

Figure 5.2: Olympus Mons.

5.2 Results and Analysis

We begin our analysis with a measurement of the frames-per-second (FPS) obtained

from rendering the three scenes detailed above determined from an average of 10,000

frames. Table 5.2 shows an FPS comparison of the data-cacher along with the original

Hesperian terrain renderer. We can see from these results that in a static scene, the

data-caching mechanism performs a little faster than the original Hesperian renderer.

This is largely due to two factors. First, the data-cacher renders a screen-aligned quad

which only covers the region of the dataset while Hesperian render a full-screen quad

for each dataset. Therefore, less fragments need to be processed by the GPU with the

new method. Second, the camera is static in the world, the data-cacher can detect

this and not recomposite the same data each frame. Therefore, the compositing step

needs to only happen once per camera movement, taking less time from the terrain

rendering process.

In the flyby scene, the data-cacher performs slightly slower than Hesperian. This

is because Hesperian always processes each dataset the same per frame, therefore



45

camera movement does not affect the overall rendering performance. However, the

data-cacher must upload new data to the GPU and perform maintenance tasks on

the loaded terrain patches so as to not overload the GPU memory. Therefore, this

drop in framerates is to be expected as the algorithm becomes limited by swapping

terrain patches.

Table 5.2: FPS results with a comparison to Hesperian.

Scene Data Cacher Hesperian Percent Different
Planetary View 127.15 118.04 +7.7%
Olympus Mons 127.36 115.52 +10.2%
Flyby 107.20 111.54 -3.89%

Next, we analyze the timing results of the three main processes of the data-

caching algorithm, uploading data to the GPU, compositing the data into images,

and terrain patch queue maintenance. To accurately determine how much time is

spent in these steps, we chose to time the flyby scene as it represents the worst-

case use scenario of the algorithm where data is constantly being streamed from the

hard disk to the GPU. We can determine from Table 5.2 that the average time in

milliseconds (ms) spent rendering a given frame is 9.32ms. Table 5.3 shows the timing

results.

Table 5.3: Timing results of the rendering algorithm.

Process Time (ms) Percent of Runtime
Uploading 0.064 0.68%
Compositing 0.306 3.28%

Therefore, the two main rendering features of our algorithm take up only 4.82%

of the overall time to render a single frame. This proves that our algorithm is almost

completely decoupled from the terrain rendering and therefore does not dramatically

affect the rendering performance.



46

Additionally, we timed the maintenance step for this same flyby scene at 0.033ms

for sorting the data and discarding any old terrain patches to the hard disk. Since

this step does not affect the rendering of individual frames, it was not included in the

previous table but is important to note as it does affect the overall efficiency of the

system.

5.3 Visual Results

Since our data-caching mechanism has been created to display high-detail data at

realtime framerates, it is important to show the visual results of the algorithm as well.

We start with a comparison of the same scenes as shown in Figure 5.1 and Figure 5.2

as rendered from the original Hesperian implementation [21]. This comparison is

made to show the improvement in visual quality that is obtained from using our

data-cacher over the previous implementation. A global view and one of Olympus

Mons can be see in Figure 5.3 and Figure 5.4 respectively.

Figure 5.3: Rendering of the planet Mars from Hesperian.

These images can be compared with the higher-resolution images from Figure 5.1



47

Figure 5.4: Rendering of Olympus Mons from Hesperian

and Figure 5.2 respectively to see the difference in detail. While our algorithm runs

at similar framerates, it achieves a higher visual quality because it is capable of us-

ing higher-resolution data whereas Hesperian contains no data streaming techniques.

Therefore, it can be seen that our enhancement to the original Hesperian terrain

rendering library improves both the visual quality and efficiency of the renderer.

Next, we show example images of some high-frequency areas of Mars. Figure 5.5

shows a part of the Mariner Valley, a large canyon near the equator of Mars. Shown

in this image is nicely sloped hills which is due to the high-resolution height data

used for the planet.

Additionally, an example of some large rock formations near the south pole can

be seen in Figure 5.6.



48

Figure 5.5: Mariner Valley.

Figure 5.6: Large rock formations near the south pole.



49

The way our algorithm works does produce a small visual caveat however. As the

user moves around the planet, new data is loaded into the atlas and sorted based on

its distance to the user, as explained in Section 3.3.3 and Section 3.3.5 respectively.

While this process is performed in a background thread, the user may be moving

faster than the system can while performing the uploading and maintenance tasks.

Therefore, the user may notice areas of the planet where no data is loaded in. An

example of this is shown in Figure 5.7.

Figure 5.7: The dark areas have not yet been loaded into the texture atlas.



50

Figure 5.8: The fully loaded planet data.

However, this is corrected by the system very quickly and the full data is loaded

after a few short seconds. As the system compensates almost immediately, it should

be noted that Figure 5.7 was hard to obtain from the runtime algorithm. Figure 5.8

shows the final image with all loaded data.



51

Chapter 6

Conclusions and Future Work

The advantage of the data-caching mechanism presented here is that it utilizes both

GPU and multi-core processing, allows for new data to be inserted into the data

hierarchy at runtime, and allows for easy rendering in a virtual reality environment.

As each dataset is uploaded to the GPU as a single point, the massive parallelism

of modern GPU architectures gets to address the problem of turning the points into

screen-aligned quads and properly texturing them. Using multiple threads, the sys-

tem can search for new data while the previous data is being used by the renderer,

decoupling the rendering and searching operations. Additionally, the user can de-

termine the overall performance of the system by specifying the amount of memory

that the loaded datasets can consume on the GPU. If more memory is allowed, less

dataset paging needs to occur therefore speeding up the runtime of the algorithm.

This process is important to allow so that a given user can fine-tune the application

performance for their respective machine.

We have applied common out-of-core data-caching techniques for a planetary

rendering system. This was accomplished by placing datasets into a bounding volume

hierarchy (BVH) so that they can be efficiently searched through at runtime. We also

explained how to composite the datasets on the GPU into one final image for use by

the renderer and how to insert new data into the hierarchy at runtime. Lastly, we

showed from our results that the data-cacher is almost completely decoupled from

the renderer allowing for quick terrain rendering in a real-time environment.

Based on the analysis of our results, there are a few things which could be done



52

to improve the algorithm. First, the data streaming could benefit from some sort of

compression scheme to lower the amount of data to be transfered to the GPU. The

compressed data could then be uncompressed on the GPU. Using this method, the

bus speed between the system memory and the GPU becomes less of a bottleneck.

Second, the data could be laid out on the hard drive in a more cache-friendly way. It

is very likely that datasets surrounding a found dataset will also be uploaded to the

GPU. Therefore, if they were laid out differently on the hard drive, the system could

spend less time reading from different sectors of the hard disk.

In terms of visual results, we pointed out that there are times when the system

is loading in data slower than the user is viewing it. This can easily be fixed by

loading a small global color map of the planet at runtime. It should be small and

low-resolution so it does not adversely affect the rendering time of the rest of the

algorithm or take up too much memory. This data can constantly remain in memory

and always be rendered in place of no-data regions. This way, the user can still see

the unloaded regions of the planet until the new data is ready to go, replacing the

low-resolution global map. While the map would probably be visually unappealing

due to its low-resolution, it can serve as an easy placeholder so the user does not get

confused. This data can be loaded and used similarly to the global height dataset

from Section 3.5

A hard requirement of this algorithm is that it needs at least four processor cores

to run efficiently. This is due to the fact that the cacher will typically load height,

color, and normal data. Therefore, a thread for each of those data types will be

launched and searching for new data based on the user’s view. A fourth thread is

then needed for rendering. Should the algorithm be run on a system with less cores,

the CPU will have to reschedule search operations based on the current needs of the

system. This could slow down the system dramatically as the threads are not free

to search when needed. While this is not an area for future work, it is a hardware

requirement that should be explained to any user.



53

Bibliography

[1] http://www.opengl.org/documentation/specs/version1.1/glspec1.1/
node84.html (Accessed November 12, 2010).

[2] E. Angel. Interactive Computer Graphics: A Top-Down Approach Using
OpenGL, pages 289–304, 492–495. Addison Wesley, 5th edition, April 2008.

[3] J. Arlow and I. Neustadt. UML 2 and the Unified Process. Addison-Wesley, 2nd
edition, 2008.

[4] BDAM. http://vcg.isti.cnr.it/activities/surfacegrevis/bdam/bdam.
htm (Accessed November 8, 2010).

[5] W. E. Brandstetter, J. D. Mahsman, C. J. White, S. M. Dascalu, and F. C. Har-
ris. Multi-resolution deformation in out-of-core terrain rendering. In Proceedings
of ISCA’s 23rd International Conference on Computer Applications in Industry
and Engineering, (CAINE ’10), November 2010.

[6] CESNET. CAVE to CAVE: Communication in Distributed Virtual Envi-
ronment. http://www.cesnet.cz/doc/techzpravy/2008/cave-to-cave/ (Ac-
cessed November 20, 2010).

[7] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno.
Planet-sized batched dynamic adaptive meshes (P-BDAM). In Proceedings of the
14th IEEE Visualization 2003, pages 147–154. IEEE Computer Society, 2003.

[8] P. Cignoni, F. Ganovelli, E. Gobetti, F. Marton, F. Ponchio, and R. Scopigno.
BDAM—Batched dynamic adaptive meshes for high performance terrain visual-
ization. Computer Graphics Forum, 22(3):505–514, September 2003.

[9] J. M. Daughtry, U. Farooq, J. Stylos, and B. A. Myers. Api usability: Chi’2009
special interest group meeting. In Proceedings of the 27th international conference
extended abstracts on Human factors in computing systems, CHI ’09, pages 2771–
2774, New York, NY, USA, 2009. ACM.

[10] W. de Boer. Fast terrain rendering using geometical mipmapping. October 2000.
http://www.connectii.net/emersion.

[11] C. Dick, J. Krüger, and R. Westermann. GPU ray-casting for scalable terrain
rendering. In Proceedings of Eurographics 2009–Areas Papers, pages 43–50. Eu-
rographics Association, 2009.



54

[12] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.
Mineev-Weinstein. ROAMing terrain: real-time optimally adapting meshes. In
VIS ’97: Proceedings of the 8th conference on Visualization ’97, pages 81–88.
IEEE Computer Society Press, 1997.

[13] E. Eliason. Hirise catalog. http://hirise.lpl.arizona.edu/PDS/CATALOG/
DSMAP.CAT (Accessed July 21, 2010).

[14] GDAL. http://www.gdal.org (Accessed July 21, 2010).

[15] R. Kooima, J. Leigh, A. Johnson, D. Roberts, M. SubbaRao, and T. DeFanti.
Planetary-scale terrain composition. IEEE Transactions on Visualization and
Computer Graphics, 15(5):719–733, 2009.

[16] T. Lauritsen and S. Nielsen. Rendering very large, very detailed terrains. http:
//www.terrain.dk/terrain.pdf (Accessed July 26, 2010).

[17] T. Lauritsen and S. Nielsen. Rendering Very Large, Very Detailed Terrains, 2005.

[18] C. Lin and L. Snyder. Principles of Parallel Programming. Addison-Wesley, 1st
edition, 2009.

[19] P. Lindstrom and V. Pascucci. Visualization of large terrains made easy. In
IEEE Visualization 2001, October 2001.

[20] F. Losasso and H. Hoppe. Geometry clipmaps: terrain rendering using nested
regular grids. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 769–
776. ACM, 2004.

[21] J. D. Mahsman. Projective grid mapping for planetary terrain. Master’s thesis,
Department of Computer Science and Engineering, University of Nevada, Reno,
December 2010.

[22] NASA. Mars - images of mars. http://www.nasa.gov/mission_pages/mars/
images/index.html (Accessed December 10, 2010).

[23] nokia. Qt - a cross-platform application and ui framework. http://qt.nokia.
com/products/.

[24] Nvidia. CUDA. http://www.nvidia.com/object/cuda_home_new.html (Ac-
cessed September 13, 2010).

[25] Nvidia. GeForce GTX 580. http://www.nvidia.com/object/
product-geforce-gtx-580-us.html (Accessed November 13, 2010).

[26] R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,
7th edition, 2010.

[27] R. J. Rost. OpenGL Shading Language. Addison-Wesley, 2nd edition, 2008.

[28] S. S. Somé. Supporting use case based requirements engineering. Inf. Softw.
Technol., 48:43–58, January 2006.



55

[29] I. Sommerville. Software Engineering. Addison-Wesley, 9th edition, 2010.

[30] A. Sutcliffe, B. Gault, T. Fernando, and K. Tan. Investigating interaction in
cave virtual environments. ACM Trans. Comput.-Hum. Interact., 13:235–267,
June 2006.

[31] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Founda-
tions, Theory, and Practice. Wiley, 1st edition, 2010.


