
Semi-Automated Analysis Software

for a Novel Biochemistry Assay

Joseph M Vesco, Frederick C Harris, Jr.,
Sergiu M. Dascalu

Department of Computer Science and Engineering
University of Nevada, Reno

Reno, NV 89558, USA

Del Jackson, Josh E Baker
Department of Biochemistry

Biomedical Engineering Program
University of Nevada, Reno

Reno, NV 89557

Abstract—Some of the work done in the Baker lab at the
University of Nevada, Reno has been directed towards the
analysis of muscle tissue in a single molecule arrangement.
The process is a novel high-throughput single molecule
binding assay, or SiMBA for short. This assay is
performed by binding the myosin molecules of the muscle
tissue to a coverslip and looking at how the fluorescently
labeled actin filaments bind to these myosin as imaged
with a fluorescence microscope. The conditions are varied
and the effects on actin-myosin binding kinetics are
observed. In order to analyze the binding times and
unbound times a researcher must observe the interactions
and manually collect the data. This particular method of
data collection is tedious and time consuming thereby
making this portion of the experiment the “rate limiting”
factor for producing results in a timely manner. As this
can take many hours to analyze a one minute long movie
an automated or semi-automated solution would be
beneficial to this assay. This paper presents the design and
implementation of a semi-automated solution for
identifying and tracking a variable number of objects that
exhibit a multitude of behaviors, and extracting the
specific behaviors of motion and stagnation as well as the
duration of these behaviors.

Keywords-actin; myosin; muscle; software; image analysis

I. INTRODUCTION

The Baker Lab at the University of Nevada, Reno, has
developed a novel high-throughput single molecule binding
assay (SiMBA) to measure the affinity of the muscle proteins
actin and myosin under varying conditions. Since myosin
behaves differently in an ensemble, this assay gives
researchers a powerful tool for studying the kinetics at a single
molecule level which may give insight into cooperative
aspects of muscle dynamics. The data analysis for this assay
involves manually observing and counting binding events and
unbinding duration. Although the experiment is high-
throughput, in that many different conditions can be quickly
tested, the analysis is the rate-limiting step, as it involves
many hours for a researcher to analyze a single movie.
Development of an automated, or even semi-automated,

analysis software program would dramatically improve the
usefulness of this new experiment.

The problem was that the only available method to analyze
the movies produced was to sit and watch each individual
particle and plot the times they moved or did not move and
record this as a new event every time this state changes. Fig. 1
shows a single frame from an assay. From this image we can
see how this is a tedious analysis process and can be a large
time constraint of the overall experiment.

Figure 1. Sample frame from an assay

The frame shon in Fig. 1 and the next frame in the assay
show two different occurrences that increase the challenge of
particle tracking. In Fig. 1 the lower circle (red) highlights two
particles, and when we look at previous frames we can see that
one is moving. In the next frame they are in the same
position. To properly track this moving object, one must
determine if the moving object is the same object as before
when these two objects are later separated. If this is the same
object then the duration of the objects state is extended,
though if the previously stationary object now in motion a new

event would begin and the previous event would have ended.
The object marked with the upper circle (green) that is visible
in the movie frame shown in Fig. 1 is then no longer visible in
the next frame. Although this particular object does come back
in a future frame, we must ask ourselves how long an object
can be missing before being considered to be a different object
and again thereby creating a new event.

There have been non specific programs that the lab has
pursued to no avail. As these programs were designed to
tackle a multitude of problems, they for one lacked the
simplicity needed to avoid a steep learning curve and did not
give desirable output. In order to solve this issue of collecting
data manually, the software needs to read the raw data, filter
the images, process this data to determine all of the objects
and events, and then create the needed statistics in a timely
and accurate manner. Designing and developing software to
assist this process could unlock a valuable assay for muscle
protein research labs across the world. As data analysis is the
only limiting step in the experiment, with a successful
implementation of analysis software, this experiment would
qualify as a true high-throughput technique.

The rest of this paper is structured as follows: Section II
covers the scientific background, in Section III we present our
proposal and software design, and in Section IV we present
our results, which are followed by our conclusions and future
work in Section V.

II. BACKGROUND

A. Problem Description: Biochemical Assay

An image representing the general muscle model in Fig. 2
shows one moment of how the components myosin and actin
interact (arm and chain) [6]. These bind, have a power stroke
which contracts the muscle, and then release so another
binding can occur. It is these states of being bound and
unbound that are sought in regards to the SiMBA assay in
order to further understand the behaviors and interactions of
myosin and actin all the way up to the overall behavior of a
working muscle.

Visible actin fragments labeled with a fluorophore diffuse
in solution with unlabeled (invisible) myosin proteins affixed
to a slide surface. The singular myosin molecules are spaced
approximately 1/25µm2. This experiment is viewed through a
microscope with a resolution of 54µm x 54µm (512 pixels x
512 pixels) and an exposure rate of 0.1 (10 frames per second)
for 180 seconds. The raw data is collected from a Nikon
microscope and Roper charge-coupled device (camera).
Images, in the form of movies, are collected with Hamamatsus
Simple PCI program [4].

The scrutiny a researcher must perform in the analysis
stage of this experiment can last many hours. By developing
an automated or semi-automated solution, this time of analysis
can be greatly reduced. Certain issues are common that
prevent this program from being a fully automated solution.
For instance, at uncertain times during a movie, as an object
moves from one location to the next, the size of an object from
the cameras perspective may increase or decrease
significantly. A range for the size is attributed to each object

for motion detection, but at times the size may exceed a
reasonable range there by making the object ID associated
with one particular object to be different than in previous
frames. This may be due to at least two situations. One cause
is that the camera's focus may shift causing a blurring if not a
complete removal of all objects from the frames perspective.
Second, the “flow cell slide" has a bit of space in the z-axis
(perpendicular to the slide plane) between the main slide and a
cover that actin can travel through. Although this space is
limited, there is still enough room for the actin to move out of
focus and cause an object focus shift.

If the first issue is present for more than 2 frames, all
events are ended and new events start when the shift has
ended. In the latter case, the same outcome as previously
stated occur on an individual basis. This can lead to
inaccuracies that can be avoided but are difficult to automate.

Figure 2. A general muscle model [6]

B. Desired Results

The needed statistical results are time bound (ton) and time
unbound (toff). Since the myosin is not visible to the
microscope, these binding events are observed by labeled actin
particles. The labeling agent used is a fluorescent dye from
Alexa [8].

In order to calculate these we need to perform some image
processing. Typically in an image processing application there
are certain fundamental functions that are needed. These may
include but are not limited to erosion, blur, and threshold.
Also the imported data is most likely in a movie format. It is
sometimes necessary to convert these movies into individual
frame images. These were done with OpenCV [3], but due to
space limitations we will not go over these basic functions
typically needed for image processing and motion detection.

III. SEMI-AUTOMATED ANALYSIS SOFTWARE FOR A NOVEL

BIOCHEMISTRY ASSAY

A. Proposed Software Process

We are proposing a novel software package for motion
tracking and analysis of the movies produced by the SiMBA

experiment. The high level method this program uses can be
summed up into six different stages of processing. The data is
imported and converted to an image format that is readable by
the program. These images are then processed and filtered.
Next, the program processes each frame to locate and
determine the size of all objects present. This information is
then analyzed to determine the events throughout the movie.
The fifth stage is the user interaction and control of the
software to change any parameters to get the best possible
output. The final step is not dealt with in this program but
instead is an analysis by the program Origin [5] to determine
the overall behavior of the objects in the movie by generating
a histogram. A lower level view of this process will now be
examined.

Import Data: The first goal is to convert the video data
into images and import these images into our software
package. This starts with moving the images from the Simple
PCI format (CXD) to an AVI file format. Once the video is in
an AVI format we can read it in with OpenCV.

Image Processing: The initial frame images are not ideal
due to the aforementioned issues, namely irregular
illumination and a low contrast between the background and
the objects being analyzed. These frames are filtered in the
following manner. The original image is an RGB image which
means that the image has three layers of colors. This is not
necessary and in fact makes it less efficient in later steps to
have multiple color layers. By using a splitting function, the
RGB image is converted to a grayscale image.

A sample of the frame image is taken to determine the
amount of threshold needed. The amount of threshold ranges
from 15 to 100 of the greyscale values (0-255) and is applied
using the Threshold Binary method [2]. This allows the
background to have a value of zero (black) and any pixel
attributed to an object will have a value of 255 (white). This
threshold is applied and removes any background noise and
distinguishes the objects in the frame.

Next, an optional Gaussian blur is introduced to smooth the
edges of the objects and to reduce to amount of data loss of the
objects themselves when the threshold function is called. This
option is on by default, though can be turned off which may be
necessary when the density of objects presents many objects
that are very close together. If there are many close objects,
the Gaussian blur may combine multiple objects into one
thereby giving false readings. Lastly, the image is saved as a
PGM type image to a folder that is named according to the
current blur amount. This folder naming convention allows for
non redundant processing if multiple settings are tested and
possibly reverted to a previous blur level.

Image Analyzing and Object Coordination: After all
images are processed, the program moves on to analysis of the
image and determining the objects locations in each frame.
When each object is found in its entirety, its size and location
are inserted into a data structure. Each frame will have its own
array of objects with their location, size, ID number and color.
The ID number is assigned to each object of the first frame
from 0 to n where n is equal to the final number of objects in
the frame. To aid in visual analysis, a color value is also given

to each object which is used in the display portion which is
discussed later. For each subsequent frame, if a new object is
detected, its ID will start at n to avoid multiple objects with
the same ID.

Data Analyzing and Event Coordination: The purpose of
this step of the process is to analyze the retrieved data and find
for each object its time and duration of being bound and
unbound and locate all binding sites. For each frame, every
object is compared with the previous frame at the current
objects location. If an object is present within a user defined
radius, the ID and color of the current object is assigned to this
new object. If the position of an object in the previous frame is
within a smaller radius it is determined to be not moving. If it
is outside of this radius is it determined to be in motion. Every
object has in its data structure the number of frames it has
been present and if it has been in motion or not based on this
radius comparison.

User Interaction and Control: At this point the user can
alter the various thresholds, turn blur on or off or just save the
current state of the program and quit. The user interface was
designed to gain the best possible analysis of each movie by
allowing the user to adjust certain parameters to account for
unforeseeable situations.

Final Output and Analysis: As stated previously, the
desired information at this time is the time bound (ton) and
time unbound (toff). Two files are output for each of these
event types. In these files are recorded all occurrences and the
duration of these occurrences. These numbers are then
imported to the software Origin [5] to generate a histogram
and for further analysis.

B. Software Design

Following standard software engineering guidelines, we
put together the main functional [10] and non-functional [9]
requirements of SANoBA.

Functional Requirements: The most important functional
requirements of SANoBA are:
F1. The system will convert movie files to image files.
F2. The system will process raw images.
F3. The system will locate objects in the images.
F4. The system will track objects over consecutive images.
F5. The system will disregard objects outside of a set size

threshold.
F6. The system will allow size threshold adjustments at run

time.
F7. The system will allow motion threshold adjustments at run

time.
F8. The system will allow adjustment for amount of time

object can be gone.
F9. The system will allow blur adjustments at run time.31
F10. The system will store unique sets of frames based on

threshold settings.
F11. The system will allow the user to add objects.
F12. The system will allow the user to remove objects.
F13. The system will allow the user to rename objects.
F14. The system will allow the user to navigate movie.
F15. The system will allow the user to animate movie.
F16. The system will allow the user to control environment.

F17. The system will output event data to a file.
Non-Functional Requirements: The most important non-

functional requirements of SANoBA are:
N1. The system will run any machine with Windows 7.
N2. The system will be implemented using C++.
N3. The system will use OpenCV.
N4. The system will be easy to learn.
N5. The system will allow keyboard input for functions.
N6. The system will allow input by graphical interface.
N7. The system will allow mouse input for selection and

navigation.
N8. The system will process any length of movie allowed by

available drive space.
The functionality of SANoBA has been defined using use

cases and scenarios. The functionality of SANoBA is captured
in the use case diagram shown in Fig 3 at a high level of
abstraction. This was done to help identify the mechanisms
through which the user would interact with SANoBA. The
use cases were also compared with the requirements using a
Traceability Matrix (See Fig. 4).

Figure 3. Use cases for the data analyzing system

The class diagram for SANoBA is presented as according
to the specifications in [1]. Fig. 5 lists all the classes in
SANoBA as well as most of the major functions. Due to size
constraints, certain trivial variables and functions have been
omitted, as have OpenCV inherited functions.

C. User Interface

The idea behind the icon style of the UI is to make this
software easy to use. The goal of this software is to have as
little involvement on the user side as possible. With this in
mind, the amount of customization is relatively limited as
compared to competing applications. The entire application is
run through the main user interface window with exception of
a secondary window that will be discussed shortly. If this UI is
resized, the window and mouse coordinates will operate
normally. All of the available functions are shown as an image
that corresponds to its function. For example, the “Next
frame” button is of an arrow and the function that shows or

Figure 4. Requirements traceability matrix

Figure 5. Class diagram for SANoBA

hides the names of each object is represented by an image of a
name tag commonly seen at conventions. There are multiple
methods to perform many of these available functions so as to
not limit the user to any one method of control. These include
the use of the keyboard and mouse navigation that does not
involve the icons, both of which will be discussed later. The
available functions and how they are used are discussed in
detail in Section IV.

The Secondary UI is a window that will pop up when a
particular object is to be renamed. This window allows the
user to navigate through the movie without losing their current
position.

IV. RESULTS

A. Main User Interface

This section covers how someone may interact and utilize
the application to ensure proper results. Fig.
main user interface. To run this software on a new computer,
certain dependencies are required and are included in the
deliverable software package. Note the violet numbers in Fig.
6 have been added to help identify certain
elements are listed in Table I and are described below

Figure 6. Main user interface

The Objects Window (1) is where the processed images are
arranged and the user can see how the objects are a
and represented throughout the entirety of th
first frame of each movie there is a red bar (2) present to
the user during the animation of the movie. The second
window in the main UI is the Information Window
contains the pertinent information of all objects
current frame. In this window the current frame number
object IDs (5), X and Y coordinates of each object (6),
object size (7), object state (8), object state duration
arrows (10) are shown when needed. The arrows are only
visible to the right of the list of items in the information
window if there are more objects or files than this window can
hold. The up and down keyboard arrows also
the list of objects and files.

TABLE I. MAIN USER INTERFACE

1 Objects Window
2 Red bar that is present at the top of the first frame only.
3 Information window.
4 The current frame number.
5 IDs of object in current frame
6 X and Y coordinates of each object in current frame
7 The size of each object in the current frame
8 The state of each object in the current frame
9 How long that object has been in its current state
10 Arrows only present when more objects than the list can display.

11-25 Program functions
26 Available keyboard functions

27-31 Threshold settings
32 Show or hide the number grid
33 Show or hide the available keyboard
34 Show the help screen, any mose/heyboard action closes it.

This section covers how someone may interact and utilize
Fig. 6 presents the

main user interface. To run this software on a new computer,
certain dependencies are required and are included in the

the violet numbers in Fig.
 elements. These

and are described below.

(1) is where the processed images are
user can see how the objects are analyzed

of the movie. On the
(2) present to aid

animation of the movie. The second
Information Window (3) that

information of all objects present in the
current frame number (4),

of each object (6),
object state duration (9) and

when needed. The arrows are only
t of the list of items in the information

les than this window can
hold. The up and down keyboard arrows also scroll through

NTERFACE

present at the top of the first frame only.

X and Y coordinates of each object in current frame

How long that object has been in its current state
Arrows only present when more objects than the list can display.

Show the help screen, any mose/heyboard action closes it.

The keyboard shortcuts for program functions (11
threshold settings (27-31) will be covered
functions can be shown (26) or hidden
and (34) will show or hide a number
window (see Fig. 7). The grid helps the
distance an object may travel by adding a mesh with numbers
and letters on the x and y axes. In th
Fig. 8, all of the functions and settings
description. Any mouse or keyboard action closes this screen
while active.

Figure 7. Numbered Grid

Figure 8. Help Screen with all functions

Items (11-16) in Table II deal with navigating through the
frame images of a processed movie. When the animation is not
on, the user can go from the current frame to either the next or
previous frame using (11) and (13)
or a specific frame. The frames can be set to automatically
progress by using (12) with the speed being controlled by
and (13) to decrease or increase the animation speed
respectively. To quickly go to the first frame of the
press the “Home” icon (14). If the user ne
specific frame, when “Go to...” (15) is active, the user can type
in the frame number and press enter to quickly go to that
frame. “Go to...” is pretty straight-forward. The frame to jump

program functions (11-25) and
31) will be covered later. The keyboard

or hidden. Numbers (32), (33),
numbered grid in the object

The grid helps the user to determine the
distance an object may travel by adding a mesh with numbers

s. In the help screen, shown in
all of the functions and settings are shown with a brief

description. Any mouse or keyboard action closes this screen

Numbered Grid

Help Screen with all functions

in Table II deal with navigating through the
frame images of a processed movie. When the animation is not
on, the user can go from the current frame to either the next or

), or jump to the beginning
e frames can be set to automatically

with the speed being controlled by (11)
or increase the animation speed

respectively. To quickly go to the first frame of the movie,
. If the user needs to go to a

frame, when “Go to...” (15) is active, the user can type
press enter to quickly go to that

forward. The frame to jump

to can be erased with the backspace and is only confi
with the “enter” key. The QuickView button (16) is mainly to
see the previous frame as the user views the movie frame by
frame for easy reference. However it really allows the user to
view the last seen frame. So if the current frame is 8 and the
last frame viewed was 9, the QuickView function would show
9 not 7. This is only available for consecutive frames and does
not hold if the user jumped frames.

TABLE II. PROGRAM FUNCTIONS

11 Go back one frame or slow down animation speed.
12 Start or stop animation.
13 Go forward one frame or speed up animation speed.
14 Go to the first frame of movie.
15 Go to a specific frame number.
16 See the last frame viewed, not available if jumped frames.
17 Show or hide ID numbers and or circles around objects.
18 Save current state of program and return later if necessary.
19 Open a new movie or a saved file.
20 Undo.
21 Add an object (will not work if object is smaller than threshold).

22
Remove object, if multiple objects selected user can choose
which to remove.

23 Rename an object (activates secondary window).
24 Turn blur/smoothing on or off.
25 Quit program.

By default, the IDs of all objects are present as well as an

encompassing circle. This can be changed so that the IDs are
not present but the circles are or both can be removed entirely.
The IDs can be hidden without any penalties on analysis.
see the objects clearly it is sometimes helpful to remove
of these. Objects can also be added, removed, or edited as
needed. Fig. 9 shows an object being added (note the box
selecting the object below object 18) and Fig.
removing two objects that are highlighted.

Figure 9. Adding an object

If the current state of the program needs to be saved, the
save icon stores the current state of the program. All
removed, added or renamed as well as the current frame and
threshold settings will be as they are when a saved
opened.

The blur level is set to 5 by default, as shown in
However, this setting may not be ideal for the current situation
and the user may change this value to a higher or lower value.

backspace and is only confirmed
with the “enter” key. The QuickView button (16) is mainly to
see the previous frame as the user views the movie frame by
frame for easy reference. However it really allows the user to

So if the current frame is 8 and the
function would show

9 not 7. This is only available for consecutive frames and does

UNCTIONS

Go back one frame or slow down animation speed.

Go forward one frame or speed up animation speed.

See the last frame viewed, not available if jumped frames.
Show or hide ID numbers and or circles around objects.

current state of program and return later if necessary.

Add an object (will not work if object is smaller than threshold).
Remove object, if multiple objects selected user can choose

ctivates secondary window).

By default, the IDs of all objects are present as well as an
encompassing circle. This can be changed so that the IDs are

are or both can be removed entirely.
thout any penalties on analysis. To

helpful to remove both
Objects can also be added, removed, or edited as

ng added (note the box
selecting the object below object 18) and Fig. 10 shows

If the current state of the program needs to be saved, the
current state of the program. All objects

current frame and
threshold settings will be as they are when a saved file is

as shown in Fig. 11.
for the current situation

may change this value to a higher or lower value.

Figure 10. Removing multiply selected objects.

When the confirm button next to the blur value
of the slides in the movie are reprocessed and displayed (See
Fig. 12 for a blur value of 15). Also, the algorithm is redone
for the new set of imported images giving different results.
This is due to the fact that some objects may disappear if too
much blur is used and some may even split into multiple
objects if not enough is used. Each blur value has its own
images stored for future reference so that they do not have to
be reprocessed. The blur feature can also be turned off if
necessary.

Figure 11. Default blur value of 5.

Figure 12. New blur value of 15.

Removing multiply selected objects.

When the confirm button next to the blur value is pressed all
of the slides in the movie are reprocessed and displayed (See

Also, the algorithm is redone
imported images giving different results.

This is due to the fact that some objects may disappear if too
much blur is used and some may even split into multiple

nough is used. Each blur value has its own
images stored for future reference so that they do not have to
be reprocessed. The blur feature can also be turned off if

Default blur value of 5.

New blur value of 15.

There are a number of threshold settings as seen in Table
III that are available for the user. The size thresholds (27) &
(28) allow the user to remove any objects that are unwanted
due to their size. Objects that are too small may be noise that
was not removed in the initial process phase. Larger objects, at
least in this experiment, are considered to be actin that has not
been broken down enough and yield results that are not needed
at this time. When the user adjusts the size threshold, the
objects that are no longer labeled are still involved in the
analysis until the confirm button is pressed and the vector is
repopulated. These values can be set before opening a movie
or after. The blur (29) can be adjusted to give better results
based on the current movie situation. Though it must be noted
that as the blur increases so does the size of all objects and the
potential to lose smaller objects increases as well. Part of the
algorithm to track a moving object is to determine if in a
certain radius of motion (30) the object is still present. In
other words, how far an object moves before considered to be
moving. For faster moving objects, this radius needs to
increase. The objects in this experiment are not fast relatively
speaking. This radius can be adjusted for slower objects or
even faster objects if deemed necessary. Also, due to the many
factors such as camera focus shift, irregular illumination and
image processing the objects may appear to be moving but are
in fact immobile. The final threshold setting is to adjust how
many frames an object is gone (31) before considered to be
gone. This can help if there are multiple consecutive camera
focus shifted frames or an object is gone for too long to be
accurately labeled with a previous ID.

TABLE III. THRESHOLD PARAMETERS

27 Adjust the minimum object size.
28 Adjust the maximum object size.
29 Adjust the amount of blur.
30 Adjust how far an object moves before considered to be moving.

31
Adjust how many frames an object is gone before considered to
be gone.

Beyond the icons of the main UI the user can use the

common IO devices to perform the available functions and
navigation. For example, by clicking in the window above the
icon area, one can navigate through the frames if so desired.
All of the previously described functions are available to the
keyboard enthusiasts. The shortcuts are mostly single key
strokes with notable exceptions (ctrl-s for save and ctrl-z for
undo).

B. Secondary UI

The Secondary UI, shown in Fig. 13, behaves similarly to
the main UI though with a limited set of functions. In Table IV
the functions are straight-forward in regards to the main UI
functions except for (37). This icon shows the ID to be
transferred to the selected object in the current frame of the
main UI. This can be erased with the backspace and is only
confirmed with the “enter” key. After the ID is keyed and
enter is pressed, the secondary UI window will close returning
the user to the main UI and the selected object is now renamed

to the entered value as long as it is not a repeat of an ID in this
current frame in the main UI.

Figure 13. Secondary UI Window.

TABLE IV. SECONDARY UI FUNCTIONS

36 Close secondary UI window.
37 Entered value of new ID shown here.
38 Show or hide the grid.
39 Go back one frame.
40 Go forward one frame.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A method of observing the behavior of muscle tissue in a
single molecule configuration has been developed at the Baker
lab at the University of Nevada, Reno. The process is a novel
high-throughput single molecule binding assay, or SiMBA for
short. This assay is performed by placing the myosin molecule
of the muscle tissue on a coverslip and looking at how the
fluorescently labeled actin filaments bind to these myosin as
imaged with a fluorescence microscope. The conditions are
varied for each experiment and the response to these changes
of the actin-myosin binding kinetics are observed. In order to
analyze the binding times and unbound times a researcher
must observe the interactions and manually collect the data.
The analysis of this experiment is very time consuming for the
researcher. By automating the analysis, this method can be
further improved to gain a better knowledge of muscle
dynamics.

The work presented in this paper describes the design and
implementation of a semi-automated solution for identifying
and tracking a variable number of objects that exhibit a
multitude of behaviors, and extracting the specific behaviors
of motion and stagnation as well as the duration of these
behaviors. The end result is to extract the time spent in motion
and when bound as well as the duration of these behaviors.

Still in its infancy, the software has many hurdles to
overcome, yet the end results will be highly beneficial to this
research.

This software converts and processes the raw data
extracted from the SiMBA experiment. The user has the
ability to manipulate the settings if necessary to achieve the
best possible results. When the best results are found, the
researcher may now take the output of this software and have
analysis software determine the necessary histograms for
behavior analysis. This last step is necessary for all the
competing software as it is a specialized analysis that is
beyond the scope of this part of the analysis.

B. Future Work

There are many items that we have on our stack for future
work. These include modifying our program to use a version
of OpenCV running on the GPU. The development of an open
source version of OpenCV running on the graphics processor
has been in the works recently. It is however not available at
this time. In future updates taking advantage of parallelization
on a GPU can only benefit the user and getting the results in
an even more time sensitive manner. The main portion of the
software that would utilize this parallelization would be the
processing and analysis of the images as these are the time
limiting factors of the current software. The projected time
reduction of a full movie would theoretically run at least 5-10
times faster [7]. Even though this is moving towards a better
solution than previous methods, by efficiently using
parallelization, the time of analysis could approach a speed
that would allow for streaming video with a frame rate of 20-
30 frames per second. Compared to manual analysis (12
hours) this is a huge advantage.

There are many other optimization features that are also
desired. A full list of these can be found in Chapter 7 of [11].

REFERENCES

[1] J. Arlow and I. Neustadt. Unified Process: Practical Object-Oriented

Analysis Design. Addison-Wesley, 2nd edition, 2005.

[2] S. Bouakaz. Image Processing and Analysis Reference.
http://www710.univ-lyon1.fr/~bouakaz/OpenCV-0.9.5/docs/ref/
(Accessed November 8, 2012).

[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with
the OpenCV Library. O'Reilly Media, 1st edition, October 2008

[4] H. Corp. SimplePCI - Software for Image Acquisition and Analysis.
http://hcimage.com/simplepci.htm (Accessed November 8, 2012).

[5] O. Corp. Origin - Data Analysis and Graphing Software.
http://www.originlab.com/ (Accessed November 8, 2012).

[6] G. Johnson. Animated model for myosin-based motility.
http://valelab.ucsf.edu/images/movies/ (Accessed November 2, 2011).

[7] Nvidia Corp. Nvidia adds gpu acceleration for opencv application
development. http://pressroom.nvidia.com/ (Accessed November 8,
2012).

[8] N. Panchuk-Voloshina, R. Haugland, J. Bishop-Stewart, M. Bhalgat, P.
Millard, F. Mao, W. Leung, and R. Haugland. Alexa dyes, a series of
new fluorescent dyes that yield exceptionally bright, photostable
conjugates. Journal of Histochemistry Cytochemistry, 47(9):1179{1188,
1999.

[9] R. S. Pressman. Software Engineering: A Practitioner's Approach.
McGraw-Hill, 7th edition, 2010.

[10] I. Sommerville. Software Engineering. Addison-Wesley, 9th edition,
2010.

[11] J.M. Vesco. Semi-Automated Analysis Software for a Novel
Biochemistry Assay. Master’s thesis, University of Nevada, Reno,
Department of Computer Science and Engineering, December 2011.
Advisor: Frederick C Harris, Jr.

