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Abstract

The field of neurorobotics is still in its infancy; however, its intersecting motivations are

not. On the one hand, theories of neuroscience that require immersion in the real-world

can be embedded in mobile agents creating complex patterns of activity believed to be a

requirement for understanding higher-order neural function. On the other, the cognitive

capabilities of humans remain unparalleled by artificial agents. Emulating biology is one

strategy for creating more capable artificial intelligence. Despite these strong motivations

for creating neurorobotic entities technological hurdles still remain at all levels. This the-

sis presents two different contributions to the field of neurorobotics. The first is aimed

at reducing the complexity of coupling spiking neural models with virtual agents. This

is accomplished through a set of tools that act to abstract the neuroscience details from

roboticists and the mechanical details away from the neuroscientists. The second contri-

bution provides an example of how higher-level cognitive theories of speech processing

can be integrated into the neurorobotics paradigm. Extracting the emotional content of a

speaker, independent of what is being spoken, is a daily act for most people. The neural

basis for this ability remains illusive, however cognitive models have been realized. This

class of models can be integrated with the biologically realistic neural simulations in a

complementary way to expand the capabilities of a neurorobotic system.
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Chapter 1

Introduction

There is an incredible amount of detail and understanding of the nervous system, from

the molecular to the cognitive, that is still unknown. Modern experimental methods are

providing historically unprecedented insight into the capabilities of the mind.

Since the development of the Hodgkin-Huxley equations in 1952 [25] the field of com-

putational neuroscience has grown exponentially. Mathematical models of single and popu-

lations of neurons have helped expand the field of neuroscience as a whole. Computational

modeling allows investigators levels of detail and control over complex neurological struc-

tures that are currently impossible at a physiological level. This level of control offers the

possibility to observe the effects of invasive surgeries [15, 23, 24, 37], neurological diseases

[14, 18, 20, 41], pharmaceuticals [33] as well as the complex dynamics of neural informa-

tion processing. In addition, these models have found a mutually propitious relationship

with robotics research in the form of neurorobotics.

Neurorobotics can be described as the combination of neurological models and robotic

agents. Often referred to as embodied modeling, the coupling of computational biology

and engineering is a natural one that is beneficial to both disciplines. Historically strategies
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for embedding artificial intelligence have failed to result in agents with truly emergent

properties. Because of this it is still unreasonable to deploy a robotic entity and expect

it to learn from its environment the way biological entities can. This is one motivation

behind neurorobotics. Similarly, neural models require complex and varied input signals

in order to accurately replicate the activity observed in vivo. One method for creating this

complex stimuli is through immersing a model in real-world stimuli; something that can be

accomplished through neurorobotics.

There are number of different neurological models that have been coupled with robotic

agents such as rate-based [4, 9, 16], cognitive based [3], and spiking [2, 21, 22, 26]. Al-

though the work presented here is focused on interactions with spiking neural models, this

is an arbitrary restriction that is not indicative of its applicability to other areas of compu-

tational neuroscience.

This thesis is primarily composed of two published papers that present research in dif-

ferent facets of the neurorobotics paradigm. These are included in their entirety for com-

pleteness. The first, [43], presents NCSTools, a software suite developed to help ease the

integration of robotics and spiking neural models. This is the contents of Chapter 3. The

second, [44], is an example of how researchers can take knowledge of higher level be-

havioral function and interact effectively with spiking neural models. This is presented in

Chapter 4. In addition, Chapter 2 provides a brief introduction to neurons, computational

neuroscience and the NeoCortical Simulator. Finally, Chapter 5 closes with some final

thoughts and discussion on neurobotic interactions.
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Chapter 2

Background

2.1 Computational Neuroscience

There are many different levels of neuroscience research attempting to clarify the function

of the brain. From the single molecule studies of biophysics to the behavioral research

of cognitive neuroscience, the mysteries of the brain are enjoying elucidation from both

bottom-up and top-down approaches. Computational Neuroscience can be described as a

complimentary field that spans the spectrum of neuroscience. There are obvious physiolog-

ical barriers to gathering detailed information of most complex neuronal structures. Beyond

the lack of connectivity information, is the lack of non-invasive measurement equipment.

Computational neuroscience provides unique and unrivaled access to both the deep struc-

tures of the brain as well as the molecular information of single cells.
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2.2 Neurons

Neurons are a class of excitable cells that are the primary building block of the nervous sys-

tem of all animals belonging to the group eumetazoa. These cells are characterized by their

electrical and chemical communication mechanisms that transmit information throughout

the nervous system. Neurons maintain an ionic concentration gradient along a differentially

permeable membrane, resulting in a voltage potential between the inside and outside of the

cell. If the membrane voltage of the cell is increased above a threshold an all-or-nothing

avalanche of current creates a discrete electrical event that travels along the cell, as shown

in Figure 2.1A. These events are referred to as Action Potentials (AP) or spikes. Figure

2.1C illustrates the change in voltage at a discrete location along a theoretical neuron. The

voltage change in this location will cause a similar change in the immediate surrounding

area. The result is a dynamic change in the membrane voltage that propagates throughout

the cell.

When the propagating action potential reaches the synapse located at the end of each

of the neuron’s axons, illustrated in Figure 2.1B, a chemical signaling cascade is initiated.

This cascade results in a quantile release of neurotransmitter which travels down a chemical

gradient to a second neuron’s postsynaptic cleft. The neurotransmitter activates pores,

called ion channels, in the membrane, resulting in a change in the voltage potential of the

second cell.

It goes without saying that this is an obvious over-simplification of a complex process.

However, this is the essence of communication in the nervous system.
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(a) (b)

(c)

Figure 2.1: (A) Prototypical neuron, (B) Single synapse, (C) Action potential at a single spatial location.

2.3 Spiking Neural Models

Biologically realistic neural simulations generally begin with a model of a single neuron.

Of which there are a large number available to computational neuroscientists, each with

different levels of computational complexity and biological realism. There is a constant

balance between execution time and biophysical plausibility. A balance that more often

than not leans in favor of execution time. Even as neuron models are simplified and ap-
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proximated, the neural structures of interest may require a computationally unreasonable

amount of them. In order to further drive the neuroscience research, engineers are cre-

ating more optimized simulation environments that take advantage of the latest hardware

advances.

The NeoCortical Simulator

The NeoCortical Simulator (NCS) was developed at The University of Nevada, Reno by

the Brain Computation Lab under the direction of Dr. Phillip Goodman. From its inception

a heavy emphasis was placed on parallelization and performance. In addition, mechanism

for getting spiking information out and stimulus in was also extremely important. Despite

the focus on performance, NCS provides a number of important biological models. For a

review of what NCS refer to Wilson et al. [50, 51] and to see how NCS compares to other

neural simulators see Brette et al. [7]. Its features can be summarized as:

• High-performance Message Passing interface (MPI)-based parallel architecture

• Leaky Integrate-and-fire (LIF) neurons with conductance based synapses and Hodgkin-

Huxley channels.

• Hebbian synaptic learning with Short-term plasticity, augmentation, and spike-timing

dependent plasticity (STDP).

NCS Neuron Model

The model used in NCS falls under a class of threshold neurons characterized by the ab-

sence of an action potential. Since an action potential is an all-or-nothing quality it can

be assumed that once the neuron’s membrane potential reaches the threshold value that an

action potential will occur. Using this approximation the channels responsible for produc-
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ing the action potential can be ignored and when the threshold is reached the membrane

voltage can be reset to the resting potential. This simplification allows researchers to focus

on the sub-threshold dynamics while retaining the spiking activity of the model.

At the single cell level NCS solves a limited and slightly reordered form of the Hodgkin-

Huxley Model that is similar to Equation (2.1). However, during the numerical integration

a constant membrane leak is added. This is explained further below.

CN
dV

dt
− IM − IA − IAHP − Iinput − Isyn + Ileak = 0 (2.1)

The currents expressed in this equation fall into several different categories that are only

briefly explained here. To begin, both IM and IAHP contribute to the membrane voltage

by controlling spike-frequency adaptation [29]. These are small ionic currents that have a

long period of activity when the membrane voltage is between rest and threshold.

IM is the Noninactivating Muscarinic Potassium Current and is defined by

IM = ḡMSm
P (Ek − V ) (2.2)

Where S is a non-dimensional Strength variable added to NCS and P is the power that the

activation variable m is raised to. This is essentially decreasing the slope of the activation

variable. The change of that activation variable is defined as

dm

dt
=
m∞ −m

τm
(2.3)

Where

τm =
ε

e

V − V1/2

ω


+ e

−

V − V1/2

η
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m∞ =
1

1 + e
−

V − V1/2

ξ


ε is the scale factor.

V1/2 satisfies the equation m∞(V1/2) = 0.5.

ω, η and ξ are slope factors affecting the rate of change of the activation variable m.

Notice that (2.2) is different from the traditional equation shown below in Equation (2.4).

This reverse of the driving force explains the sign changes in Equation (2.1).

IM = ḡMmm (V − EK) (2.4)

IAHP is the current provided by the other small spike-adaptation contributing channel.

These are voltage independent potassium channels that are regulated by internal calcium

[29].

IAHP = ḡAHPSm
P (Ek − V ) (2.5)

Where S is a non-dimensional Strength variable added to NCS and P is the power that the

activation variable m is raised to. The change of that activation variable is defined as

dm

dt
=
m∞ −m

τm
(2.6)

τm =
ε

f(Ca) + b

m∞ =
f(Ca)

f(Ca) + b

Where

ε is the scale factor.

b is the backwards rate constant, defined as CA Half Min in the NCS documentation.
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f(Ca) is the forward rate constant defined by (2.7).

f(Ca) = κ[Ca]i
α (2.7)

Internal calcium concentrations are calculated at the compartment level in NCS. Physi-

ologically the calcium concentration of a cell increases when an action potential fires. After

the action potential has ended the internal concentration of calcium will diffuse through-

out the cell where it is taken up by numerous physiological buffers. In NCS this dif-

fusion/buffering phenomena is modeled by a simple decay equation defined by Equation

(2.8).

[Ca]i(t+ 1) = [Ca]i(t)

(
1− dt

τCa

)
(2.8)

Where

dt is the simulation time step.

τCa is the defined time constant for the Ca decay.

When an action potential fires in NCS the internal calcium concentration is increased

by a static value specified in the input file.

The third and final channel type modeled in NCS is the transient outward potassium

current or Ka. This channel requires hyperpolarization for its activation; meaning that the

channel will open during inhibitory synaptic input [29]. This is defined by (2.9).

IK = ḡMSm
PhC (Ek − V ) (2.9)

Where as before S is a non-dimensional Strength variable added to NCS, P is the power

that the activation variable m is raised to and C is the power that the inactivation variable

h is raised to. The change of activation and inactivation variables is defined by (2.10) and
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(2.11).
dm

dt
=
m∞ −m

τm
(2.10)

dh

dt
=
h∞ −m
τh

(2.11)

Where

m∞ =
1

1 + e
−

V − V1/2m

ξ


V1/2m satisfies the equation m∞(V1/2m) = 0.5.

ξ is slope factor affecting the rate of change of the activation variable m.

h∞ =
1

1 + e
−

V − V1/2h

η



V1/2h satisfies the equation h∞(V1/2h) = 0.5.

η is slope factor affecting the rate of change of the inactivation variable h.

The time constants τm and τh are voltage dependent. NCS allows this dependence to be

defined using an array of values for both the voltages and time constants. This is defined

by (2.12).

τ(V ) =



τ(1) if V < V (1),

τ(2) if V < V (2),

...

τ(n) if V < V (n)

τ(n+ 1) else

(2.12)
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The leakage current is voltage-independent and is modeled by (2.13). Notice that the driv-

ing force is expressed using the normal convention. This is the reason the leakage current

is subtracted in the membrane voltage equation rather than added, as seen in the traditional

membrane voltage equations.

Ileak = gleak (V − Eleak) (2.13)

The synaptic currents are calculated by

Isyn = ḡsynPSG(t) (Esyn − V ) (2.14)

The numerical integration scheme employed by NCS is similar to an Eulerian method how-

ever, as mentioned above a constant leak term is added to the discretized form of (2.1). To

begin the current values defined above are summed

ITotal = IM + IA + IAHP + Iinput + Isyn − Ileak (2.15)

The new voltage is then calculated as a combination of the defined membrane resting po-

tential, the previously calculated membrane potential, the membrane resistance, capacitive

time constant and the total currents.

V (t+ 1) = Vrest + (V (t)− Vrest)
(

1− ∆

τmem

)
+ ∆

ITotal
Cn

(2.16)

Rearranging for clarity

V (t+ 1) = V (t) + (Vrest − V (t))
∆

τmem
+ ∆

ITotal
Cn

(2.17)
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Where

Cn =
τmem
Rmem

Rmem is the defined resistance of the membrane.

τmem is the defined capacitive time constant of the membrane.

Notice the form of (2.1) in a simple Eulerian integration scheme would be

V (t+ 1) = V (t) + ∆
ITotal
Cn

(2.18)

The addition of the middle term in Equation (2.17) numerically drives the membrane

voltage of the cell back to a predefined resting potential.

The different combinations of the provided sub-threshold channels are capable of repli-

cating many different neuronal cell types. Figure 2.2 presents four different types of

GABAergic interneurons found in the brain. These are modeled in NCS using the equations

presented above and stimulated with 150− 350pA current injection.

Examples
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Figure 2.2: Example model neurons under a current-clamp stimulus of 150-350 pA. (a) Classic Non-
Accommodating (cNAC) gabaergic interneuron. The neurons reach a steady-state fire rate on the initiation
of the stimulus. (b) Bursting Non-Accommodating (bNAC) gabaergic interneuron. These neurons fire a se-
ries of bursts at the onset of the current stimulus, followed by a period of steady-state firing. (c) Delayed
Non-Accommodating (dNAC) gabaergic interneuron. These are characterized by a delayed rise in membrane
voltage after stimulus onset, followed by a period of steady-state firing. (d) Bursting Accommodating (bAC)
gabaergic interneuron. These neurons fire a series of bursts on stimulus onset followed by a spike rate that is
characterized by the adaptation or dampening of spiking in response to the constant current injection.
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Chapter 3

NCSTools

Thibeault, C. M., Hegie, J., and Harris Jr., F. C. (2012). Simplifying neurorobtic develop-
ment with NCSTools. In Proceedings ISCA’s 27th International Conference on Computers
and Their Applications (CATA-2012), Las Vegas, NV.

Abstract

The combination of biologically realistic neural simulations and robotic agents offers unique

opportunities for both computational neuroscience and research in intelligent robotics.

A concept that can provide insights into the cognitive developments involved in human

robotic interaction as well as provide a pathway to developing truly intelligent agents.

In this paradigm spiking neural models are coupled with physical or virtual entities in a

closed-loop. The embodied agent provides stimulus to the neural model which in turn

provides a filtered and processed view of that world. More often than not the complex-

ity and corresponding computational burden of these models necessitates the use of high-

performance computers that must be stored and maintained separate from the entity. In

these instances, closing the loop can be an arduous task requiring intimate collaboration
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between neuroscientists and engineers. Presented here is a software package for simplify-

ing those interactions while facilitating the communication between neural simulations and

abstract remote entities.

3.1 Introduction

Computational neuroscience enjoys a unique role in biological research. At one end it can

help validate and quantify experimental results. While at the other, it provides a predictive

mechanism for aspects of the nervous system that are unreachable by any other means. In

addition to the importance mathematically modeling the nervous system has to physiolog-

ical research is its value to artificial intelligence and autonomous agents.

By employing spiking neural models as the processing elements for robotic agents, re-

searchers are attempting to explore theories that span the breadth and depth of robotics,

AI and neuroscience. Understanding neurological processing often requires complex inter-

actions with the real world (or a virtual one). This is the case in the fields of both social

robotics [12, 39] and neurorobotics [10, 30, 49]. These theories generally involve the in-

tegration of several sensory modalities as well as complex commands between the agent

and the neural architectures controlling it. This integration can be a complex task requiring

either expertise in both computer engineering and neuroscience or collaborations between

experts in each of these fields. The software, NCSTools, presented here was developed to

ease the complexity of interfacing neural models with remote agents as well as abstract the

neurological detail from the roboticists and the engineering detail from the neuroscientists.

This paper is laid out with the remainder of this section presenting a minimal back-

ground on spiking neural models and neurorobotics as well as introducing NCSTools. This

is followed by Section 3.2, which illustrates the design choices made in this project as



16

well as the basic software engineering behind its implementation. Section 3.3 provides a

complete example of how NCSTools can be used to speed-up the task of interfacing with

a spiking neural simulation. Finally, Section 3.4 concludes with some current applications

where NCSTools has been utilized as well as some future directions.

The work presented here is an extension of a presentation given at the Computational

Neuroscience Society Meeting in San Antonio, Texas, August 2010 [42].

3.1.1 Spiking Neural Models

Simulating excitable cells involves integrating a set of differential equations that describe

the electrical activity along the membrane of the cell. The unique aspects of these cells

is that once a threshold voltage has been reached, an all or nothing avalanche of electrical

current occurs. This results in a spike of electrical activity, or an action potential, and

initiates the communication between neurons. Its effect is felt by all neurons connected

to the one that spiked, or fired. Additionally, repeated spike events can alter or grade

the effect felt by those downstream neurons. This modification is referred to as synaptic

level plasticity and is thought to play a major role in animal learning [38]. By combining

the differential equations describing membrane voltages with the synaptic communication,

computational neuroscientists hope to reveal details of the nervous system unavailable with

current experimental techniques.

3.1.2 Neurorobotics

The field of neurorobotics focuses on the coupling of neural systems with some form of

physical actuation. An example of this is the concept of virtual neurorobotics (VNR).

This is based around the interoperability of a neural model, a virtual robotic avatar and
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a human participant [21, 22]. Under all but the most basic scenarios this interoperability

is accomplished through an organized network communication system. For this paper an

emphasis is placed on robotic and automated agents; however, it should be noted that the

tools described here are by no means limited to that application.

3.1.3 NCSTools

NCSTools is a bridge between neuroscientists and engineers using NCS for research. The

strength of NCSTools lies in its configuration language. It provides a mechanism for defin-

ing interactions between the neural simulation and the agent. These interactions are de-

scribed using plain text strings and developers simply need to agree on the strings to de-

velop their components. Besides the benefit that neither end is required to know intricacies

of the other, this also provides a level of reuse that can reduce development time. The only

requirement is that the strings remain consistent. This greatly reduces the development

time of a neurorobotic application.

3.2 Design

NCSTools was developed in C++ with a focus on object-oriented design principles. The

motivation for its construction was driven by the need for a replacement to the previous

software package, Brainstem [35]. Although successful as a proof-of-concept, Brainstem

lacked the necessary extensibility and reliability required for rapid use by researchers.

Based on these inadequacies, several non-functional requirements were identified before

starting the development of NCSTools. These were:

1. Usability: The use of NCSTools must be relatively simple. Although its intended

users are scientists and engineers, its operation has to make sense based on the task.
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2. Extensibility: The rapid pace of scientific research necessitates a system that can be

readily extended to incorporate new ideas and concepts.

3. Robustness: The codebase must be invariant to the application and multitude of

configurations.

4. Reliability: NCSTools is intended for researchers performing experiments in both

neuroscience and robotics. If it is unreliable, meaningful results can be lost.

The component interfaces provide layered abstraction supporting an extensible yet ro-

bust code base. Similarly, the configuration language supports overall usability. Through-

out this section numerical subscripts that correspond to the non-functional requirements are

used to indicate how each design element supports the requirements.

Figure 3.1 presents the system level layout of NCSTools. The major components are

described below.

Figure 3.1: System layout. With the exception of the user interfaces, all connections are made using the
various network clients described below.
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3.2.1 Configuration Language1

The flexibility of NCSTools lies in its configuration language. Most aspects are modifiable

at runtime through the input configuration file. This includes control for the definable

communication “language”, the GUI, User IO and Data processing. There are a number of

configuration examples provided in the subsequent sections however, a complete listing of

available options is included in the source code documentation.

3.2.2 Inputs2,3

In the context of this paper, inputs are the signals coming from the NCS simulation specified

as reports. NCS publishes population level information about the simulation to each of the

reports requested. This information can be spike-counts for individual neurons, sampled

synaptic weights and neuron voltages.

Input Containers

The base class for all inputs is the input container. This provides the common functionality,

such as initialization and communication, as well as the interface for all derived classes.

Windowed Input Containers

Windowed input containers allow the user to specify a window of time over which the

spiking activity of any number of neuron populations can be compared in a winner-takes-

all pattern. The window of time is determined by how often the NCS simulation sends

spiking information. There are currently two types of derived window input containers,

one uses a fixed amount of time and the other uses a moving window.

The fixed time container compares the spiking activity over a static window. After the

defined period of NCS reports has elapsed the most active population (the one with the
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i n p u t :
{

# The number o f un i qu e Re por t c o l l e c t i o n s
N C S R e p o r t C o l l e c t i o n s = 2 ;
N C S R e p o r t C o l l e c t i o n 1 : {

n u m r e p o r t s = 500 ;
# The t o t a l p e r i o d o f c o u n t i n g , i n c l u d e s
# r e p o r t c o l l e c t i o n and r e c o v e r y .
p e r i o d = 500 ;
# The number o f r e p o r t o u t p u t s .
NCSReports = 2 ;
t y p e = "STANDARD" ;
NCSReport1 : {

c o n n e c t i o n = "to_PMC1" ;
command = "point_left" ;
} ;

NCSReport2 : {
c o n n e c t i o n = "to_PMC2" ;
command = "point_right" ;

} ;
# Se tup t h e p l o t s f o r t h i s group .
p l o t = "YES" ;
p l o t T y p e = "BAR" ;
p lo tname = "Motor Activity" ;
t a b I n d e x = 1 ;
p l o t I n d e x = 1 ;

} ;
# Th i s group i s used j u s t f o r d i s p l a y i n g
# i n f o r m a t i o n on t h e GUI
N C S R e p o r t C o l l e c t i o n 2 : {

t y p e = "RASTER" ;
NCSReports = 2 ;
NCSReport1 : {

c o n n e c t i o n = "display_PMC1" ;
p lo tname = "Premotor Cortex 1" ;
c e l l s = 1 0 ;
t a b I n d e x = 1 ;

} ;
NCSReport2 : {

c o n n e c t i o n = "display_PMC2" ;
p lo tname = "Premotor Cortex 2" ;
c e l l s = 1 0 ;
t a b I n d e x = 2 ;

} ;
} ;

} ;

Listing 3.1: Input configuration example
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highest number of spikes) is selected. The command specified in the configuration file for

that report channel is then sent to all connected clients. An example configuration for a

fixed time container is presented in Listing 3.1.

The second input container uses a moving window of time. This window is fixed width

but progresses in time as the simulation progresses. This continues until the most active

population’s activity is greater than the next most active by a user specified threshold. At

that time the command associated with that report is sent out and the window is reset.

A key feature of both the inputs and the outputs, described in Section 3.2.3 below, is the

ability to bind the same command string to multiple containers. This provides a mechanism

for starting a coordinated series of events based on a single client command or simulation

result.

In addition to sending commands to the connected agents these containers can also be

used for plotting in the GUI as described below.

3.2.3 Outputs2,3

The NCSTools outputs define the signals traveling to the NCS simulations. These are

stimuli sent to populations and can be triggered by text strings from the connected clients

or by the built-in touchpad interface described below.

Static Output

The stimulus sent to the neuron population is fixed and defined by the configuration file.

Dynamic Output

The stimulus sent to the neuron population is sent by the client along with the string com-

mand.

Timed Output
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o u t p u t :
{

NCSStims = 2 ;
NCSStim1 : {

t y p e = "TIMED_OUTPUT" ;
command = "saw_red" ;
c o n n e c t i o n = "from_VC1" ;
# The s t a t i c o u t p u t t o send when t h e c l i e n t
# r e q u e s t s i t . Th i s i s s t i l l needed f o r
# t h e p a r s e r even when u s i n g Dynamic mode .
o u t p u t = "0.2000" ;
# How many t i c k s between s t i m i n p u t s .
f r e q u e n c y = 5 0 ;
# The number o f t i m e s t o r e p e a t t h e i n p u t .
n u m o u t p u t s = 1 0 ; ;

} ;
NCSStim2 : {

t y p e = "TIMED_OUTPUT" ;
command = "saw_blue" ;
c o n n e c t i o n = "from_childbot_VC1" ;
o u t p u t = "0.0000" ;
f r e q u e n c y = 5 0 ;
n u m o u t p u t s = 1 0 ; ;

} ;
} ;

Listing 3.2: Output configuration example

Timed output containers are used to send the same stimulus a set number of times. Through

the configuration file the user can specify how many times to send the stimulus and the

interval between successive stimulus. An example of this is presented in Listing 3.2.

3.2.4 Network Communication3,4

Aside from the user interface, the connections illustrated in Figure 3.1 represent one or

multiple network communication mechanisms. NCSTools not only coordinates the con-

nection to and from the NCS neural simulation but also provides a network server for

handling client and remote agent connections. The individual components of the network

communication provided by NCSTools are described below.
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# De f i n e t h e v o S e r v e r C o n n e c t i o n
v o S e r v e r : {

h o s t = "localhost" ;
p o r t = "20003" ;

} ;
# De f i n e t h e s e t t i n g s f o r t h e NCSTools S e r v e r
s o c k e t S e r v e r : {

h o s t = "0.0.0.0" ;
p o r t = "20001" ;

} ;

Listing 3.3: Server Configuration Example

NCSTools Server4

NCSTools uses a simple POSIX socket server for client communication. The simplicity of

the server helps ensure its reliability and the low-level components help guarantee that the

performance of the server does not hinder the overall application.

Client Communication2,3,4

Several client implementations are provided for C++, Python and MATLAB/Java. These

provide objects that appropriately abstract the interface from the implementation to support

the extensibility of both NCSTools and client applications. Both blocking and non-blocking

communication is supported.

IO Clients

The IO clients are used for most applications. These provide the input and output mecha-

nisms required to interact with NCSTools.

Pacing Clients

As neural models increase in both size and complexity they often exceed the real-time

capabilities of the hardware. Pacing clients are provided to ensure that remote clients do

not overfill buffers or lose track of the simulation. These connect to NCSTools to maintain
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synchronization and receive heartbeats that are output at user specified intervals signaling

the current time in the simulation.

Passthrough Clients

Passthrough clients connect to the NCSTools server and receive messages sent to or from

other clients connected to the server, including the NCS simulation. These clients can

provide users with a complete landscape of the neurorobotic experiment. These can also

be used to create context aware clients that can modify their behavior based on the state of

the system.

voServer

Communication with NCS is facilitated by the voServer package [28]. This is a minimal

publish-subscribe server that provides both binary and ascii data streams. As part of this

project a C++ client was developed similar to the NCSTools clients described above. This

client is used by all of the IO modules of NCSTools.

3.2.5 Graphical User Interface

The Graphical User Interface (GUI) is an option given to users for visualizing aspects of

the neural model in real-time. The GUI was written as a C++ library using Qt [11]. As

with all aspects of NCSTools, it is completely configurable through the input file. The user

can specify each tab and what information shows up on that tab. An example GUI is given

in Figure 3.2.

Plot Types

The GUI is used to visualize the state of the NCS simulation. It provides three plot types:
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Figure 3.2: Example graphical user interface. This is a single tab that presents the three main types of plots.
The tabs and plots are dynamically created based on the configuration file provided at runtime.

Bar Plots

Bar plot are used to visualize the spiking activity of competing neuron populations. It uses

the derived instances of the windowed input containers, described in Section 3.2.2.

Raster Plots

Raster plots present the precise spiking activity of the neurons within a population. The X

axis is the time, in units of simulation reports, and the Y axis corresponds to the neuron

index relative to the population.

Line Plots

Line plots are used to plot the synaptic efficacy over time, again this is in units of simulation

time.
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g u i : {
numTabs = 3 ;
t a b 1 : {

name = "Main Window" ;
l a y o u t = "HORIZONTAL" ;
n u m p l o t s = 4 ;

} ;
t a b 2 : {

name = "Stim Input" ;
l a y o u t = "HORIZONTAL" ;
n u m p l o t s = 2 ;

} ;
t a b 3 : {

name = "Motor Areas" ;
l a y o u t = "GRID" ;
n u m p l o t s = 4 ;

} ;
} ;

Listing 3.4: GUI Configuration Example

3.2.6 Touchpad Interface

The touchpad interface provides users with a way to bind keyboard inputs, either single

keys or new-line terminated strings, to stimulus and control signals. The input is entered

through the command line and is fully configurable through the input language. There are

three major options for the touchpad that are described below. The touchpad signals can

be directed to a named NCS input or to agents connected to the NCSTools server. Similar

to the inputs and outputs described above, a particular key binding can be used for any

number of different commands. With this a single keyboard input to control many different

aspects of the neurorobotic interaction.

Instant: When touchpad bindings are defined as instant their associated actions will occur

only once and as soon as the command is received.

Repeated: The repeated bindings are analogous to the time outputs described in Section

3.2.3. These provide a way to repeat an input stimulus over a configured period of time.
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k e y b i n d i n g 2 : {
t y p e = "SERVER_KEY_TIMED" ;
voConnec t ion = "v03" ;
# The number t o t i c k s t o w a i t b e f o r e s e n d i n g o u t p u t 2 .
m a x t i c k s = 2000 ;
# The h i g h e s t v a l u e t o a c c e p t from t h e keyboard .
m a x i n p u t = 1 0 ;
# How many o u t p u t s w i l l t h i s k e y b i n d i n g have .
o u t p u t s = 2 ;
o u t p u t 1 : {

S e r v e r S t r i n g = "Saw_Red_Pointed_Left" ;
o u t p u t 1 = "SETHEBBIAN syn_EE BOTH;" ;
o u t p u t 2 = "SETHEBBIAN syn_EE NONE;" ;

} ;
o u t p u t 2 : {

S e r v e r S t r i n g = "Saw_Blue_Pointed_Right" ;
o u t p u t 1 = "SETHEBBIAN syn_EE BOTH;" ;
o u t p u t 2 = "SETHEBBIAN syn_EE NONE;" ;

} ;
} ;

Listing 3.5: Sample Touchpad Configuration

Timed: The timed bindings provide a mechanism for setting a period of silence before

repeating the configured stimulus. This basically creates a window of stimulus followed by

a rest period. This window is then repeated for the configured number of times.

Coupling With Input Signals

The unique aspect of the Repeated and Timed bindings is the ability to couple them to

signals coming from the connected agents. When a configured signal is received from a

connected agent the user is prompted for a numerical value by the touchpad interface. This

value is used to determine the graded input values sent to the simulation. This is used in

the example given in Section 3.3 below.
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3.2.7 Control Interface

In addition to sending stimulus and receiving reports, NCSTools provides access for con-

trolling and modifying a running neural simulation. Commands can be bound to strings

from connected agents or to the built-in touchpad functionality. Some of the features this

releases include the saving and loading of model states, modification of synapses, adding

new stimulus paths and stopping the simulations.

3.3 Example Scenario

Visual
Cortex

Premotor
 Cortex

NCS Simulation
STDP

Synapses

NCSTools

"saw red"

"point left"

1
2

3

4

5

0 10

6 Graded 
Reward

Figure 3.3: Example neurorobotic scenario.

To illustrate NCSTool’s role in neurorobotic research, a motivating example is pre-

sented in Figure 3.3. In this case the remote agent is a virtual robotic avatar and the inter-
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action is with a camera and the touchpad interface. The steps are:

1. Camera captures image from user and dominant color is calculated.
2. The virtual environment sends the defined plain text statement (“saw red”) to NCSTools

through the server interface. This uses a static output described in Section 3.2.3.
3. Based on the configuration NCSTools will stimulate the appropriate regions of the remote

NCS Model through the NCS network interface.
4. The activity of the two premotor regions in the model are monitored and compared as the

simulation progresses. A windowed input describe in Section 3.2.2 monitors the activity.
5. In this case a winner-takes-all calculation is computed and the appropriate plain text state-

ment is sent through the NCSTools server interface to the robotic avatar based on the most
active brain region.

6. The user is then given the opportunity to “reward” the robot if the correct color was iden-
tified. The reward is achieved by coupling the output from the agent with the touchpad
interface as described in Section 3.2.6.

Although this is a simple example there is still a significant amount of coordination

involved.

3.4 Discussion

NCSTools provides a dynamic interface to the neural simulation environment NCS. The

abstraction between the neural models and the robotic interface is unique to this project

and there have already been several projects that have successfully leveraged NCSTools.

Oxytocin Induced Trust

The work presented by Anumandla et al. [2] made extensive use of NCSTools. In this

project a human participant interacted with a robotic avatar through a GPU based Gabor

processing application, NCSTools and a NCS simulation. The results of this work provided

new theories on the role Oxytocin may play in establishing and stabilizing trust between

mammals. These theories would not have been possible without a closed loop virtual neu-

rorobotic system.
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Emotional Speech Processing

Thibeault et al. [44] used NCSTools to coordinate the processing between a speech

extraction package and a neural simulation. The speech processing algorithm successfully

extracted the emotional aspects of a person’s speech pattern to determine the reward stim-

ulus to inject into the model.

Virtual Reality

As part of an unpublished proof-of-concept, NCSTools was utilized for the large-scale

visualization of a running neural simulation. The neural model was constructed within

NCS along with a corresponding X3D model. The visualization software created a virtual

representation of the neuron populations. Through the network interface the voltages of the

cells within the model were collected and as the simulation progressed the model neurons

would change color to represent the voltage of the cell. In addition, 3D sound was used to

signal when a spike was fired. The package was tested successfully on a 3D wall and a 6

sided Cave Automatic Virtual Environment (CAVE).

Future Directions

There are several directions that have been identified for future development of NCSTools.

Real-time Structural Modifications

Providing a mechanism for users to modify aspects of the model including the type

of neuron and the connectivity, will greatly increase the rate at which different models

can be evaluated. In addition, this would provide a mechanism for actively modifying

neurogenesis (the addition of new neurons), and synaptogenesis (the dynamic addition and

removal of synaptic connections).

Cluster-Aware Version
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The complexity of large-scale neural models generally requires distributed compute

clusters. By creating a cluster-aware version of NCSTools, multiple instances can run in

parallel while still coordinating communication between instances.

Dynamic Server Configuration

The current version is only modifiable on initialization. Allowing users to modify the

configurable aspects of NCSTools will make it a more appealing tool for neurorobotics.



32

Chapter 4

Emotional Speech Processing

Thibeault, C. M., Sessions, O., Goodman, P. H., and Harris Jr., F. C. (2010b). Real-time
emotional speech processing for neurorobotics applications. In Proceedings ISCA’s 23rd
International Conference on Computer Applications in Industry and Engineering (CAINE-
2010), Las Vegas, NV.

Abstract

The ability for humans to understand and process the emotional content of speech is unsur-

passed by simulated intelligent agents. Beyond the linguistic content of speech are the un-

derlying prosodic features naturally understood by humans. The goal of emotional speech

processing systems is to extract and classify human speech for these so called paralinguis-

tic elements. Presented here is a proof-of-concept system designed to analyze speech in

real-time for coupled interactions with spiking neural models. Based on proven feature

extraction algorithms, the resulting system provides two interface options to running sim-

ulations on the NeoCortical Simulator. Some basic tests using new recordings as well as a

subset from a published emotional database were completed with promising results.
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4.1 Introduction

Much of human communication is not in what is said but how it is spoken. These subtle

changes in emotion that exist beyond the linguistic aspects and the perceptual ability to

interpret them is fundamental to speech. There have been many studies aimed at param-

eterizing and classifying such emotions. While many of these investigations have taken

advantage of advances in neural networks as well as statistical and probabilistic classifica-

tion mechanisms, the authors are unaware of such studies employing biologically realistic

neural networks. These so called spiking networks strive to model neurons and neural as-

semblies with as much biological realism as is computationally feasible. The combination

of biological neural networks and high-level speech processing proposes a unique oppor-

tunity to explore some of the possible neural mechanisms behind emotional expression.

Additionally, these networks may aid in the creation of more successful emotional clas-

sification tools. This project is a first step towards the combination of emotional speech

processing (ESP) and computational neuroscience in a real-time architecture that can be

easily modified and extended.

Theory

There has been a wealth of research on the extraction of emotional information from

speech. Unfortunately, this work has yet to identify a standard set of features that com-

pletely identify a signal. The most common features found in the literature deal with pitch.

Additionally, the energy, rate, and frequency components of a signal have been employed

with varying rates of success.
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Acoustic Properties

Of the acoustic properties researched by the community, pitch appears to be one of the

more popular. A product of the tension of the vocal-cords and the corresponding air pres-

sure, pitch changes over time show a direct relation to some basic emotions (e.g. anger

and happiness) [17]. Ververidis et al. [45], presented a collection of how many acoustic

features, including pitch, correspond to some of the basic emotions. Similarly, the intensity

of a signal can be used to classify emotional content of a signal.

Although there is considerable empirical evidence supporting the classification of a

speech signal based on the acoustic features, there is also wide variation between these

studies. Additionally, it has been argued that these features really only provide information

about the arousal state of the speaker, rather than their true emotional state [17].

Previous Work

Previous studies on emotional speech recognition use methods ranging from frequency

analysis, segmental analysis or prosodic features, as well as analysis of the signal inten-

sity. For comprehensive reviews of the current literature of these methods see [45] and [6].

From these reviews, it becomes obvious that the concept of extracting emotional informa-

tion independent of the linguistic content is not new. Additionally, there have been several

applications identified for these types of classification systems. Some examples are pre-

sented in the discussion of Section 4.5 below.

Contribution of This Project

This paper presents an emotional speech processing system offering both real-time perfor-

mance and a simple programming interface. The remainder of the paper continues with
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Figure 4.1: Speech Processing System

Section 4.2, describing the overall system design. Section 4.3 describes the initial testing

completed over the course of development. With Section 4.4 giving the results of those

tests. Finally, Section 4.5 concludes with a brief discussion of its applications as well as

future work.

4.2 Emotional Speech Processing System

The overarching goals of this project were to develop a complete speech processing system

that could not only perform in soft real-time but could be modified and extended by users

with limited programming skills. The MATLAB environment was chosen mostly for its

ease of use. Its interpreted language processing can often be a disadvantage, however for

this project some basic optimizations facilitated real-time performance.

The system consisted of three processing sections: Audio Capture, Signal Processing

and Data Communication. The speech processing system is diagrammed in Figure 4.1 and
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explained further below.

4.2.1 Data Capture

The audio stream is captured using the Data Acquisition Toolbox for MATLAB, developed

by The Mathworks Inc. Data is captured in 1 second blocks before being sent to a custom

callback function. The Analysis begins with an extraction of the significant segments in

the speech signal. There are many different methods for segmentation, see [36, 47], here, a

simple speech energy calculation is used.

The speech energy of a signal is an average sum of squares calculation that can rep-

resent the overall energy in a window of speech. The speech energy can be employed for

distinguishing actual speech signals from background noise. Although not employed in this

system, the speech energy can additionally be used to help classify the emotional arousal

level of the speaker. It can be calculated by Equation (4.1).

E(m) =
1

N

N∑
n=0

|x(n)|2 (4.1)

Where N is the number of samples, x(n) is the measured value at time n with respect

to the current window and m is the current window being processed. This calculation is

completed on 20ms windows of data. The results are stored and compared to a user defined

threshold. When that threshold is reached the system will begin extracting sampled data

until the threshold is crossed again. Finally, the extracted window of data is sent to the

signal processing blocks. Any left-over data will be retained and attached to subsequent

recordings.
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4.2.2 Signal Processing

The feature extraction begins with a calculation of the mean and range of the raw intensity

values. The segment is then run through an autocorrelation algorithm and the fundamental

frequencies of 20ms windows is computed. The window is stepped by 10ms allowing

overlap of pitch calculations.

Autocorrelation Analysis

The autocorrelation calculation has been shown to faithfully extract the fundamental fre-

quency (pitch) of speech signals. In general the autocorrelation calculation is not appropri-

ate for any continuous function. However, by taking piece-wise windows of the continuous

signal, the stationarity assumption can be applied to the individual window [34]. This as-

sumption allows the use of sample autocorrelation calculations on continuous signals and

illustrates its appropriateness for this application.

The autocorrelation of a windowed signal, x(n) with N samples, can be defined as

Equation (4.2) [19, 34].

R(m) =
1

N

N−1−m∑
n=0

x(n)x(n+m) (4.2)

Requiring programmatic loops, this can be a computationally expensive calculation. That

cost can be reduced by considering the calculation as an ordinary convolution. The au-

tocorrelation can then be computed using the periodogram spectrum defined as Equation

(4.3) [34].

S(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−jωn

∣∣∣∣∣
2

(4.3)

This is sometimes referred to as the short-time spectrum. As defined by the Wiener-
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Khinchin theorem the combination of S(ω) and R(m) are a simple Fourier-Transform pair.

Additionally, R(m) can be redefined as Equation (4.4) [19].

R(m) =

∫ π

−π
S(ω)cosωm, dω (4.4)

Finally, utilizing the FFT and IFFT functions the autocorrelation of the window can be

efficiently calculated using Equation (4.5) [19, 34].

R(m) =
1

N
IFFT

(
|FFT (x(n))|2

)
(4.5)

The fundamental frequency, F0, of the resulting signal will be represented by the lag

location with the greatest amplitude. For emotional speech, the lag is restricted to a range

between 50 and 500Hz; this corresponds to the region of pitch perceivable by humans [45].

Four statistical features are extracted from the fundamental frequency analysis. This

begins with the mean, range and variance of F0. Finally, the slope of the pitch is calculated

and fundamental frequency slopes greater than 70Hz are filtered out.

The data capture and signal processing will continue for a user-definable period after

the first segment is detected. In testing it was found that a 2-3 second window of processing

was sufficient.

At this point the extracted features can be sent to one of two different communications

units described in detail below.

4.2.3 Data Communication

There are two options for interacting with an NCS simulation. The choice depends on the

role the speech system is playing in a particular investigation.
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Path 1

The first communication path is a Java based socket interface from MATLAB to a NC-

STools server [42]. NCSTools is a C++ based software system that provides a number

of mechanisms for communicating with a running NCS simulation. NCSTools accepts

plain text strings from any number of clients connected through the built-in socket server.

Through a custom configuration file, users can assign these strings to input stimulus to, or

simulation controls of, a running NCS instance. Similarly, NCSTools can be configured to

process simulation reports in a number of different ways. The results of which can be sent

to connected clients through the server interface. This allows designers of remote tools

to interface with a neural-simulation in a way that abstracts them from the details of the

model. Thus providing a mechanism of reuse without modification for different models;

only the NCSTools configuration needs to be changed.

The use of this path was intended but certainly not limited to coupling with the statistical

classification output of the ESP system. As the data is categorized the results can be sent

to NCSTools. NCSTools can then activate defined brain regions or dynamically modify

Hebbian learning rules. This paradigm provides a means for verbally interacting with a

neurorobotic avatar. Additionally, the classified verbal responses can be used for rewarding

correct behaviors and discouraging those considered incorrect.

Path 2

The second communication option is a direct socket interface to a running NCS simulation.

Similar to the direct NCSTools option above, this is comprised of a Java client interface that

connects to the C++ server implementation. This option facilitates future feature classifi-

cation methods employing biologically realistic spiking neural models; a combination that
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has significant potential for researchers of both computational neuroscience and speech

recognition.

4.3 Testing

To demonstrate the system’s capabilities a series of tests were completed. The real-time

capture and processing was verified using MATLAB’s built-in timing tools. Additionally,

MATLAB’s Data Acquisition Toolbox provided mechanisms for reporting when the sam-

pled data was not removed before the next sample was ready. Tests were performed on

both the classified result (Path 1) and direct data connection (Path 2).

English Recordings

Some initial analysis was completed with non-trained participants speaking the emotionally

ambiguous phrase, “Look what you’ve done,“ while expressing two basic emotions, Joy

and Disappointment. These recordings were not analyzed by trained reviewers, so the

emotion was categorized by the researcher team only. These tests, however, did provide an

excellent test facility for development of the system.

Berlin Emotional Speech Database

Finally, to show how this system can perform on standardized data, a portion of the Berlin

Database of Emotional Speech was used [8]. Although in German, EmoDB provides an

excellent reference for testing emotional speech algorithms. In emotional speech research

there is a lack of freely available databases, especially in English. It was for this reason

that EmoDB was utilized.

There is considerable evidence that the classification of the extracted features described
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above are dependent on the gender of the speaker [5, 45, 48]. This motivated the use of

only male recordings for initial testing purposes. Similarly, the performance of many emo-

tional speech recognition systems show a strong speaker dependence [5, 45]. In this project

however, it was decided multiple speakers would be allowed but the range of emotions was

limited to Anger and Fear. Generally as more emotions are added to the classification sys-

tem the accuracy will decrease [27, 32, 36]. However, Wu et al. [52], accomplished higher

recognition rates of 7 of the Berlin Database emotions (disgust was excluded) using long-

term spectro-temporal features. Similar results were accomplished by Vlasenko et al., [46],

using a combination Gaussian Mixture and Support Vector Machine. The computational

cost of these methods would require further investigation for inclusion in real-time system

similar to that proposed here. The purpose was not to demonstrate superiority over exist-

ing systems but to merely illustrate a classification scheme that can perform accurately in

real-time.

Five recordings from both the Anger and Fear sets were randomly selected. The re-

maining recordings were then analyzed using the emotional speech recognition system. It

should be noted here that the recordings were used directly and not sampled by the data

acquisition toolbox. As the results of the first tests demonstrated, the system does operate

in real-time. After the speech features were extracted, a classification and regression tree

was constructed in MATLAB based on the results. Having been successfully employed by

other emotional speech processors [40], classification trees can be simple to construct and

allow the inclusion of other features not utilized here (e.g. linguistic aspects of the speech

signal).

Each segment, as detected by the system, was classified and used as training data in

the tree construction. The 10 recordings were then analyzed using the classification tree.

Unlike the two to three second analysis period activated by the normal system, the entire
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Figure 4.2: Results of male participant speaking the phrase “Look what you’ve done” with the acted emo-
tions, joy and disappointed. Raw data is plotted with black lines. The Speech Energy is plotted in Red. The
selected segments are framed by the gray Lines.

recording was used. Each segment was classified, with the result stored locally. When the

recording was complete, the system would select the dominant emotion in the recording

and send the result to the NCSTools server.

4.4 Results

The results for the English recordings are included here as an illustration of the concepts

presented above. In Figure 4.2 the black lines represent the raw data recorded during the
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Figure 4.3: Extracted features of male participant. Values from recording classified as Joy are marked in red.
The Disappointment values are marked in blue. The x-axis corresponds to the utterance as outlined in Figure
4.2.

training session. The red lines are the speech energy of the signal as calculated by Equation

(4.1) and the gray lines frame the automatically calculated segments selected for analysis.

The extracted features are given in Figure 4.3. The red marks are from recordings classified

as Joy with the blue representing Disappointment. For the intensity mean, intensity range,

and pitch mean measurements there is a clear visual separation between the two emotions.

The utility of the other measurements, at least in terms of a visual analysis, is unclear. It is

likely that trends specific to each emotion will emerge with longer samples as well as more

of them.
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Table 4.1: Results of Berlin Database [8] Testing.

Actual
Fear Anger

Predicted Fear 4 2
Anger 1 3

Test results with the Berlin Database were promising. Of the 10 randomly selected

recordings, 3 were classified incorrectly. With the ESP system correctly identifying 3 out

5 recordings labeled as angry and 4 out 5 as fear correctly. This is summarized in the con-

fusion matrix labeled Table 4.1. Although only two emotions were trained and classified,

this result still illustrates the potential of the design.

4.5 Conclusion

A unique real-time emotional speech recognition system was presented with some promis-

ing test results. As a proof-of-concept, this project’s results are encouraging and have

provided evidence that future work and extended applications will be possible.

Although the system is currently not perfect, there are number of additions that can be

made to improve the overall classification performance. Using one of the alternative clas-

sifiers should boost the performance and allow for the classification of more than just two

emotions. However, adding additional complexity to the classifier will affect performance;

a balance between accuracy and performance must be made. For the application presented

in Section 3.3, the this classifier would likely be sufficient. Because that decision system

is itself noisy, variations in the reward would be easily tolerated and compensated for. A

more rigid paradigm however, would require a better performing classifier.
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Table 4.2: Incorrectly classified recordings from the Berlin Database [8].

Code Speaker Info German Phrase English Translation Emotion Prediction

03b10Ab male, 31 years Die wird auf dem Platz
sein, wo wir sie immer
hinlegen

It will be in the place
where we always store
it

Fear Anger

10b02Aa male, 32 years Sie haben es gerade
hochgetragen und
jetzt gehen sie wieder
runter

They just carried it up-
stairs and now they are
going down again

Fear Fear

11b09Ad male, 26 years Ich will das eben
wegbringen und dann
mit Karl was trinken
gehen

I will just discard this
and then go for a drink
with Karl

Fear Fear

12b02Ad male, 30 years Sie haben es gerade
hochgetragen und
jetzt gehen sie wieder
runter

They just carried it up-
stairs and now they are
going down again

Fear Fear

15a04Ac male, 25 years Heute abend knnte ich
es ihm sagen

Tonight I could tell him Fear Fear

03a02Wb male, 31 years Das will sie am
Mittwoch abgeben

She will hand it in on
Wednesday

Anger Fear

10a04Wb male, 32 years Heute abend knnte ich
es ihm sagen

Tonight I could tell him Anger Anger

11b02Wb male, 26 years Das will sie am
Mittwoch abgeben

She will hand it in on
Wednesday

Anger Anger

12a07Wa male, 30 years In sieben Stunden wird
es soweit sein

In seven hours it will
be

Anger Anger

15b01Wc male, 25 years Was sind denn das fr
Tten, die da unter dem
Tisch stehen

What about the bags
standing there under
the table

Anger Fear

4.5.1 Applications

Beyond the applications to computational neuroscience and neurorobotics discussed pre-

viously, several applications for emotional processing have been identified by other re-

searchers. These include call center monitoring [1, 31, 36], Human-Computer Interaction

[27], aircraft pilot monitoring [45], and as a therapist diagnostics tool [45]. A possible

addition could be applications in law enforcement. The ability to analyze the emotional

state of both officers and civilians could provide law enforcement agents with a tool useful
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in both investigations and stressful situations.

4.5.2 Future Work

As this project progresses from a proof-of-concept to a functional research tool, there are

several additions that need to be considered. Some of the more successful techniques ref-

erenced here will be considered as replacements for the current algorithms. In addition,

novel classification and segmentation concepts must be explored and integrated into the

ESP system.

With more comprehensive algorithms the computational cost will inevitably increase.

This will eventually lead to a loss of real-time performance and the need to explore new

hardware and software platforms.
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Chapter 5

Discussion

Despite the benefits of embodied modeling there is a lack of formalized tools for actively

researching it. The first contribution of this thesis presented a tool to ease the burden of

development on researchers. Although this is an important step, it is still not a solution

that can fully support all aspects of neurorobotics. Within the field of computational neuro-

science there has been considerable emphasis placed on model interoperability [13]. This

movement has gained traction within the community. However, neurorobotics is relatively

new, and the idea of standardized components has not yet been fully developed. As these

ideas are solidified an obvious extension of the work presented in Chapter 3 would be to

support the key standardized inputs.

The second contribution of this thesis dealt with an empirically supported theory of

behavior that lacked a clear neural basis. The concept of rationalizing the emotion behind

what a person is saying is clear at the cognitive level and this can be a vital component

to a neural model. However, incorporating that theoretical knowledge into an embodied

agent can be a difficult task. The work presented in Chapter 4 illustrated the process of

integrating a high-level behavioral function with a spiking neural-model.
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There are number of ways that the performance of the ESP system can be extended.

AS mentioned above, increasing the complexity of the classification system will result in

improved accuracy. In addition to this, more information about the speech signal can be

extracted and used for classification. Some of these features are reviewed in Ververidis et

al. [45].

Still, all of these deal with the subglottal waveforms; it is not what the speaker is saying

that is important but how they are saying it. Coupling this ESP with speech recognition

would allow for a complete analysis of the speaker’s emotional state. This would require

considerably more computational power but in many applications this level of analysis

would be required (i.e. aircraft pilot monitoring).

Although, the field of neurorobotics is still new, there is considerable interest in de-

veloping brain-based systems. These neurologically inspired designs may someday yield

agents that can be truly considered intelligent.
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