
Use Case 1.1 Add RateConstant

Primary Actor: End-User

Preconditions: • An instance of MarkovModel is initialized

• A RateConstant is initialized with valid parameters
and stored in a smart ptr

Postconditions: • The RateConstant is added to MarkovModel’s
map of rates with its name as the key

• MarkovModel is set to unvalidated

Main Success Scenario:
1. The user calls MarkovModel’s method addRateConstant() with a smart ptr to

the initialized RateConstant as the only arguement

2. MarkovModel searches map of rates for a RateConstant with the same key value
as the RateConstant to be added; none exist

3. The RateConstant is added to map of rates with its name as the key

Extensions:
2a. A RateConstant with the same name exists in map of rates:

1. System throws a runtime exception notifying the user that the RateConstant
already exists

2. map of rates is unmodified

1



Use Case 1.2 Add State

Primary Actor: End-User

Preconditions: • An instance of MarkovModel is initialized

• A State is initialized with valid parameters and
stored in a smart ptr

Postconditions: • The State is added to MarkovModel’s map of states
with its name as the key

• MarkovModel is set to unvalidated

Main Success Scenario:
1. The user calls MarkovModel’s method addState() with a smart ptr to the initial-

ized State as the only arguement

2. MarkovModel searches map of states for a State with the same key value as the
State to be added; none exist

3. The State is added to map of states with its name as the key

Extensions:
2a. A State with the same name exists in map of states:

1. System throws a runtime exception notifying the user that the State already
exists

2. map of states is unmodified

2



Use Case 1.3 Add Connection

Primary Actor: End-User

Preconditions: • An instance of MarkovModel is initialized

• A Connection is initialized with valid parameters and
stored in a smart ptr

Postconditions: • The Connection is added to MarkovModel’s vector
of connections

• MarkovModel is set to unvalidated

Main Success Scenario:
1. The user calls MarkovModel’s method addConnection() with a smart ptr to the

initialized Connection as the only arguement

2. MarkovModel searches the vector of connections for a Connection between the
same States as the Connection to be added; none exist

3. The Connection is added to the vector of connections

Extensions:
2a. A Connection between the same States exists in the vector of connections

1. System throws a runtime exception notifying the user that the two States
in the Connection have already been connected

2. The vector of connections is unmodified

3



Use Case 1.4 Set initial State

Primary Actor: End-User

Preconditions: • An instance of MarkovModel is initialized

Postconditions: • MarkovModel’s initial State is set to the specified
value

• MarkovModel is set to unvalidated

Main Success Scenario:
1. The user calls MarkovModel’s method setInitialState() with the name of the State

as the only argument

2. MarkovModel checks if the initial State already been set; it has not

3. The initial State is set to the specified value

Extensions:
2a. The initial State has already been set

1. System throws a runtime exception notifying the user that the initial State
has already been set

2. The initial State is unmodified

4



Use Case 1.5 Validate MarkovModel

Primary Actor: End-User

Preconditions: • An instance of MarkovModel is initialized

Postconditions: • The user is notified that the MarkovModel is correct

• MarkovModel’s validation flag is set to true

• The states in the map of states are assigned unique
indices

• The State which was defined as initial State has its
inital state flag set

Main Success Scenario:
1. The user calls MarkovModel’s method validate() with a smart ptr to a valid

StateOfTheWorld instance as the only arguement

2. The system confirms that at least one Connection has been defined

3. The system confirms that every State referenced in the vector of connections has
a corresponding entry in the map of states

4. The system confirms that every RateConstant referenced in the vector of connec-
tions has a corresponding entry in the map of rates

5. The system confirms that the initial State has been defined

6. For every LigandGatedRateConstant in the map of rates, the system confirms
that the Concentration has been declared

7. The system confirms that no model errors have been found in during validation
process

8. The system sets the validation flag to true

9. The system sets the state indices in every State in the map of states

10. The system sets the initial state flag on the initial State

11. The system returns the validation results to the user with a success result, no
errors, and no warnings

Extensions:

5



2a. No connections have been defined

1. The system sets the validation error flag

2. The system saves a no Connections error message in the vector of error
messages

3. The system resumes at step 3

3a. A State referenced in the vector of connections does not exist in the map of states

1. The system sets the validation error flag

2. The system saves a State not defined error message in the vector of error
messages

3. The system resumes at step 4

4a. A RateConstant referenced in the vector of connections does not exist in the
map of rates

1. The system sets the validation error flag

2. The system saves a RateConstant not defined error message in the vector of
error messages

3. The system resumes at step 5

5a. The initial State has not beed defined

1. The system sets the validation error flag

2. The system saves an initial State not defined error message in the vector of
error messages

3. The system resumes at step 6

6a. The pointer to the StateOfTheWorld is NULL

1. The system sets the validation error flag

2. The system saves a StateOfTheWorldIsNull error message in the vector of
error messages

3. The system returns the validation results to the user

6b. A Concentration referenced by a LigandGatedRateConstant has not beed defined

1. The system sets the validation error flag

2. The system saves a Concentration not defined error message in the vector
of error messages

3. The system returns the validation results to the user

7a. The system has detected errors during the validation process

1. The system returns the validation results to the user

6



7


