
University of Nevada, Reno

A Python Library for Ion Channel Modeling

A thesis submitted in partial fulfillment of the
the requirements for the degree Master of Science in

Computer Science and Engineering

by

Gareth B. Ferneyhough

Dr. Frederick C. Harris, Jr. / Thesis Advisor

August, 2013

c©by Gareth B. Ferneyhough 2013
All Rights Reserved

We recommend that the thesis
prepared under our supervision by

GARETH B. FERNEYHOUGH

entitled

A Python Library For Ion Channel Modeling

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Ph. D, Advisor

Dr. Sergiu Dascalu, Ph. D, Committee Member

Dr. Normand Leblanc, Ph. D, Graduate School Representative

Marsha H. Read, Ph. D., Dean, Graduate School

 August, 2013

THE GRADUATE SCHOOL

i

Abstract

The creation and simulation of ion channel models using continuous-time Markov

processes is a powerful and well-used tool in the field of electrophysiology and ion

channel research. While several software packages exist for the purpose of ion channel

modeling, none are available as a Python library. In an attempt to provide an easy-

to-use, yet powerful Markov model-based ion channel simulator, we have developed

ModFossa, a Python library supporting easy model creation and stimulus definition,

complete with a fast numerical solver, and attractive vector graphics plotting.

ii

Dedication

For my parents.

iii

Acknowledgments

First, I would like to thank my parents; it is with their love and support over my

educational career that I have attained my goal of a master’s degree.

Next, I would like to thank my advisor, Dr. Frederick C. Harris, Jr., and com-

mittee members Dr. Sergiu Dascalu and Dr. Normand Leblanc for their time and

helpful suggestions. Additionally, I would like to acknowledge all of the faculty at the

university, especially in the Computer Science department for their dedication.

Lastly, I owe a big thank-you to Dr. Corey Thibeault and Mr. John Kenyon, whose

enthusiasm, guidance, and encouragement over the last year has proved tremendously

helpful.

This work was partially supported by the U.S. Ofce of Naval Research

(N000140110014).

iv

Contents

Abstract i

Dedication ii

Acknowledgment iii

Table of Contents v

List of Tables vi

List of Figures ix

1 Introduction 1

2 Background 3
2.1 Biology background . 3

2.1.1 Salts, ions, and the cellular solutions 3
2.1.2 The cell membrane . 6
2.1.3 Membrane potential . 9

2.2 Modeling ion channels . 11
2.2.1 Markov models . 12
2.2.2 Fractal models . 13

2.3 Math Background . 14
2.3.1 Continuous time Markov process 14

2.4 Existing ion channel simulators . 18
2.4.1 IonChannelLab . 18
2.4.2 ChannelLab . 22

3 ModFossa Software 26
3.1 Overview . 26
3.2 Features . 26

3.2.1 Python interface . 26
3.2.2 Easy model creation . 27
3.2.3 Experiment definition . 29
3.2.4 Data analysis and plotting . 30

v

3.3 Design . 31
3.4 Implementation . 31

3.4.1 Development tools . 31
3.4.2 Dependencies . 32

4 Results 33
4.1 Simple models . 33

4.1.1 Two State Model . 34
4.1.2 Three State Model . 36

4.2 Angermann CaCl currents model . 39
4.2.1 Study details . 40
4.2.2 Model description . 41
4.2.3 Model implementation in ModFossa 42
4.2.4 Code listing . 42
4.2.5 ModFossa output . 45
4.2.6 Runtime Analysis . 45

5 Discussion 51
5.1 Summary . 51
5.2 Applications . 52
5.3 Future work . 52

Bibliography 54

Appendix 55

vi

List of Tables

2.1 Various ionic concentrations, Nernst potentials, and resting potentials
for different cell types. Voltages are in mV and concentrations in mM .
Adapted from [11]. 6

2.2 Physical constants. From [8]. 11
2.3 Feature comparison of several ion channel simulators which use Markov

models. 18

4.1 Rate constants used in the three state model example. 37
4.2 Parameters for Angermann CaCl model in presence of ATP. Repro-

duced with new values from [19]. 44

vii

List of Figures

2.1 A voltmeter measures the potential difference between the two sides
of a bath which is separated by a membrane perfectly permeable to
K+. The left side contains a higher concentration of dissolved KCl
than the right. At the first instant the solutions are added, no ions
have had time to diffuse through the membrane, so the charges are
balanced resulting in a voltage of zero. However, K+ ions immediately
begin diffusing through the membrane, down their concentration gra-
dient resulting in a buildup of positive charge of the right side of the
membrane. Eventually the electrical and diffusion forces will balance
and the system will reach equilibrium. The equilibrium potential is
equal to the Nernst potential of potassium, EK 5

2.2 Representation of the cell membrane showing the lipid bilayer, integral
and peripheral proteins, and carbohydrates. From Wikipedia [21]. . . 7

2.3 A three state Markov chain with states a, b, and c, and transition rates
k1 − k4. 15

2.4 IonChannelLab model definition screen. The main area contains the
Markov model with 12 states connected by various rate constants. The
rate constants and their equations are shown in the sidebar on the left. 20

2.5 IonChannelLab function editor window showing an exponentially volt-
age dependent rate constant to which the user has assigned the name
“a1”. The equation used to calculate the rate is shown in easy-to-read
text. 21

2.6 IonChannelLab function editor window showing a custom rate con-
stant. The user has defined this particular rate constant as exponen-
tially voltage dependent. 21

2.7 IonChannelLab stimulus editor window showing a visualization of the
voltage protocol. As shown in the top of the window, this experiment
also defines internal and external chloride concentration protocols. . . 22

2.8 ChannelLab 2D grid layout of a four state model connected with six
rate constants. 23

2.9 ChannelLab 3D table layout of the same model shown in Figure 2.8. . 24

viii

2.10 The ChannelLab stimulus window allows the user to create complex
voltage and concentration protocols while providing immediate visual
feedback. 24

2.11 ChannelLab analysis window. Note the large number of adjustable
analysis settings to the right. 25

3.1 Example of a voltage protocol plot generated using ModFossa. This
protocol starts with a hold stage at -50 mV for 100 ms. Next, a 1
second long stepped stage is defined, which steps the voltage from -100
mV to 140 mV in 20 mV increments. The voltage protocol ends with
another hold stage at -80 mV. 30

3.2 ModFossa C++ library class diagram. The classes on the left side
of the diagram are related to the model definition. Classes relating
to the experiment and stimulus definition are grouped to the right.
Boost.Python is used to provide a Python interface to the library.
Additionally, the numeric solver library Sundials provides the ordinary
differential equations solvers required to simulate the channel model. 32

4.1 A two state Markov model containing two states, ’Open’, and ’Closed.’
The arrows between the states represent transition rates. 34

4.2 Evolution of the ‘Open’ and ‘Closed’ state probabilities of the simple
two state model. At the initial conditions at time t=0, the system is
entirely in the Closed state. As the simulation runs, the probabilities
approach steady state. 37

4.3 Three state Markov model. The states ’C’, ’O1’, and ’O2’ are con-
nected with the transition rates k1-k4. 37

4.4 A plot showing the evolution of the three state model state probabilities
as generated by ModFossa. 40

4.5 Angermann CaCl Markov model. The model has four closed states and
three open states. State C2 represents the channel with a single Ca2+

binding site occupied, while state C4 represents the channel with all
three binding sites occupied. Note that the model can only transition
to an open state in the presence of at least one bound Ca2+. 42

4.6 Figure generated by ModFossa showing Angermann CaCl currents
given various internal Ca+2 concentrations. The voltage protocol is
shown at the bottom of the figure. 46

4.7 Angermann CaCl late IV curves given various internal Ca+2 concen-
trations. This figure was generated using ModFossa’s plotIV method
at time 1099 milliseconds. 47

4.8 Angermann CaCl tail IV curves given various internal Ca+2 concen-
trations. This figure was generated using ModFossa’s plotIV method
at time 1100 milliseconds. 48

ix

4.9 Angermann CaCl conductance at varying voltages as a function of
intracellular Ca+2 concentration. There are 13 traces on the plot,
which correspond to the 13 different steps in the voltage protocol. This
figure was generated using ModFossa’s plotGvsConcentration method. 49

4.10 Simulated Angermann CaCl conductance at varying concentrations,
as a function of membrane voltage. This figure was generated using
ModFossa’s plotGvsV method. 49

4.11 Measured data from [3] showing conductance as a function of voltage
and concentrations. The data were fit to a Boltzmann function using
the least squares method. 50

4.12 ModFossa runtime versus a Matlab implementation. The model and
voltage protocol used are described in Section 4.2. The x-axis corre-
sponds to the number of experiment sweeps performed at each data
point. 50

1

Chapter 1

Introduction

Ion channels are trans-membrane proteins that control the passive flow of ions into,

and out of a biological cell. They exist in all cell types and play crucial roles in cellular

sensing and communication, maintenance of the membrane potential, and regulation

of cell volume.

For example, voltage-gated sodium, potassium, and calcium channels (among oth-

ers) work together to shape the automatically recurring cardiac action potential that

give our hearts their sure (and usually steady) beat. Philosophy aside, the very

thoughts passing through the consciousness of a student as he reads this page exist

as nothing more than electro-chemical signals in the brain. Specifically, voltage-gated

sodium and potassium channels integrated in the cell membrane of all neurons allow

electrical signals to propagate rapidly down the axon in the form of an action poten-

tial. When the action potential reaches the end of the axon, voltage-gated calcium

channels regulate the release of special chemical messengers called neurotransmitters

into the synapse (the structure that connects neurons to one another). As the neuro-

transmitters diffuse across the synapse they bind to ligand-gated ion channels on the

post-synaptic neuron. Depending on the type of ion channel and the type of neuro-

transmitter, the channels may open or close, thereby altering the membrane voltage.

2

If the post-synaptic neuron receives enough excitatory stimulus from the many presy-

naptic neurons in which it is connected, its membrane potential will depolarize to a

point and it too will experience an action potential, thus passing the signal along to

other neurons.

As further evidence of their vital importance, ion channels are specifically targeted

by several naturally occurring toxins and poisons, including venom from spiders,

snakes, scorpions, and fish. It comes as no surprise that the development of new

types of drugs which alter the behavior of certain channels is a major motivator

behind ion channel research. As in most scientific fields, researchers often develop

mathematical models to assist in their understanding of the results. Ion channels

are no exception; several classes of ion channel models exist that allow for the study

of ion channel behavior under varying conditions. One such generalization involves

modeling channel gating using continuous time Markov processes, and solving the

underlying ordinary differential equations that arise. A number of commercial as well

as open-source software programs exist for this purpose, but it is also common for

scientists to implement their own solution using the differential equations solvers in

Matlab, for example.

In order to provide an elegant and simple solution for the creation and simulation

of Markov model-based ion channels, we present ModFossa, a simulator written in

C++ with an easy-to-use Python interface. Several published models of ion channel

gating have been reproduced using our simulator; these results, along with perfor-

mance analysis are presented in the following chapters. In Chapter 2 we present

several mathematical, biological, and electrical concepts related to ion channel mod-

eling. In Chapter 3, we present the design and implementation of ModFossa. Results

are provided in Chapter 4. Finally, we conclude with a discussion of applications and

future work in Chapter 5.

3

Chapter 2

Background

2.1 Biology background

To understand the function and behavior of ion channels, several points need to be

discussed. The background comes from a wide disciplinary range, including biology,

chemistry, thermodynamics, electricity, probability theory, and differential equations.

The most important of these points are presented in the following subsections. For

more information, the reader is referred to Hille’s extensive book, Ion Channels of

Excitable Membranes [8], and Keener and Sneyd’s work on the applied mathematics

of cellular physiology [11].

2.1.1 Salts, ions, and the cellular solutions

Before discussing the biology of cells and ion channels any further, a quick discussion

regarding ionic solutions and the electrochemical gradient is needed. As any good

student should know, ions are atoms or molecules that have a positive or negative

charge due to differing numbers of protons and electrons. Specifically, anions have

more electrons than protons, so they have a negative charge. Conversely, cations are

4

“missing” electrons, and therefore have a positive charge.

Ions arise from a variety of natural processes, including the dissolution of salts

in water. For example, when table salt, or more officially, sodium chloride (NaCl)

dissolves in water, sodium cations with one positive charge (Na+) and chloride anions

with one negative charge (Cl−) become dissociated and free to move around indepen-

dently. Similarly, the salts potassium chloride (KCl) and calcium chloride (CaCl2)

dissolve into solutions of free K+, Cl−, and Ca2+ ions.

Solutions of dissolved salts are of critical importance to a cell’s function. Many

intracellular and extracellular environments contain (among other molecules) these

four ions in very specific concentrations. Ionic concentration values for three different

cell types are provided in Table 2.1.

Now let us discuss the concept of the electrochemical gradient. Consider the

situation presented in Figure 2.1 in which a water-filled bath is separated into two

halves by a semi-permeable membrane. This membrane contains small pores which

allow K+ ions, but nothing else, to pass through. Therefore, K+ ions can move freely

across the membrane from the left to right side of the bath, and vise versa. A more

concise description of the membrane is to say that it is perfectly permeable to K+.

As a convention, the left side of the bath represents the inside of a biological cell

(intracellular), while the right side is the extracellular environment.

At time t = 0, a concentrated solution of KCl is introduced to the left side

of the bath, while a weaker solution of KCl is introduced to the right side. This

configuration is represented by the larger letters of K+ and Cl− on the left side.

A voltmeter measures the voltage between the left and right sides, and reads zero

volts at t = 0, because the number of cations and anions are equal on both sides

of the membrane. Because the left side has a higher concentration of K+, the ions

experience a diffusion force which is represented by arrows crossing the membrane.

5

K+

Cl-

K+

Cl-

V=0

t=0

K+

Cl-

K+

Cl-

V=EK

Equillibrium

+

+

+

+
+

+
+
+

-

-

-

-
-

-
-
-

Figure 2.1: A voltmeter measures the potential difference between the two sides of a bath which is
separated by a membrane perfectly permeable to K+. The left side contains a higher concentration
of dissolved KCl than the right. At the first instant the solutions are added, no ions have had
time to diffuse through the membrane, so the charges are balanced resulting in a voltage of zero.
However, K+ ions immediately begin diffusing through the membrane, down their concentration
gradient resulting in a buildup of positive charge of the right side of the membrane. Eventually the
electrical and diffusion forces will balance and the system will reach equilibrium. The equilibrium
potential is equal to the Nernst potential of potassium, EK .

Cl− ions, however, cannot cross the membrane as it is not permeable to them.

The instant after the solutions are added to the bath, K+ will begin moving across

the membrane from left to the right sides, driven by the diffusion force. As this

movement of charge continues, the right side will become more positive. Eventually

the buildup of positive charge will deter K+ ions from moving to the right side. At

this point, the system is at equilibrium. The chemical gradient pushing K+ to the

right is balanced by the electrical force opposing the movement of charge. The voltage

at which the bath reaches equilibrium is called the Nernst potential, and is calculated

for a generic ion species S like so:

ES =
RT

zF
ln

(
[S]e
[S]i

)
, (2.1)

where R is the gas constant, T is the absolute temperature in Kelvins, z is the

charge on ion S, F is Faraday’s constant, and [S]e and [S]i represent the extracellular

6

Table 2.1: Various ionic concentrations, Nernst potentials, and resting potentials for different cell
types. Voltages are in mV and concentrations in mM . Adapted from [11].

Squid
Giant
Axon

Frog
Sartorius
Muscle

Human
Red Blood
Cell

Intracellular
concentrations
Na+ 50 13 19
K+ 397 138 136
Cl− 40 3 78
Extracellular
concentrations
Na+ 437 110 155
K+ 20 2.5 5
Cl− 556 90 112
Nernst
potentials
VNa +56 +55 +55
VK -77 -101 -86
VCl -68 -86 -9
Resting
potentials -65 -99 -6 to -10

and intracellular concentrations of ion S. Values for these constants are provided in

Table 2.2, while concentration values for select ion species as well as their Nernst

potentials are listed in Table 2.1.

In summary, the combination of the diffusion and electrical forces is called the

electrochemical gradient, and can be thought of as a form of potential energy for a cell.

In fact, the energy required for an action potential (discussed briefly in Chapter 1) is

provided almost entirely from the electrochemical gradient between the extracellular

and intracellular regions of a neuron.

2.1.2 The cell membrane

Biological cells are divided into two main groups: prokaryotic cells which include

bacteria, and eukaryotic cells such as plant and animal cells. Prokaryotic and eukary-

7

otic cells are both enclosed in a selectively permeable biological membrane known

as the cell (or plasma) membrane. Eukaryotic cells also have a number of inter-

nal membranes enclosing their nucleus, mitochondria, and several other organelles.

Prokaryotes on the other hand do not have a nucleus or any other membrane-bound

organelles.

The cell membrane of both prokaryotes and eukaryotes, as well as the membranes

of certain organelles all contain ion channels. From this point on, however, the focus

will be on the cell membrane of eukaryotic cells.

The cell membrane separates the intracellular contents from the extracellular en-

vironment and is composed of a thin double layer of lipids about 7.5 nM thick [11].

A lipid is a simple molecule with one hydrophilic head and one or more hydrophobic

tails. Lipids group together in a double layer to form the phospholipid bilayer of the

cell membrane. Dispersed throughout the cell’s membrane are an an assortment of

integral (also called trans-membrane) proteins, as well as a variety peripheral proteins

and other molecules such as carbohydrates. The variety and importance of membrane

proteins is evident by a recent study estimating that such proteins account for 30%

of genes [4]. Figure 2.2 provides a view of a typical cell membrane.

Figure 2.2: Representation of the cell membrane showing the lipid bilayer, integral and peripheral
proteins, and carbohydrates. From Wikipedia [21].

8

An important characteristic of the cell membrane is that it is selectively per-

meable, meaning that it allows certain molecules to pass though in either direction

in controlled quantities. For example, waste products are allowed to leave the cell,

and certain sugars, acids, and other molecules can enter. Also affected by the mem-

brane’s selective permeability are ions, such as Na+ (sodium), K+ (potassium), Cl−

(chloride), and Ca2+ (calcium).

The transportation of molecules across the membrane can either be passive (re-

quiring no net energy), or active (requires energy, such as ATP). An important active

transport mechanism is the Na+/K+ − ATPase, which is also called the sodium-

potassium pump for the sake of readability. This pump is a trans-membrane protein

that uses the energy stored in ATP to pump Na+ out of the cell and K+ into the cell

[11]. In addition to pumps, integral proteins called exchangers also facilitate active

transport across the cell membrane. The Na+ − Ca2+ exchanger uses the energy

gained from allowing Na+ entry into the cell to remove Ca2+. One may question why

allowing Na+ into the cell provides energy, while removing Ca2+ requires energy.

The reason this is so is due to the electrochemical gradients arising from the ionic

concentration levels that the cell maintains through active transport.

At the cell’s resting potential, the concentration of Na+ is much higher outside

the cell than inside the cell, so Na+ wants to enter because the electrochemical

gradient is driving it into the cell. Ca2+ also a higher extracellular concentration, so

it takes energy to remove it from the cell because it must be moved up, or against its

electrochemical gradient.

The last transport mechanism that deserves mention are ion channels, trans-

membrane proteins which facilitate the diffusion of select ion species down their

electrochemical gradient. Ion channels are therefore referred to as passive transport

mechanisms. As a simplification, an individual channel can be thought of as either

9

open, or closed. In the open configuration, channels allow ions to pass through at

speeds of 108 ions per second, near diffusion speed [4].

From the perspective of the whole cell, the large number ion channels together

can be said to affect the permeability of the membrane to a certain ion species.

In summary, the cell membrane uses ion channels, pumps, and exchangers to main-

tain a certain concentration gradient for a number of ion species. The membrane’s

permeability to an ion species depends on the types of ion channels in that cell type,

as well as their current states (open, or closed).

2.1.3 Membrane potential

Given various intracellular and extracellular ionic concentrations, as well as the mem-

brane’s relative permeability to these ions, one can calculate the resting membrane

potential of a cell. The resting membrane potential First, some basic concepts in

electricity need to be refreshed.

Quantity of charge is measured in coulombs, and is abbreviated C. Current, (I),

represents the movement of charge and has units coulombs per second, or amperes (A).

Conductance, (G), is the inverse of resistance (R), and measures the ease of current

flow between two points. The unit of conductance is siemens (S), while the unit of

resistance is ohms (Ω). Voltage, V , measures the potential difference between two

points. Note that the terms “potential” and “voltage” can be used interchangeably.

Ohm’s law defines the relationship between voltage, current, and resistance:

V = IR. (2.2)

It may also be written in terms of conductance:

V = I/G . (2.3)

10

Now let us apply Ohm’s law to a biological cell. Considering the simplification

that the membrane is permeable only to ion species S, the membrane’s conductance,

G, is directly related to how easily S passes though its ion channels. This is called

channel conductance, and is a function of the opening and closing (referred to as

gating from now on) of the channels as well as their type. IS is the current through

the membrane due to the movement of species S. In this case, the voltage, V , is

referred to as the driving force. The driving force is different for each different ion

species in the cell - Na+ ions, for example, experience a force greater in magnitude

and opposite in direction compared with K+ ions.

It is worth noting that it is difficult to measure the conductance of a cell. Per-

meability, on the other hand, is easy to measure. Permeability and conductance are

related but not equivalent; however, they are treated as such in electrophysiology.

To summarize: the current from ion S is equal to the driving force of S times the

membrane conductance to S. Formally:

IS = GS(DrivingForceS). (2.4)

Driving force is determined by the membrane voltage, Vm, and ES, the equilibrium

potential (calculated using Equation 2.1) for ion S:

DrivingForceS = (Vm − ES). (2.5)

Substituting:

IS = GS(Vm − ES). (2.6)

Equation 2.6 is used by the software described in Chapter 3 to calculate the ionic

currents given a known membrane voltage and simulated channel conductances.

To calculate the resting potential of a cell permeable to more than one ion type,

11

Table 2.2: Physical constants. From [8].

Faraday’s constant F 9.6485× 104 Cmol−1

Absolute temperature T (K) 273.15 ◦Celcius
Gas constant R 8.3145 V Cmol−1K−1

we need to take into account the concentrations of the various ion species, as well

as the conductance of their respective channels. The equation that does this is the

Goldman-Hodgkin-Katz (GHK) voltage equation:

Em =
RT

F
ln
PK [K]e + PNa[Na]e + PCl[Cl]i
PK [K]i + PNa[Na]i + PCl[Cl]e

, (2.7)

where Em is the resting membrane potential and PS represents the relative per-

meability of the membrane to ion species S.

It is worth stating that unlike the Nernst equation which is universally true, the

GHK equation depends on the assumption of a constant electric field.

2.2 Modeling ion channels

The modeling of ion channels dates back over 100 years [13]. As is with many math-

ematical models, the motivations driving the development of ion channel models

include:

• striving to infer fundamental knowledge of the underlying physical processes,

• matching experimental data to the model’s predictions,

• using the model to predict behaviors which are difficult to observe, and

• developing common terminology and knowledge among researchers.

The interpretation of ion channels models during the pre-molecular era provided

the primary source of information about channel structure [13]. However, current

12

technology such as molecular biology and x-ray diffusion are beginning to prove

atomic-resolution detail of bacterial as well as some mammalian channels, though

the fraction of channels with known structure remains low [4, 13].

Hodgkin and Huxley’s landmark model describing the ionic mechanisms behind

the action potential of a squid giant axon provided the foundation for many modern

practices in electrophysiology and ion channel modeling [9, 11]. Their model describes

the voltage-dependent and time-dependent behavior of Na+ and K+ conductances

using a coupled set of ordinary differential equations. While the Hodgkin-Huxley

model is still used today due to its simplicity and low number of parameters, it

does exhibit several shortcomings. These include, for example, a lack of connectivity

between activating and inactivating gates in the Na+ channel, as well as the premise

that the inactivation gate can only close after the activation gate opens [7].

2.2.1 Markov models

Markov models for ion channels are an extension of the Hodgkin-Huxley formalism,

and are good for modeling single channel data, gating currents, and drug interac-

tions. Unlike Hodgkin-Huxley models, Markov models show the state dependence of

activation and inactivation [6].

Theory

Ion channels can be modeled as continuous time Markov processes (see Section 2.3.1),

where a simplification of the channels functional physical shape is represented by

states in the Markov chain. A model can have several open, closed, deactivated,

and inactivated states, as well as states which represent the binding of ligands. The

rates connecting the various states are time independent kinetic rates which can be

constant, or dependent on the membrane voltage, or intra- and extra-cellular ionic

13

concentrations.

Criticism

Markov models are not without critics. In a one page perspective titled Are rate

constants constant? Jones challenges the community to examine the benefits of time-

dependent rate constants over Markov models [10]. Jones cites the findings by Ue-

bachs [20] who reports that the rate of recovery from inactivation in a type of Ca+2

channel depends on the length of depolarization, which goes against the basic princi-

ple of chemical kinetics that rate constants remain constant in a constant environment

[10].

Although Markov models are memoryless by definition, the time-dependent be-

havior described by Uebachs can be reproduced by having a long chain of open or

closed states [10, 14]. Nevertheless, Jones concludes that time-dependent rate con-

stants as used by fractal channel models, would provide a more explicit memory than

multistate Markov models.

2.2.2 Fractal models

Liebovitch has been the main proponent of fractal ion channel models for over 15

years [14, 15, 16]. One of his main arguments questioning the use of Markov models

is founded in the body of evidence depicting ion channel proteins as complex struc-

tures with a continuum of states, exhibiting large and small motions over varying

time scales. Fractal models as proposed by Liebovitch contain a large number of

conformational states with kinetic rates connecting them. The rates, however, are

linked and not independent as in Markov models. This has the effect of giving the

channel “memory” [14].

An additional concern raised by Liebovitch is the use of exponential rate constants.

14

He provides a friendly reminder to his colleagues that the fitting of experimental

data to sums of exponentials is famously ill-conditioned [1, 14]. As confirmation he

provides a quote from a numerical methods text which states that those who try

to determine the parameters of such equations from experimental data “must be

spanked or counseled. At the very least, keep them from obstructing Progress and

the computer!” [1].

In their defense, other researchers have argued that Markov models with expo-

nential rate constants and a small number of states fit the experimental data better

than fractal models [17]. Nevertheless, fractal models continue as the number one

challenger to Markov models.

2.3 Math Background

2.3.1 Continuous time Markov process

The following information is inspired from David Anderson’s notes on biological

stochastic processes [2].

Continuous time Markov processes are commonly used to simulate stochasticity

in a variety of fields including biology, chemistry, physics, and economics. As the

name implies, a continuous time Markov process is similar to a discrete time Markov

chain, with the exception that transitions between states can occur at any time, with

a exponentially distributed probability. Both discrete and continuous time Markov

processes satisfy the Markov property which says that the probability distribution

of future states depends only on the current state, and not on the preceding events.

This “memoryless” behavior is what gives Markov processes their stochastic behavior.

The property is named after the Russian mathematician Andrey Markov.

Continuous time Markov chains are easily described using weighted directed graphs,

15

where nodes represent the states, and the edges are labeled with the rates of transi-

tioning between states. Figure 2.3 shows a three state Markov chain in which state

a transitions to state b with rate k1, and c transitions to b with a rate k4. Note that

unlike the discrete case, the transition rates are not equivalent to probabilities and

thus are not restricted to values [0− 1].

k3

k1

k4

k2

a b c
Figure 2.3: A three state Markov chain with states a, b, and c, and transition rates k1 − k4.

To represent the connections between N states in a continuous time Markov chain,

we can use a weighted adjacency matrix, D, where D is size N × N , and the non-

diagonal entries, Dij represent the edge weight, or transition rates from state j to

state i. Self-connections are not allowed, i.e., state b cannot define a rate to itself.

Therefore, the diagonal entries of the matrix must be zero.

The adjacency matrix representing the continuous time Markov chain given in

Figure 2.3 is:

D =


0 k3 0

k1 0 k4

0 k2 0

 (2.8)

The adjacency matrix describes the connections of a Markov chain. To describe

the rates in which we move between states, we use the transition matrix (also called

the infinitesimal generator matrix), A, which is the adjacency matrix with special

entries in the diagonal such that each column sums to zero [2]. Thus the diagonal

entries must be equal to the negative sum of all the rates for that column. For the

three state example, we get the following transition matrix:

16

A =


−k1 k3 0

k1 −(k2 + k3) k4

0 k2 −k4

 (2.9)

Now we can describe the evolution of the state probabilities by deriving a set of

ordinary differential equations, called the Kolmogorov forward equations [2]. In the

case of natural sciences, they are known as the master equation, or chemical master

equation. The master equation has the form:

d~P

dt
= A~P , (2.10)

where d~P
dt

represents the change of the state probability vector ~P , and A is the

transition matrix. The master equation in its expanded form for the three state

example is:


dPa/dt

dPb/dt

dPc/dt

 =


−k1 k3 0

k1 −(k2 + k3) k4

0 k2 −k4



Pa

Pb

Pc

 =


−k1Pa + k3Pb

k1Pa − (k2 + k3)Pb + k4Pc

k2Pb − k4Pc


(2.11)

We now have three differential equations to describe the evolution of our three

state system. However, this system is over specified. Instead of explicitly calculating

the evolution of the last state (state c in our example), we infer it via the conservation

of probabilities like so:

PN = 1−
N−1∑
i=1

Pi. (2.12)

In other words, the probability of model being in the last state, plus the sum of

17

the other state probabilities must be equal to one.

Using the conservation of probabilities, our system can be re-written as:


dPa/dt

dPb/dt

P

 =


−k1 k3 0

k1 −(k2 + k3) k4

1 1 1



Pa

Pb

Pc

 =


−k1Pa + k3Pb

k1Pa − (k2 + k3)Pb + k4Pc

Pa + Pb + Pc

 . (2.13)

If we wish to solve our system of ordinary differential equations as an initial

value problem, we need initial conditions. When simulating the current through ion

channels, it is often desired to start solving the system while it is at steady state,

that is, when all of the state probability derivatives are equal to zero:


dPa/dt

dPb/dt

P

 =


−k1 k3 0

k1 −(k2 + k3) k4

1 1 1



Pa

Pb

Pc

 =


0

0

1

 , or (2.14)

~P ′ = A ~Pss = ~P . (2.15)

Thus,

~Pss = A
/
~P . (2.16)

Equation 2.16 is used in the implementation of our software (see Chapter 3) to set

the state probabilities to steady state before beginning integration. During simulation

we supply the derivatives of the state probabilities (calculated using Equation 2.10)

to the solver during each integration step.

18

Table 2.3: Feature comparison of several ion channel simulators which use Markov models.

Name Model GUI Scriptable Plotting Plot
format

Simulation
type

OS License

IonChannelLab Markov yes no yes,
interactive

bitmap numerical
integration,
Monte Carlo,
Q-Matrix

Win. Free, no
source
available

ChannelLab Markov yes no yes bitmap numerical
integration,
Monte Carlo

Win. Proprietary

QUB HMM yes yes yes,
interactive

bitmap numerical
integration

Win.,
Mac,
Linux

GPL

ModFossa Markov no yes, from
Python

yes vector numerical
integration

Linux GPL

2.4 Existing ion channel simulators

We provide a comparison of several Markov model based ion channel simulators. Table

2.3 compares the basic features of each simulator, including our solution, ModFossa.

2.4.1 IonChannelLab

IonChannelLab is a standalone Windows application targeted towards the non-programmer,

and is therefore focused on ease of use [5]. It is available free of charge; however, source

code is not available.

General observations

The software provides a nice looking interface which is uncluttered, intuitive, and

easy to learn; however, the lack of online help (especially context-sensitive help)

proves somewhat disappointing. Several example projects are available, including

Hodgkin-Huxely type models, as well implementations of the author’s own research

on chloride channels.

IonChannelLab allows users to save projects in an XML format for later use.

Lastly, the software is not scriptable. If it were, IonChannelLab would no doubt be

more attractive to advanced users.

19

Model definition

IonChannel lab facilitates easy Markov model creation by allowing the user to drag

and drop states into arbitrary locations on a 2D grid. A transition is created by

connecting two states using the mouse. Each transition specifies two rate constants,

one for the rate from state A to state B, and another from B to A. Rate constants are

specified by a unique string name, and are defined using the function editor window

(Figures 2.5 and 2.6). The function editor allows the user to specify the parameters of

several available rate constant types, including exponential voltage; exponential volt-

age with temperature dependence; double exponential with temperature dependence;

ligand gated; exponential ligand gated with temperature dependence; Hodgin-Huxely

types A, B, and C; constant; custom voltage; and custom ligand. The equation used

to calculate each rate constant type is clearly shown in the function editor window,

a useful feature not found in other simulators reviewed here.

IonChannelLab’s model definition screen also provides the user with two choices

for the permeation model, Ohm’s law and Goldman-Hodgin-Katz.

Stimulus definition

Voltage and concentration protocols are defined in the stimulus window as shown in

Figure 2.7. Constant, stepped, and ramped stages are supported for both voltage and

concentration protocols. A visualization of the protocol is provided in the stimulus

window, and is updated immediately after a change in any of the fields.

Experiment definition

The experiment definition window provides settings and visualizations specific to the

experiment. In creating a new experiment using IonChannelLab, the user chooses

from the following experiment types: current vs time, conductance vs time, gating

20

Figure 2.4: IonChannelLab model definition screen. The main area contains the Markov model
with 12 states connected by various rate constants. The rate constants and their equations are
shown in the sidebar on the left.

current vs time, math expression vs time, steady state current vs X, steady state

conductance vs X, steady state expressions vs X, and time constants vs X.

The software gives the user the option of selecting one of several different solvers,

including q-matrix, integration via Runge-Kutta, integration via Gear’s BDF, and

single channel Monte Carlo. Implementation of the solvers is provided by DotNu-

merics, a numerical library written using Microsoft’s .NET framework. The initial

conditions of the simulation can be calculated from the holding values, or set manu-

ally by the user. Additional experiment settings include the number of channels to

simulate, temperature, and an optional noise.

Plotting and analysis

All plots are interactive and allow for the user to pan and zoom. If the user wishes

to save a plot, he can either save the data in CSV format, or copy the image to the

21

Figure 2.5: IonChannelLab function editor window showing an exponentially voltage dependent
rate constant to which the user has assigned the name “a1”. The equation used to calculate the rate
is shown in easy-to-read text.

Figure 2.6: IonChannelLab function editor window showing a custom rate constant. The user has
defined this particular rate constant as exponentially voltage dependent.

22

Figure 2.7: IonChannelLab stimulus editor window showing a visualization of the voltage protocol.
As shown in the top of the window, this experiment also defines internal and external chloride
concentration protocols.

clipboard. There is no option to export plots in a vector graphics format.

2.4.2 ChannelLab

ChannelLab is a powerful, but dated commercial single ion channel modeling program

developed over the last 11 years by Synaptosoft, Inc. [18]. It is available only for

Microsoft Windows.

23

General observations

Unlike the other two simulators reviewed here, ChannelLab is not free; an individual

license costs $250. While the software is quite old (the last version was released

in 2003), it contains many useful features, such as curve fitting and analysis tools,

and data conversion utilities. Over 100 published channel models are included as

examples.

Nevertheless, the interface does appear dated, especially when adding transitions

between states. Additionally, ChannelLab lacks any scripting support.

Model definition

ChannelLab supports up to 20 states, with each state having an adjustable gating

parameter. To add connections between states, the user can either use the 2D grid

layout (Figure 2.8), or the 3D table layout (Figure 2.9). Both layouts are decidedly

less intuitive and more constraining than the other simulators mentioned here.

Rate constants support dependence on up to six drugs or voltages, although only

the user is limited to exponential equations.

Figure 2.8: ChannelLab 2D grid layout of a four state model connected with six rate constants.

Stimulus definition

The software provides a powerful stimulus definition window, as shown in Figure 2.10.

Concentration and voltage protocols are defined using automatic step functions, man-

24

Figure 2.9: ChannelLab 3D table layout of the same model shown in Figure 2.8.

ual step or ramp functions, exponential functions, or stimulus trains. The protocols

are plotted in the stimulus definition window using either linear or log scaling in order

to provide immediate feedback to the user.

Channel lab also allows for the import stimulus and voltage waveforms from ascii

text files.

Figure 2.10: The ChannelLab stimulus window allows the user to create complex voltage and
concentration protocols while providing immediate visual feedback.

25

Experiment definition

Three solvers are supported by ChannelLab: Runge-Kutta 4, Runge-Kutta 5, and

Monte Carlo. As expected, the software allows the user to select the initial conditions

as either the steady state probabilities, or user-provided values.

Plotting and analysis

The most attractive features of ChannelLab are the interactive analysis tools, which

include maximum likelihood and least squares waveform fitting. A screenshot of the

analysis window is provided in Figure 2.11. The plots in the analysis window are

interactive and can be exported to a variety of file formats, but cannot be saved as

vector graphics.

Figure 2.11: ChannelLab analysis window. Note the large number of adjustable analysis settings
to the right.

26

Chapter 3

ModFossa Software

3.1 Overview

We present ModFossa, a fast and easy-to-use Python library for creating and simu-

lating ion channel kinetics using continuous time Markov processes. A discussion of

ModFossa’s features, components, design methodology, and validation are provided

in this chapter. Detailed class- and function-level documentation for the both the

C++ core, and the Python library can be found in the Appendix.

For those interested, the name ModFossa was formed from two Latin words —

mod, and fossa, which can be interpreted as open channel when written together.

3.2 Features

3.2.1 Python interface

ModFossa provides easy, yet versatile and powerful ion channel modeling through its

novel Python interface. Python is well-used in the scientific and academic community;

however, we are unaware of any Python libraries which facilitate the creation and

27

simulation of ion channel kinetics. The popularity of Python as a research tool

stems from its simple syntax and extensive standard library, and the availability of

many high-quality open source numeric and scientific libraries. Additional qualities

of Python include easy third party library installation; strong, dynamic typing; and

an interactive interpreter.

ModFossa can also be used directly as a C++ library, allowing for more flexibility.

3.2.2 Easy model creation

ModFossa allows the user to define an ion channel’s Markov model using states, rates,

and connections. States and rates are referred to by their user-supplied names. This

allows the user to create the model in any order. For example, connections can be

defined before the definition of the states and rate constants.

States

States represent the various channel states as defined by a continuous time Markov

chain. All states are referred to by unique name which is assigned by the user during

creation. States are created as either non-conducting or conducting. Additionally,

the gating of conducting states can by specified during construction. The gating

parameter is used to simulate states that are partially conducting. For example,

assigning a gating value of 0.5 to a state in a particular model may be used to

simulate channel blocking by 50 percent.

Rates

Rates represent the kinetic rate constants which define the rate of transition between

two states. Rates are referred to by unique name. ModFossa includes the following

rate constant types: constant, Boltzmann voltage dependence, exponential voltage

28

dependence, and ligand-gated. The equations for each rate constant are presented

below.

Constant rate constant are defined by a single parameter, k, like so:

rate = k. (3.1)

Exponential voltage dependent rate constants depend exponentially on the mem-

brane voltage:

rate(V) = a ∗ exp(k ∗ V), (3.2)

where V is the membrane voltage, exp is the exponential function, and a and k are

parameters.

Boltzmann voltage dependence is defined using the sigmoid-like Boltzmann equa-

tion:

rate(V) =
a

1 + exp[(V − V0.5)/k]
, (3.3)

where V is the membrane voltage, V0.5 is the half-maximal activation voltage (given

as a parameter), exp is the exponential function, and a and k are parameters. Taken

from Angermann et al. [3].

Ligand-gated rate constants depend on the concentration of a particular ionic

species, S, like so:

rate([S]) = k ∗ [S]n, (3.4)

where [S] is the concentration of ligand S, n is the ligand power, and k is a parameter.

Connections

Connections define a transition from one unique state to another using a specified rate

constant. States can have multiple ingoing and outgoing connections. Rate constants

29

may also be used in multiple connections.

3.2.3 Experiment definition

An experiment consists of a channel Markov model, a voltage protocol, and an op-

tional concentration protocol.

Voltage protocol

Voltage protocols are a fundamental technique in electrophysiology used to measure

the current response of ion channels. In the laboratory, a small electrode is inserted

into the cell, through the cell membrane. The electrode, and therefore the cell mem-

brane, is held constant at a desired voltage for a length of time, as defined by the

voltage protocol. A typical voltage protocol is shown in Figure 3.1. As shown in the

figure, the voltage protocol begins with a hold stage at -50 mV for 100 ms. Next, a

1 second long stepped stage is defined, which steps the voltage from -100 mV to 140

mV in 20 mV increments. The voltage protocol ends with another hold stage at -80

mV.

The voltage protocol shown in Figure 3.1 is easily defined in ModFossa by adding

two hold stages, and one stepped stage. A ModFossa voltage protocol can have any

number of hold stages, but only one stepped stage.

Concentration protocol

A concentration protocol defines the concentration values (extracellular or intracellu-

lar) of a certain ligand. Like a voltage protocol, ModFossa’s concentration protocols

are defined using hold stages. However, there is no support for stepped concentration

protocol stages. During simulation, the simulator will run the model through the en-

tire voltage protocol using a single stage from the concentration protocol. Next, the

30

0 200 400 600 800 1000 1200 1400 1600
time (ms)

−100

−50

0

50

100

150

V
 (

m
V

)

Figure 3.1: Example of a voltage protocol plot generated using ModFossa. This protocol starts
with a hold stage at -50 mV for 100 ms. Next, a 1 second long stepped stage is defined, which steps
the voltage from -100 mV to 140 mV in 20 mV increments. The voltage protocol ends with another
hold stage at -80 mV.

concentration protocol will advance to the next stage, and the voltage protocol will

be run using the new concentration value. This continues until there are no stages

left in the concentration protocol.

3.2.4 Data analysis and plotting

ModFossa supports the creation of a number of useful plots using the Python plotting

library, PyPlot. Unlike other simulators reviewed in Chapter 2, the plots can be saved

easily in a vector graphics format. Visual examples of each plot type are found in

Chapter 4.

Model and experiment validation

To assist the user in creating a valid simulation, ModFossa provides validation meth-

ods which return detailed messages regarding any problems with the model and ex-

periment definitions. Specific error conditions include: no connections defined, max

conductance not defined, rate constant not defined, state not defined, ligand not de-

fined, no voltage protocols defined, and no experiment sweeps defined.

31

3.3 Design

A class diagram showing ModFossa’s classes and their associations is provided in

Figure 3.2. The organization of the classes in the diagram is as follows: the left side

of diagram contains classes related to the model definition, including rates, states,

connections, and the transition matrix.

The bottom right section of the diagram is centered around the SimulationRun-

ner class, which is top level class of ModFossa, and is the point of entry for the

Python interface (developed using Boost.Python). Also shown are the Simulator and

ODESolver classes, which use the numeric solver, Sundials, to solve the differential

equations that describe the evolution of state probabilities. The Results class stores

the results for each simulation in a map structure, for later access by the user.

The remaining classes in the diagram are related to the Experiment class and the

stimulus definition.

3.4 Implementation

3.4.1 Development tools

C++ code was developed under Ubuntu Linux using Eclipse CDT. CMake was chosen

as the build system. Unit tests for the C++ code were written using the Google Test

framework. Having unit tests available aided the development process by instilling

confidence in the correctness of the code, especially during refactoring. Google Test

is included in the source tree, and is built by CMake during the build process. This

removes the need for the user to have Google Test installed on the target computer.

Doxygen was used to generate documentation for the C++ code, while the Python

documentation was generated using Sphinx. Generated documentation can be found

in the Appendix.

32

Figure 3.2: ModFossa C++ library class diagram. The classes on the left side of the diagram
are related to the model definition. Classes relating to the experiment and stimulus definition are
grouped to the right. Boost.Python is used to provide a Python interface to the library. Additionally,
the numeric solver library Sundials provides the ordinary differential equations solvers required to
simulate the channel model.

3.4.2 Dependencies

Sundials (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers) is a C

library developed by Lawrence Livermore National Laboratory. ModFossa uses Sun-

dials to solve the system of ordinary differential equations governing the ion channel

state probabilities. Armadillo, a C++ linear algebra library provides easy-to-use ma-

trix structures and linear solvers, and is also used by ModFossa. However, it would

be ideal to remove the dependency on Armadillo in order to remove complications

during ModFossas installation.

In order to run ModFossa’s Python interface, two Python libraries are required:

MatplotLib and Numpy.

33

Chapter 4

Results

Several example models of varying complexity have been created and simulated using

ModFossa. A description of the each model is provided, along with a listing of the

Python source code used define the model. Visual results are provided in the form of

plots generated by the code. Finally, an examination of ModFossa’s computational

performance is provided.

4.1 Simple models

Simple two and three state models are presented in order to give the reader an intro-

duction to creating Markov models using ModFossa’s Python interface. The simple

models in this section have little biological relevance; for results from a published

calcium gated chloride ion channel model, see Section 4.2. This section follows a

tutorial format, with explanations provided alongside a sequence of short source code

snippets.

34

4.1.1 Two State Model

The first example provided is a simple ion channel model with two states, Open, and

Closed (Figure 4.1). The model defines a transition from the Open state to the Closed

state with a rate koff of 1 s−1, and a transition from the Closed state to the Open

state with a rate kon of 10 s−1. We define the initial state of the model as the Closed

state.

Open Closed
kon

koff

Figure 4.1: A two state Markov model containing two states, ’Open’, and ’Closed.’ The arrows
between the states represent transition rates.

The two state model is implemented using ModFossa’s Python interface. Let’s

examine the source code in detail. The first step is to import the library:

from modFossa import ∗

Then we define our two states and name them ‘Open’ and ‘Closed’, and make

‘Open’ a conducting state. Note that although we are defining ‘Open’ as conducting,

it will have no effect on the results presented for the two state model, because we are

not calculating the channel current or conductance, only state probabilities.

state(’Open’, conducting=True)
state(’Closed’)

Next, the connections between the two states are created. ModFossa allows the

user to define connections before the states or rate constants have been defined.

connect(from state=’Closed’, to state=’Open’, rate=’kon’)
connect(from state=’Open’, to state=’Closed’, rate=’koff’)

Now we define the rate constants, kon and koff , both of type ‘constant’.

35

rate(’kon’, type=’constant’, k=10)
rate(’koff’, type=’constant’, k=1)

The last piece of information needed to describe the behavior of the model is the

initial state, so we set it to closed. We also instruct ModFossa not to set the initial

conditions of the simulation to the steady state probabilities, and to instead use the

initial state, ‘Closed’ as the initial conditions. This allows us to observe the state

probabilities of ‘Open’ and ‘Closed’ approach steady state, as shown in Figure 4.2.

initialState(’Closed’)
startAtSteadyState(False)

Although the simple two state model has no use for them, we must set the max-

imum channel conductance, and the reversal potential. These are required for the

simulation to run.

maxChannelConductance(0) #mS/cm^2
reversalPotential(0) #mV

Now we define our voltage protocol. We give it a name, ‘vp’, and add a single

stage to it with the name ‘hold’. The ‘hold’ stage will hold the membrane potential at

-50 mV for 500 ms. Next, an experiment sweep with the name ‘twoStateModelSweep’

is created. It used the voltage protocol we just defined, ‘vp’. In later examples we

will use the experiment sweep to define the ionic concentrations in addition to the

voltage protocol.

voltageProtocol(’vp’)
voltageProtocolAddStage(’vp’, ’hold’,
voltage=−50, duration=500)

experimentSweep(’twoStateModelSweep’, ’vp’)

Finally, we can validate our model, run our experiment sweeps, and plot the

results. We have only defined one experiment sweep, but if we had more they would

run as well.

36

validate()
run()
plotStates(’twoStateModelSweep’)

Figure 4.2 shows the evolution of the state probabilities as a plot generated by

ModFossa. At time t = 0ms, the model is the Closed state. As time advances, the

probabilities move towards steady state. At t = 500ms, the probability of the Open

state (rounded to three decimal places) is 0.905. Let’s compare that to the analytical

solution of the steady-state probability.

The differential equation describing the Open state probability is

dPOpen

dt
= kon(1− POpen)− koffPOpen. (4.1)

Steady-state occurs when the state probabilities are not changing, i.e.,
dPOpen

dt
= 0.

The steady-state Open probability is therefore

POpenSS =
kon

kon + koff
. (4.2)

Substituting in our rate constants from the two state model gives us

POpenSS =
10

10 + 1
= 0.909. (4.3)

So, after 500 ms of simulation time, we are within 99.6% of the true steady-state

probabilities.

4.1.2 Three State Model

Now let’s create a more complex model that will show some features we can actually

use to define real ion channel models, such as voltage steps, gating variables, and

voltage and ligand gated rate constants. Figure 4.3 shows a Markov model with three

37

0 100 200 300 400 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Closed
Open

Figure 4.2: Evolution of the ‘Open’ and ‘Closed’ state probabilities of the simple two state model.
At the initial conditions at time t=0, the system is entirely in the Closed state. As the simulation
runs, the probabilities approach steady state.

states that we will use for this example. C1 is a closed state, while O1 is a partially

conducting state with a gating variable of 0.5, and O2 is a fully conducting, open

state. The rate constants for the model are provided in Table 4.1.

C O2
k3

k1

k4

k2

O1

Figure 4.3: Three state Markov model. The states ’C’, ’O1’, and ’O2’ are connected with the
transition rates k1-k4.

Table 4.1: Rate constants used in the three state model example.

Name Type Parameters Units
k1 ligand gated k = 10e8, ligand = Ca2+, power=1 M−1s−1

k2 constant k=1 s−1

k3 sigmoidal voltage gated k=1, a=100, V0.5 = 50 s−1

k4 constant k=4 s−1

38

Let’s examine the code for the three state model. First, we define our states and

their gating variables. The closed state does not conduct, so we do not have to specify

its gating variable (it is 0 by default). State O1 is a partially conducting state, and

O2 is fully conducting.

from modFossa import ∗
state(’C’)
state(’O1’, gating=0.5)
state(’O2’, conducting=True)

Next, connect the states.

connect(from state=’C’, to state=’O1’, rate=’k1’)
connect(from state=’O1’, to state=’O2’, rate=’k2’)
connect(from state=’O1’, to state=’C’, rate=’k3’)
connect(from state=’O2’, to state=’O1’, rate=’k4’)

Now we define our rate constants. We have a ligand gated rate constant which

depends on the concentration of calcium. This could be any ligand that we chose,

but we must define its concentration in the experiment sweep, or ModFossa will give

us an error.

rate(’k1’, type=’ligandGated’, k=10e8, ligand=’Ca’, power=1)
rate(’k2’, type=’constant’, k=1)
rate(’k3’, type=’sigmoidal’, k=1, a=100, v half=50)
rate(’k4’, type=’constant’, k=4)

We must supply the remainder of the model definition. This is similar to the

previous two state model example.

initialState(’O2’)
startAtSteadyState(False)
maxChannelConductance(1.16)
reversalPotential(0)
membraneCapacitance(100)

Next, define the voltage protocol and experiment sweep. The voltage protocol

holds the voltage at -50 mV for 500 ms, then depolarizes the membrane by jumping

39

to 50 mV and holding for another half of a second. The concentration of calcium

is set to 500 nM in the experiment sweep. This is necessary because k1 is a ligand

gated rate dependent on [Ca].

voltageProtocol(’vp’)
voltageProtocolAddStage(’vp’, ’hold1’, voltage=−50,

duration=500)
voltageProtocolAddStage(’vp’, ’hold2’, voltage= 50,

duration=500)
experimentSweep(’three state’, ’vp’, Ca=500e−9)

Finally, validate and run the experiment and plot the results.

validate()
run()
states = plotStates(’three state’)

Figure 4.4 shows the results from the three state model. One again, we did not

start in steady state, so we see the state probabilities moving towards steady state

under the experiment sweep conditions of a -50 mV membrane voltage, and 500 nM

[Ca]. At 500 mS, the voltage protocol stage ‘hold2’ is activated, and the voltage

is increased immediately to positive 100 mV . The effect of this jump in voltage is

evident in Figure 4.4. The jump in the probability of state O1 is due to a decrease in

the value of the sigmoidal rate constant, k3.

4.2 Angermann CaCl currents model

Our final example presents an implementation of the calcium-activated chloride chan-

nel model developed by Angermann et al. [3]. A brief description of the study is

provided, along with the model’s description and implementation details. Later, the

Python source code used to implement the model in ModFossa is listed, along with

several figures and accompanying discussion.

40

0 200 400 600 800 1000
Time (ms)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty C
O1
O2

Figure 4.4: A plot showing the evolution of the three state model state probabilities as generated
by ModFossa.

4.2.1 Study details

In [3], Angermann et al. attempt to determine how phosphatase activity influences

calcium-activated chloride channels in rabbit pulmonary artery myocytes (smooth

muscle cells). Whole cell patch clamp experiments were conducted to measure the

calcium-activated chloride current (IClCa) under intracellular [Ca2+] ranging from 20

mM to 1000 mM . The control group contained 3 mM ATP in the pipette solution,

while the test group used 3 mM adenosine 5′ − (β, γ − imido)-triphosphate (AMP-

PNP).

Under both groups, the maximum IClCa is greater at higher intracellular Ca2+

concentrations, as is expected for such channels. However, the currents in test group

(containing AMP-PNP) exhibited behavior indicative of a negative shift in voltage

dependent activation. The maximal conductance of IClCa was more than three-fold

41

larger in the test group. Additionally, the activation times were less and the deac-

tivation time greater in the test group compared to the control. These observations

led the authors to the conclusion that the increased IClCa activity in the test group

(pipette containing AMP-PNP) is not explained by Ca2+ channel sensitivity, nor the

number of Ca2+ activating the channel, but instead by a negative shift in the voltage

dependent activation.

4.2.2 Model description

To simulate the behavior of the test and control groups, Angermann et al. created a

Markov chain kinetic model based on the work by Kuruma and Hartzell [12]. Slightly

different parameters were chosen for the test and control groups in an attempt to

make clear the difference in behavior between the two. The model, shown in Figure

4.5, consists of four closed states and three open states. Calcium binding occurs in

the closed states with rates directly proportional to [Ca]. State C1 is representative of

the channel’s state when no Ca2+ ions are bound to the receptor sites, while state C4

represents the channel with all three Ca2+ binding sites occupied. The closed states

with at least one binding site occupied can transition into open states with constant

channel opening rates. Closed states with more occupied binding sites have higher

values for the channel opening rates, giving the model its concentration-dependent

behavior. Voltage dependent channel closing rates take the model from open to closed

states.

In [3], the behavior of the channel in the presence of AMP-PNP was simulated by

setting the gating variables of all three of the channel’s open states to 1. Conversely,

to simulate the channel in the presence of ATP, only channel O1 was assigned a

gating variable of 1, while the rest of the open states were given a value of zero. This

reproduces the blocking effect by phosphorylation that the authors hypothesize as

42

a possible explanation for the inhibition of IClCa while the channel is subjected to

ATP. In addition to reducing the channel gating variables to model the effect of ATP,

the authors also increased the magnitude of the channel closing rates and shifted the

voltage dependence towards more positive potentials.

By altering the Markov model’s parameters in an insightful manner, Angermann

et al. were able to simulate the behavior of Ca2+-activated Cl− currents in the

presence of both AMP-PNP and ATP.

C1 C2

kon[Ca]

ko

(V)11

O1

C3

kon[Ca]

ko

(V)22

O2

C4

kon[Ca]

ko

(V)33

O3

.Ca

.Ca

.Ca

.Ca

.Ca

.Ca

Figure 4.5: Angermann CaCl Markov model. The model has four closed states and three open
states. State C2 represents the channel with a single Ca2+ binding site occupied, while state C4
represents the channel with all three binding sites occupied. Note that the model can only transition
to an open state in the presence of at least one bound Ca2+.

4.2.3 Model implementation in ModFossa

The calcium activated chloride channel Markov model shown in Figure 4.5 was imple-

mented in ModFossa using the parameters in Table 4.2. The parameter values were

chosen to match the behavior of IClCa in the presence of ATP, and were modified

slightly from Thibeault et al. [3].

4.2.4 Code listing

The Python source code for the model is provided on the following page.

43

from modFossa import *

state(’O1’, conducting=True , gating =1.0)

state(’O2’, conducting=True , gating =0.5)

state(’O3’)

state(’C1’)

state(’C2’)

state(’C3’)

state(’C4’)

connect(fromState=’C1’, toState=’C2’, rate=’kon’)

connect(fromState=’C2’, toState=’C3’, rate=’kon’)

connect(fromState=’C3’, toState=’C4’, rate=’kon’)

connect(fromState=’C4’, toState=’C3’, rate=’koff’)

connect(fromState=’C3’, toState=’C2’, rate=’koff’)

connect(fromState=’C2’, toState=’C1’, rate=’koff’)

connect(fromState=’C2’, toState=’O1’, rate=’a1’)

connect(fromState=’C3’, toState=’O2’, rate=’a2’)

connect(fromState=’C4’, toState=’O3’, rate=’a3’)

connect(fromState=’O1’, toState=’C2’, rate=’b1’)

connect(fromState=’O2’, toState=’C3’, rate=’b2’)

connect(fromState=’O3’, toState=’C4’, rate=’b3’)

rate(’koff’, type=’constant ’, k=50)

rate(’kon’, type=’ligandGated ’, k=25e6, ligand=’Ca’, power =1)

rate(’a1’, type=’constant ’, k=1)

rate(’a2’, type=’constant ’, k=25)

rate(’a3’, type=’constant ’, k=200)

rate(’b1’, type=’sigmoidal ’, a=60, v_half=-40, k=40)

rate(’b2’, type=’sigmoidal ’, a=35, v_half=0, k=50)

rate(’b3’, type=’sigmoidal ’, a=25, v_half =140, k=40)

initialState(’C1’)

membraneCapacitance (100)

maxChannelConductance (1.16)

reversalPotential (0)

voltageProtocol(’vp’)

voltageProtocolAddStage(’vp’, ’hold’, voltage =-50, duration =100)

voltageProtocolAddStage(’vp’, ’step’, start =-100, stop =140, step=20, duration =1000)

voltageProtocolAddStage(’vp’, ’hold2’, voltage=-80, duration =500)

concentrationProtocol(’concentrations ’)

addConcentration(’concentrations ’, Ca=20E-9)

addConcentration(’concentrations ’, Ca=100E-9)

addConcentration(’concentrations ’, Ca=250E-9)

addConcentration(’concentrations ’, Ca=500E-9)

addConcentration(’concentrations ’, Ca=750E-9)

addConcentration(’concentrations ’, Ca =1000E-9)

experiment(’angermann ’, ’vp’, ’concentrations ’)

validate ()

run()

Plotting

currents = plotMultipleCurrents(’angermann ’)

gVsV = plotGvsV(’angermann ’, time_ms = 1099)

gVsCa = plotGvsConcentration(’angermann ’, time_ms = 1099)

iv_late = plotMultipleIV(’angermann ’,

time_ms = 1099, ymin = -10,

ymax = 50, labelHeight = 40)

iv_tail = plotMultipleIV(’angermann ’,

time_ms = 1100, ymin = -30,

ymax = 30, labelHeight = 20)

44

Table 4.2: Parameters for Angermann CaCl model in presence of ATP. Reproduced with new
values from [19].

Value Units
Conductance and
equilibrium potential
Maximal conductance 1.16 mS/cm2

ECl 0 mV
Values of gating variables
C1 0
C2.Ca 0
C3.2Ca 0
C4.3Ca 0
O1 1
O2 0.5
O3 0
Ca2+ binding rates
kon(C1 → C2.Ca) 20× 106 M−1s−1

kon(C2.Ca→ C3.2Ca) 20× 106 M−1s−1

kon(C3.2Ca→ C4.3Ca) 20× 106 M−1s−1

Unbinding rates
koff (C2.Ca→ C1 + Ca) 50 s−1

koff (C3.2Ca→ C2.Ca+ Ca) 50 s−1

koff (C4.3Ca→ C3.2Ca+ Ca) 50 s−1

Channel opening rates
α1(C2.Ca→ O1) 1 s−1

α2(C3.2Ca→ O2) 25 s−1

α3(C4.3Ca→ O3) 200 s−1

Channel closing rates
β1(V)(O1 → C2.Ca)
where a, V0.5, and k = 60,−40, and 40 s−1,mV,mV
β2(V)(O2 → C3.2Ca)
where a, V0.5, and k = 35, 0, and 50 s−1,mV,mV
β3(V)(O3 → C4.3Ca)
where a, V0.5, and k = 25, 140, and 40 s−1,mV,mV
All βx(V) use the following Boltzmann equation form:
βx(V) = a/{1 + exp[(V − V0.5)/k]} .

45

4.2.5 ModFossa output

Figure 4.6 shows the figure generated by ModFossa using the plotCurrents method.

Each current trace shows the current passing through the channel at various Ca+2

levels. As expected, higher [Ca+2] invoke larger channel currents. The bottom item

in the figure is the voltage protocol used in the experiment. Note that labels and

calibration bars were added manually using Inkscape.

ModFossa can generate a number of IV curves at a given time, and place them on

a single plot, as shown in Figure 4.7. This figure shows the late IV curves, measured

at 1099 milliseconds into the simulation, which is the moment of maximum channel

current. Similarly, Figure 4.8 shows the tail IV curves, which were measured at 1100

milliseconds.

To show the effects of both ligand concentration and voltage on the channel con-

ductance, ModFossa’s plotGvsConcentration method can be used to generate a chord

conductance plot, as shown in Figure 4.9. This plot contains 13 traces of conduc-

tance as a function of the internal calcium concentration. Each trace corresponds to

a different step value in the voltage protocol. As shown in Figure 4.6, the voltage

protocol contains 13 stepped stages, hence the 13 traces in Figure 4.9.

A second chord conductance plot was generated using ModFossa (Figure 4.10).

This plot shows channel conductance as a function of voltage, for 6 different concentra-

tion values. A chord conductance plot of Angermann et. al’s measured experimental

data is shown in Figure 4.11. As shown, the simulated data (Figure 4.10) match the

experimental data (Figure 4.11) well.

4.2.6 Runtime Analysis

The runtimes of ModFossa versus a similar Matlab implementation are provided in

Figure 4.12. ModFossa is approximately 17 times faster.

46

20nM [Ca] i

100nM [Ca] i

250nM [Ca] i

500nM [Ca] i

750nM [Ca] i

1000nM [Ca] i

1 s

40 pA/pF

-50 mV
-80 mV

-100 mV

140 mV

Figure 4.6: Figure generated by ModFossa showing Angermann CaCl currents given various inter-
nal Ca+2 concentrations. The voltage protocol is shown at the bottom of the figure.

47

−100 −60 −20 20 60 100 140
V (mV)

−10

0

10

20

30

40

50

I
(p

A
/p

F)

20nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−10

0

10

20

30

40

50

I
(p

A
/p

F)

100nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−10

0

10

20

30

40

50

I
(p

A
/p

F)

250nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−10

0

10

20

30

40

50

I
(p

A
/p

F)
500nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−10

0

10

20

30

40

50

I
(p

A
/p

F)

750nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−10

0

10

20

30

40

50

I
(p

A
/p

F)

1000nM [Ca]i

Figure 4.7: Angermann CaCl late IV curves given various internal Ca+2 concentrations. This
figure was generated using ModFossa’s plotIV method at time 1099 milliseconds.

48

−100 −60 −20 20 60 100 140
V (mV)

−30

−20

−10

0

10

20

30

I
(p

A
/p

F)

20nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−30

−20

−10

0

10

20

30

I
(p

A
/p

F)

100nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−30

−20

−10

0

10

20

30

I
(p

A
/p

F)

250nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−30

−20

−10

0

10

20

30

I
(p

A
/p

F)
500nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−30

−20

−10

0

10

20

30

I
(p

A
/p

F)

750nM [Ca]i

−100 −60 −20 20 60 100 140
V (mV)

−30

−20

−10

0

10

20

30

I
(p

A
/p

F)

1000nM [Ca]i

Figure 4.8: Angermann CaCl tail IV curves given various internal Ca+2 concentrations. This
figure was generated using ModFossa’s plotIV method at time 1100 milliseconds.

49

0 200 400 600 800 1000
Ca[i] (nM)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
h
o
rd

 C
o
n
d
u
ct

a
n
ce

 (
n
S
/p

F)

Figure 4.9: Angermann CaCl conductance at varying voltages as a function of intracellular Ca+2

concentration. There are 13 traces on the plot, which correspond to the 13 different steps in the
voltage protocol. This figure was generated using ModFossa’s plotGvsConcentration method.

−100 −50 0 50 100 150
V (mV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
h
o
rd

 C
o
n
d
u
ct

a
n
ce

 (
n
S
/p

F)

Figure 4.10: Simulated Angermann CaCl conductance at varying concentrations, as a function of
membrane voltage. This figure was generated using ModFossa’s plotGvsV method.

50

−100 −50 0 50 100 150
V (mV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
h
o
rd

 C
o
n
d
u
ct

a
n
ce

 (
n
S
/p

F)

1000 nM Ca
750 nM Ca
500 nM Ca
250 nM Ca
100 nM Ca
20 nM Ca

Figure 4.11: Measured data from [3] showing conductance as a function of voltage and concentra-
tions. The data were fit to a Boltzmann function using the least squares method.

1 2 3 4 5 6
Number of experiment sweeps

0

1

2

3

4

5

6

C
P
U
 t
im

e
 (
s)

Matlab

ModFossa

Figure 4.12: ModFossa runtime versus a Matlab implementation. The model and voltage protocol
used are described in Section 4.2. The x-axis corresponds to the number of experiment sweeps
performed at each data point.

51

Chapter 5

Discussion

5.1 Summary

We have identified and addressed a gap in ion channel simulation software by de-

veloping ModFossa, a Python library dedicated to the construction and simulation

of ion channels based on continuous time Markov processes. While several recent

software tools have been released for this purpose, none are Python libraries. Python

is a popular tool among research scientists, therefore we hypothesize that a versa-

tile and easy-to-use ion channel simulation library has the potential for providing a

valuable service to those developing and testing Markov models of ion channels. In

summary, ModFossa allows for the creation of channel models using simple Python

syntax. Several rate constant types are supported, including exponential and Boltz-

mann voltage dependent rates, as well as ligand-gated rates. Voltage and current

protocols are defined easily. Some common plots including IV curves, state prob-

abilities, conductance versus voltage, and conductance versus ligand concentration

are generated using a single function call. Finally, ModFossas core is implemented

in C++ using the Sundials differential equation solver, providing the benefit of fast

execution times.

52

5.2 Applications

ModFossa can provide rapid model development and testing for researchers with

varying programming skill. A common task in ion channel model development is

parameter searching, which requires the modeler to find the rate constant parameters

which best fit the experimental data. Because ModFossa is usable from Python,

existing machine learning libraries such as scikit-learn can be leveraged to perform

parameter searches automatically. This situation is where ModFossas fast execution

speed provides a great benefit, as it is not uncommon for modelers to leave parameter

searches running for several days, or weeks.

5.3 Future work

Several ideas for additional development of ModFossa are presented here. First,

some minor enhancements such as the addition of more sample models, improved

customization of plotting functions (plot size, legend, colors, data range, etc.), and

standardization of the data structures used in the results module would add value to

the software by ensuring a smooth experience for new users. Additionally, creating

and distributing a Debian package for ModFossa would ease installation significantly.

Several preliminary users have expressed interest in user-defined rate contant equa-

tions. A custom rate equation could be written by the user in Python using either

a decorator function, or by inheriting from a base class. During simulation, the sim-

ulator would call the user’s custom rate equation, passing in the current state of

the simulation (membrane voltagte, concentrations, time, etc.), and use the returned

value as the rate for whichever transitions the user specified. The performance hit

due to calling a Python function from C++ during the simulation would have to be

quantified, but it is not expected to be significant.

53

Lastly, the idea of offering ModFossa as a web service with a rich graphical user

interface has been explored. Doing so would encourage use from a wider audience, par-

ticularly from those with limited or no programming experience. Such a web service

could be implemented using a Python web framework such as Flask. A JavaScript

visualization package, such as d3.js could provide rich graph visualizations of the

model, as well as the stimuli definitions and simulation results. Finally, a web site

would allow like-minded scientists to collaborate and easily share results with the

community.

54

Bibliography

[1] Acton, F. S. (1970). Numerical Methods That (Usually) Work. Harper and Row,
NY.

[2] Anderson, D. F. (2011). Introduction to stochastic processes with applica-
tions in the biosciences. http://www.math.wisc.edu/~anderson/605F13/Notes/
StochBio.pdf.

[3] Angermann, J. E., Sanguinetti, A. R., Kenyon, J. L., Leblanc, N., and Green-
wood, I. A. (2006). Mechanism of the inhibition of Ca2+-activated Cl- currents by
phosphorylation in pulmonary arterial smooth muscle cells. The Journal of general
physiology, 128(1):73–87.

[4] Capener, C. E., Kim, H. J., Arinaminpathy, Y., and Sansom, M. S. (2002). Ion
channels: structural bioinformatics and modelling. Human molecular genetics,
11(20):2425–2433.

[5] De Santiago-Castillo, J. A., Covarrubias, M., Sánchez-Rodŕıguez, J. E., Perez-
Cornejo, P., and Arreola, J. (2010). Simulating complex ion channel kinetics with
ionchannellab. Channels, 4(5):422–428.

[6] Fink, M. and Noble, D. (2009). Markov models for ion channels: versatility
versus identifiability and speed. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 367(1896):2161–2179.

[7] Gurkiewicz, M. and Korngreen, A. (2007). A numerical approach to ion channel
modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS
computational biology, 3(8):e169.

[8] Hille, B. (2001). Ionic channels of excitable membranes. Sinauer associates Sun-
derland, MA.

[9] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
physiology, 117(4):500.

[10] Jones, S. W. (2006). Are rate constants constant? The Journal of physiology,
571(3):502–502.

55

[11] Keener, J. P. and Sneyd, J. (2009). Mathematical physiology. Springer.

[12] Kuruma, A. and Hartzell, H. C. (2000). Bimodal control of a Ca2+-activated Cl-
channel by different Ca2+ signals. The Journal of general physiology, 115(1):59–80.

[13] Levitt, D. G. (1999). Modeling of ion channels. The Journal of general physiology,
113(6):789–794.

[14] Liebovitch, L. (1989). Testing fractal and markov models of ion channel kinetics.
Biophysical journal, 55(2):373.

[15] Liebovitch, L. S., Scheurle, D., Rusek, M., and Zochowski, M. (2001). Fractal
methods to analyze ion channel kinetics. Methods, 24(4):359 – 375.

[16] Lowen, S. B., Liebovitch, L. S., and White, J. A. (1999). Fractal ion-channel
behavior generates fractal firing patterns in neuronal models. Physical Review E,
59(5):5970.

[17] McManus, O., Weiss, D., Spivak, C., Blatz, A., and Magleby, K. (1988). Fractal
models are inadequate for the kinetics of four different ion channels. Biophysical
journal, 54(5):859–870.

[18] Synaptosoft (Accessed May 9th, 2013). Channellab. http://www.synaptosoft.
com/Channelab/.

[19] Thibeault, C., Wiwchar, M., Huebner, M., Ayon, R. J., Greenwood, I. A.,
and Leblanc, N. (2011). Allosteric and state-dependent interactions can explain
the paradoxical block and stimulation of native and TMEM16a-induced calcium-
activated chloride currents by anthracene-9-carboxylic acid. In 2011 Experimental
Biology meeting, Washington D.C.

[20] Uebachs, M., Schaub, C., Perez-Reyes, E., and Beck, H. (2006). T-type ca2+
channels encode prior neuronal activity as modulated recovery rates. The journal
of physiology, 571(3):519–536.

[21] Wikipedia (Accessed May 9th, 2013). Cell membrane diagram. http://en.

wikipedia.org/wiki/File:Cell_membrane_detailed_diagram_edit2.svg.

modFossa Documentation
Release 0.1

Gareth Ferneyhough

August 01, 2013

CONTENTS

1 modFossa Package 2
1.1 modFossa Package . 2
1.2 experiment Module . 2
1.3 markovModel Module . 3
1.4 plotting Module . 5
1.5 results Module . 6

Index 7

i

modFossa Documentation, Release 0.1

Contents:

CONTENTS 1

CHAPTER

ONE

MODFOSSA PACKAGE

1.1 modFossa Package

1.2 experiment Module

addConcentration(cpName, **args)
Add a concentration value to the concentration protocol cpName.

Parameters

• cpName – name of concentration protocol to append the value to. It must be declared first
using concentrationProtocol().

• args – required arguments specifying the ligand and its concentration. See example below
for more information.

The following example adds a calcium concentration of 200 nM to myConcentrations

addConcentration(’myConcentrations’, Ca=200E-9)

concentrationProtocol(name)
Declare a new concentration protocol with the given name.

Concentration values must be added using addConcentration()

experiment(name, voltageProtocolName, concentrationProtocolName)
Create an experiment using the given voltage and concentration protocols.

For each concentration in the concentration protocol, the voltage protocol will be run through. This is equivalent
to using the method experimentSweep() to add each concentration value manually.

Individual experiment sweep results can be obtained and plotted using the generated name
name_ligand_concentration. Additionally, the experiment module provides a dictionary, _experimentSweep-
Names, keyed on the experiment name. The values in the dictionary are lists of the experiment sweep names
associated with a given experiment.

For example,:

concentrationProtocol(’concentrations’)
concentrationProtocolAddStage(’concentrations’, Ca=20E-9)
concentrationProtocolAddStage(’concentrations’, Ca=100E-9)
experiment(’myExperiment’, ’myVoltageProtocol’, ’concentrations’)
validate()
run()

2

modFossa Documentation, Release 0.1

will run myVoltageProtocol using a Ca concentration of 20 nM, followed by a Ca concentration of 100 nM. The
two experiment sweeps will be named myExperiment_Ca_20E-9, and myExperiment_Ca_100E-9. These two
names can be used to plot the experiment sweeps using the single plotting methods, such as plotSingleIV()
and plotSingleCurrents().

The multiple plotting methods will plot all the experiment sweeps from the given experiment on a single plot.
For example, the following snippet will plot the two individual IV curves from the experiment defined above on
a single plot:

plotMultipleIV(myExperiment, time=1100)

isValid()
Return the validity of the model.

This will return true after a successful call to validate().

run()
Run all experiments defined with experiment().

When this method completes, the results will be available using the results module.

startAtSteadyState(value)
Tell the simulator whether or not to start the simulation at steady state.

This is true by default. If set to false, the method initialState() in the markovModel module can be used
to set the initial state at which to begin the simulation.

validate()
Check the validity of the model and notify the user of any problems.

voltageProtocol(name)
Declare a new voltage protocol with the given name.

Voltage protocol stages must be added using voltageProtocolAddStage()

voltageProtocolAddStage(vpName, stageName, **args)
Add a voltage protocol stage voltage protocol protocol vpName. The stage can either be stepped, or constant.

Parameters

• vpName – name of voltage protocol to append the value to. It must be declared first using
voltageProtocol().

• args – required arguments specifying the voltage stage. Units are in milliVolts and milliSec-
onds. See example below for more information.

The following example adds a stepped voltage protocol stage with the name step to vp ::
voltageProtocolAddStage(‘vp’, ‘step’, start=-100, stop=140, step=20, duration=1000)

The following example adds a constant voltage protocol stage with the name hold to vp ::
voltageProtocolAddStage(‘vp’, ‘hold’, voltage=-50, duration=100)

1.3 markovModel Module

connect(fromState, toState, rate)
Connect two states with the given rate constant.

initialState(name)
Set the initial state.

For this to have any effect, startAtSteadyState() must be false.

1.3. markovModel Module 3

modFossa Documentation, Release 0.1

maxChannelConductance(conductance)
Set the max channel conductance in nS.

membraneCapacitance(capacitance_pf)
Set the membrane capacitance in pF.

This command currently has no effect on the simulation and will be removed.

rate(name, **args)
Create a rate constant.

Parameters

• name – name of the rate constant. Must be unique.

• args – required arguments specifying the type and parameters of the rate constant.

The type of rate constant to create is specified by the type argument. This is required. The various rate constant
types and their required arguments are listed below.

constant

A rate constant with with a single rate, not dependent on voltage or ligand concentration.

Required arguments:

• k

Implementation: rate = k.

Example:

rate(’myConstantRate’, type=’constant’, k=10)

boltzman

A voltage dependent rate constant using the Boltzman equation.

Required arguments:

• a

• v_half

• k

Implementation: rate(V) = a
1+exp[(V−V _0.5)/k] .

Example:

rate(’myBoltzmanRate’, type=’boltzman’, a=1, v_half=-30, k=10)

exponential

An exponential voltage dependent rate constant

Required arguments:

• a

• k

Implementation: rate(V) = a ∗ exp(k ∗ V).

Example:

rate(’myExponentialRate’, type=’exponential’, a=1, k=10)

1.3. markovModel Module 4

modFossa Documentation, Release 0.1

ligandGated

A ligand gated rate constant

Required arguments:

• ligand

• ligand_power

• k

Implementation: rate([ligand]) = k ∗ [ligand]ligand_power where [ligand] is the concentration of ligand.

Example:

rate(’myLigandGatedRate’, type=’ligandGated’, ligand=’Ca’, ligand_power=3, k=50)

reversalPotential(reversalPotential)
Set the reversal potential in mV.

state(name, conducting=False, gating=1.0)
Add a new state to the markov model.

Parameters

• name – name of the state. Must be unique.

• conducting – whether or not the state is a conducting state. False by default.

• gating – scales the conductance of the state. Only used conducting is True. Default value is
1.0.

1.4 plotting Module

plotCurrents(experimentSweepName)
Plot the current traces for a given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

plotGvsConcentration(experimentName, time_ms)
Plot the channel conductance versus concentration for a given experiment sweep at the specified time in mil-
liSeconds.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

plotGvsV(experimentName, time_ms)
Plot the channel conductance versus membrane voltage for a given experiment sweep at the specified time in
milliSeconds.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

plotIV(experimentSweepName, time_ms)
Plot the IV curve for a given experiment sweep at the specifed time in milliSeconds.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

1.4. plotting Module 5

modFossa Documentation, Release 0.1

plotMultipleCurrents(experimentName)
Plot all of the current traces for a given experiment.

A figure will be generated with several subplots, one for each experiment sweep in the experiment.

plotMultipleIV(experimentName, time_ms, ymin, ymax, labelHeight)
Plot all of the IV curves for a given experiment at the given time in millieSeconds.

A figure will be generated with several subplots, one for each experiment sweep in the experiment.

plotStates(experimentSweepName)
Plot the state probablities for a given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

plotVoltageProtocol(experimentSweepName)
Plot the voltage protocol for a given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

1.5 results Module

getConductances(experimentSweepName)
Get the conductances for the given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

getCurrents(experimentSweepName)
Get the currents for the given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

getIV(experimentSweepName, time_ms)
Get the IV curve for the given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

getStateNames()
Get the state names for the given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

getStateProbabilities(experimentSweepName)
Get the state probabilities for the given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

getVoltageProtocol(experimentSweepName)
Get the voltage protocol for the given experiment sweep.

See experiment() in the experiment module on how experiment sweep names are generated for a given
experiment.

1.5. results Module 6

INDEX

A
addConcentration() (in module modFossa.experiment), 2

C
concentrationProtocol() (in module mod-

Fossa.experiment), 2
connect() (in module modFossa.markovModel), 3

E
experiment() (in module modFossa.experiment), 2

G
getConductances() (in module modFossa.results), 6
getCurrents() (in module modFossa.results), 6
getIV() (in module modFossa.results), 6
getStateNames() (in module modFossa.results), 6
getStateProbabilities() (in module modFossa.results), 6
getVoltageProtocol() (in module modFossa.results), 6

I
initialState() (in module modFossa.markovModel), 3
isValid() (in module modFossa.experiment), 3

M
maxChannelConductance() (in module mod-

Fossa.markovModel), 3
membraneCapacitance() (in module mod-

Fossa.markovModel), 4
modFossa.__init__ (module), 2
modFossa.experiment (module), 2
modFossa.markovModel (module), 3
modFossa.plotting (module), 5
modFossa.results (module), 6

P
plotCurrents() (in module modFossa.plotting), 5
plotGvsConcentration() (in module modFossa.plotting), 5
plotGvsV() (in module modFossa.plotting), 5
plotIV() (in module modFossa.plotting), 5
plotMultipleCurrents() (in module modFossa.plotting), 5
plotMultipleIV() (in module modFossa.plotting), 6

plotStates() (in module modFossa.plotting), 6
plotVoltageProtocol() (in module modFossa.plotting), 6

R
rate() (in module modFossa.markovModel), 4
reversalPotential() (in module modFossa.markovModel),

5
run() (in module modFossa.experiment), 3

S
startAtSteadyState() (in module modFossa.experiment), 3
state() (in module modFossa.markovModel), 5

V
validate() (in module modFossa.experiment), 3
voltageProtocol() (in module modFossa.experiment), 3
voltageProtocolAddStage() (in module mod-

Fossa.experiment), 3

7

