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Abstract 

With the ever-growing proliferation of hardware and software-based computer security 

exploits and the increasing power and prominence of distributed attacks, network and system 

administrators are often forced to make a difficult decision: expend tremendous resources on 

defense from sophisticated and continually evolving attacks from an increasingly dangerous 

Internet with varying levels of success; or expend fewer resources on defending against 

common attacks on “low hanging fruit,” hoping to avoid the less common but incredibly 

devastating zero-day worm or botnet attack. Home networks and small organizations are usually 

forced to choose the latter option and in so doing are left vulnerable to all but the simplest of 

attacks. While automated tools exist for sharing information about network-based attacks, this 

sharing is typically limited to administrators of large networks and dedicated security-conscious 

users, to the exclusion of smaller organizations and novice home users. In this thesis we propose 

a framework for a cooperative defense overlay network (CODON) in which participants with 

varying technical abilities and resources can contribute to the security and health of the internet 

via automated crowdsourcing, rapid information sharing, and the principle of collateral defense.  
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1 Introduction 

As the internet continues to scale with the increased availability of connectivity in 

historically less prosperous geographic regions and as everyday objects become network-aware 

to form the so-called “internet of things” [5], we believe cooperative defense models that 

encourage “good neighbor” information sharing will be crucial to improving the safety of the 

internet as a whole. While automated tools exist for sharing information about network-based 

attacks, this sharing is usually limited to administrators of large networks and dedicated 

security-conscious users, to the exclusion of smaller organizations and novice home users. In 

this thesis we propose a framework for a cooperative defense overlay network in which 

participants with varying technical abilities and resources, but particularly those with minimal 

technical ability, can contribute to the security and health of the internet via crowdsourced 

blacklist generation, peer-to-peer security information sharing, and the principle of collateral 

defense. 

In Chapter 2 we explore prevalent network-based distributed attacks against networked 

systems, current and proposed methods of defense against distributed attacks, and related 

work. We then illustrate the need for a cooperative and collaborative defense that extends 

beyond a small alliance of large and well-resourced organizations. In Chapter 3, we describe the 

architecture and functionality of our proposed cooperative defense overlay network (CODON) 

as well as anticipated barriers to adoption and potential watershed moments that may spur 

adoption by large portions of the internet community. We conclude this thesis with a brief 

discussion of our conclusions and future work in Chapters 4 and 5, respectively.  
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2 Background and Related Work 

Before discussing the need for and value of implementing our proposed CODON 

framework, we will first examine various threats, both ubiquitous and less common, against 

which computer network and system administrators, referred to collectively in this thesis as 

“system administrators,” must defend in the course of maintaining the health and security of 

their various systems. We will also discuss relevant computer security concepts, best practices 

employed to defend against large-scale distributed threats, and work related to CODON. It 

should be clear by the end of this chapter that the internet needs defensive options capable of 

scaling as easily as common threats already do. 

 The Internet 2.1

Thousands of independently-managed computer networks known as autonomous 

systems (ASes) across the world connect to form a vast and decentralized “network of 

networks” known as the internet. The internet lacks a central point of authority governing its 

operation, and owes much of its success and growth to cleverly-designed and evolving protocols 

that enable different ASes to interoperate despite their technological, political, and ideological 

differences. These protocols generally, but imperfectly, allow the internet to be resilient to 

localized system failures and require minimal state to be maintained by each AS, in many cases 

adapting to topology changes with little or no human interaction. In general, systems and 

services can join the vast internet without requiring the rest of the internet to first undergo 

costly upgrades, re-architecture, or widespread manual intervention. Decentralized services that 

support the internet such as the Domain Name System (DNS) require a degree of centralized 

management for human convenience, but data can generally flow between distant networks in 

the absence of central overarching management. A key incentive for the various ASes to 
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cooperate is the concept of “fate sharing”: various ASes and the internet as a whole will succeed 

or fail together, so it is generally in an AS’s best interest to cooperate with others to ensure its 

own survival. Fate sharing requires a shared goal and a degree of implicit trust between ASes, 

and this is simply not enough to ensure that malicious AS administrators [61] or the coordinated 

effort of rogue systems inside otherwise well-behaved ASes will not affect internet operations in 

undesirable ways. 

 Overlay Networks 2.2

An overlay network is a subset of nodes in a network that functionally form another 

network; in other words, an overlay network is a network within a larger “underlay network” 

whose topology may have little or no similarity to the underlay network. Consider the example 

of a four-node overlay network of computers running a simplified peer-to-peer file sharing 

software as illustrated below in Figure 2.1. 
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Figure 2.1 Nodes B, D, G, and I on geographically and administratively distinct networks connect via 
software to form an overlay network. The nodes then communicate with one another as though they 
are on the same network. 

In this example overlay network, the four nodes B, D, G, and I, behave as though they all 

reside on the same local network, while two of the nodes (G and I) actually reside on different 

continents with numerous ASes separating them. When a node in the overlay network wishes to 

search for a particular file or share some useful information via peer-to-peer file sharing 
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software, it will broadcast the search request to its neighbors in the overlay network while 

remaining functionally unaware of neighbors in the underlay network. 

Overlay networks are commonly formed via the use of peer-to-peer software, as the 

example above suggested. At its simplest, peer-to-peer software is software that enables 

multiple computers on a network to communicate directly with one another with minimal, if 

any, reliance on dedicated and stable centralized servers. Peer-to-peer file sharing software 

such as BitTorrent [13] has been used to cheaply distribute entire operating systems in parallel 

amongst technical users as in the case of Debian Linux and many others [64], to distribute 

enthusiast-generated multimedia content amongst niche online communities [51], and even to 

distribute software updates for mainstream commercial video games [9]. In the case of 

BitTorrent, a “torrent” file is used to describe the shared file and to direct clients to a “tracker”. 

The tracker is a server that tracks other clients, or “peers,” with partial or full copies of the data 

described in the torrent file, though it is possible to discover peers by other methods, but the 

tracker does not distribute the shared file. File data is typically subdivided into many small 

chunks to allow for fast parallel downloading from multiple peers that may not yet have a full 

copy of the data. A peer with a full copy of the desired data is known as a “seed,” and a high 

seed-to-peer ratio ensures quick distribution of the data to new peers. A key disadvantage of 

peer-to-peer file sharing software such as BitTorrent is that the quality of service can fluctuate 

greatly with peer churn in the network, or “swarm,” as many participants join only long enough 

to download their desired files and quickly leave the swarm to conserve their own resources 

such as network bandwidth. Without enough seeds in the swarm or with too much churn, it 

becomes possible that a peer may not be able to collect all the chunks shared throughout the 

swarm to assemble a full copy of the original data. 
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Peer-to-peer file sharing also places inherent trust in fellow swarm participants who 

may claim to host legitimate content while actually providing no data or malicious data. Hashing 

can be used to validate the integrity of data distributed by participants, introducing a slight 

performance impact on participants as the hashing process and the hashes themselves require 

additional effort to generate, distribute, and verify, but the trust issue remains. For example, an 

attacker could share a virus purporting to be a recording of a musical performance and publish 

the hash of that virus. Participants who download the virus can verify that the file has not been 

modified during distribution over the peer-to-peer network by hashing the downloaded chunks 

or the complete file, but they may not be able to verify the validity of the content, i.e. determine 

that the file is really a virus, until a particular chunk or in some cases the entire file has been 

downloaded. We illustrate this problem below in Figure 2.2 using the example of a large file that 

has been tampered with and subsequently shared via a peer-to-peer network. 
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Figure 2.2 Victim V downloads a tampered Linux installation DVD via BitTorrent. Hashing the file 
downloaded from the swarm shows that the file was not tampered in transit, but the end result is still 
untrustworthy because the file was tampered before entering the swarm. It is difficult to verify that the 
file has the desired contents until the download is complete. 
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The Skype [62] audio/video conferencing system uses a hybrid peer-to-peer and client-

server model, initially leveraging end-user resources to reduce the burden placed on expensive 

centralized server resources. As it has grown in worldwide popularity and server resources have 

become less expensive, Skype and its parent company Microsoft have shifted much of the 

computing burden toward centralized servers known as “supernodes” and removed the ability 

for Skype users to participate as supernodes [27,28]. An important advantage of this hybrid 

approach is that the overlay network is more resilient to participant churn as many users join 

and disconnect from the network. This has become increasingly common as users shift away 

from running the Skype client software on desktop computers in favor of laptops and other 

portable devices that have additional resource constraints such as limited battery life and 

intermittent network connectivity. Skype’s change from a primarily peer-to-peer architecture to 

the more traditional client-server architecture has been criticized due to the potential loss of 

privacy caused by temporarily storing call-related data on company-owned servers. 

 The Security Triad 2.3

The concepts of confidentiality, integrity, and availability are widely discussed in the 

field of information security, and are commonly referred to collectively as the security triad or 

the mnemonic “CIA triad.” This triad is pertinent to almost every resource an administrator 

might seek to protect, and network-based attacks seek to subvert at least one of the three 

elements of the triad. Regulatory requirements and standards [32] often require that specific 

elements of the security triad be addressed to protect particular categories of sensitive 

information. The security triad can be summarized as follows, with examples provided below in 

Table 2.1. 
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Table 2.1 Common threats against an e-commerce web server and corresponding safeguards 

Threat Threatens 
Availability, 
Integrity, or 
Confidentiality? 

Typical Safeguards 

SQL injection via 
“product search” web 
form could modify or 
divulge sensitive data 

A, I, C Perform input validation and sanitize form field contents 
before performing query on back-end product database. Do 
not grant write/modify privileges to DB account used by 
web server. 

Sudden high volume of 
shoppers overburdens 
server 

A Use a load balancing system to distribute requests across 
multiple web servers. Optimize system software and 
architecture to minimize resources consumed when 
processing requests and serving results. 

Software glitch causes 
existing customer data 
to be overwritten 
when a new customer 
makes a purchase 

I Require changes to software to be reviewed and approved 
by management before implementation. Perform thorough 
testing on separate testing or “staging” servers before 
installing software on production servers. 

 

Confidentiality entails ensuring that a sensitive resource is disclosed only to its intended 

audience(s), commonly through the use of data encryption or strict access controls. Integrity is 

the protection of a resource against unauthorized or undesired changes, including deletion or 

corruption, and includes proving whether a resource was tampered with via the use of audit 

logs, file hashing, and encryption certificate-based digital signatures. Availability is ensuring that 

a resource continues to function as designed and can be both successfully and timely accessed 

when needed. Though an administrator is often concerned about safeguarding all three 

elements of the security triad for a resource on the network, there are instances in which one or 

two elements may not be important; for example, the message contents of a severe weather 

alert warning system may by its very nature not require confidentiality safeguards, whereas the 

message’s integrity and availability may be of paramount importance. 
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 Asymmetric and Symmetric Key Cryptography 2.4

Put simply, encryption is the process of modifying a message in such a way that only its 

intended recipient(s) may understand it, protecting the encrypted message’s content from being 

divulged to a third party if intercepted. We refrain from presenting an exhaustive explanation of 

cryptography in this section, as it is a field of study unto itself. Instead, we present a high level 

overview of the encryption process and briefly discuss the elements of cryptography pertinent 

to our work: symmetric and asymmetric key cryptography. The interested reader is referred to 

[3] for a more thorough coverage of cryptography. 

In cryptography, the original unencrypted message is referred to as “plaintext.” 

Plaintext is encrypted using a carefully devised function known as a “cipher,” and the resulting 

encrypted message is known as the “ciphertext.” Ciphers use plaintext and a “key” as input, 

where the key is usually a secret string that is unfeasible to correctly guess or compute given the 

ciphertext. A good cipher similarly makes it unfeasible to correctly guess or compute the 

plaintext given the ciphertext. There are numerous ciphers of varying complexity, and many are 

available for public use and analysis while many others remain closely guarded secrets. If an 

attacker is able to intercept ongoing encrypted communication and is also able to determine the 

cipher and key used for decryption, it is often a trivial task to derive the plaintext, thereby 

defeating the encryption. 

For an encryption algorithm to be useful, the intended recipient must be able to convert 

the received ciphertext into plaintext. Therefore, both the sender and the intended recipient 

must agree in advance upon a cipher and use appropriate key(s) for encrypting and/or 

decrypting communication. Cryptographic algorithms may be divided into two classes based on 

their use of keys: symmetric key cryptography, in which the sender and receiver use the same 
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key to encrypt and decrypt all messages; and asymmetric key cryptography or “public key 

cryptography,” in which messages are encrypted using a publicly available key and decrypted 

using a privately held key. Symmetric key ciphers are generally faster than asymmetric key 

ciphers and symmetric keys tend to be stronger than asymmetric keys for a given key length, but 

symmetric ciphers require that both parties agree on a shared secret in advance and this can be 

quite burdensome. Asymmetric key cryptography tends to perform more slowly than symmetric 

key cryptography but allows many parties to encrypt messages to the same recipient using a 

publicly available key. 

It is possible for two parties to establish a shared secret key in such a way that a third 

party eavesdropping on communications between them cannot determine the agreed upon 

secret without significant computational effort, and this is frequently done via the Diffie-

Hellman key exchange protocol [10]. Unfortunately this exchange is subject to a “man in the 

middle” attack wherein an attacker could both intercept and modify communications between 

the sender and the recipient and cause them to unwittingly establish shared secrets with the 

attacker instead of with one another. Asymmetric key cryptography removes the need for each 

party to establish a shared secret to communicate with one another securely. The de facto 

standard for asymmetric key cryptography is RSA, in which a party generates a public key and a 

private key that are mathematically related. Although the keys are related, when they are 

properly generated it is extremely difficult to derive the private key given the public key since 

there are no known algorithms for efficiently factoring arbitrarily large numbers. The public key 

is made available for anyone to use when encrypting communication destined for the key pair’s 

owner, and the private key is the only key capable of decrypting the communication. The Diffie 

Hellman key exchange and use of RSA key pairs are described in more detail in [20] and [21]. 
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To take advantage of the generally faster performance of symmetric key encryption, 

avoid the need to agree upon a shared secret offline, and work around the man in the middle 

problem, it is common for the sender and receiver to use asymmetric encryption during the 

session establishment process, as in the case of the Transport Layer Security (TLS) protocol [18]. 

Within this encrypted conversation, both parties agree upon a symmetric key and subsequently 

use a symmetric cipher to encrypt their communications. When using a symmetric cipher, 

parties often choose to establish a replacement key, or to “re-key,” once a predetermined time 

has elapsed or a certain number of bytes have been transferred. This reduces the amount of 

time available to an attacker to correctly guess the symmetric key and in turn decrypt the 

ongoing conversation. 

 Vulnerabilities, Threats, Exploits, Safeguards, and Remediation 2.5

Vulnerabilities are weaknesses or defects that make it possible for attackers, or even 

inept administrators and users, to render a system inoperable or to cause the system to perform 

undesirable actions not intended by the creator or administrator. Remediation is the process of 

fixing a particular vulnerability and/or recovering from an aftermath of an exploit. Exploits are 

software tools or other mechanisms of taking advantage of a particular vulnerability. The most 

effective exploits are those for which no remediation actions have yet been developed or 

published, typically because the corresponding vulnerability is not widely known or is difficult to 

quickly remediate due to cost or complexity. Such exploits are known as zero-day exploits. 

Widely-used and emerging standards and technologies exist for describing and sharing 

information about computer vulnerabilities, exploits, and remediation actions. These include 

MITRE’s Common Vulnerabilities and Exposures® (CVE®) [40] and Open Vulnerability and 

Assessment Language® (OVAL®) [41], as well as the US Department of Commerce’s National 
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Institute of Standards and Technology (NIST)’s effort to synthesize and automate the use of 

computer security standards via the Security Content Automation Protocol (SCAP) [43]. A 

promising future resource for large-scale remediation is NIST’s emerging Common Remediation 

Enumeration (CRE) standard [42], which defines remediation steps in an automation-friendly 

format as well a framework for distributed remediation publishing. 

Two commonly deployed software tools used to detect running software and related 

known vulnerabilities are Nessus [69] and nmap [38]. Such software is used by system 

administrators and attackers alike to detect vulnerabilities for the purposes of proactive threat 

remediation and reconnaissance, respectively. And while several commercial tools such as 

Nexpose [56] exist to summarize vulnerabilities and track remediation steps, these tools are by 

their nature ill-suited for detecting actual attack activity. 

 Intrusion Detection and Prevention Systems 2.6

Many organizations and some home users employ intrusion detection systems (IDS), 

intrusion prevention systems (IPS), and/or intrusion detection and prevention systems (IDPS). 

An intrusion detection system (IDS) passively detects malicious or suspicious behavior and only 

logs the event for future reporting. Unlike an IDS, an IPS can perform reactive functions such as 

disconnecting and preventing network communication between the parties involved in 

suspicious activity. An IDPS performs the functions of both an IDS and an IPS, but the distinction 

between an IPS and IDPS is somewhat nebulous and IDPS tends to be the favored term. The 

most commonly used and well-regarded open-source IDPS is Snort [11], although the 

multithreaded Suricata [48] IDPS has arisen as a new contender with performance features like 

multithreading and experimental graphics card acceleration support. 
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An IDS can rely on detection of statistically anomalous behavior that varies from an 

established baseline in an organization, as well as known behavior patterns or “signatures” to 

detect or prevent undesirable behavior. Establishing a baseline of what is considered normal 

activity on a network requires the administrator to understand what normal really means, or 

should mean, for the network in question. This baseline can become skewed if unusual activity 

occurs while the baseline is being established. With very large networks and with home users it 

can be difficult to establish a baseline due the wide range of activity that legitimately occurs on 

the network. 

Unlike statistical behavior based detection, signature based detection is not tailored to a 

particular network and the signatures can easily be shared and used by IDS administrators 

throughout the internet community. Nevertheless, great skill is required to create an efficient 

and precise signature that detects undesirable behavior with no or minimal false positive 

detections. Creating signatures requires careful analysis of the raw network communication or 

“packet captures” between the misbehaving host and the victim, which can be further 

complicated by the ubiquity of firewalls, network address translation, and other hosts that 

legitimately modify network communication between hosts. Packet capture analysis is further 

complicated by the existence of multiple hosts communicating over the same network 

simultaneously, making it difficult to isolate communication strictly related to the suspicious or 

malicious behavior. And while signatures are widely distributed online, file size and concerns 

about divulging sensitive internal communications and private network topology cause packet 

captures to be less commonly shared for public analysis. 

The use of an IDS inside a very large organization’s network still provides a very limited 

view of malicious behavior on the internet, making it difficult to identify whether the behavior is 
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part of a larger scale attack affecting multiple organizations. Few organizations have a view of 

large geographical regions, so the collection of very large scale network traffic data is left to 

transit providers, content distribution networks (discussed briefly in Section 2.9.3), and research 

organizations with whom the former are willing to share useful data samples. Public access to 

large scale attack data is very limited, typically consisting of select researchers’ analysis rather 

than the actual data. 

 Firewalls 2.7

Firewalls are network security systems commonly implemented at the edge or border of 

a network to separate a network from other networks outside the administrator’s control. 

Firewalls are also used to separate multiple networks within a larger network controlled by the 

same administrator based on organizational or regulatory security requirements. Firewalls are 

commonly implemented as dedicated network hardware appliances, as software installed on a 

computer as an add-on package, as an operating system feature. Firewall functionality is usually 

embedded into the firmware of the “all-in-one” multifunction routers leased or rented by many 

ISPs to their customers. Ingress and egress control decisions are based on sets of rules 

configured on the firewall and may be as simple as allowing or denying communication between 

two IP address ranges and a particular port number – for example, “allow traffic from 10.0.0.0 

via TCP port 80 to 192.168.0.0 via any port.” More complex rules may use multiple criteria, and 

sets of rules may be chained together to enforce finer-grained control over traffic. While any 

firewall can filter traffic based on source and destination IP addresses, subnets and ports, more 

advanced firewalls use stateful packet inspection or even application-layer protocol inspection 

to make more intelligent access control decisions based on session state and application 

behavior. Firewalls provide logging mechanisms that can usually be configured to adjust the 
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verbosity and level of detail and may produce a large volume of log data under load. This log 

data can prove very useful for troubleshooting and security event correlation when used in 

conjunction with an IDPS or specialized log correlation software, but storage and processing 

constraints tend to limit the amount and detail of log data retained by smaller organizations. 

 Honeypots and Honeynets 2.8

Honeypots are systems used by researchers and various organizations which have been 

made intentionally by the administrator to be vulnerable to known threats. By allowing an 

attacker to compromise a honeypot and access it for some period of time instead of preventing 

the attack with an IDPS or other tools, the administrator can observe an attacker’s subsequent 

activity even down to the keystroke and gain insight into the attacker’s behavior and the tools 

used by the attacker. In practice, the ubiquity and decreasing cost of server virtualization makes 

it possible for an administrator to configure a honeypot, allow it to be compromised, and later 

revert the honeypot to an uncompromised state with very little effort. It is very important that 

the attacker believe the honeypot is a legitimate system, and toward that end honeypot systems 

such as Honeyd [55] have been developed which mimic even the nuanced behavior of various 

operating systems’ TCP/IP stacks. A honeynet is a collection of honeypot systems working 

together in concert to provide a more thorough observation of an attacker’s activity or simply 

waste an attacker’s time and resources by fooling the attacker into believing the honeynet 

contains useful information to steal. Similar to a honeynet but much less interactive, a “network 

telescope” or “darknet” is a system that observes activity targeting unused IP addresses under 

the assumption that legitimate traffic would not attempt to access those addresses, as in the 

case of the UCSD Network Telescope [14]. The USCD Network Telescope uses a very large and 

mostly empty block of publicly reachable IP addresses (a /8 block or roughly 16,777,216 
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addresses) that is passively monitored for malicious activity and provides the logged data to 

select security researchers for analysis. Honeypots and honeynets can provide valuable 

information about emerging network-based attack behaviors and trends, whether distributed or 

more localized. An important aspect missing from traditional honeypot systems is end-user or 

client interaction, as they generally focus on observing how an attacker interacts with a server 

or service rather than how an end-user interacts with an attacker and the attacker’s ensuing 

response to end-user stimulus. In response to this shortcoming, “client honeypot” systems such 

as PhoneyC [45] have been developed which mimic end-user behavior such as browsing the web 

for executable files or simulating a user opening links included in unsolicited emails. Both 

traditional and client honeypot systems are well-suited for use in conjunction with the CODON 

Sensor software that we describe later in Section 3.3.3. 

 Distributed Attacks  2.9

The internet’s oft-used nickname of “information superhighway” is appropriate: it 

allows a very large number of people to access distant destinations quickly, whether with good 

or evil intent. A distributed attack is an attack against a system via multiple attacking nodes that 

cooperate in an attempt to inflict greater damage or increase the probability of a successful 

attack than is possible with a single attacking node. Such attacks leverage the power of the 

internet’s decentralized and scalable nature for harm rather than good. The internet is designed 

to allow participants to easily and quickly communicate with one another, not to hinder 

communication, and this opens many avenues for malicious participants to wreak havoc. 

2.9.1 Distributed Denial of Service and Botnets 

The most well-known distributed attack is the distributed denial of service (DDoS) 

attack. In this attack, a large number of systems work in concert to overwhelm a victim’s system 
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with service requests or other network traffic. These requests are often incomplete or 

malformed in such a way that the victim is forced to expend much more effort responding to the 

requests than the attacker expends sending them [72]. As the victim attempts to process and 

respond to each incoming malicious service request, the victim quickly becomes unable to 

respond to legitimate requests in a timely manner, sometimes even stopping completely under 

the enormous load. There are many variations on the DDoS attack tailored to different 

applications and network protocols. In a so-called reflection attack, attacking hosts send forged 

requests containing a victim’s IP address in the sender or source IP field to innocent servers that 

are configured to respond to incoming requests. This causes the innocent servers to “reflect” a 

large amount of traffic to the victim while obscuring the real attacker’s identity [72]. DDoS 

attacks can be difficult to distinguish from legitimate so-called “flash crowds” of users 

attempting to access a system simultaneously due to a sudden growth in the system’s popularity 

[53]. We illustrate a successful DDoS attack based on a victim’s network bandwidth below in 

Figure 2.3. 

Participants in a DDoS attack are usually part of a network of compromised systems 

known as a “botnet.” Participants in a botnet are referred to as “zombies” or “bots,” and are 

controlled by a limited number of people and systems. Botnet architecture has evolved and 

scaled well over time. Early botnets used a traditional client-server hierarchy with commands 

sent in plaintext via the simple internet relay chat (IRC) protocol, and stopping a botnet was as 

simple as blocking incoming IRC traffic on one’s network, and the botnet controller’s IRC chat 

room was usually easy to find through simple analysis of a packet capture from the victim’s 

network. Today’s botnets have achieved a new level of sophistication and larger scale through 

the use of peer-to-peer architecture to control the zombies and obscure the controller, and 
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public key cryptography to digitally sign exploit tools and commands as in the case of the 

Gameover Zeus malware distributed via the Cutwail spam botnet [68]. Modern botnets are 

notoriously difficult to shut down, and continue to be a subject of great interest to the 

cybersecurity research community. 
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Figure 2.3 Node D has compromised nodes A, E, H, K, L, and O to form a botnet. D can order the botnet 
to attack V with a combined attack bandwidth of 130mb/s, overwhelming V’s 100mb/s connection and 
denying legitimate access to services hosted by both V and its neighbor W. Neighbors of botnet nodes 
may also be impacted. 

2.9.2 Hacktivism and Voluntary Botnets 

Not all distributed attacks are performed by unknowing participant systems. In some 

instances these attacks are performed by users seeking to gain notoriety or create awareness of 

an ideological or political issue in what is known as hacking-based activism or “hacktivism.” 

“Hacktivists” with minimal technical skills may install software developed by more skilled 

hacktivists to participate in a distributed attack either directly by initiating an attack in concert 

with other hacktivists. In the case of the popular and open source Low Orbit Ion Cannon (LOIC) 

software’s [46] “hive mind” mode, hacktivists volunteer to join a botnet controlled by an IRC 

channel or RSS newsfeed and leave the software running unobtrusively on their computers 

without manual intervention. Disregarding past web browsing behavior such as searching for 

the LOIC software installer, using hive mind LOIC ostensibly gives the hacktivist a small degree of 
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plausible deniability: the hacktivist may deny being a willing participant and plausibly claim 

instead to be the victim of a botnet infection. Unfortunately for some participants, while the 

LOIC software has proven to be effective, it makes no attempt to disguise the hacktivist’s source 

IP address. In just one notable example, more than a dozen hacktivists and LOIC users were 

identified and prosecuted for their participation in “Operation Payback” [58]. Operation Payback 

was a hacktivist campaign in late 2010 - early 2011 to launch DDoS attacks against various banks 

and payment processing services, purportedly in response to their refusal to process donations 

to WikiLeaks after WikiLeaks published a large collection of secret diplomatic messages from 

United States embassies and consulates to the State Department. 

2.9.3 Defending Against Distributed Attacks 

Interesting research topics in collaborative defense methods to reduce the power of 

DDoS attacks include path marking, where routers cooperate to identify sources of attack traffic, 

allowing the victim to distinguish attack traffic from legitimate traffic; and pushback, wherein 

routers cooperate to block the attack traffic as close to the attack source as possible [47]. 

DefCOM [39], developed at UCLA’s Laboratory for Advanced Systems Research, is a promising 

collaborative defense system with which our CODON framework shares similarities. Unlike some 

collaborate defense systems that require all networks between the attacker and victim to 

participate, DefCOM provides DDoS defense using heterogeneous participants performing 

different tasks. DefCOM’s defense functions are attack detection, traffic rate limiting, and traffic 

differentiation. Defense-related communication is performed over a peer-to-peer overlay 

network. DefCOM’s research team claims DefCOM is effective with non-participants between 

the attacker and victim, and that the small scale tests they performed with real computers 

(around 200 nodes) is more realistic than other tests due to the infidelity of network simulation 
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software under DDoS conditions. While DefCOM shares some similarities to our work, namely 

the use of heterogeneous participants and peer-to-peer communication, our CODON framework 

takes a more holistic approach to security and threat information sharing rather than focusing 

solely on DDoS defense. 

Many organizations subscribe to content distribution networks (CDN) such as Akamai [2] 

to more quickly deliver web pages and multimedia content instead of relying solely on servers 

on their own premises. These CDNs consist of servers at well-connected locations throughout 

the world where they can serve requests from global clients much more quickly than from a 

single location. The strategic positioning and high bandwidth of CDNs enables them to also work 

as load balancing systems for their subscribers, diminishing the effect of DDoS attacks by being 

able to sustain high traffic volumes and limiting the geographical regions of legitimate end-users 

that may be prevented from accessing CDN subscribers’ systems by a successful DDoS. 

Comparing a DDoS attack to a large mob of people trying to enter the front entrance to an 

amusement park, using a CDN simply makes the entrance wider or adds more entrances to 

accommodate a larger mob. This is an effective strategy for network bandwidth-based attacks 

but is not cost effective for all organizations and will eventually fail to scale as attackers devise 

new bandwidth-intensive DDoS attacks. The CloudFlare [2] CDN also acts as a caching and 

filtering system to prevent malicious requests from reaching a subscriber’s website. Research 

into methods to quickly deliver content from CDNs to end-users is ongoing and includes closer 

collaboration with ISPs [25], but we do not believe faster content delivery alone will necessarily 

contribute to security for the internet community as a whole. 

Locasto et al.’s Worminator [37] project is a peer-to-peer alert distribution system that 

creates and distributes alerts from multiple organizations to generate inter-organizational threat 
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“watchlists” and seeks to provide a more global view of attacks with similarities to our CODON 

framework. While Worminator’s goal of collaborative defense is similar, CODON differs greatly 

in the scale of participation. Whereas in [37] Worminator searches for suspicious traffic using 

homogenous IDS and alerting systems at four different sites within the United States, with the 

majority of alerts coming from the Columbia University’s computer science department’s 

network, we seek to leverage heterogeneous data sources and detection mechanisms based not 

only on dedicated IDS equipment in well-resourced organizations, but on a multitude of hosts 

including those of end-users worldwide. 

 Reputation-based Access Control: Blacklists and Whitelists 2.10

A very common method for controlling access to a limited or sensitive resource is 

through the use of lists known as blacklists and whitelists. Blacklists, sometimes also referred to 

as blocklists, explicitly enumerate who may not access a resource and whitelists conversely 

enumerate who may access a resource. Many systems are capable of using blacklists and 

whitelists to control access to network-based resources including firewalls, email servers, web 

servers, and remote systems administration servers. Blacklists are typically used to deny access 

to known offenders or abusers of a system. While a whitelist serves as the authoritative listing 

of who may access a resource, additional actions may be required before that resource may be 

accessed. In the context of email servers, blacklists known as DNS-based blackhole lists (DNSBL) 

[66] are used to ignore or refuse service requests from systems that have earned a reputation 

for sending undesirable email such as spam or malware. Some individual email users employ a 

whitelist to only receive email messages from senders they know and trust, thereby protecting 

them from unknown senders. 
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Blacklists and whitelists can be very effective access controls for protecting a resource, 

but they often require substantial effort to accurately maintain and keep up to date over time as 

system requirements change and the internet grows. The very restrictive nature of whitelisting 

tends to limit its usefulness to special cases and small-scale/intra-network use since all the 

potential users of a resource must be known in advance. In contrast to whitelisting, both the 

burdens and benefits of blacklist maintenance can be shared by many organizations and people. 

Collaborative blacklist maintenance and distribution allows a large number of systems to benefit 

from the negative experience of relatively few victims. Therefore blacklisting is commonly 

employed by email servers and firewalls for protection from notorious malicious systems. 

False positives will inevitably enter collaboratively maintained blacklists. These false 

positives could be the result of mistakes by blacklist contributors, but are more commonly 

caused by transient misbehavior by a normally benign system. This transient misbehavior may 

be due to improper system configuration, system compromise by an attacker, or the 

misbehavior of a limited number of system users inside a small area of a larger network. It can 

be difficult to convince blacklist maintainers that a false positive is in fact a false positive, even if 

a blacklist maintainer uses dedicated staff to handle removal requests as in the case of the 

popular Spamhaus [66] and SORBS [54]. Because different collaboratively maintained blacklists 

may use different criteria to judge whether a system is malicious, it may be beneficial to use 

multiple blacklists to restrict access to a system. Blacklist lookup tools such as the Anti-Abuse 

Project’s Multi-RBL Check [4] are available to aid in determining which common blacklists 

include a particular system. These tools can be useful to system administrators investigating 

suspicious activity observed on their systems by the administrators to correlate the suspicious 

host’s source IP address with the observations of multiple blacklist maintainers. Blacklist lookup 
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tools are also useful to the administrators of false positive or formerly compromised systems as 

it can be difficult to know which particular blacklist(s) may be causing other systems to block 

legitimate communication. 

The OpenBL.org project [49] maintains blacklists based on sources of attacks detected 

by almost four dozen servers distributed across the globe. When software on one of these 

servers detects brute force login attempts or certain other webserver-related attacks, the 

software automatically emails the attacking system’s presumed owner based on contact 

information gleaned from the Whois databases of regional internet registries and the DNS SOA 

(Source of Authority) resource record corresponding to the attacker’s IP address. The project 

managers publish inception-to-date historical attack statistics as well as blacklists that are based 

on specific attacks and the past 90, 60, and 30 days’ data. Unfortunately, despite the “open” in 

its name, only the blacklists themselves and some statistics are available the general public to 

access. The public can only contribute to the project by donating servers or money, not by 

running OpenBL’s software on their own systems or directly contributing to software 

development and system management. 

 Collaborative and Cooperative Defense 2.11

The power and efficacy of a distributed attack largely depends on the amount of 

resources at the attacker’s disposal being greater than the amount of resources at the victim’s 

disposal. Increasing the victim’s resources or efficiency of resource use is a common way to 

defend against a distributed attack, but this scaling of resources to correspond to a scaling 

attack can be quite costly. As an alternative defensive approach that reduces the need for 

expensive resource scaling, the victim can collaborate with other systems to slow down and 

possibly stop the attack’s resource usage. In some situations, a simple phone call or email to the 
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administrator of a zombie-infested network may be sufficient to disconnect infected hosts from 

the network and cripple the attacker’s resources. However, administrator-to-administrator 

communication is not as effective in a widely-distributed attack and can be hindered by the 

usual human communication barriers of language, time zone differences, administrator 

availability, organizational priorities, and even indifference to the victim’s plight. 

In November of 1988, Cornell University student Robert Tappan Morris unleashed the 

so-called Morris Worm [65], allegedly in an attempt to measure the size of the internet. The 

worm exploited common vulnerabilities in UNIX software and resulted in an unprecedented self-

perpetuating DoS attack as the victim computers became infected by the worm multiple times 

and slowed down further with each infection. In response to the Morris Worm outbreak, the 

first computer security incident response team (CSIRT), known as the CERT Coordination Center 

or simply CERT/CC [63], was formed at Carnegie Mellon University’s Software Engineering 

Institute. The goal of a CSIRT is, as the name implies, to provide a quick and coordinated 

response to security incidents from detection to remediation and taking steps to prevent similar 

incidents in the future. A CSIRT is often activated on an as-needed basis and consists of a subset 

of key staff in an organization with complementary roles such as security analysts, firewall 

administrators, system administrators, and managers. Some larger CSIRTs such as CERT/CC and 

the United States Computer Emergency Readiness Team (US-CERT) serve broader segments of 

the internet community on an ongoing basis by publishing guidance about cybersecurity best 

practices and disseminating announcements about important software updates, and high-

profile threats and attacks. 

Information sharing and analysis centers, or ISACs, are coalitions of critical infrastructure 

professionals formed to facilitate sharing and analyzing information about threats to common 
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interests in specific infrastructure sectors. ISACs exist for many sectors including the research 

and higher education community (REN-ISAC) [57], and the threats in which they are interested 

are not strictly computer based as in the case of Supply Chain ISAC [59]. Since the information 

shared within an ISAC is based on the experience of fellow community members and the 

analysis of this information is similarly focused toward benefiting the same community’s 

security, an ISAC can be a very valuable and relevant source of security information. The 

sensitivity of the threat information that is sometimes shared within an ISAC often requires a 

moderate to high level of trust to be established with a participant before the participant may 

receive deep or meaningful analysis of threat information from the ISAC, sometimes leaving 

marginal participants and the public completely unaware of useful information generated 

through the ISAC’s efforts. 

Larger CSIRTs such as US-CERT and ISACs commonly use “newsfeed” technologies like 

Really Simple Syndication (RSS) and email discussion lists to share security-related 

announcements, but these announcements typically take the form of verbal descriptions in a 

loosely structured format. Unlike antimalware or IDPS signature subscriptions, these 

announcements are intended for human consumption and place the burden on interested 

system administrators to read and manually act on the announcements. CSIRTs and ISACs form 

a valuable segment of the internet community, and we wish to incorporate their efforts into a 

scalable and automated cooperative defensive system that even the general public may use to 

level the figurative playing field between relatively small victims and ever-growing and adaptive 

teams of attackers. 
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 Crowdsourcing and Wikis 2.12

“Crowdsourcing” is a term used to describe the use of a large and often geographically 

distributed number of people with varying skill levels to perform a large task. Perhaps the most 

well-known and successful example of crowdsourcing is the much-acclaimed Wikipedia online 

encyclopedia, which at this time hosts more than 31.9 million pages and bills itself as “the free 

encyclopedia that anyone can edit” [71]. Collaborative web publishing systems and the general 

model upon which Wikipedia and others are based are commonly referred to as “wikis” [15]. 

Crowdsourcing has proven to be very effective for accomplishing large tasks like 

documenting a wide breadth of topics online, but it is not without its pitfalls; organizational and 

policy issues exist since anyone can modify the system’s content. Wiki content is often 

“vandalized” to promote an ideology either contrary or completely unrelated to the wiki’s goal, 

or to shock, disgust, or amuse large numbers of wiki viewers. The quality of the wiki’s 

information can also be diluted by libelous information contributed by users with subversive or 

malicious intent, or even through simple ignorance, and contributors introduce or perpetuate 

bias that can be difficult to control without dedicated editorial oversight by other users. 

Common safeguards that have been developed to protect wikis against low-quality 

contributions include requiring all contributors to create a user account to log and track their 

historical activity, and the use of domain experts and reviewers with a history of positive 

contributions to review and approve wiki content changes. Employing more safeguards 

generally raises the bar for participation and discourages casual users from contributing 

information, which in turn may make the collaborative system less useful and further discourage 

contributions due to lack of popularity. Despite the use of safeguards against vandalism, it is still 

possible to spread misinformation through a wiki. Mainstream news outlets with editorial staff 
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have relied on Wikipedia articles containing fictitious information, leading to public 

embarrassment as in the case of [26]. 

 Crowdsourced Threat Identification via Web Browser Add-ons 2.13

Tools such as SmartNotes [60] rely on end-user participation via a web browser add-on 

to actively mark websites as being malicious or untrustworthy, and machine learning systems 

can be used to analyze such dynamically-produced data [24]. Prominent web browser tools such 

as AdBlock Plus [23] automatically block the downloading of obtrusive advertisements and 

optionally malware through the use of so-called community-maintained "filterlists." Filterlists 

are community-maintained pattern-based blacklists. In the case of the popular EasyList filterlist 

[19], changes are suggested by end-users in community discussion forums and later approved 

and distributed by community project leaders. While the CODON framework focuses on 

automated collection and distribution of threat sources, web browser based tools could trivially 

be integrated with CODON through a simple menu option, e.g. “report this page as malicious,” 

that logs the pertinent details for consumption by the CODON Sensor software, as we will 

discuss in Section 3.3.3. 

 Collateral Defense and the Neighborhood Watch Model 2.14

Two nontechnical examples that perhaps best summarize the concept of collateral 

defense are neighborhood watch programs and public notices. In a neighborhood watch 

program, residents of a neighborhood typically receive basic safety awareness training and 

agree to monitor the neighborhood for suspicious activity during their day-to-day activities and 

report such activity to local law enforcement personnel as well as fellow residents. Public 

notices are commonly posted to community billboards at grocery stores, on or near community 
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mailbox clusters, and at post offices to disseminate information about recent criminal activity, 

missing children, and upcoming events. In both of these nontechnical examples, the goal is to 

leverage the abundance of potential observers of criminal activity to assist the relatively few 

enforcers who are specially trained and equipped to directly address the perpetrators. Due to 

the ubiquity of consumer internet access and low level of technical skill required to connect to 

the internet, the vast majority of internet users lack the technical, let alone cybersecurity-

specific, resources available to large and well-funded organizations. We have designed the 

CODON framework to better leverage the disparity between “observers” and “enforcers” on the 

internet in the interest of protecting the internet community as a whole. Whereas distributed 

attacks such as a DDoS can cause collateral damage to a victim’s neighbors, CODONs seek to 

provide collateral defense to neighbors of participants. 

Our CODON framework describes a peer-to-peer overlay network formed either ad-hoc, 

which is the default and preferred method, or by formal agreement between two or more 

participants for the purpose of contributing to one another’s collective health and defense 

through timely and automated security-related information sharing. A geographically 

unbalanced CODON can provide value to its participants and neighbors within a geographical 

region, and a geographically balanced CODON can have an even greater impact by benefiting its 

many non-participant neighbors in many regions. Participants in a CODON may include AS 

administrators, research institutions, small corporate networks, computer enthusiasts, and 

novice home users. Indeed, a CODON will be most effective when comprised of a multitude of 

heterogeneous participants. 

We will describe the CODON framework in depth in Chapter 3, but Figure 3.1 provides a 

high level overview. The scope, level of detail, and accuracy of information provided by a 
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CODON participant will vary based on that participant’s capabilities. Some participants operate 

web servers and networks that are well-suited for publishing relatively static content like 

software updates or more dynamic content like blacklists with a low update frequency. Casual 

but technically adept internet users may work in loosely-knit teams to review and refine 

blacklists in their free time. Private sector and academic research labs may participate in sensor 

projects like the UCSD Network Telescope [14] to collect information about large-scale probing 

activity, or in some cases even track and seize control of botnets. Smaller organizations and 

consultants may have limited computing resources but can assess other participants’ network 

perimeter security via regular or ad-hoc vulnerability scans. Other organizations are uniquely 

placed as transit providers or ISPs and can perform bandwidth throttling or blocking of malicious 

traffic in response to a distributed attack, or detect large scale attacks that cannot be detected 

based only on sensor data from end-users’ computers.  
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3 CODON Architecture 

A core design goal of the CODON framework is the encouragement of automated 

sharing and usage of information about malicious activity. Each CODON participant fills at least 

one role in the CODON based on the resources the participant desires to contribute. These roles, 

summarized in Figure 3.1 and Table 3.2, focus on sharing security incident information and 

coordinating defensive activity. To maintain transparency and trust among CODON participants, 

and to promote the broadest base of adoption possible, we strongly urge participants to use 

open source software whenever possible for CODON operations. For example, peer-to-peer 

communication systems such as Chord [67], GNUnet [31] or Trust-X [22] should be used for 

organizing the various participants into an overlay network and OpenSSL [50] should be used to 

implement the various cryptographic functions required. Established and emerging open 

standards are used throughout our framework in the spirit of honesty and to encourage 

participation on an international scale. Options affecting privacy, performance, and network 

traffic volume should be exposed to the user via administrative utilities designed to provide a 

familiar user experience specific to the operating system on which the CODON software is 

installed. For example, in Linux the software configuration should be exposed through popular 

window managers’ settings menus and configuration files should be stored in /etc, 

/usr/local/etc, or another directory consistent with the particular Linux distribution, 

whereas in Apple OS X the configuration tools should function and appear similarly to other 

“System Preferences” panes. 

As we discussed earlier in Section 2.12, there is naturally great potential for abuse in 

systems that rely on a massive number of loosely affiliated users providing input for public 

consumption. For this reason, we have taken care to incorporate safeguards against abuse in 



30 

 

our design of the CODON framework. Encryption is used to reduce the likelihood of message 

tampering and selective message blocking by malicious third parties. A small number of reports 

of malicious activity only results in a small penalty for the offending entity. Misbehaving 

participants are silently ignored by other participants via an exponential back-off algorithm, 

CODON-wide informational updates are distributed peer-to-peer, and session state is kept to a 

minimum to reduce the havoc caused by a misbehaving participant. As a CODON grows in size, 

the effect of mischievous participants should be drowned out by the volume of good 

information provided by normal participants. All date and time data in the CODON are 

communicated in Coordinated Universal Time (UTC) to aid in correlating reports of malicious 

activity. 
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Figure 3.1 A high level overview of security information sharing in a CODON. Even non-participants may 
benefit from the CODON’s efforts. 

 Ephemeral Blacklists 3.1

We will now describe ephemeral blacklists, a key concept in the CODON framework, in 

greater detail. An ephemeral blacklist is a blacklist containing IP addresses and subnets that 
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have been reported by CODON Sensors to have engaged in malicious or suspicious activity, each 

with a corresponding expiration timer. Ephemeral blacklists are compressed using common 

compression algorithms before transmission over the network whenever feasible to reduce the 

volume of network traffic sent by CODON participants. Consider our example of a very small 

ephemeral blacklist in Table 3.1. Each ephemeral blacklist is marked with a Type ID, an arbitrary 

but consistent 4 byte positive integer value corresponding to the type of information contained 

in the ephemeral blacklist. For example, a Type ID of 0x0001 may correspond to mail servers 

being used as spam relays, and 0x1336 may correspond to hosts caught attempting to 

repeatedly and rapidly guess user credentials via a web-based login form. When a Regional 

Aggregator receives a report of malicious activity via an Information Sharing Message (ISM, 

described in Section 3.4), it updates the appropriate ephemeral blacklist based on the Type ID 

included in the ISM. 

Suspected malicious hosts are temporarily blacklisted based on two criteria: whether a 

report is the first reported offense by a particular host, and the number of unique Sensors 

reporting the activity. If a suspected malicious host does not yet exist in the ephemeral blacklist, 

its IP address is temporarily stored in a “watchlist” for the current and next update cycle. 

Update cycles are explained in more detail throughout our discussion of Regional Aggregators in 

Section 3.3.1. If the reported host is already in the watchlist, it is moved to the ephemeral 

blacklist and given a short expiration of 15 minutes. However, if the reported host is already in 

the blacklist, its blacklist expiration increases. Each Sensor may only cause a particular expiration 

to increase once every two update cycles, effectively preventing a single host from blacklisting 

another by requiring multiple witnesses to report the same observation before it is acted upon. 
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Table 3.1 Sample ephemeral blacklist of hosts engaging in port scanning activity 

(Metadata): Ephemeral Blacklist Type ID 0x0002, “Port scanning, 100 ports in < 5 seconds” 

Offending IP or CIDR subnet Expiration (UTC) 

10.0.0.1 2014-01-01 14:00 

10.1.0.0/24 2014-01-02 13:00 

10.3.3.7 2014-01-01 12:15 

10.50.2.0/31 2014-01-02 12:35 

 

As more hosts are added to an ephemeral blacklist over time, the blacklist is condensed 

when possible by grouping multiple IPs together into a single entry using classless inter-domain 

routing (CIDR) notation. CIDR notation is a concise means of denoting subnets using an IP 

address and a mask known as a “prefix”. The IP address range 10.0.0.0 - 10.0.0.255 is 

represented in CIDR notation as 10.0.0.0/24, where 10.0.0.0 is the beginning of the IP address 

range and /24 is the prefix, meaning that the first 24 bits in the given IP address remain the 

same and only the final 8 bits (the final octet of the IP address) can vary. Similarly, 10.0.0.0/16 

represents the IP address range 10.0.0.0 - 10.0.255.255, and 10.0.0.0/32 represents the single IP 

address 10.0.0.0. We only condense multiple IPs into CIDR notation when the consecutive IP 

addresses have expirations of twelve or more hours, causing the multiple consecutive IPs to be 

treated as a single entity using the largest expiration that applied to any of the consecutive IPs. 

Furthermore, once more than half of a /24 subnet is blacklisted, we treat the entire /24 subnet 

as malicious. We believe this is reasonable behavior based on Shue et al.’s observations about 

predominantly malicious ASes in [61]. Non-participants wishing to make use of ephemeral 

blacklist data published by CODON Repositories may be most interested in blacklisting hosts and 

subnets with expirations of at least 24 hours. 
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 Contributions by and to CODON Non-participants 3.2

As we have already discussed, the CODON framework is designed to benefit CODON 

participants and non-participants alike. Likewise, a CODON certainly benefits from the efforts of 

non-participants. The existence of a CODON would clearly be impossible without the efforts of 

the many non-participants who contribute to the infrastructure of the internet as a whole. We 

have grouped the key non-participants that are functionally most aligned with the CODON into 

two categories: Security Information Aggregators and Remediators. 

3.2.1 Security Information Aggregators 

Security Information Aggregators are non-participants who collect and curate, whether 

manually or with automated tools, security-related information that may be beneficial to the 

public. Examples of such information include lists of software vulnerabilities, IP ranges and DNS 

hostnames known to be used predominantly by malicious actors, malware distribution URLs, 

and hashes of dangerous files. Many organizations and individuals subscribe to Security 

Information Aggregators’ services, sometimes paying a fee or donating money in return for data 

that can be manually or automatically imported into their systems. For example, antimalware 

software vendors commonly charge a subscription fee for the ability to download new malware 

detection signatures, although they sometimes allow their antimalware software to continue 

functioning with an old signature set if the customer does not renew the subscription. Google 

provides a free service called Safe Browsing [30] and a corresponding API to query a list of 

potentially malicious or compromised websites, and the service is incorporated into Mozilla’s 

popular Firefox web browser and Google’s own Chrome browser. CODON leverages the “free” 

work of Security Information Aggregators to protect participants, and it is therefore only 
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appropriate that the CODON contribute as much relevant actionable intelligence back to these 

Security Information Aggregators as possible. 

3.2.2 Remediators 

Remediators are organizations that volunteer or are paid to fix network health and 

security problems. Application-level examples include software vulnerability patch creation and 

publishing by software developers and/or hosting services. This encompasses commercial 

software vendors’ update services, Linux package mirrors and repositories, popular open source 

software distributors like SourceForge [17] and GitHub [29], and security research organizations 

that publish temporary fixes for zero-day exploits. Network-level Remediators include those that 

either throttle or filter DDoS attack traffic to improve the quality of service for legitimate traffic 

flows as in the case of AT&T’s “scrubbing” system described in [7]. Also included in the 

Remediator category are CDNs that specialize in load-balancing traffic to protect their customers 

from DDoS attacks and flash crowds. 

 CODON Participant Roles 3.3

Participants in a CODON serve in one or more roles, as we will explain in more detail 

below. All CODON participants serve in the Sensor role by default but are encouraged to serve in 

additional roles as their resources may permit. Table 3.2 summarizes each role in the CODON 

framework, the role’s ease of participation or “minimum buy-in,” and examples of the various 

organizations and people we believe are likely to participate in each role. 
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Table 3.2 CODON participant roles 

Role Ease of Participation Likely Participants 

Sensor Easy to difficult; requires the installation of 
a software service and access to minimal 
bandwidth. Active detection can be done 
with free software and low bandwidth. 
Large scale passive detection may require 
access to traffic monitoring tools or 
specialized hardware. 

Novice computer users, advanced/enthusiast 
computer users, universities, corporations, 
governments, researchers, information 
security organizations internet service and 
transit providers, web hosting and cloud 
computing providers. 

Regional 
Aggregator 

Medium; requires some database storage 
to manage participant state and blacklist 
data, and bandwidth to accommodate 
join/leave requests from many participants 
and to correlate and share incident data 
with other Regional Aggregators. 

Advanced/enthusiast computer users, 
universities, corporations, researchers, 
internet service providers, regional CSIRTS 
and ISACs, cloud computing providers. 

Repository Medium to difficult; requires a web server 
with good bandwidth and storage, ability 
to receive and share data from Regional 
Aggregators and non-participant Security 
Information Aggregators, e.g. spam 
blacklists, botnet zombie lists. 

Internet service providers, universities, 
software development companies, regional 
and industrial CSIRTs and ISACs, web hosting 
providers. 

Defensive 
Service 
Broker 

Easy to medium; requires a web server 
with reasonable uptime, bandwidth, and 
processing resources for effective 
matchmaking. 

Small companies, universities, information 
security organizations, non-profits. 

 

3.3.1 Regional Aggregator 

Regional Aggregators are, as the role name implies, responsible for aggregating security 

and threat information reported by CODON participants. Aggregating reports from thousands of 

participants and working in concert with other Regional Aggregators to provide the CODON with 

a regular global view of threats is a resource intensive task best suited to participants with 

reliable internet connectivity, modest bandwidth, midrange computing power, and system 

administrators with a better technical understanding than novice end-users. Most CODON 

participants will only fill the Sensor role, and the CODON Sensor software should have minimal 

resource requirements in order to encourage adoption and acceptance by users with limited 

technical knowledge. As mobile computing continues to proliferate in the form of lightweight 

laptops, smartphones, and other increasingly powerful portable devices, there is a clear need 
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for relatively well-resourced and well-connected participants to provide the fluctuating swarm 

of participants with stability and coordination. In this sense, Regional Aggregators are similar to 

Skype supernodes and BitTorrent trackers as discussed in Section 2.2; but unlike the Skype 

model, we do not believe it is necessary for a CODON’s Regional Aggregators to fall under the 

management of a single entity to be effective. In Figure 3.2, we illustrate the process by which a 

Regional Aggregator updates an ephemeral blacklist. 

Sensor S reports 
offender O,

Type ID = 0x0003

O already 
reported by S 

this cycle?

O in ephemeral 
blacklist?

NO

YES

YES
Increase O’s 
expiration

Done

O in watchlist?

Search 
ephemeral 

blacklist 
0x0003 for O

Search 
watchlist 

0x0003 for O

NO

Move O to 
ephemeral 

blacklist

YES

Add (O,S) to 
recent report 

list

Check recent 
report list 
0x0003 for 

(O,S)

Add O to 
watchlist

NO

O reported
by S > twice this 

cycle?

Update S’s 
Cool Down 

Period
YES

NO

 
Figure 3.2 A Regional Aggregator receives an ISM from Sensor S reporting that offender O is distributing 
malware. The Regional Aggregator considers updating its corresponding ephemeral blacklist. If not 
subscribed to the ISM’s Type ID, the Regional Aggregator passes the ISM to subscribing Regional 
Aggregators via the overlay network. 
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3.3.1.1 Participant State Database 

A participant may wish to limit the resources consumed by the system on which the 

CODON Regional Aggregator software operates. When the resource limit is reached, the 

Regional Aggregator should temporarily reject join attempts by new participants until sufficient 

resources are available to accommodate additional participants. Reasonable resource 

thresholds include a maximum number of concurrent participants, a maximum size for the 

Participant State Database, and a limit to the Regional Aggregator software’s mean network or 

CPU utilization. Resource usage can be further limited by only subscribing to a subset of Type 

IDs, but even modestly equipped modern computers with multithreading and sufficient RAM in 

conjunction with free database software should prove quite capable. Table 3.3 lists the state 

data a Regional Aggregator must manage for each participant. Notwithstanding overhead 

incurred by the particular database software employed to store and update participant state 

data, approximately 16.5 million participants’ 65-byte state could be stored in a 1 GB database, 

and we expect other resource-intensive tasks such as security incident data correlation, 

ephemeral blacklist management, and communication encryption overhead to be the primary 

causes of resource utilization for Regional Aggregators. 

Table 3.3 Participant state data maintained by a Regional Aggregator. 

Participant ID 
(UUID), 
16  bytes 

Participant 
Type Mask, 
1 byte 

WAN IP, 
4 bytes 

Participant 
Time Offset, 
8 bytes 

Age, 
2 bytes 

Cool 
Down 
Period,  
2 bytes 

Session Key, 
32 bytes 

79f91125-0118-
4f38-9c72-
ed1bb41fc798 

0 10.1.0.1 -401000000000 
(-401 sec.) 

20 
(1hr., 
40min.) 

16 
(1hr., 
20min.) 

256 bit session key 
agreed upon during 
participant_join 

36dc3aab-397d-
46d8-8c05-
b506f890d910 

1 10.2.0.3 88200000000 
(+88.2 sec.) 

600 
(2d., 
2hrs.) 

0 256 bit session key 
agreed upon during 
participant_join 

3bc27d1c-5bd5-
4bd8-a367-
acdcb435aa13 

2 10.5.2.1 15800000000 
(+15.8 sec.) 

808 (2d., 
19hrs., 
20min.) 

0 256 bit session key 
agreed upon during 
participant_join 

 



38 

 

The Participant UUID is an RFC 4122 compliant 128-bit version 1 universally unique 

identifier (UUID) [36]. The timestamp portion of the UUID is based on the beginning of the 

participant’s session establishment process from the Regional Aggregator’s perspective. RFC 

4122 requires that the timestamp be based on the UTC representation of 100 nansecond 

intervals elapsed since 00:00:00.00, 15 October 1582. 

Participant Type Mask is a bit mask indicating which roles in addition to the mandatory 

Sensor role are filled by the participant. A value of 0 denotes that the participant is a Sensor, 1 

indicates the participant is a Repository, 2 indicates the participant is a Regional Aggregator, and 

4 indicates the participant is a Defensive Service Broker. Other powers of two are reserved for 

future use. Participants serving in multiple roles have a Participant Type Mask value equal to the 

sum of their individual roles. For example, a Participant Type Mask value of 3 indicates that the 

participant is a Sensor, a Repository, and a Regional Aggregator (0 + 1 + 2). 

The Participant Time Offset is essential for the Regional Aggregator to properly calculate 

ephemeral blacklist updates and correlate security incident data reported by multiple 

participants. This offset is stored as an 8 byte value representing the difference between the 

Participant’s reported time and the Regional Aggregator’s system time in 100 nanosecond 

intervals at the beginning of session establishment. The calculated time offset does not account 

for communication latency between the participant to the Regional Aggregator, but this latency 

may be disregarded for our purposes due to our use of update windows as described later in 

this section. Only 35 bits are necessary to store the Participant Time Offset because we do not 

permit the Participant’s clock to differ from the Regional Aggregator’s clock by more than ±900 

seconds (15 minutes), which is 18,000,000,000 100 ns intervals and can be stored in 35 bits 

using the two’s complement representation. While we could have chosen a 5 byte field size, 35 
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bits is 4.5 bytes, and in the interest of simplified database storage and computation, we chose to 

round up to the next power of two, which is a more easily managed 8 bytes. Participants are 

temporarily assigned a placeholder Partipant ID of 00000000-0000-0000-0000-000000000000 

until the participant_join process, described in Section 3.3.1.3, is complete and the session 

with the Regional Aggregator has been established. 

Cool Down Period indicates the remaining number of update cycles the Regional 

Aggregator should ignore updates provided by the participant due to misbehavior or other 

difficulty communicating with the participant. An update cycle occurs every five minutes, and 

thus a Cool Down Period of 288 indicates that the Regional Aggregator should ignore the 

participant for one day (1,440 minutes). Each update cycle in which the participant has 

misbehaved results in the cool down period doubling via a simple truncated exponential back off 

algorithm with a maximum permitted Cool Down Period of 512 (1 day, 18 hours, 40 minutes). 

Each update cycle in which the participant has not misbehaved results in the Cool Down Period 

decrementing by one until the Cool Down Period eventually reaches zero. 

The session age, in update cycles, is stored in the Age field. Sensors have a maximum 

age of 512 update cycles (1 days, 18 hours, 40 minutes), and participants serving in additional 

roles have double that maximum age. At the end of each update cycle, the Age field is 

incremented until the maximum age is reached. Once the maximum Age is reached, the 

Regional Aggregator sends a participant_rejoin message to the participant and removes 

the participant from its Participant State Database. This process helps ensure that inactive 

participants that were unable to complete the participant_leave process are eventually 

culled from the CODON to reduce unnecessary resource consumption while avoiding the need 

for regular “heartbeat” traffic between participants and Regional Aggregators. A secondary 
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effect of the aging process is that it redistributes participants among Regional Aggregators to 

rebalance their loads, although this load balancing process is admittedly naïve. 

The WAN IP is simply the WAN IPv4 address from which the participant successfully 

connected to the Regional Aggregator. Although we track the WAN IP address of participants, 

the Participant ID and Session Key are the primary fields used to identify registered participants. 

It is possible for multiple participants to use the same WAN IP address, as may be the case in a 

large organization containing multiple participants that use PAT or NAT to access resources 

outside the organization’s network. When a Regional Aggregator experiences misbehavior from 

a WAN IP address whose communication is not encrypted with a Partipant ID’s corresponding 

Session Key, it is assumed that the misbehavior is being caused by a non-participant. Such 

misbehavior may take the form of a SYN flood or similar misbehavior such as the host beginning 

a TCP 3-way handshake with the Regional Aggregator by sending a SYN and failing to respond to 

the Regional Aggregator’s SYN-ACK. An important benefit of this approach is that participants 

with active connections to the Regional Aggregator are not punished by misbehavior from hosts 

spoofing their source IP address. 

The Session Key is a 256 bit symmetric encryption key generated by the participant and 

agreed upon by both the participant and Regional Aggregator during session establishment. The 

session establishment and key generation processes are described in more detail below in 

Section 3.3.1.3 and in our discussion of Sensors below in Section 3.3.3. The session key is used 

by the Regional Aggregator to encrypt communications sent to the participant such as 

ephemeral blacklist updates, and from the participant to encrypt communications such as 

security incident data sent to the Regional Aggregator. Despite the use of cryptography, we are 

not particularly interested in preventing eavesdroppers from learning the content of messages 
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sent from the Regional Aggregator to participants. Rather, we use cryptography to reduce the 

risk of a third party intercepting and tampering with these messages, possibly causing 

participants to block hosts that were not originally included in ephemeral blacklist updates from 

the Regional Aggregator. Encrypting communications to the Regional Aggregator also reduces 

the risk that a malicious host would join the CODON and re-transmit information recently sent 

by another participant to more quickly or heavily penalize hosts reported by the innocent 

participant. 

3.3.1.2 Communication Among Regional Aggregators and Repositories 

Regional Aggregators must communicate with one another regularly to share security 

incident information and ephemeral blacklist data generated during each update cycle. An 

update cycle occurs every five minutes, and Regional Aggregators send an Activity Change Set 

detailing activity that occurred during the past update cycle to fellow Regional Aggregators using 

a peer-to-peer distributed hash table (DHT) algorithm such as Chord [67]. Activity Change Sets, 

of which we provide an example in Table 3.4, are marked with the same 4 byte Type ID that is 

used for managing ephemeral blacklists as already detailed in Section 3.1. Other maintenance 

tasks related to keeping security incident information up to date are performed at the end of 

each update cycle, such as expiring stale Sensor reporting history, updating participant Age and 

Cool Down Periods in the participant state database, and consolidating consecutive IP addresses 

into CIDR subnets in ephemeral blacklists. A Regional Aggregator may choose to “subscribe” to 

certain Type IDs and must use the information it receives from other Regional Aggregators to 

update its own ephemeral blacklists corresponding to those Type IDs. However, all Regional 

Aggregators must accept security information received from Sensors corresponding to other 

Type IDs and relay those messages to subscribing Regional Aggregators through the overlay 
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network. We believe it is neither feasible nor likely that all Regional Aggregators will always 

have a complete and consistent view of all security data shared in the CODON as the CODON 

scales due to transient issues like connectivity failures and churn among Regional Aggregators. 

Once per hour, after sharing Activity Change Sets, all Regional Aggregators must share and 

merge their ephemeral blacklists to reach a consistent understanding of ongoing malicious 

activity. This hourly update is then shared with Repositories for further distribution as discussed 

in Section 3.3.2. 

Table 3.4 An example Activity Change Set distributed by a Regional Aggregator during shutdown 

(Metadata): Activity Change Set Type ID 0x0002, “Port scanning, 100 ports in < 5 seconds” 

(Metadata): Source Regional Aggregator Participant ID 3bc27d1c-5bd5-4bd8-a367-acdcb435aa13 

Offender IP Offense last reported (UTC) Offense count by unique Sensors 

10.1.0.8 2014-01-01 11:01:00 1 

10.13.0.3 2014-01-01 11:02:15 2 

10.33.7.57 2014-01-01 11:04:23 5 

 

When a Regional Aggregator initializes, it generates a self-signed 4096 bit RSA key pair 

and publishes its own Participant ID, WAN IP, and public key to all Repositories that it can locate. 

The CODON software package should include an initial seed list of Repositories to allow Regional 

Aggregators to quickly enter service without the need to manually locate a Repository. 

Whenever a Repository requests ephemeral blacklist data from a Regional Aggregator, the 

Regional Aggregator will provide its most recently merged complete ephemeral blacklist 

corresponding to the Type ID(s) requested by the Repository. In addition to ephemeral blacklist 

data, the Regional Aggregator will provide the requesting Repository with a list of all its known 

peers in the Regional Aggregator overlay network including the corresponding Participant IDs, 

WAN IPs, and public keys. When a Regional Aggregator begins the process of shutting down, e.g. 

for scheduled system maintenance or because its maximum age has been reached, it will 

attempt to quickly distribute an Activity Change Set to its peers in the Regional Aggregator 
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overlay network before performing the usual participant_leave process described in 

Section 3.3.1.3. Regional Aggregators that have announced their departure to the overlay 

network or have been unresponsive for three consecutive update cycles are included in the peer 

list provided to Repositories but flagged for removal.  Repositories may request an updated 

Regional Aggregator peer list only twice per hour to limit resource usage, and will use the peer 

list to aid in directing new participants to Regional Aggregators. If a Repository is unable to 

contact a Regional Aggregator in two consecutive attempts, it will consider the Regional 

Aggregator dead and select a new Regional Aggregator from which to request updates. 

3.3.1.3 Participant Session Management 

We will now discuss session management between Regional Aggregators and other 

participants. The three major session management processes, described in more detail below, 

are: participant_join, participant_leave, and participant_rejoin. 

In the participant_join process illustrated below in Figure 3.3, if the participant is 

new to the CODON it locates a Regional Aggregator with whom to register by contacting a well-

known Repository over HTTP. A partial list of Repositories should be included with the CODON 

software installation package to make this process as simple for the end user as possible. If the 

participant has previously participated in the CODON, it will attempt to connect to a Regional 

Aggregator included in its most recent seed list of Regional Aggregators, and if unsuccessful fall 

back to contacting a Repository. The Repository generates a seed list of up to five Regional 

Aggregators that appear to be near the participant, along with each of those Regional 

Aggregators’ corresponding public RSA keys previously published to the Repository. These 

Regional Aggregators may be chosen based on an AS number lookup, IP-based geolocation, 

anycast [1] DNS address resolution, or another method the Repository may wish to employ, but 
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a reasonable effort should be made to avoid always providing the same one or two Regional 

Aggregators to the same participant. 

Having received a list of Regional Aggregators with which it may register, the participant 

attempts to register itself with a Regional Aggregator by encrypting a participant_join 

request using the Regional Aggregator’s public RSA key and sending the request to the Regional 

Aggregator. The participant_join request consists of a 256 bit Session Key randomly 

generated by the participant and the participant’s current system time as described above in 

Section 3.3.1.1. The Regional Aggregator will accept any 256 bit Session Key except an 

empty/null key. If the participant is not accepted by the Regional Aggregator due to resource 

constraints, imminent shutdown, or unacceptable clock skew as mentioned in Section 3.3.1.1, 

the Regional Aggregator will reply with the plaintext ASCII string CODON-NAK-BUSY, CODON-

NAK-DOWN, or CODON-NAK-TIME, respectively, causing the participant to restart the 

registration process with a new Regional Aggregator. If the participant is accepted by the 

Regional Aggregator, the Regional Aggregator will send an acknowledgement containing the 

participant’s newly generated Participant ID and a seed list of participants from its participant 

state database to serve as peers in the participant overlay network, all encrypted using the 

Session Key. If the participant is rejected twice due to clock skew, the participant’s CODON 

software should notify the end-user that the system time needs to be updated. 
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Figure 3.3 This flow diagram illustrates the steps a participant takes when attempting to join a CODON. 

The participant_leave process provides a means for participants to gracefully leave 

the CODON and reduce the amount of state maintained by the most recent Regional Aggregator 

with which it established a session. When the participant’s codonsense software service, 

described in Section 3.3.3, receives a graceful shutdown command from the operating system or 

administrator, it immediately discards any pending ISMs. The participant then notifies its 
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neighbors on the Sensor overlay network and its Regional Aggregator that it is shutting down by 

sending a participant_leave message. Neighboring Sensors will cease sharing or 

downloading any ephemeral blacklists from the departing Sensor and find a replacement 

neighbor on the overlay network if needed. Upon receipt of the participant_leave 

message, the Regional Aggregator immediately sets the participant’s Age to the maximum value, 

thereby queuing the participant for deletion from the participant state database at the end of 

the update cycle along with any other departing or expiring participants. A clean departure from 

the CODON is not strictly necessary due to our use of participant aging and the implementation 

of peer-to-peer communication for distributing aggregated security related data. Nevertheless, 

a successful participant_leave reduces the resource burden on Regional Aggregators and 

reduces the time new participants may spend trying to locate peers on the overlay network 

because Regional Aggregators will no longer include the departed participant in seed lists. To 

ensure a quick shutdown, the Regional Aggregator will not send an acknowledgement, nor will 

the departing participant’s codonsense service await one before terminating. 

In the participant_rejoin process, the Regional Aggregator informs the participant 

that the maximum session age has been reached, causing the participant to invoke the 

participant_join process anew and the Regional Aggregator to purge the participant from 

its participant state database. This process is very similar to participant_leave, with the key 

differences being that the Regional Aggregator initiates the participant_rejoin process and 

rather than shutting down and discarding any queued ISMs, the participant’s codonsense 

service continues monitoring and temporarily defers sending ISMs to a Regional Aggregator until 

the subsequent participant_join process is complete. Since the old state is purged from the 

Regional Aggregator’s participant state database, participants that do not honor the 
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participant_rejoin process are penalized during subsequent update cycles as they attempt 

to communicate with the Regional Aggregator using their old Participant Session Key and 

Participant ID. 

3.3.2 Repository 

The purpose of the CODON Repository role is to provide useful security threat 

information to non-participants and to reduce the computational and network load on 

participants during the blacklist import and export process. As discussed earlier and previously 

illustrated in Figure 3.1, Regional Aggregators receive their initial seed blacklists from 

Repositories. Repositories also keep track of active Regional Aggregators, their Participant IDs, 

their public RSA keys, and Type ID subscriptions. This helps new participants locate a Regional 

Aggregator and helps Regional Aggregators locate peers in the Regional Aggregator overlay 

network and determine where to forward incoming ISMs for Type IDs to which they do not 

subscribe. Repositories act as the intermediary between Regional Aggregators and non-

participant blacklist managers and consumers when threat information is determined by 

Regional Aggregators to be worth sharing during their hourly merge and update cycle. 

A concise visual guide to the flow of information to and from Repositories follows in 

Figure 3.4. Repository content such as blacklists will likely change frequently and some non-

participants may wish to directly check for updates from a CODON Repository instead of waiting 

for non-participant Security Information Aggregators to further refine and incorporate the new 

information supplied by the CODON. Repositories will publish hashes of the security data 

generated by the CODON, and may also transform the data into one or more formats 

appropriate to the systems that would make use of the information. Hashing the security data 

provides a means for new participants and non-participants to verify that the blacklist was 



48 

 

downloaded without being tampered or corrupted in transit, but we urge the use of well-

established secure file transfer protocols such as HTTPS and SFTP whenever possible to provide 

additional assurance to the blacklist consumer that the hash and blacklist data were not both 

tampered (please refer to Section 2.2 for further discussion of this problem). 

While a participant may serve as both a Regional Aggregator and a Repository, we 

believe separating these roles will allow participants who already manage internet-facing web 

servers to participate without the additional computational and network resources required to 

perform the duties of a Regional Aggregator. As published blacklist content is relatively static, 

i.e., it need not be stored in a database or generated and served via a dynamic script, 

lightweight web server software such as lighttpd [35] may be used to service blacklist requests, 

and common low-cost DNS-based load-balancing methods such as round-robin, geographic 

server distribution, and anycast [1] may be used to further reduce the burden of participating as 

a Repository. Repositories may also wish to redistribute additional security-related data not 

generated by the CODON such as attack signatures for use by an IDPS, antimalware definition 

updates, and open source software packages and patches, but these are not CODON functions. 
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Figure 3.4 Information sharing between a Repository, CODON participants, and non-participants. 

3.3.3 Sensor 

Because we believe information sharing is a key component of cooperative defense, 

every participant of the CODON is a sensor. Sensors are responsible for sharing information with 

neighbors and repositories to allow for rapid collection and dissemination of intelligence about 

threats and ongoing attacks, underlying and overlay network health and topology changes, and 

recent noteworthy behaviors by fellow participants. Sensors may also subscribe to ephemeral 

blacklist updates and incorporate the blacklists into their system configuration for their 

protection. Since all participants are Sensors, each participant can potentially contribute to the 

health of the CODON and the internet at large when malicious activity is detected. 

The duties of a Sensor can be subdivided into two software services: codonsense and 

codonblock, illustrated below in Figure 3.5. The codonsense service is responsible for Sensor-to-

Regional Aggregator session management and for gathering recent security incident data from 

any available security data sources. These recent data are then reported to the Sensor’s 

corresponding Regional Aggregator by codonsense. Historical data with a timestamp older than 
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two update cycles (ten minutes) is to be completely disregarded since Regional Aggregators only 

consider newer incidents when updating their ephemeral blacklists. Data transformation plugins 

will be necessary to ensure that codonsense can parse and convert the data from various data 

sources for use in the CODON. The transformation plugins should be distributed with the Sensor 

software package for ease of use. 

The codonblock service is an optional service responsible for applying ephemeral 

blacklists to the Sensor’s security systems. We anticipate that home users with the codonblock 

service enabled may wish to apply all new ephemeral blacklist entries to their systems 

immediately. In contrast, participants with larger and more complex networks may wish only to 

apply blacklist updates at certain times throughout the day due to organizational change 

management policies. Participants may also wish to use different thresholds for determining 

whether to block access based on an ephemeral blacklist entry. For example, a participant 

mainly interested in safe web browsing may wish for all entries in an ephemeral blacklist to 

apply immediately, whereas a participant whose primary concern is malicious systems 

attempting to compromise an e-commerce web server may wish to be more conservative to 

avoid losing potential customers. The latter participant may choose only to block access to the 

web server if an entry has an expiration of at least 24 hours, implying that the host or network in 

the blacklist entry was reported as malicious by multiple Sensors over a period of time. 

Any security-related data source may be used as a source of security incident data to be 

monitored and shared by the CODON Sensor software with the use of an appropriate data 

source parser. While the Sensor software should be able to gather security incident data from 

hardware firewall logs and other common devices via standardized and common methods like 

SNMP (Simple Network Management Protocol) and a syslog listener, locally generated and 
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stored logs in the form of plaintext files or operating system specific log formats may also be 

leveraged via a custom data source parser. Custom data source parsers can be useful for 

extracting security-related information from proprietary software that may not use common or 

standard logging formats. Custom data source parsers should be vetted for correctness by 

technically skilled participants in the CODON community and distributed with the CODON 

software for the benefit of future participants when possible. 

The use of an IDPS, enterprise-grade firewall, or other advanced security software can 

undoubtedly provide useful security incident information for the CODON, but it is not necessary 

for participation as a Sensor. Home networks with ISP-provided multifunction modems and 

router/firewall devices as well as host-based firewalls will likely provide the majority of data 

reported to Regional Aggregators. Most modern home computer operating systems include 

host-based firewalls, and these firewalls are usually enabled by default. Host-based firewalls 

include the ubiquitous netfilter [6] included with mainstream Linux distributions, the 

eponymous Windows Firewall included with Microsoft Windows client and server operating 

systems, and various third-party firewall software systems that can be purchased and/or 

downloaded over the Internet. 

Most Sensors will only be able to report passively observed security incident 

information on a small scale, but some Sensors have unique resources enabling them to 

passively detect larger scale events or proactively detect security issues with other systems. We 

refer to the latter category of Sensors as “Active Detectors.” Large scale passive detection 

capabilities are usually limited to participants with unique resources or unique topographical 

placement on the internet, such as internet service providers, transit providers, and CDNs, but 

also include research projects like the UCSD Network Telescope [14] and University of Oregon’s 
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Route Views [70] project. Active Detectors may offer network perimeter vulnerability scanning 

services [69] and/or auditing and validation of security best practices. Since Active Detectors 

engage in activity that may be considered malicious or suspicious in the course of their 

operations, they must register with a Defensive Service Broker (described in Section 3.3.4) 

before engaging in active detection functions like port scanning to ensure they are not 

blacklisted. To ensure that security incident reports from a Sensor with large scale passive 

detection capabilities is given a proportionate level of credibility, the Sensor’s administrator may 

choose a unique Type ID and encourage other participants to give the corresponding ephemeral 

blacklist a greater weight as described in Section 3.4. 

Reporting security incidents such as local virus infections or successful intrusions is 

encouraged as the information can be very valuable to the CODON, helping research 

organizations and the CODON itself identify emerging threats and attacks. However, sharing 

information about one’s own system or network can introduce a risk of attack by traitorous 

participants and outsiders, so by default Sensors only share information about external-to-

internal network based security incidents. Furthermore, when a Sensor reports a security 

incident to a Regional Aggregator, the default behavior is for the Sensor to omit the specific 

destination/victim IP and any private IP address ranges to avoid divulging information about the 

Sensor’s local network, leaving the Regional Aggregator to assume that the Sensor’s WAN IP 

address was the destination. Our use of session encryption also helps ensure that only Regional 

Aggregators, not participants serving solely as Sensors, receive the sensitive details of an attack. 

We believe this behavior strikes a reasonable balance for most participants between providing 

credible threat information while preserving participant privacy, but Sensors will likely choose 

only to omit private IP range information. For example, a Sensor may use an intrusion detection 
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system to monitor a variety of hosts with one or more WAN IPs on its network, and providing 

the attack destination IPs will present a clearer picture of the scope of a distributed attack by 

reporting the various WAN IPs of the attacked hosts. 
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Figure 3.5 A home user (left) and a web hosting provider (right) particiate as Sensors with the optional 
codonblock service enabled. Any available source of security data may be monitored by the codonsense 
service. 

3.3.4 Defensive Service Broker 

It is often desirable to assess one’s own network’s security by performing an external 

test from another network. This offers the administrator an outsider’s perspective of the 

network and may reveal security issues that are difficult to discern internally. Defensive Service 

Brokers, or simply “Brokers,” serve as matchmakers for participants seeking proactive detection 

services and other parties offering such services including periodic vulnerability scanning and 

one-time or recurring intensive security assessments such as penetration tests. Such network 

security activities are classified as malicious when unsolicited, so it is necessary to provide a 

mechanism by which security service providers can continue contributing to fellow participants’ 

security using their unique resources without being blacklisted. 
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While a participant could simply ask a neighboring CODON participant to externally 

assess the security of its network, we expect the majority of participants to lack proactive 

detection abilities. Legal contracts are often used to set parameters and boundaries for 

penetration testing, as security assessments performed by third parties require a level of trust 

to be established between the tester and the requesting party. Security service providers may 

also wish to perform their activities from non-participant networks and systems to better 

simulate real-world security threats. Brokers notify repositories in advance of the agreed-upon 

but potentially suspicious activity based on specific source and destination IP address ranges 

and the type of behavior agreed upon by the service provider and requesting party. 

Service requesters and service providers such as Active Detectors register requests and 

proactive security offers with a Broker via ISMs, and when a Broker finds a match that would 

satisfy both parties’ criteria, the Broker notifies both parties, who acknowledge and agree to the 

match. Both parties must agree before the matchmaking opportunity expires. The Broker then 

notifies Regional Aggregators of the upcoming activity along with a time window indicating 

when the activity is expected to take place. Based on this information, Regional Aggregators will 

ignore any reports of suspicious activity between the participants during specific time windows. 

The applicable time window will be updated if the service request is completed early. If a match 

is successful, the service provider may earn reputation with the participant or multiple 

participants. If a match is unsuccessful because the service provider exceeded the time window 

or failed to complete the requested service, that party’s reputation suffers as participants send 

ISMs with the appropriate Type ID to their Regional Aggregators noting the activity (or inactivity, 

as the case may be). 



55 

 

 Information Sharing Messages and Scoring 3.4

The sharing of security incident information from Sensors to Regional Aggregators 

occurs via Information Sharing Messages (ISMs). ISMs are simply encrypted messages containing 

the sender’s Participant ID and incident information in a common format appropriate to the 

message’s subject matter. For example, an ISM regarding an excessive number of unsuccessful 

attempts to log into a website in a short period of time might include the CODON participant’s 

Participant ID, the Type ID of the blacklist corresponding to the type of attack, the source IP of 

the attack, the destination port of the attack, and the time the attack was logged or blocked by 

the participant’s system. The Type ID encapsulated in the ISM is essential for a Regional 

Aggregator to determine whether it should consider the ISM when updating an ephemeral 

blacklist that it manages, or if it should instead pass the ISM to other interested Regional 

Aggregators in its overlay network. As discussed above in Section 3.3.1.3, encrypting ISMs is 

done primarily for non-repudiation and to reduce the threat of eavesdroppers deceiving other 

participants via counterfeit messages. We illustrate the process of sending an ISM in Figure 3.6. 
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Figure 3.6 A Sensor sends an Information Sharing Message (ISM) to its Regional Aggregator. 

3.4.1 Evaluating the Costs of Different Threats 

It is difficult to quantify the costs and benefits of network defense and health activity, 

but we have chosen three useful evaluation criteria when considering how one might participate 
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in a CODON, as well as how one might respond to actions that occur during the course of 

CODON participation. To respect the heterogeneity and differing priorities of a CODON, these 

criteria can be weighted by individual participants based on what they deem to be important. 

The criteria we have selected are monetary cost change     , network health / defensive 

posture change     , and reputation change     . While the goal of most participants will be 

maximizing    while minimizing    with a side effect of increasing   , participants with more 

resources to contribute to the CODON will likely seek to maximize    through spending money 

     to increase    and as a side effect garner more public attention, potential customers, 

research funding, etc. 

While all CODON participants are required to accept and propagate new security 

incident information with fellow participants in the peer-to-peer overlay network, each 

participant may choose to “subscribe” to particular incident Type IDs via the codonblock service. 

This allows the participant to apply weights to each incident of a particular type and use this 

weight information to maintain a local blacklist with expiration durations tailored to the 

participant’s desires. This may be useful for large web server farms that only wish to block 

compromised home users for a brief time or serve a custom webpage directing the same users 

to a non-participant Remediator. On the other hand, many home users and corporate network 

administrators may wish to begin blocking websites that distribute malware as soon as they are 

reported instead of waiting for a large number of corroborating reports from other CODON 

participants. 

3.4.2 Assigning Scores to Consequences 

Actions by CODON participants have consequences, and in our model these 

consequences take the form of a three-tuple            where each element of the tuple 
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corresponds to the aforementioned evaluation criteria of monetary cost change, network 

health/defensive posture change, and reputation change. Default consequence scores are 

assigned to behavior classes as described in Section 3.4.4, and are to be maintained and 

distributed with the CODON software. Each element of the consequence tuple may range 

from -100 to 100. Participants convert consequence to single values for each behavior class 

based on how strongly the participant feels about the behavior. The resulting single value score 

can be used to determine trends in individual participants’ behavior, how valuable a certain 

participant’s participation may be, or whether to adjust ephemeral blacklist expirations to 

better meet the participant’s desires. Public relations departments in large organizations may 

wish to use this scoring system to advertise their benevolence in year-end charitable activity 

reports, and small organizations and home users may likewise wish to advertise their 

benevolence for competitive or reputational benefit on social media networks. Similarly, 

Repositories and non-participant researchers may perform statistical and historical analysis of 

the volume and quality of CODON contributions compared to other research efforts to evaluate 

the effectiveness of the CODON and refine their own blacklist criteria. 

3.4.3 Actor Classification 

CODON participants and non-participants can be classified based on historical behavior. 

We will refer to both participants and non-participants in general as “actors” when discussing 

classification. A CODON by its nature is best served when all participants consistently classify a 

particular actor as having the same actor class, and therefore interact with that actor 

accordingly. Nevertheless, an individual participant may choose to classify a particular actor 

differently due to recent events not yet communicated throughout the CODON or due to 

circumstances only relevant to that individual participant. It is also possible that actors who 
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consistently engage in friendly behavior may be treated with distrust by other actors due to 

ideological or geopolitical differences. Table 3.5 lists actor classes in this model and their 

defining characteristics and behaviors. 

Table 3.5 CODON actor classifications 

Actor Class Participant? Defining Characteristics and Historical Behaviors 

Good 
Neighbor 

Yes Has a history of positive actions/contributions in the CODON. 

Protectorate Yes Has only the Sensor role and a short (or no) history of actions/contributions 
in the CODON. 

Pariah Yes Participant with a history of predominantly negative actions. A “three 
strikes” rule or negative value reputation threshold may be employed to 
differentiate pariahs from participants that are experiencing a temporary 
crisis. 

Offender No Has a history of predominantly negative actions as evidenced by inclusion 
in one or more blacklists. 

 

3.4.4 Behavior Classes and Evaluation Criteria for Scoring 

Both friendly and unfriendly actions are worth considering when evaluating how an 

actor should be classified and what an appropriate response should be for different CODON 

participants. Actions of interest to participants may be divided into several behavior classes. 

Table 3.6 lists these behavior classes along with corresponding example behaviors and some 

possible default consequence scores as discussed in Section 3.4.2.  
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Table 3.6 Behavior classes and scoring of CODON participant actions 

Behavior Class Example(s)          

Detection Vulnerability scanning; firewall and IDPS log aggregation and 
sharing; network monitoring for malicious traffic flows; monitoring 
sudden internet topology changes 

15 20 10 

Unsolicited 
Reconnaissance 

Performing active detection functions without first agreeing via a 
Broker; failing to perform Brokered services 

-10 -25 -25 

Information 
Propagation 

Successfully and consistently sharing ISMs and ephemeral blacklists 
via the peer-to-peer overlay network; participating as a Repository 

5 5 5 

Withholding 
Information 

Not sharing ephemeral blacklists via the overlay network, e.g. being 
blocked by egress firewall filtering, CODON software malfunctioning 

-5 -10 -5 

Incident Self-
Reporting 

Sharing detailed IODEF [16] incident reports about malware 
outbreaks in one’s own network via ISMs; sharing incident reports 
about attempted attacks 

10 30 25 

Remediation 
Provision 

Hosting software patch repositories (Linux distribution mirrors, etc.); 
Common Remediation Enumeration (CRE [42]) repository publishing 

30 30 25 

Remediation 
Implementation 

Software patch or anti-malware definition development; CRE 
creation; updating blacklists; malicious network classification; 
throttling attack traffic 

30 30 30 

Malicious 
Activity 

Participating in a DDoS; sending spam or phishing email; appearing 
on a blacklist 

-40 -40 -40 

 

3.4.5 Scoring and Weighting Example 

Consider a home user who is scanned for vulnerabilities by another participant having 

not first agreed to the scan via a Defensive Service Broker, and a small web hosting service in 

the same circumstance. Consequences are weighted and scored using the following formula: 

   
                 

        
 

Suppose the home user finds the default consequence scores to be adequate and 

weighs all consequence elements equally using CODON’s default weight of            

        but the small web hosting service thinks monetary cost is twice as important as the 

other evaluation criteria and thus adjusts all consequences using a weight of            

       . Using the scoring formula above and the default unsolicited reconnaissance 

consequence of              , the home user would score this behavior as  , but the web 

host would score it as     . If the unsolicited scanning activity were to continue, the web host 
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would locally blacklist the offender via the codonblock service sooner and for a longer duration 

than the home user and other participants might. 

 Potential for CODON Abuse 3.5

A malicious actor may foreseeably use a botnet to install a tampered version of the 

CODON software to falsely report a victim as being malicious and undermine the CODON’s 

trustworthiness. The use of information expiration, or the “ephemeral” in ephemeral blacklists, 

helps ensure that if an attempt to poison the quality of information generated by the CODON is 

successful, the attack’s effectiveness will be limited. Smaller scale attempts to falsely report a 

victim are unlikely to succeed due to the requirement that multiple Sensors must report 

malicious activity in a short period of time for the threat to be considered credible. Weighting 

particular threats and blacklists by Type ID can further mitigate the botnet threat, but a whitelist 

may be more appropriate to override blacklist settings. For example, it may be beneficial to 

whitelist well-known e-commerce websites and non-participant Security Information 

Aggregators and Remediators. Whitelisting may leave participants vulnerable if one of the 

whitelisted hosts are compromised, and whitelists can be very burdensome to manage as we 

discussed in Section 2.10, particularly when many organizations use third-party CDNs or own 

multiple discontiguous blocks of IP addresses across multiple ASes that could change frequently. 

While we have proposed a numerical scoring system for actions based on their 

perceived friendliness, we admit that no scoring system will perfectly reflect the complex and 

dynamic nature of cross-organizational relationships, and most home users may find the 

weighting mechanism confusing. When a fellow CODON participant behaves in such a way that 

merits a classification change, we believe particularly with larger organizations that CODON-

generated intelligence should be used as part of the human decision making process, not as a 
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substitute. Periods of attacks from another participant’s network may not always justify 

blacklisting that participant from the CODON and reclassifying the participant as an offender. 

 Barriers to Adoption and Some Watershed Moments 3.6

With a distributed system on the scale of the internet, widespread infrastructure 

changes seldom occur quickly; one needs only consider IPv6, the long-awaited successor to IPv4. 

Among other benefits, IPv6 uses 128 bit IP addresses compared to the 32 bit addresses used in 

IPv4. Excluding reserved blocks of private addresses,      addresses can be used in IPv6, 

whereas only     can be represented in IPv4. Despite the long-predicted and impending 

depletion of available IPv4 addresses, administrators have gone to great lengths to avoid costly 

upgrades and learning a new and complex system. This is despite the existence of early IPv6 

implementations in the mid-to-late-1990s [33] and its inclusion in all modern operating systems, 

although adoption has increased significantly in the past two to three years through the efforts 

of a consortium of major hardware, software, and service vendors [34]. Port address translation 

(PAT), often mistaken for and commonly referred to network address translation (NAT), allows 

multiple privately-addressed IPs to communicate through a single public IP address. This serves 

as a cheap and ubiquitous stopgap solution to the problem of dwindling publicly addressable IP 

addresses and creates added layers of configuration complexity and security as privately-

addressed hosts can easily initiate communication to publicly-addressed hosts, but the reverse 

is difficult. For infrastructure providers, cost and profit tend to be primary drivers for major 

upgrades, but for home users the usefulness or “wow factor” of a service tend to drive 

upgrades. Considering the rise and trends of mobile computing over the past several years, 

particularly the shift of smartphones from business users to casual/novice internet users, we 

believe tailoring the CODON software toward less technical end-users will have the greatest 



62 

 

probability success. As home users experience the benefit of a safer internet and share this 

experience with their real and virtual communities, larger organizations will be attracted to this 

momentum and participate in the more resource intensive CODON roles of Regional Aggregator 

and Repository. With greater participation from larger organizations, we expect the CODON 

architecture to undergo refinement and optimization, evolving to better serve the internet 

community. 

There are also cultural and political barriers that may affect the growth and adoption of 

CODONs. Culturally speaking, many technical users may resist sharing what they consider 

private metadata about their network, especially in light of recent revelations about state-

sponsored metadata gathering and domestic spying. The open source spirit of the CODON 

framework should help allay those fears to some degree, as technical users can review and 

verify the CODON software’s behavior. Furthermore, the CODON’s emphasis is on detection of 

malicious and suspicious security-related behavior from other internet users, not one’s own web 

browsing or other communication habits. Politically speaking, some nations and organizations 

ban the use of strong encryption, or prohibit its use between internal networks and external 

networks to enforce censorship policies or defend against sensitive data exfiltration. Such 

nations may wish to modify the CODON software and operate their own CODONs that comply 

with political requirements. While we consider the prohibition of encryption and the existence 

of censorship deeply regrettable, the existence of a small number of politically-driven CODONs 

may still contribute to improving security for the internet community as a whole. 

Regional Aggregators and Repositories are responsible for managing and sharing 

numerous blacklists based on varying criteria via Type IDs, and the resource commitment for 

these participants may be significant, especially as a CODON grows. We do not believe this to be 
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a significant barrier in light of the proliferation of ever-scaling high performance and commodity 

“cloud computing” services provided by Amazon, Microsoft, and others. We do not believe 

resource utilization by home users will pose a barrier to CODON participation, as projects such 

as Stanford University’s Folding@home [52], virtual currency systems based on computing 

meaningless hashes like Bitcoin [8], and BitTorrent-based file sharing are widely used even 

among less technically adept members of the internet community despite their significant 

resource requirements. 

We see a great opportunity to spur CODON participation through the cooperation of 

internet service providers and consumer-grade network security appliances. Several consumer 

firewall hardware manufacturers have in recent years built upon the efforts of open source 

custom firmware developers to inexpensively include more features in their equipment and 

appeal to enthusiasts, and ISPs commonly include a software CD and free or subsidized 

subscriptions to antimalware software for new customers. By including CODON Sensor software 

in consumer-grade security devices and ISP customer software bundles, these manufacturers 

and ISPs could significantly expand the number of Sensors participating in the CODON. Using the 

incentive and consequence scoring paradigm we detailed throughout Section 3.4, 

manufacturers may see an improvement in reputation and ISPs may see an improvement in 

both reputation and network health/defensive posture as their customers’ systems are less 

frequently compromised. Home computer manufacturers could further promulgate the CODON 

Sensor software through the common practice of pre-installing the software at the factory. 

With its heavy bent toward open source, the CODON may initially take greater hold 

among the Linux community than among proprietary operating system users. As such, designing 

the CODON Sensor software as a signal-aware daemon, to use kernel modules for performance 
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acceleration, or with methods to directly interface with specialized network hardware or the 

netfilter firewall [6] may build momentum among Linux home users, developers, and enterprise 

system administrators by encouraging various Linux distribution maintainers to include the 

software as a useful core or optional component.  
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4 Conclusion 

We have described a framework for developing and deploying a global crowdsourced 

defensive network to make automated network-based threat detection, information sharing, 

and defense accessible to the masses. As malicious actors continue to find innovative ways to 

wreak havoc against unsuspecting internet users on an unprecedented scale, the need for a 

more panoramic view of network-based threats is clear. It is also clear to us that cooperative 

defense strategies hold the most hope for effective defense against numerous cooperative 

aggressors. While large commercial organizations such as major software vendors stand to gain 

less defensive benefit from participation in a CODON than home end-users, their reputations are 

likely to improve as their customers and potential customers benefit from timely threat 

information sharing and a history of being a “good neighbor” in the wild and dangerous 

internet. We believe that even a low CODON participation rate can have a noticeable positive 

effect on the internet by providing quick and actionable intelligence to those system 

administrators with the unique resources and specialized tools necessary for mitigating 

distributed attacks. Even the formation of many small CODONs based on differing geopolitical, 

ideological, and commercial motivators would provide a benefit to the larger internet 

community as different “neighborhoods” of the internet become safer.  
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5 Future Work 

We would like to see a CODON come to fruition through the implementation of the 

various CODON roles in software and collaborative testing between the academic research, 

private research, and online enthusiast communities. And as we already discussed in Section 

3.6, building and optimizing the CODON software for inclusion and use in home firewall/router 

firmware would surely go a great way toward making the CODON dream a reality. The CODON 

software could be further refined to understand and comply with mandatory access controls 

and security policies on systems using SELinux [44] to provide further assurance to system 

administrators that sensitive internal data will not inadvertently be shared with the larger 

CODON community. We provide a list of milestones that should take place to bring CODON from 

concept to successful widespread usage in Table 5.1. 

Table 5.1 Major milestones in the process of taking CODON from concept to widespread adoption. 

Milestone Description 

M1 CODON roles implemented in software using cross-platform languages and libraries with 
minimal set of data transformation plugins. 

M2 CODON successfully tested using multiple internet-facing hosts within the same 
organization. 

M3 CODON successfully tested using multiple internet-facing systems across multiple 
academic/research organizations, adding data transformation plugins to interface with 
participants’ security systems. 

M4 CODON registered as a new project at a publicly accessible open-source project repository, 
made available for common operating systems. 

M5 Research and enthusiast communities adopt CODON, contributing and testing useful data 
transformation plugins. 

M6 CODON earns reputation as a useful and mature security system. 

M7 CODON software included by default in Linux distributions and incorporated into ISP-
provided router firmware. 

 

While we believe a publicly accessible CODON will benefit the largest segment of the 

internet, we also acknowledge that governments, regulatory agencies, sensitive research labs, 

and other entities with special requirements may wish to employ a federated approach whereby 
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only select participants may participate, let alone fill certain roles. Such entities may also wish to 

integrate existing authentication and authorization systems, or even collect administrative fees 

from participants to pay for dedicated administrators and security data analysts to clean more 

insightful information than strictly blacklists from their more selective CODONs. The CODON 

framework could be extended to incorporate federated participation and authentication. 

The CODON framework as we have described it does not explicitly support IPv6. This 

was done for the sake of simplicity and because as we alluded to in Section 3.6, IPv6 still faces 

an uphill battle for full adoption and remains unfamiliar and confusing to many administrators. 

CODON could be extended with some effort to incorporate IPv6 concepts such as site-local and 

link-local networks and the various IPv6-to-IPv4 bridging and tunneling protocols.  
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