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Abstract 

Highly variable wind velocities in many geographical areas make wind farm integration 

into the electrical grid difficult. Since a turbine’s electricity output is directly related to wind speed, 

predicting wind speed will help grid operators predict wind farm electricity output. The goal of 

experimentation was to discover a way to combine machine learning techniques into an algorithm 

which is faster than traditional approaches, as accurate or even more so, and easy to implement, 

which would makes it ideal for industry use. Local Least Squares Regression satisfies these 

constraints by using a predetermined time window over which a model can be trained, then at each 

time step trains a new model to predict wind speed values which could subsequently be transmitted 

to utilities and grid operators. This algorithm can be optimized by finding parameters within the 

search space which create a model with the lowest root mean squared error.  
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1 Introduction 
 

In light of recent and growing concerns regarding global climate change, an increasing 

focus has been directed to traditional fossil fuel combustion based electricity generation techniques 

and their negative environmental effects. On the other hand renewable energy sources, such as 

wind energy conversion devices, ultimately depend on energy converted from the sun, as wind is 

moving air caused by the uneven heating of the Earth’s surface [1]. While sustainable over our 

foreseeable future and lacking any greenhouse emissions when utilized for electricity generation, 

sun and wind sources are intermittent and have been, until recent decades, unpredictable.  

Of all of the electricity being used in this instant, two thirds of it is being produced at fossil 

fuel burning power plants, such as natural gas or coal [2]. Integrating power plants into the grid 

which are dependent on intermittent sources such as wind creates particular challenges for grid 

operators, whose job is to guarantee each utility customer is able to receive the amount of 

electricity required at the quality to which they have become accustomed. Although often required 

by state regulations, utilities are sometimes reluctant to incorporate renewable sources into their 

Renewable Portfolio Standards due to these constraints [3]. 

The difficulty of predicting both the long and short term availability of wind resources 

presents an obstacle for initial capital investors, as the schedule for their return on investment is 

not guaranteed. Additionally, this intermittency significantly affects the negotiation of a wind 

farm’s power purchase agreement, a contract made between a power plant owner and the utility 

providing electricity to customers, when the projected revenues of the project would otherwise be 

uncertain and so some guarantee as to quantities purchased and price paid are required to make the 
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project viable [4]. These practical and financial obstacles can prevent this beneficial technology 

from being more widely adopted.  

In order to create a solution to the availability intermittency problem, a simple supervised 

machine learning regression technique which has been applied to wind speed forecasting was 

implemented.  This method was preferred as it avoids the computational resources needed to 

process all data at once, provides a simplicity in processing that can be utilized on device 

microprocessors, and allows the algorithm to automatically adjust to seasonal or even shorter term 

weather pattern changes without any hand tuning. Optimization techniques were applied to 

determine the best parameters for the model, then whittle down the time necessary to determine 

these best parameters. 

The following was undertaken as an endeavor to explore the unique challenges facing wind 

technology in particular and concepts related to the proposed solution. After the necessary 

background is expounded in Chapter 2, the solution’s design and implementation is presented in 

Chapter 3, with the experimental results offered with visualizations in Chapter 4. Finally, in 

Chapter 5, current applications and ideas for future expansion of the project are discussed. 
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2 Background 
 

So much of our modern lives are dependent on controlling and manipulating the flow of 

electrons. With the risks and negative consequences of current electricity generation techniques 

the question is, “at what cost?” Current, traditional, fossil fuel burning electricity generation 

techniques lead the pack in contributing to greenhouse gasses such as carbon dioxide, methane, 

and nitrous oxide [5]. 

Luckily, there are other resources such as sunlight and wind, which can be harnessed to 

help meet our electricity consumption. Much like water flows through the oceans, air flows 

through our planet’s atmosphere, gases moving from high to low atmospheric pressure instead of 

liquid water. Invisible to the eye, this mysterious force carries a burgeoning potential in energy 

which humans have been straining to capture for millennia. 

Modern utilization of wind energy for transformation into electric energy requires fine 

grain time dependencies. A combination of signal processing and machine learning techniques are 

valuable in predicting wind speed, and will subsequently prove to be vital in power generation 

from wind farms, as described in the subsequent sections.  

 

2.1 Our Electric Grid 

Our electric grid, as represented in Figure 2.1: Electrical grid components Figure 2.1, is a 

highly complex, interconnected network of power generation stations, transmission lines, and 

customers. These customers can be industrial, commercial, and residential, and represent the load 

in the giant nationwide circuit.  
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Figure 2.1: Electrical grid components [6] 

 

2.1.1 Grid Operation 

All the electricity we're using at this moment is being generated right now. At power plants 

across the country, in the control center, there is a smooth and continuous process of deciding 

when to ramp up electricity production to match demand. “Multiple sources and loads can be 

connected to the transmission system and they must be controlled to provide orderly transfer of 

power. In distributed power generation the generators are geographically distributed and the 

process to bring them online and offline must be carefully controlled.” [7]  

This intricate system requires control centers manned with competent operators making 

important decisions as to how grid operations are managed so that each customer receives their 

instantaneous supply of electricity. A grid operator’s chief responsibilities include forecasting this 

electricity load, scheduling the cheapest possible generation methods, ensuring that the 

transmission systems are not overloaded or damaged, and reacting to unexpected changes. [8] 
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Luckily, due to the routine behavioral habits of people, load tends to follow daily and seasonal 

trends similar to those shown in Figure 2.2, making load forecasting relatively straightforward. 

 

Figure 2.2: Average hourly loads for summer and winter [9] 

 

2.1.2 Integrating Wind Turbines 

 When a source which is difficult to control or predict, such as wind turbines, is connected 

to the grid it adds a complexity which is problematic for the grid and its operators to handle in its 

present state. Because wind resources can drop suddenly and not fully meet demand, as in Figure 

2.5, current techniques are necessary to compensate, including spinning reserves which let 

traditional generators spin at low speeds to lessen the time needed to bring them online and which 

contributes to a considerable waste of resources. As more and more wind farm projects are 

integrated into our distribution grid, wind speed variability will have increasingly significant 

effects on traditional power plants and grid operation [10]. 

When considering the viability of wind turbines as a renewable energy technology, wind 

speed is the single most important factor in the conversion of wind energy into electrical energy, 

as evidenced by the cubic relationship presented below:  
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𝑃 = 
1

2
𝜌𝐴𝐶𝑝(𝜃, 𝜆)𝑣3 

where P is the output power in watts (W), ρ is the density of the air (kg/m3), A is the swept area of 

the turbine blades (m2), Cp is the coefficient of power, which is dependent upon blade pitch angle 

θ and tip speed ratio λ and is bounded by Betz’ Limit at 59.3%, and v is the wind speed (m/s). 

Certainly the greatest challenge to wider scale integration of wind farms into current electricity 

portfolios is the incorporation of a highly variable power source into the existing grid structure. 

“The WECS [Wind Energy Conversion System] exhibits variability in its output power because 

of the stochastic nature of wind resources as a result of incessant changes in weather conditions.” 

[11]  The main challenges facing wide spread integration of wind powered turbines are related to 

the variability of wind speeds, which affects the industry in a multitude of ways. 

 In certain geographies, such as that of our own Northern Nevada or even the well-

established Altamont Pass Wind Farm located in the Altamont Pass of the Diablo Range in Central 

California, wind can be a highly variable source of energy. Cut-in speed refers to the minimum 

wind speed necessary before the wind turbine blades can begin to rotate and the generator becomes 

operable.  As the wind speed increases, electrical power output also increases until the generator 

output limit is reached. As shown in Figure 2.3, the output power remains consistent regardless of 

speeds above the rated output wind speed until wind speeds hit the cut-out speed where continued 

turbine operation incurs risk of mechanical damage and the turbine is shut down. In all aspects of 

wind turbine construction and operation, wind speed variability is a vital factor. 
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Figure 2.3: Typical wind turbine power output with steady wind speed [12] 

Currently wind farm sites are limited to areas with near constant speed and non-turbulent 

air flow, ruling out sites with high energy potential but high wind speed variability, such as 

Northern Nevada. It is easy to see in Figure 2.4 that even though local residents will vouch for the 

intensity of wind gusts in this region, the average wind speeds in this area are not particularly 

promising.  
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Figure 2.4: U.S. map of average wind speeds [13] 

Many of the most feasible wind sites are in geographically remote locations, not to mention 

a growing trend in offshore wind farm sites, requiring the installation of miles of transmission 

lines. These transmission lines, at a cost of roughly $1,500,000 per mile, in addition increased 

construction costs associated with the remote location pose an excessive capital investment 

[14].The truly prohibitive factor is the uncertainty of the Return of Investment (ROI), especially 

in comparison to traditional electricity generating technologies. In spite of all this, “Wind power 

is undergoing the fastest rate of growth of any form of electricity generation in the world.” [10] 

 

Figure 2.5: Grid Demand and Wind Generation [15] 

 

2.2 Machine Learning 

 Any list of numbers describing the behavior of some physical model can be treated as a 

signal [16]. In this particular case, our list of numbers corresponds to wind speed measurements 

over time, making this time series data. This is particularly significant because we can do 

interesting things, such as analysis and forecasting, with time series data. This forecasting can take 

the form of predictions which are based on some mathematical model we create. “In supervised 
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[machine] learning, we are given a data set and already know what our correct output should look 

like, having the idea that there is a relationship between the input and the output.” [17] In machine 

learning, the parameters of the model are calculated from the data we have available, which is 

called training the model. That model can then be used to predict new values when supplied with 

new data. 

 

2.2.1 Regression  

One technique for data analysis, regression, is derived from the “statistical process for 

estimating the relationships among variables”. [18] “Regression analysis is widely used 

for prediction and forecasting, where its use has substantial overlap with the field of machine 

learning.” [19] It is a natural response to Figure 2.6 to try to model a mathematical relationship 

between wind speed (dependent variable on y-axis) and time (independent variable on x-axis), 

which is the basis of linear regression.  

 

Figure 2.6: Wind Speed for One Day at Rockland Summit 
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The data itself is used to discover the unknown parameter in the equation of the line which 

describes the data trend. A general linear vector form is described as: 

𝒚 = 𝜷𝒙 + 𝜺 

where y is a vector of dependent variables, 𝜷 is the parameter vector we’re trying to estimate, x is 

the vector of independent variables, and 𝜺 is the error term or a measure of the noise in our data.  

Another helpful form of regression extends the linear model to utilize a polynomial. A 

polynomial “is a mathematical expression involving a sum of powers in one or 

more variables multiplied by coefficients” [20] in the following form: 

𝒂𝒏𝒙𝒏 + ⋯+ 𝒂𝟐𝒙
𝟐 + 𝒂𝟏𝒙 + 𝒂𝟎 

The goal of regression is to find the appropriate coefficients, or parameter vector, which work to 

best fit the representation of the data in the coordinate system.  

An important distinction to be made when analyzing this work is that between global and 

local regression. A global model utilizes all the training input data at once to build one unchanging 

model for any future testing and prediction point. When the data for training is limited to that 

nearest the neighbor of the point to be predicted, it’s considered local regression. “It is called local 

regression because the fitting at say point x is weighted toward the data nearest to x.” [21] 

 

2.2.2 The Kernel Trick  

Although most strongly associated with Support Vector Machines, the Kernel Trick is a 

very important nonparametric regression analysis which keeps the process computationally 

feasible. “Kernels let us work in high-dimensional feature spaces without explicitly constructing 
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the feature vector,” by which actually improves the computational complexity by computing the 

inner products between feature vectors using the functions described above [22]. 

We start out with the notion that the kernel, K, becomes the inner product of the feature 

vectors: 

𝐾(𝑧, 𝑧′) = 𝜙(𝑧)𝑇𝜙(𝑧′) 

where 𝝓 is a function which maps inputs, z,  to feature vectors. 

For a sample polynomial with n=2 features and d=2 dimensions, the feature vector would 

appear as follows: 

𝜙(𝑧) =

[
 
 
 
 
 
 

1

√2𝑧1

√2𝑧2

𝑧1
2

√2𝑧1𝑧2

𝑧2
2 ]

 
 
 
 
 
 

 

The inner product becomes: 

𝜙(𝑧)𝑇𝜙(𝑧′) = 1 + 2𝑧1𝑧1
′ + 2𝑧2𝑧2

′ + 𝑧1
2𝑧1

′2 + 2𝑧1𝑧2𝑧1
′𝑧2

′ + 𝑧2
2𝑧2

′ 2
 

= 1 + 2(𝑧1𝑧1
′ + 𝑧2𝑧2

′ ) + (𝑧1𝑧1
′ + 𝑧2𝑧2

′ )2 

= 1 + 2(𝑧𝑇𝑧′) + (𝑧𝑇𝑧′)2 

= (1 + 𝑧𝑇𝑧′)2 

In general this means (1 + 𝑧𝑇𝑧′)𝑑 is the inner product between the inputs themselves, 

meaning we can ultimately skip the explicit mapping of feature vectors 𝝓(𝒛), reducing our 

computational complexity from  O(dn) to O(n).  

Now that we have this inner product, we can apply it to our case of least squares regression: 

𝐽(𝜃) = ‖Φ𝜃 − 𝑦‖2
2 + 𝜆‖𝜃‖2

2 
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where y is the vector of labels, 𝝀 is a regularization parameter to penalize too large values for 𝜽, 

the vector of model parameters, which we can now substitute with 𝜃 = Φ𝑇𝛼 according to the 

Representer Theorem [23]: 

𝐽(𝛼) = ‖ΦΦ𝑇𝛼 − 𝑦‖2
2 + 𝜆𝛼𝑇ΦΦ𝑇𝛼 

= ‖𝐾𝛼 − 𝑦‖2
2 + 𝜆𝛼𝑇𝐾𝛼 

= 𝛼𝑇𝐾𝐾𝛼 − 2𝑦𝑇𝐾𝛼 + 𝑦𝑇𝑦 + 𝜆𝛼𝑇𝐾𝛼 

to minimize the loss, take the gradient with respect to α, then solve for α by setting it to zero: 

𝑔𝑟𝑎𝑑 𝐽(𝛼) = 2𝐾𝐾𝛼 − 2𝐾𝑦 + 2𝜆𝐾𝛼 

𝛼 = (𝐾 + 𝜆𝐼)−1𝑦 

At this point, α can be used to compute the prediction on a new input vector. 

 

2.3 Optimization 

Searching and optimization are important aspects to the field of artificial intelligence (AI). 

An optimization problem is based on a set of variables, which are the parameters necessary for 

polynomial regression.  Also necessary is an objective function; in this case root mean squared 

error is used to determine best parameters. Finally an optimality criterion is used to minimize the 

root mean squared error. Of the many AI optimization techniques, hill climbing is a prominent 

approach for finding the global maximum or highest point on the objective function while gradient 

descent is used to find the global minimum (lowest point) on the objective function. [24] 

Optimization practices are also useful in fields other than artificial intelligence, including 

engineering. [25] Since engineering problems, such as predicting wind speeds, involve quantitative 



13 

 

models with fine-tuned parameter values, optimization techniques are appropriate in improving 

the speed and effectiveness of determining the best parameters for this application. 

 

2.3.1 Simulated Annealing 

One specific algorithm for searching a problem space is called simulated annealing, named 

after “a phenomenon in nature--the annealing of solids--to optimize a complex system.” [26] 

“Simulated annealing is a probabilistic method for finding the global minimum of a cost function 

that may possess several local minima.” [27] 

Simulated annealing consists of a loop which continues while there’s still “heat” associated 

with the temperature variable. As the loop continues, random neighbors are chosen, evaluated, and 

saved if their objective function value is better than the previous choice. There’s still a chance to 

utilize this choice, as the temperature and “badness” of the move are used to determine the 

probability, P, of whether or not this “bad” choice is saved:  

 

Since the temperature decreases over time, the likelihood that bad choices will be kept decreases 

directly with the temperature. Simulated annealing can be more efficient than exhaustive 

enumeration as long as the objective remains to find a good solution quickly, as opposed to the 

best solution over an extended period of time.  
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2.4 Current Methods 

Because the problems presented by the integrating wind power into our grid infrastructure 

have been apparent for so long, there have been many attempts and approaches to predicting wind 

speed, especially over the past three decades. An efficient introduction to different methodologies 

is a literature review of some of the different methods available. A more detailed and constructive 

analysis of two additional approaches will help establish some of the aspects of this area which 

could still benefit from attention and effort at improvement. 

 

2.4.1 A Literature Review of Wind Forecasting Methods 

  One of the first services offered by A Literature Review of Wind Forecasting Methods is 

a pointed description of the different ranges of forecasting windows. Ultra-short-term forecasting, 

which spans from a few minutes to 1 hour, is helpful for real-time grid operations. Additionally, 

there is the short-term window range, 1 to several hours, which is best for economic load dispatch 

planning. There is also medium-term forecasting, which is several hours to 1 week and used for 

reserve requirement decisions. Finally, there is the long-term window spanning 1 week to 1 year, 

or more, for optimal operating cost determination or even a feasibility study for wind farm design. 

[28]  

 The journal article also specifies a number of different methodology types for forecasting. 

The Persistence method, or Auto-Regressive Integrated Moving Average (ARIMA) is often the 

most accurate method when predicting values within the ultra-short term range. Therefore, it 

should be utilized to gauge any novel methods which may be developed.  
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 Physical methods include numerical weather prediction (NWP) models developed by 

meteorologists. Even though these methods require huge amounts of supercomputing resources, 

they’re still used most as the existing commercial wind power forecasting methods. 

 Many different variations of ARIMA, including AR and ARMA, are encompassed under 

the statistical methods umbrella. Additional approaches such as regression and Bayesian models 

are also counted within this collection.  

 Another pool of models, termed spatial correlation, utilize not one but multiple site 

measurements to predict the wind speed point at one of the sites. This technique is often combined 

with other techniques such as neural networks. 

 Neural networks, both back propagation and recurrent, are also used on their own for wind 

speed forecasting, as a member of the artificial intelligence category of methods. This category 

also includes fuzzy logic methods, support vector machines, some of which are even “found to be 

more accurate that traditional statistical time series analysis.” [28] 

 The most important point made by the author, as it pertains directly to this work, is one of 

the recommendation for the future of wind forecasting. It is suggested to “do further research on 

the adaptive parameter estimation. The models have ability to automatically adapt to the changes 

of the farms and the surroundings.” [28] 

 

2.4.2 Estimation of wind resources in the coast of Ceará, Brazil, using 

the linear regression theory 

The Brazilian authors who put together this research into predicting wind speed relied 

solely on a linear regression method describing spatial relationships of wind speed data between 
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different geographical sites. Their objective was to predict wind speeds at three different altitudes, 

20, 40, and 60 meters, in two different geographical areas, Paracuru and Camocim. [29]  

The data preprocessing step employed in their algorithm involves collecting data from 

certain geographical sites at a height of 10 meters and applying to it a logarithmic wind profile 

equation. Analysis was conducted to determine correlation between data collection sites and the 

prediction target sites at Paracuru and Camocim; highly correlated sites were used to create the 

regression models. Predictions were compared against measurements taken at the 20, 40, and 60 

meter heights at the target geographical cites to create the relevant validation metrics. Those 

performance measurements included Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and percent error (ε) between the estimated and observed values, and R-squared values 

(R2). 

Overall results were good for this approach. Error values (RMSE, MAE, ε) were low while 

the R2 value was high. Although this tactic does not utilize any time series analysis, it is still a 

valid demonstration of the strength of simple regression methods. It is of special note that 

throughout the entire paper, only one reference is made to parameter estimation, and it sheds no 

light whatsoever on the process this team used to converge upon the regression parameter values.  
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3 Optimizing Local Least Squares 

Regression for Short Term Wind 

Speed Prediction 
 

3.1 Overview 

When originally researching predicting changes in wind direction for use in controlling 

wind turbine yaw using neural networks, it was suspected that the model’s integrity would degrade 

over time, especially as seasonal weather patterns changed, which has been supported by 

ARIMA’s position as the benchmark in wind speed forecasting results. Rather than retrain the 

network periodically when the error escalates to a certain threshold a certain percentage of the 

time, it appears to be more practical to have a simpler model to be updated as new data comes in.  

The contributing attribute of this work is the ability to quickly determine the values for 

these parameter which produce the best results, utilizing typical regression metrics (RMSE, MAE, 

percentage error, and R2) as the evaluation criteria. The benefits of this method include increased 

accuracy over both choosing arbitrary parameters and utilizing the same model over longer periods 

of time. Necessary computing resources would be minimal and economic, and the data collection 

equipment necessary to make these wind speed predictions would consist solely of the system’s 

own onboard sensors. 
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3.2 Features 

While Least Squares Estimation (LSE) utilizes linear algebra to determine the best 

coefficients for a polynomial to describe the trend of wind speeds, there are important algorithmic 

parameters which affect the performance of the model. These significant parameters include 

lambda, previously described as the regularization parameter, dimensions, which was also defined 

in the Section 2.2.2 as the number of terms contained in the polynomial, and training window size, 

which here becomes the number of previous time-steps of training data included in the Least 

Squares Estimation kernel training.  

The goal of this work was to create a simple and straightforward method for determining 

the best parameters to use in LSE of Wind Speed which would minimize the evaluation criteria for 

predictions made at certain time windows in an amount of time that would not be prohibitive in an 

industry setting. 

 

3.3 Design 

3.3.1 Assumptions 

 Preliminary experimentation supported the assumption that the coefficients which 

determine the shape of polynomial increasingly lose their ability to fit the data, as shown in Figure 

3.1. Even though the increase over the year is slight, errors would continue to accumulate and the 

model would lose accuracy over time. 
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Figure 3.1: Trend line for root mean squared error over one year 

An additional conjecture included the assumption that training the model on large amounts 

of data, while improving accuracy, would become cumbersome to compute, and that computing 

resources would be strained without any significant improvement in accuracy. This was supported 

by the results list in Table 3.1. It is significant to consider that the point on which these models 

were test was temporally distant from the training data, which was demonstrated earlier to 

contribute to error. While there is an initial improvement in accuracy, a reflection point becomes 

evident around 9000 training points. Most importantly, at around 14,000 data points, the test 

machine runs out of memory resources entirely.  
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Table 3.1: Training Accuracy and Times 

Training Points Time to train (seconds) Accuracy (rms) 

1,000 0.35 -5.05 

2,000 1.35 -1.15 

3,000 3.65 0.75 

4,000 6.77 0.68 

5,000 12.28 0.61 

6,000 27.38 0.53 

7,000 52.50 0.46 

8,000 75.84 0.44 

9,000 92.08 0.41 

10,000 112.15 0.43 

11,000 196.43 0.44 

12,000 249.81 0.48 

13,000 516.88 0.51 

 

3.3.2 Methods 

These findings led to a design decision which would focus on the ability to quickly prepare 

accurate models utilizing a smaller training set located temporally near the desired prediction. This 

approach would take advantage of a continuously updating process to eliminate the eventuality of 

the model becoming obsolete. 

The algorithm was designed to provide optimal parameters dependent on the specified 

prediction window. The optimization loop will determine which LSE parameters provide the 

smallest root mean square error. These LSE parameters are then utilized over the entire data set to 

predict wind speeds for the best prediction window.  

The parameter lambda, which was previously described as the regularization parameter, 

is used to control the fitting parameters and guard against over fitting. In a graphical sense, it 

smooths the ripples which would otherwise occur in a polynomial of higher degrees. The 

dimension parameter is what designate how many terms will be included in the polynomial which 

describes the trend of the data. In the graph, it determines how many inflection points are utilized 
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to follow the data’s curves. Finally, the training window parameter determines how far back in 

time the algorithm goes back to use training data.  

Performance measures include RMSE calculated as 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑖−𝑜𝑖)

2𝑛
𝑖−1

𝑛
 

where p is predicted wind speed, o is the observed wind speed, and n is the number of predictions 

in the set. The MAE value is simply 

𝑀𝐴𝐸 = 
∑ 𝑝𝑖−𝑜𝑖

𝑛
𝑖−1

𝑛
 

Together these two metrics help determine the variance in the magnitude of errors. The percentage 

error is calculated by 

𝜀 = 100 ×  
𝑝 − 𝑜

𝑜
 

Finally, the R-squared value describes how well the data fits the regression model, or how well the 

measured wind speed values are simulated by the model.  

𝑅2 = 1 −
∑ (𝑜𝑖 − 𝑝𝑖)

2
𝑖

∑ (𝑜𝑖 − 𝑜̅)2
𝑖

 

where 𝑜̅ is the mean of the observed wind speed values. 

 

3.3.3 Technologies 

Due to its popularity in industry and research, and the extensive libraries available, 

especially for scientific computing and machine learning, the main technological choice was to 

utilize the Python programming language [29]. Python is also well supported and respected in the 

engineering community with advanced tools for testing and debugging.   



22 

 

The Python package matplotlib is a 2D plotting library which produces publication quality 

figures and was utilized for visualizing data, and plotting histograms and graphs. [30] This 

collection of modules greatly contributed to the ease with which we were able to generate high 

quality plots. 

NumPy is a prominent package in the machine learning community. [29] This library of 

functions is comprised of Matlab-like processing features such as array object creation and linear 

algebra tools. In addition to utilizing the NumPy array objects, simple linear algebra functions 

were employed including the dot function to find dot products, the identity function for creating 

the identity matrix, and most importantly the linalg.solve function for solving systems of equations 

providing the α term referenced in Section 2.2.2. 

The final Python module applied is scikit-learn, an esteemed machine learning package 

for data mining and data analysis. Although none of the machine learning specific functions were 

used, the provided mean_squared_error function was essential in computing the error used to 

compare the effectiveness of the derived parameter. 

 

3.4 Implementation 

 The final design is broken down into three steps which include initial preprocessing of the 

input data to ensure it is properly screened to avoid misleading results. Next we conduct a 

parameter search for the necessary values. Finally, a test run of the algorithm is conducted over 

the entire data set. 

Input data was downloaded from the Nevada Climate Change Portal [31]. As shown in the 

snapshot of the csv file included in Table 3.2, four features were available from the original data: 
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wind speed, humidity, barometer, and temperature. It’s evident by studying the measurements 

below, that there’s a wide discrepancy in their ranges. To avoid the problem of 

incommensurability, the decision was made to convert each feature to dimensionless variables 

through normalization.  

Table 3.2: Input Data Format 

Site Name: 

Rockland 

Summit 

Rockland 

Summit 

Rockland 

Summit 

Rockland 

Summit 

Measured Property: Wind speed 

Relative 

humidity 

Barometric 

pressure Temperature 

Vertical Offset from 

Surface: 10m height 2m height 1.5m height 10m height 

Units: m/s % Pa degC 

Measurement Type: Average Average Average Average 

Measurement interval: 0:01:00 0:01:00 0:01:00 0:01:00 

Time Stamp (Pacific 

Time)         

10/1/2014 0:00 7.5370944 62.32 74479.94 2.233 

10/1/2014 0:01 7.3448672 61.94 74479.90 2.140 

10/1/2014 0:02 8.0824832 62.44 74475.18 2.060 

10/1/2014 0:03 8.2657696 62.77 74472.43 2.022 

10/1/2014 0:04 8.5786976 62.98 74471.72 2.197 

10/1/2014 0:05 8.3462368 62.50 74473.43 2.208 

10/1/2014 0:06 8.2568288 62.49 74473.53 2.092 

10/1/2014 0:07 8.0511904 62.77 74470.90 2.056 

10/1/2014 0:08 7.8410816 62.96 74469.20 2.062 

10/1/2014 0:09 8.2121248 62.91 74467.16 2.041 

10/1/2014 0:10 8.1942432 62.88 74470.54 2.084 

10/1/2014 0:11 7.5460352 62.93 74471.39 2.086 

 

A Python module was created to handle these data preprocessing steps. Data gets loaded 

from the csv file into Python lists, with any non-numerical values being replaced by zeros and any 

values less than one being rounded according to Python’s rint() function. Those lists are then 
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converted to NumPy arrays, normalized by dividing them by the maximum value in the array, and 

then saved as a multi-dimensional data array. 

During the search for optimal algorithm parameters, a section of this data array, made up 

of all four features listed above, including wind speed, is used to train the model on the wind speed 

labels which correlate with a particular window of time into the future. Training occurs by using 

this section as the inputs for the kernel computation. Then alpha is computed by solving the system 

of linear equations involving the kernel, lambda, and the labels. The Python code for the described 

training algorithm is as follows: 

def least_squares_estimator_with_window(window_size, dimension, lamb, prediction_window): 
predictions = [] 
labels = [] 

     
for i in range (0, 100):     

train_data = data[i:i + window_size] 
train_wind = wind_speed[i + prediction_window:i + window_size + prediction_window] 
         
K = (1 + np.dot(train_data, train_data.T)) ** dimension 
print K.size, np.dot(lamb, np.identity(window_size)).size, train_wind.size 
alpha = np.linalg.solve(K + np.dot(lamb, np.identity(window_size)), train_wind) 
         
test_data = data[i + window_size + prediction_window] 
test_K = (1 + np.dot(test_data, train_data.T)) ** dimension 
     
prediction = (np.dot(test_K, alpha)) 
         
predictions.append(prediction) 
labels.append(wind_speed[i + window_size + 2 * prediction_window]) 
         

return predictions, labels 
 

Initial exploration of the algorithm parameters comes into play through a very 

straightforward exhaustive search. The program iterates over ranges of window sizes, dimensions, 

and lambdas while keeping track of the values which produce the minimum root mean squared 

error for use in the actual testing and running of the local least squared error algorithm. 
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prediction_window = 5 
for window_size in range (1, max_window_size):  

for dimension in range (1, max_dimension): 
for lamb in range (1, max_lamb): 

predictions, labels = least_squares_estimator_with_window(window_size, dimension, lamb, 
                                                          prediction_window) 
rms = sqrt(mean_squared_error(labels, predictions)) 

                 
if rms < minimum['rms']: 

minimum = {'window size': window_size, 'dimension': dimension, 'lambda': lamb, 'rms': rms} 

 

The simulated annealing optimization is implemented as described in Section 2.3.1, 

starting with an outer for loop. The temperature scheduler decreases the temperature by some 

cooling constant. A new set of parameters is chosen randomly, then evaluated to determine their 

relative errors. If the current parameter error is greater than the new parameter error, the new state 

is automatically saved. Otherwise the “dice are rolled” to see if the new state will be saved anyway. 

prediction_window = 5 
 
current_state = [1, 1, 1]  
current_node = problem(current_state, prediction_window) 
current_rms = sqrt(mean_squared_error(current_node.labels, current_node.predictions)) 
 
temp = 1 

 
while temp > COOLING: 
    temp = schedule(temp) 

 
    new_state = random_successor(current_state, temp) 
    new_node = problem(new_state, prediction_window) 
    new_rms = sqrt(mean_squared_error(new_node.labels, new_node.predictions)) 

 
    delta_e = current_rms - new_rms 
    if delta_e > 0: 
        current_state = new_state 
        current_rms = new_rms 

 
    else: 
        probability = exp(delta_e / temp) 
        if random.random() < probability: 
            current_state = new_state  
            current_rms = new_rms 

 

Finally, we have optimal values for our algorithm parameters to pass to a function very 

similar to our training least squares estimator, but which will run over the entire data set, updating 

the model at each step and saving every root mean square error calculation to track the performance 

of the model, as presented in the Section 4.1.  
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4 Results 
 

4.1 Polynomial Kernel  

The kernel utilized in experimentation was the polynomial kernel. During preliminary 

investigation to determine the possible parameter combinations and associated evaluation metrics, 

an exhaustive enumeration methodology was implemented. Through iterations of all possible 

combinations of parameters, the root mean square error varies broadly. Displaying this error values 

as the algorithm iterates through the parameter ranges, as in Figure 4.1, illustrates the range of our 

search space and demonstrates the importance of heuristics in parameter selection. 

 

Figure 4.1: Graph of RMS Error for Different Parameters 
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 The data in Table 4.1 below deliver a couple of important insights. First, it appears that 

predicting wind speeds becomes more difficult as the prediction window expands, as evidenced 

by the increasing RMS values and decreasing R2 scores. Moreover, besides the consistent lambda 

term, there does not appear to be a trend in the parameter values or their combinations, which 

highlights the important of heuristics in parameter selection. It is also of significance to note that 

the exhaustive enumeration training times generally exceed thirteen minutes, with the greatest 

training time surpassing seventeen minutes. Finally, utilizing some of these combinations of 

parameters for wind speed predictions produce the following graphical results.   

Table 4.1: Exhaustive Enumeration Prediction Windows: Parameters and Errors 

Prediction 

Window 

Window 

Size Dimension Lambda RMSE MAE 

% 

error R2 

Time 

(sec) 

5 8 9 1 0.63 0.47 0.69 0.85 1026.82 

10 4 4 1 0.60 0.43 -0.31 0.86 829.55 

15 2 5 1 0.65 0.50 -0.52 0.83 808.93 

20 3 4 1 0.66 0.52 -0.55 0.82 941.84 

25 3 4 1 0.70 0.56 -0.54 0.78 913.84 

30 4 7 1 0.70 0.54 0.14 0.78 861.22 

35 10 7 1 0.72 0.58 1.03 0.75 810.46 

40 3 7 1 0.70 0.55 0.13 0.76 891.45 

45 2 5 1 0.75 0.59 -0.12 0.72 815.86 

50 4 4 1 0.81 0.66 0.03 0.60 783.62 

55 2 4 1 0.84 0.68 -0.95 0.53 900.49 

60 3 7 1 0.83 0.67 -0.09 0.40 825.84 

 

 Predicting wind speeds at a five minute window produces a low root mean squared error; 

as expected, an examination of the graph in Figure 4.2 shows that the model does a good job of 

approximating the time series with the exception of a few sharp outliers. With the highest R2 value 

and lowest RMS error, this graph represents the best results for exhaustive enumeration parameter 

search.  
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Figure 4.2: Exhaustive Enumeration Wind Speed Predictions for 5 Minute Window 

 

 The 35 minute results, in Figure 4.3, are worth examining, as the percent error is slightly 

larger, even though the RMSE is low. These predictions tend to be smoother and closer to the 

actual values. Another important feature is that the model does a fair job of handling abrupt 

changes in velocities. 
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Figure 4.3: Exhaustive Enumeration Wind Speed Predictions for 35 Minute Window 

 

 The graph in Figure 4.4 captures the model generated for a 60 minute prediction window. 

With the lowest R2 score and highest RMSE, this model has the poorest performance. The model 

produced with these parameters appears to “shadow” the previous steps actual wind speed value, 

which would not be helpful to the intended user.  



30 

 

 

Figure 4.4: Exhaustive Enumeration Wind Speed Predictions for 60 Minute Window 

 

One of the four principal assumptions which can justify the use of a linear regression model 

is a normal distribution of errors [32]. This assumption is clearly supported by the histogram 

presented in Figure 4.5, which gives confidence in our model and its parameters. 
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Figure 4.5: Histogram of Errors 

 

4.2 Optimization with Simulated Annealing 

While the polynomial models generated under the exhaustive enumeration approach 

provide good results, the training times for certain models can take over seventeen minutes, which 

would be prohibitive for use in an industrial setting. In comparison, less than one and a half minutes 

of optimized training time would likely fall within application constraints. The additional feature 

of faster training time supports Simulated Annealing as an optimization method. Moreover, as 

listed in Table 4.2, even though the Simulated Annealing training times are at least 90% shorter, 

their RMSE values are not significantly higher. 

Table 4.2: Comparison of Training Times and RMSE Values 

Prediction Window Enum (sec) SA (sec) Enum RMSE SA RMSE 

5 minute 1026.82 73.26 0.63 0.74 

35 minutes 810.46 68.19 0.72 0.73 

60 minutes 825.84 85.37 0.83 0.96 
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 It is important to note that because of the randomized aspect to parameter generation, it is 

not guaranteed that the optimizing simulated annealing algorithm will produce the same 

parameters. Another helpful feature of utilizing the optimization is that, because the search times 

are so much shorter, a wider range of variables could be searched to provide the more expressive 

models. 

Table 4.3: Simulated Annealing Prediction Windows: Parameters and Errors 

Prediction 

Window 

Window 

Size Dimension Lambda RMSE MAE 

% 

error R2 

Time 

(sec) 

5 24 5 23 0.74 0.57 -0.35 0.75 73.26 

10 30 3 10 0.75 0.61 0.10 0.73 76.57 

15 7 9 3 0.73 0.58 0.48 0.78 74.31 

20 5 13 17 0.70 0.56 0.41 0.79 65.63 

25 9 11 12 0.75 0.57 1.18 0.74 68.97 

30 8 6 19 0.73 0.58 -0.62 0.75 66.69 

35 11 11 24 0.73 0.59 1.07 0.74 68.19 

40 4 11 25 0.75 0.58 0.07 0.73 65.64 

45 7 10 24 0.80 0.65 0.29 0.60 60.60 

50 7 8 5 0.84 0.71 0.38 0.53 69.56 

55 7 10 20 0.91 0.74 0.20 0.31 86.22 

60 29 9 13 0.96 0.81 -0.50 0.08 85.37 

 

Similarly to the model generated by the exhaustive enumeration parameters, the five 

minute ahead model illustrated in Figure 4.6 provides a good approximation for most points. Since 

the lambda value is significantly higher than the other model, the curve is much smoother and 

doesn’t provide the expressive predictions for the sudden change in velocities. Still, this model 

provides comparable results at a small fraction of the training time cost. 
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Figure 4.6: Simulated Annealing Wind Speed Predictions for 5 Minute Window 

 The 35 minutes simulated annealing results, included in Figure 4.7, are virtually 

indistinguishable from those generated by exhaustive search methods, which is to be expected as 

the R2 score and RMS value are almost equivalent to each other. In both this model and the 

previous one, it is interesting that such disparate parameter combinations manage to produce such 

analogous results, providing justification for utilizing the simulated annealing heuristics. 
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Figure 4.7: Simulated Annealing Wind Speed Predictions for 35 Minute Window 

 Finally, we have the 60 minute model in Figure 4.8 generated by the simulated annealing 

parameter search. The model overshoots the actual values is significant places, missing some of 

the important peaks and valleys. Root mean squared error is slightly higher and the R2 score is 

definitely low, but the model is still capable of describing general trends in wind speed behavior, 

which is still of benefit. 



35 

 

 

Figure 4.8: Simulated Annealing Wind Speed Predictions for 60 Minute Window 

 Based on the results collected and presented here, it’s evident that nonlinear regression 

utilizing a polynomial kernel is a viable method for predicting wind speed. Utilizing a sliding 

window for model training prevents model deprecation over time. To continuously train these 

models, certain parameters must be fixed. Instead of enumerating over all possible combinations 

of parameters, it is more efficient to utilize the simulated annealing optimization technique, 

without any significant increase in RMSE values, as long as model consistency is not a problem 

constraint or user requirement. 
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5 Discussion 
 

5.1 Summary 

 As humankind searches for ways to cope with and counteract the negative consequences 

of our rampant burning of fossil fuels, new technologies and political policies emerge. Applying 

an optimization algorithm for localized least squares regression techniques to predicting wind 

speeds is my contribution to our stalwart stand in support of new enterprises in electricity 

generation. Being able to accurately predict wind speeds may allow wind turbine farms to better 

predict their own electricity output, which will help make them more profitable and therefore more 

attractive to initial investors, and hopefully break down barriers to their entry into the electricity 

generation market. 

 

5.2 Applications 

 In addition to the economic benefits to potential investors of reducing financial risk and 

encouraging the expansion of the wind electricity generation business, the main application for 

this work was envisioned as providing assistance to electricity grid operation, adding reliable 

resource forecasting to their current process which has historically been limited to load forecasting 

[33]. Relying on renewable resources, such as wind energy, provides challenges as their 

availability tends to be intermittent. If near future wind farm generation output is better understood 

then their integration into the existing grid network will be more effective and less detrimental to 
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overall operation, as there won’t be any sudden drop in supply which could a cascade of failures 

throughout the system.  

Furthermore, more accurate power output predictions would reduce the necessity of 

continuing the practice of exploiting spinning reserves at traditional fossil fuel burning generation 

sites, such as coal and natural gas. To be ready to compensate for any sudden decrease in supply 

which might be caused by drops in renewable energy resources such as solar or wind, a number of 

these fossil fuel burning generators must be kept running and online but without any load, to offset 

ramp up times so they can be ready in time to meet instantaneous demand and compensate for 

sudden losses, sometimes in as little as ten minutes [35]. These spinning reserves contribute excess 

CO2 and are a terrible waste of fuel and water resources. 

Finally, since the local least squares regression techniques have been demonstrated to be 

effective, industrial-sized wind turbine manufacturers and wind farm engineers could easily 

incorporate them into their supervisory control and data acquisition systems and proprietary 

software. The algorithm is simple enough and machine learning libraries are readily available to 

aid non-data scientist, software engineers in incorporating this technique into their current software 

designs. Additionally, the necessary sensors are already incorporated onto the turbines which 

utilized in commercial wind generation farms. 

 

5.3 Future Work 

5.3.1 Additional Geographical Locations 

 One of the first further experiments we would like to conduct would be to use more than 

one geographical location to see if that would help improve predictions for expanded prediction 
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windows, as it does with statistical approaches [33]. Utilizing a cluster of sites’ data may provide 

more features to make the predictions more accurate. 

 

5.3.2 Extending Optimization 

 There are a number of ways to expand this technique to extend functionality. For instance, 

predicting wind speed is a preliminary step to predicting output power. There are power electronic 

components and aggregation factors which contribute to the actual electricity delivered to the 

electrical grid. [35] A more efficient model would map climate features of a geographical area 

directly to the total power output of an entire wind farm. 

 This method of optimization can also be applied to research models which incorporate local 

regression into their prediction approach. A prime example is the work done in Section 2.4.2, in 

which case the prediction window could be adjusted in either direction from the hour chosen, and 

the parameters, for which they did not provide any justification, could be determined with 

confidence. 

 

5.3.3 Prototyping 

 As stated, the algorithm is simple and not computationally expensive. As such, it would be 

interesting to prototype a full system utilizing the Raspberry Pi platform. Necessary equipment 

would include an anemometer and other weather sensors, the Raspberry Pi computer or Netduino 

micro-processing board, and a small wind generator. This prototype platform could facilitate direct 

prediction of electricity output instead of prediction of wind speed and subsequent calculation of 
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the electricity output. Additionally, an interface allowing a user to enter a prediction window 

would make the prototyped system complete. 
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