
University of Nevada, Reno

Rewind: A Music Transcription Method

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Chase Dwayne Carthen

Dr. Frederick C. Harris, Jr., Thesis Advisor
Dr. Richard Kelley, Thesis Co-Advisor

May, 2016

We recommend that the thesis
prepared under our supervision by

CHASE DWAYNE CARTHEN

Entitled

Rewind: A Music Transcription Method

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Richard Kelley, Committee Member

Dr. Tomasz J. Kozubowski , Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

 May, 2016

THE GRADUATE SCHOOL

i

Abstract

Music is commonly recorded, played, and shared through digital audio formats

such as wav, mp3, and various others. These formats are easy to use, but they lack

the symbolic information that musicians, bands, and other artists need to retrieve

important information out of a given piece. There have been recent advances in the

Music Information Retrieval (MIR) field for converting from a digital audio format to

a symbolic format. This problem is called Music Transcription and the systems built

to solve this problem are called Automatic Music Transcription (AMT) systems. The

recent advances in the MIR field have yielded more accurate algorithms using different

types of neural networks from deep learning and iterative approaches. Rewind’s

approach is similar but boasts a new method using an encoder-decoder network where

the encoder and decoder both consist of a gated recurrent unit and a linear layer.

The encoder layer of Rewind is a single layer autoencoder that captures the temporal

dependencies of a song and produces a temporal encoding. In other words, Rewind

is a web app that utilizes a deep learning method to allow users to transcribe, listen

to, and see their music.

ii

Dedication

I dedicate this thesis to my family and friends who have supported me.

iii

Acknowledgments

I would like to thank my Adviser, Dr. Frederick C. Harris, Jr., and my Co-

Advisor Dr. Richard Kelley, and committee member Dr. Tomasz Kozubowski for

their time and suggestions. I would like to thank Vinh Le for his help in creating

the front end of Rewind. I would also like to thank Zachery Newell for keeping the

cubix machine running and for providing me a web node for hosting the Rewind web

service and website. I would like to thank all members of the call, HPCVIS lab, and

the CIL lab. Lastly, I would like to thank my family for their support.

This material is based in part upon work supported by: The National Science

Foundation under grant number(s) IIA-1329469, and by Cubix Corporation through

use of their PCIe slot expansion hardware solutions and HostEngine. Any opinions,

findings, and conclusions or recommendations expressed in this material are those

of the author(s) and do not necessarily reflect the views of the National Science

Foundation or Cubix Corporation.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background 3

2.1 Automatic Music Transcription . 3

2.1.1 Overview . 3
2.1.2 Data Representations of Music 3

2.1.3 AMT Evaluation Metrics . 7
2.1.4 AMT Approaches . 8

2.2 Deep Learning . 8

2.2.1 Overview . 8
2.2.2 Long Short Term Memory: LSTM 9

2.2.3 Gated Recurrent United: GRU 10
2.2.4 Encoder-Decoder Networks . 11
2.2.5 Libraries and Frameworks . 13
2.2.6 Past Work in AMT . 14

2.3 Web . 14
2.3.1 Web Frameworks . 14
2.3.2 Audio in the Web . 15
2.3.3 JQuery and Other Javascript Libraries 15

3 Rewind 16
3.1 Overview . 16
3.2 Functional and Non-Functional Requirements 16

3.3 Use Case Modeling . 17

3.4 Architecture . 21

v

4 Theory and Implementation 24

4.1 Overview . 24
4.2 Rewind’s Models . 24

4.2.1 Overview . 24
4.2.2 Data Sets and Representation 24

4.2.3 Models . 26
4.2.4 Training Rewind’s Encoder and Decoder Networks 27

4.2.5 Implementation . 28

4.2.6 Auto-Correlation Method . 29
4.2.7 Difficulties . 29

4.3 Web Service . 30
4.4 Website . 30

4.4.1 Overview . 30
4.4.2 Implementation . 30

4.4.3 Web Synthesizer and Piano Roll 32

5 Results 34
5.1 Overview . 34
5.2 Results and Discussion . 34

6 Conclusions and Future Work 38
6.1 Conclusions . 38
6.2 Future Work . 39

Bibliography 41

vi

List of Tables

3.1 Rewind’s Functional Requirements 17

3.2 Rewind’s Non-Functional Requirements 17

5.1 Rewind’s results at 10 ms stride for the spectrogram where 1 is the
proposed model and 2 is the rnn-nade [7]. 36

5.2 Rewind’s performance on the Maps dataset compared to [40] at 10 ms. 36

5.3 Rewinds results at a 50 millisecond stride for the spectrogram where 2
is the proposed model and 1 is the Simple Auto-Correlation model. . 36

vii

List of Figures

2.1 An example of a raw audio file. 4

2.2 An example of a spectrogram. 5

2.3 An example of sheet music. 6

2.4 An example of a piano roll. 6

2.5 An picture of a LSTM that consists of input gate, hidden gate, a cell,
and a forget gate [29]. 10

2.6 A picture of a Gated Recurrent Unit (GRU) and its layout consisting
of a reset switch, update gate, activation, and a candidate activation
[29]. 11

2.7 A picture of an autoencoder [37]. 12

2.8 A picture of a encoder-decoder network with a context C demonstrated
between the encode-decoder network [13]. 13

3.1 A Use Case Diagram of Rewind. 19

3.2 The Architecture of Rewind. 22

4.1 Encoding generated by the encoder network. 27

4.2 A diagram of Rewind’s web service. 31

4.3 A screenshot of the website with a piano roll. 32

4.4 A screenshot of piano roll notes lighting up. 33

5.1 A comparison between two spectrograms: output of encoder model(top)
vs actual(bottom). 37

1

Chapter 1

Introduction

Many musicians, bands, and other artists make use of MIDI, a symbolic music in-

struction set, in popular software to compose music for live performances, portability

across other formats, and recording. However, most music is often recorded into raw

formats such as Wav, MP3, OGG, and other digital audio formats. These formats do

not often contain symbolic information, but may contain some form of metadata that

does not typically include symbolic information. Symbolic formats, such as sheet

music have been used by bands, choirs, and artists to recreate or perform songs.

These symbolic formats are effectively the spoken language of music that can be re-

translated back into sound. Communities such as Mirex are actively working many

different problems on retrieving information from music so that creating, categoriz-

ing, and extracting information is easier. The Symbolic format is not only portable,

but can be leveraged for doing different types of analysis such as genre classification,

artist classification, mood detection, and etc. One key thing is that symbolic formats

can be used in applications such as FL Studio [23] and others to generate new songs

by assigning new sounds to the symbols of the symbolic format. There are existing

software out there that can convert a digital audio format into a symbolic format

what is known as music transcription. A more accurate tool can be constructed that

will allow musicians, bands, and other artists to transcribe their music into symbolic

format and allow them to visualize their results in a application.

There are a few music transcription applications that have been built mostly

for Windows, Linux, and Mac [3, 24, 27, 49]. There is currently only one existing

2

website that can actively convert digital audio formats to MIDI at a decent level [32].

Some of these applications offer a way to visualize the converted files in the form of

a piano roll. A piano roll is an intuitive visualization of music that does not require

a user to learn sheet music, a symbolic format often used by bands and choirs. This

visualization can be handy for a user to see if their music came out correctly. These

applications allow a user to get a symbolic format of their music that can be used for

many different reasons such as changing a song, portability to other applications, live

performances, and for generating sheet music. However most of these applications do

not seem as accurate as the state of art algorithms from advances in Deep Learning

that have contributed to the MIR field.

Thanks to the recent advances in the Deep Learning, the Music Information

Retrieval (MIR) and other fields have progressed. Recent advances such as [7, 9, 39]

in the MIR field make it possible to create applications that are more accurate than

their older counter-parts. With these advances one can create an application that

captures the notes accurately and allows one to visualize what the notes would be for

a given recording. This can reduce the amount of transcription time for music and

for extracting melodic information from music. Rewind is a tool and method that

will make use of a new Deep Learning method, visualize the results of the transcribed

file, and allow the user to edit transcribed results.

The following is structured as follows. Chapter 2 covers background related to

the MIR, Deep Learning, and Chapter 3 discusses the implementation and design

of Rewind tool. Chapter 4 explains the theory and implementation behind rewinds

method. Chapter 5 gives the results of the Rewind method. Finally Chapter 6

concludes and details future direction that Rewind can take.

3

Chapter 2

Background

2.1 Automatic Music Transcription

2.1.1 Overview

Automatic Music Transcription (AMT) is the process of converting an acoustic mu-

sical signal into some form of music notation [18]. This is a sub-problem of the Music

Information Retrieval field. The overarching goal of this field is to create an AMT

system that can produce complete scores [18]. With a complete system, it will be

easy to extra information of music for other studies. Many have tackled this problem

in different ways with different representations of acoustic signals and there has been

a great deal of research using Deep Learning to transcribe music.

2.1.2 Data Representations of Music

There are many different representations of acoustic signals that are often used in

AMT systems. The three levels that are commonly used in AMT systems are at a

stream, frame, and note. The stream level is simply a raw acoustic signal, an example

of which can be seen in Figure 2.1. Many systems often use a magnitude spectrogram

generated from a fast Fourier transform (fft) representation for audio. This is often

called the frame level, because a spectrogram is comprised of frequency information in

multiple frames. A spectrogram is demonstrated in Figure 2.2. At the note level, the

representation is mainly comprised of notes, see example in Figure 2.3. Most models

are done at the frame level because it contains frequency information that is vital for

4

Figure 2.1: An example of a raw audio file.

predicting the notes of an acoustic signal. It is even possible to create a simple auto

correlation model, to be discussed later. These audio formats are used as input into

AMT systems, with the spectrogram being used most often.

Spectrograms have been used for other problems, such as speech recognition,

genre classification, emotion detection, and other problems. The spectrogram is con-

structed from the magnitude of the short fast Fourier transform (stft) placed on the

log scale. The spectrogram is in the frequency domain as opposed to the time do-

main of the original audio signal. One key issue in using spectrograms is the trade-off

between frequency and time resolution [42]. Most projects choose a frequency resolu-

tion, which covers all piano notes and has an adequate time resolution for most type

of notes. The frequency and time resolution is determined by the window size and

stride of the spectrogram. In [9] they experiment with many different window sizes

and the found that the best window size is 100 ms given a song at sample rate 44.1

khz. Other papers have chosen a sample rate around this window size or greater.

This sample rate or greater covers most piano notes at 10 Hz per bin of the spectro-

gram. An adequate sample rate is required to get a decent frequency resolution for

5

Figure 2.2: An example of a spectrogram.

converting to symbolic formats.

Symbolic formats are piano rolls, sheet music, or midis. These symbolic formats

typically represent frequencies and silence with symbols. The intensity or loudness

may be represented with words, velocity values of a midi, or even the color of a piano

roll. Examples of a piano roll, sheet music, and midi are shown in Figure 2.4.

Most AMT systems generate piano rolls or midi due to ease of generating these

formats. However, sheet music is more tricky due to having more rules and the

requirement of finding the accurate notation for the audio signal. It is easy to create

an AMT system due to many midis being existent and those midis can be synthesized

into audio digital formats.

6

Figure 2.3: An example of sheet music.

Figure 2.4: An example of a piano roll.

7

2.1.3 AMT Evaluation Metrics

Many AMT systems evaluate their effectiveness by means of various metrics, which

include recall, accuracy, precision, and f-measure from [5]. These important metrics

are commonly used in language transcription to determine how well a system trans-

lates a given language. In these systems and in music transcription the true positive,

false positives, true negatives, and false negatives are used to compute the previously

stated metrics. True positives are classifications that are detected as correct positive,

while true negatives are classifications that are correct and negative. False negatives

and false positives are the exact opposite of true positives and true negatives. Un-

like language transcription, which requires classifying the correct word at a given

time, music transcription requires classification of the correct set of fundamental fre-

quencies at a given time. Classifying fundamental frequencies is difficult due to the

requirement of classifying multiple notes. A midi representation has at most 1282

possible combinations due to all 128 notes that can be on or off. All these metrics

are important for determining how good a AMT system is.

Precision determines how relevant a transcription is given irrelevant transcrip-

tions in the frame. It is defined as follows:

Precision =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FP (t)
(2.1)

Recall is the percentage of relevant music transcribed, and is given by Equation 2.2.

Recall =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FN(t)
(2.2)

The accuracy determines the correctness of a transcription, and is given by equation

2.3.

Accuracy =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FP (t) + FN(t)
(2.3)

While the F-measure determines the overall quality between the precision and recall.

F −measure =
2 ∗ precision ∗ recall
precision + recall

(2.4)

8

2.1.4 AMT Approaches

Many approaches have been taken for AMT at the frame level, slightly less at the note,

and even fewer at the stream level. From [5] we learn that there are two major ways

that this problem is currently being solved which are taking a classification approach

where all notes are taken into consideration at once and the other type of approach

iteratively determines the best set of frequencies by canceling out the source signal

with a certain frequency. These two approaches can be expanded from [18], where it

breaks down into further approaches such as time domain methods, frequency domain

methods, iterative spectral subtraction, spectrogram decomposition, full spectrum

modeling, spectral peak modeling, and classification-based methods. Many of these

methods are used to create an AMT system and some are even combined to produce

a more effective system [39]. Even more recently one system has start to use a hybrid

method, that consists of an acoustic model and music language model in [41] and

makes a full use of deep learning. Deep learning has become popular in solving

problems such as latent semantic analysis, speech recognition, computer vision, and

other problems consisting of large datasets. Both approaches aforementioned are

classification-based methods that makes use of the frequency domain with the addition

of predicting the probabilities of notes. The next section cover deep learning and how

it is used for classification and for predicting the probabilities of notes.

2.2 Deep Learning

2.2.1 Overview

Deep Learning is a field of machine learning that makes use of deep neural network

architectures in order to solve problems such as speech recognition, AMT, latent

semantic analysis, and other important problems. One common issue that prevented

the Deep Learning field from progressing is the exploding and vanishing gradient

problem, where neural network architectures such as recurrent neural networks (rnn).

There have been advances in the Deep Learning field due to increased performance

9

in hardware and improvement algorithms. These improvements include the creation

of the LSTM [21, 22], GRU, and optimizers such as adam[25], rmsprop [46], adagrad,

and adadelta [50]. These advances have allowed for many different fields to advance

with the availability of different datasets.

2.2.2 Long Short Term Memory: LSTM

LSTMs were created in response to the vanishing and exploding gradient problem that

was a common problem with rnns. LSTMs do not have these issues because they can

remember sequences due to their memory cells. A LSTM consists of an output gate,

forget gate, cell, input gate, and a hidden layer. A diagram of the LSTM can be

seen in Figure 2.5. It is capable of remembering long term sequences and capturing

temporal dependencies between temporal events. It makes use of a memory cell to

keep track of previous values, a forget gate to determine whether to forget previous

values, and a hidden gate to create a hidden state. LSTMs have had major success

in problems such as AMT, translation, image caption generation, and for modeling

context. LSTMs have also been used in encoding and decoding sequences. LSTMs

work relatively well but it has been found that a GRU is comparable to an LSTM in

audio tasks.

10

Figure 2.5: An picture of a LSTM that consists of input gate, hidden gate, a cell, and
a forget gate [29].

2.2.3 Gated Recurrent United: GRU

The Gated Recurrent United created and proposed in [15], unlike LSTMs does not

have a memory cell to contain old information, but it still takes into consideration the

previous information. The GRU was created as a simplification of the LSTM unit. A

layout of the GRU is demonstrated in Figure 2.6 and consists of a reset gate, update

gate, activation, and a candidate activation. The GRU is able to look into temporal

considerations and is able to remember previous activations as well. The GRU has

been found to have similar performance to an LSTM in [14] and is comparable to

an LSTM. It controls the amount of updates it recieves with its reset and update

gates. Even though it does not contain a memory, it has been proven that it can do

just as well as the LSTM. The LSTM and GRU are both good at modeling temporal

11

dependencies and remembering sequences. They can be used in autoencoder like [15,

43] and be used to extract information from data.

Figure 2.6: A picture of a Gated Recurrent Unit (GRU) and its layout consisting of
a reset switch, update gate, activation, and a candidate activation [29].

2.2.4 Encoder-Decoder Networks

Encoder-Decoder networks consist of a encoder network and decoder network that

have been used for unsupervised learning in terms of autoencoders [43, 37, 48, 4],

translation [14], or captioning generation for images, video clip description, speech

recognition [13, 17] or video generation. A encoder-decoder can be as simple as an

autoencoder or more complex. Autoencoders are commonly used for unsupervised

learning by learning the identity of the data and an encoding is produced by the

encoder of the autoencoder that contains learned features. An example of an au-

toencoder is shown in Figure 2.7. An autoencoder is powerful for learning features

contained within a dataset, and extract features if they are stacked. However there

12

are more complex encoder-decoder networks in [14, 13, 17], where they learn a context

and map English to French.

Figure 2.7: A picture of an autoencoder [37].

Another type of encoder-decoder network is a network that is least concerned

about learning the identity but for mapping the input to a specific output like image

caption generation, video clip description, or translation. These type of networks are

commonly used to learn the input and a context associated to it with an encoder.

The decoder’s job based a context generated by the encoder is to produce an output

like a image caption, video clip description, or etc. An example layout of this network

is demonstrated in Figure 2.8. These networks have proven to be beneficial, and are

state of the art.

13

Figure 2.8: A picture of a encoder-decoder network with a context C demonstrated
between the encode-decoder network [13].

2.2.5 Libraries and Frameworks

Many frameworks and libraries have been built to make deep learning possible, such

as Torch [36], Theano, Keras, and cuDNN. These libraries have included CUDA

integration, allowing for neural networks to be trained on GPUs at a much faster

speed. The incorporation of GPUs have made it possible to train networks faster

and create larger networks without the need of a large cluster. Many more people

have stepped in the deep learning field. Rewind utilizes Torch for its implementation.

Libraries that are specific to Torch shall be discussed later in this thesis.

14

2.2.6 Past Work in AMT

There has been some recent work in AMT within the deep learning field to do recog-

nition at the frame level and very few at the note level. Most of these papers have

utilized a spectrogram representation in order to transcribe music to a piano roll or

midi. There has been some other work that does everything at the stream level that

is covered in this tutorial [18], but in this thesis we are mainly covering the frame

level. There has been some work using LSTMs and semitone filterbanks to transcribe

music [9]. In [39] the idea of an an acoustic model, that converts an audio signal to

a transcription, and a music language model, that improves a transcription overall,

is introduced. This paper introduces using a music language model to improve the

accuracy of a transcription of a acoustic model likes [9] and others as well. Boulanger-

Lewandowski in [7] uses a deep belief network to extract features from a spectrogram

and utilizes a RNN to create a transcription along with a innovative beam search

to transcribe music. Boulanger-Lewandowski’s beam search is possible thanks to the

generative properties of the deep belief netowrk that is merely a bunch of staked re-

stricted Boltzman machines (RBM). This beam search is also utilized in combination

with rnn-nade as a music language model and an acoustic model that uses a deep

neural network and rnn for recognizing frames [41]. The acoustic and music language

model were both effective on training on the maps dataset. A follow-up paper pro-

duces a hash beam search that finds a more probable transcription in a fewer epochs

[40]. The idea behind an acoustic model and music language will be explained later

in Chapter 4.

2.3 Web

2.3.1 Web Frameworks

There exist several web frameworks in many languages, and some web frameworks

are simple development platforms. An example of web frameworks that are easy

development platforms and get running are Django [34] and Flask [35]. Both Django

15

and Flask use Python as the language to write modules for frameworks. Python has

many libraries and a community that is actively adding new libraries everyday. Flask

works well writing small microservice applications that are used for serving simple

web services. Django works well for writing a scalable web application including easy

database integration and support for adding security. These web frameworks are

useful for designing web services and web sites.

2.3.2 Audio in the Web

Recently Chrome and FireFox have been adding or creating audio frameworks into

web browsers such as WebAudio [31] or WebMidi [47]. These frameworks are start-

ing to be used by various parties to create proof of concept applications or actual

applications on the web, such as the online sequencer [30]. There are even libraries

being built around web apis, such as WebMidi and midi.js [16]. These libraries and

frameworks make it possible to create interesting media, such as Rewind.

2.3.3 JQuery and Other Javascript Libraries

Several Javascript libraries have been written to make it easier to display content,

do web requests, and other functionality within the web browser. Remodal, [10]

a Javascript library that makes it easier to do CSS animations and create modal

windows. Another useful library is jQuery [45], which has a lot of useful functionality

and can do most web requests or other functionality with less lines of code. An offshot

from the jQuery is a library called jQueryUI [44], which is used to easily create user

interface elements in the web browser. All of these libraries are utilized by many web

applications to create web sites.

16

Chapter 3

Rewind

3.1 Overview

Rewind is both, a method and tool, meant to be used for transcribing digital audio

music in a web interface. This web interface is meant to display the results of a

transcription and to allow the user to download the result. What is unique about this

web interface and transcription is that the user can play the resulting transcription. In

this chapter the requirement, use cases, and architecture for Rewind, will be discussed.

3.2 Functional and Non-Functional Requirements

The functional requirements for Rewind are detailed in this Section, and the require-

ments are demonstrated in Table 3.1. The non-functional requirements for Rewind are

detailed in this Section as well and the requirements are demonstrated in Table 3.2.

17

Table 3.1: Rewind’s Functional Requirements

Table 3.2: Rewind’s Non-Functional Requirements

3.3 Use Case Modeling

This section details the use cases of Rewind and covers the different scenarios of

Rewind. The use cases were created in the need of generating transcriptions of digital

18

audio content and to make it easier for users to view these transcriptions. Both the

back end of Rewind, being the trained models, and the front end of Rewind, being

the Graphical User Interface (GUI) of Rewind, are covered by these use cases.

In the full use case diagram shown in Figure 3.1, there are four actors being

the: User, Developer, Web Service, and the Rewind Server. The User are those who

are interest in creating a transcription of a digital audio song. The Developer is

one whom that is expanding and or improving the accuracy of Rewind. The Web

Service is a service that allows the Rewind client to convert a digital audio format

into transcription. The Rewind Server serves a website to the Rewind client. The

following sections detail the use cases of Figure 3.1.

Play/Pause Playback

The user has the option to pause or playback a given transcription in the Rewind

client.

Download Transcription

When a transcription has been received from the server, the user may download

a transcription that one had requested.

Inspect Piano Roll

The user may look around the piano roll within the Rewind client.

Get Information About Project

The Rewind client will provide the user the option to get information about the

Rewind project and how the project works.

Upload Audio File

The user in this use case will upload a file that they wish to transcribe.

Receive Transcription

When the server has received a transcription from the Web Service, the Rewind

client will receive the transcription for playback and visualization.

19

Figure 3.1: A Use Case Diagram of Rewind.

20

Create Piano Roll

After receiving the transcription the rewind client will build a piano roll tran-

scription for the user to see.

Playback Available

After the piano roll has been inside of the Rewind client, then the client will

allow the user to playback the transcription and will let the user know that

playback is available.

Receive Audio File

In this use case, the web service receives an audio from the server and is now

ready to preprocess the audio file for transcription by the models.

Create Transcription

The create transcription use case can occur in two different ways: one is that

the web service sends an audio file to the models for transcription or a developer

wishes to test the capabilities of the models and invokes the service.

Send Transcription

When the models have finished transcribing, then the transcription will be sent

to the web service where the Rewind server will then the data to client.

Preprocess Audio

The models before they can transcribe any audio have to make sure that the

files themselves are the proper format. If they are not the proper, then by

default the models will transform the music into the proper format.

Generate Dataset

The developer may wish to generate a new dataset for training the models,

which is possible. This is so the developer may tweak Rewind and make its

overall transcription accuracy better.

21

Create Model

The developer is also able to create new models that can be utilized for tran-

scription or research.

Combine Models

The developer may wish to combine multiple models together in order to im-

prove transcription.

Train Models

The developer has the option of training the models in order to determine if the

new model is better than current model utilized by the web service.

3.4 Architecture

The architecture consists of multiple parts, which are the client, models and web

service, and the server. Each part is unique and has been designed to handle different

parts of Rewind’s functionality. The models are used for producing transcription, and

the web service is used to interface with the model and send outputs to the client

through the server. All visualization, downloads, and uploads are handled by the

client. The server pushes all content needed to run the website to the client. An

overall diagram of the architecture is demonstrated in Figure 3.2.

Models and Web Service: The models and web service component of the archi-

tecture are used to process data for training a model, generating transcriptions with

a preexisting model to be sent through the web service, and training models. This

component contains Rewind’s method or AMT algorithm for creating transcriptions

of digital audio formats. The web service was created as a way for Rewind’s models

to send transcriptions to the client. The web service for Rewind was written in Flask

[35], as it requires small amount of code to get a web service written.

22

Figure 3.2: The Architecture of Rewind.

23

Server: Rewind’s server was created with Django’s web framework [34]. The rewind

server serves up the website to the client, which includes all of the html, Javascript,

and css files. It also handles sending uploaded audio files to the web service and

forwarding the content back too the client.

Client: The client handles creating a piano roll for visualization, uploading audio

files to the web service, and giving the ability to download a transcription. The client

is a web browser such as Google Chrome, Firefox that is utilized by a user. All sound

playback is handled by the client and allows the user to pause and play sounds. The

client’s job is to light up the notes in the piano roll as the note on hits.

24

Chapter 4

Theory and Implementation

4.1 Overview

The following chapter covers the theory and implementation behind Rewind. The first

section covers the encoder-decoder network of Rewind. The second section covers the

web service created for forwarding transcriptions Rewind’s server. The third section

covers Rewind’s server.

4.2 Rewind’s Models

4.2.1 Overview

Rewind is very much like other AMT in that it determines the fundamental fre-

quencies of the notes and what notes are on at the frame level. Rewind utilizes a

classification based method to determine whether a note is on or off, but with a

threshold probability. The following sections layout Rewind’s data representation,

models, and the difficulties in constructing the method behind Rewind.

4.2.2 Data Sets and Representation

Like most other frame based systems, Rewind utilizes the spectrogram as its main

input and a ground truth midi as the target. A multitude of datasets were utilized for

training Rewind’s models which are: Nottingham [1], JSB Chorales [2], Poliner and

Ellis [33], Maps [19], MuseData [11], and Piano.midi.de [26]. All of these datasets

were split into 70% for training, 20% for testing, and 10% for validation. These

25

datasets consisted of midi only or midi with aligned audio that were processed and

made into datasets with timidity[20], Torch’s audio library [12], and a midi library

[6].

Choosing a good sample rate is important for the frequencies exist in the audio.

According to the nyquist theorem [42] there are frequencies up to half of the sample

rate. This means that the sample rate must be chosen such that it covers all funda-

mental frequencies in all or most music pieces. For Rewind, a sample rate of 22 kHz

was chosen, as it covers most of the fundemental frequencies support by MIDI. In

generating the spectrogram’s as input a window size of 116 ms with a 10 ms stride

or 50 ms stride was chosen for the input representation. The 116 ms was chosen as it

has a high frequency resolution and is most likely to give a high accuracy, especially

when considering the finding of [9]. In [9] it was found that a window size at 100 ms

or higher would produce high accuracy. The 116 ms allows for a frequency resolution

of 8 Hz which will cover all of the notes on a piano. The chosen window function was

set to be the hann window function [42]. The spectrograms were normalized using

the mean and the standard deviation following the literature. All spectrograms were

generated with the torch audio library.

Midi’s from the aforementioned datasets were used to generate ground truth

transcriptions. These transcriptions were aligned based on their actual play times,

due to the fact that all audio generated by midi with timidity or aligned audio were

close to the MIDI. MIDI’s for note on were ascribed as 1 value and note off values

were ascribed as 0. The loudness of notes in MIDI were not considered, as the note

on and note off were the most important factors. Another consideration that was

made in generating the ground truth for spectrograms was that notes could actually

exist in frames before there actual playtime due to the overlap caused by the window

size of spectrogram. This issue was ignored as the primary problem is to determine

the actual note time.

26

4.2.3 Models

Rewind has two types of models: encoder and decoder model. The encoder and

decoder is very similar to the encoder-decoder network in Figure 2.8, referenced in

[13, 14, 17]. The encoder model of Rewind utilizes an autoencoder that uses a GRU

for its encoder, whose output is squashed by a rectified linear unit and a linear layer

for its decoding layer. The decoder model of Rewind utilizes a GRU for the first layer

and then a linear layer whose output is squashed by a sigmoid activation function.

Both the encoder and decoder networks are trained with different error functions.

The rest of this section explains the encoder and decoder utilization by Rewind for

training.

The encoder network utilizes an autoencoder to create an encoding for spectro-

grams, such as the encoding demonstrated in Figure 4.1. These encoding are meant to

be a generalization of the spectrogram and to make it easier for the decoder network

to learn a transcription. An autoencoder was chosen because a deep neural network

(stacked auto encoders) has been used for extracting features from spectrograms in

the case of speech recognition [8] and other similar works that utilize deep belief

networks (stacked restricted Boltzman machines) have been used to extract features

in [28]. In [17], a deep belief network, along with an autoencoder, are used to pro-

duce a generative model for spectrograms. All of these papers utilized either a deep

belief network or deep neural network or autoencoder, which are used for extracting

information and dimensionality reduction. These autoencoders representation can be

expanded even further when using networks that have recurrences, such as a GRU or

LSTM in the case of [43], where the encoder and decoder of the autoencoder are both

LSTMs for learning over video sequences and generating video sequences. Unlike [43],

Rewind’s encoder model utilizes a linear neural network for the decoder and a GRU

for the encoder with a rectified linear unit (ReLU) to squash the output of the GRU.

A GRU is utilized as long term memory. Also as mentioned in Section 2.2.3, GRUs

are comparable to LSTMs to a degree.

27

Figure 4.1: Encoding generated by the encoder network.

The decoder network consisted of two types of networks being a GRU with a linear

layer and two GRUs stacked onto of each in parallel with a linear layer. Both types

of networks are squashed with a sigmoid function. The GRU in both networks was

chosen because it produces the lowest error rate. This network’s objective function is

binary cross entropy, so that this decoder network will learn a distribution of notes

where a probability of one indicates a note on and a probability of zero indicates a note

off. In [38] binary cross entropy was used for unsupervised learning and clustering

using nodes that use the sigmoid function to minimize entropy. In [7, 39, 41] binary

cross entropy is used for minimizing the log probability, which also utilizes a sigmoid

function to create a binary probabilities, like [38]. The binary cross entropy function

is demonstrated in Equation 4.1, where the sum is taken over all distributions [39]:

∑
i

ti log pi + (1 − ti) log (1 − pi) (4.1)

The probabilities constructed from the sigmoid function can be used to construct a

MIDI, and are utilized in previously mentioned papers. The decoder network’s job is

to spit these probabilities for each encoding passed by the encoder network.

4.2.4 Training Rewind’s Encoder and Decoder Networks

As mentioned in the previous section, Rewind has encoder-decoder network. This

network can be split up into a encoder and decoder. Both the encoder and decoder are

trained separately from each other, with two different optimizers being rmsprop [46]

and adadelta [50]. These networks are trained separately to allow for future expansion,

where other problems can be explored using the encoder part of the encoder-decoder

network by simply building another decoder. These optimizers were chosen over sgd

because they find a solution much quicker and are less prone to producing wrong

28

results to local maxima. Both of these networks were trained separately, since the

encoding needed from the encoder had to be learned first. After learning the encoding

for the encoder, the resulting encoding can be passed into the decoder for generating

transcriptions. Both, the encoder model and decoder, were trained differently.

As mentioned in Section 4.2.3, the encoder network is an autoencoder that creates

a temporal encoding. This temporal encoding is utilized by the encoder network to

be passed to the decoder. This encoder is optimized with rmsprop in order to ensure

a quicker convergence. The encoder model is trained using the mean squared error

objective function. The idea behind the encoder is to get a temporal linear regression

of the spectrogram that is passed in and to capture the most relevant frequencies

with the relu activation function.

As mentioned in Section 4.2.3, the decoder network creates binary probabilities

based on the encoding passed into it from the encoder network. All binary probabilites

that come out of the model are rounded to produce a one or zero to the generated

output of the model. This network utilizes binary cross entropy as a loss function

and utilizes adadelta to ensure a quick convergence. In training this network the

following metrics discussed in Section 2.1.3 are reported: precision, accuracy, recall,

and f-measure. These metrics are reported at the frame level and are used as bench

marks to determine whether or not a model is good.

4.2.5 Implementation

All of the models implemented for Rewind were implemented in torch and utilize

several different libraries from torch. These libraries are rnn [29], torch-audio, midi,

nn, cunn, optim, and cutorch. The rnn library was used for its LSTM and GRU

implementations. The cunn and cutorch libarires make it possible for Rewind to uses

a Nvidia GPU to accelerate computation time. The torch-audio and midi libraries

were utilized for converting audio to spectrogram and for generating the ground truth

midis. The optim package allowed for the use of state of the art optimizers adadelta

and adagrad. Torch was chosen for implementation for Rewind, as it is a relatively

29

simple machine learning library, and its underlying implementation can be written in

C.

4.2.6 Auto-Correlation Method

An auto-correlation method was constructed as a way to implement the web service

faster without the need of a fully trained model. This model is very noisy at best, but

does manage to extract most of the notes. The process simply creates a spectrogram

of the required audio file and then each bin of the spectrogram is normalized with

the standard deviation and mean. After these transformations have been made, a

threshold is applied, where anything greater than the threshold is a 1 and anything

less is a 0. Subsequently, one simply only needs to go to each frequency bin that

matches a midi note and extract the frequencies that are on. This auto correlation

method is only meant as a test model for a web service. However, in Chapter 5,

results are reported for its accuracy in comparison to Rewind’s Network.

4.2.7 Difficulties

There are several key issues in designing these models and determining the best

data representation for audio. One key issue in choosing the data representation

where audio can be represented as a raw signal or spectrogram. A spectrogram has

issues of frequency resolution vs temporal resolution. If a spectrogram has a low

temporal resolution, then most likely important phrases in the transcription will be

missed at the sacrifice of greater frequency resolution. If the audio representation

has a low frequency resolution, then it will be difficult to determine what notes are

actually being played especially at the lower frequencies. The spectrogram generated

by torch-audio uses a short-time fourier transform (stft), that must have the stride

rate and window size to be chosen for the desired temporal resolution and frequency

resolution. The overlapping frames of the stft, makes it difficult to extract notes due

to the decreased time resolution. Rewind only considers things at the frame level

and does not worry about extracting the exact note. One key issue in designing the

30

models is determining a model that will keep track of long term dependencies, which

LSTMs and GRUs have done quite well. One last key issue in designing a model for

AMT is the fact that most standard midi datasets are western classical music and do

not incorporate other genres such as jazz, rock, or other cultural music.

4.3 Web Service

Rewind’s web service was implemented in Flask [35] as a small web service that could

be utilized by Rewind’s server for making transcriptions of uploaded audio files. Flask

is good for creating a small microservice web applications or web services. All audio

files and transcriptions are sent through post requests. Figure 4.2 demonstrates a

diagram of the communication of audio files and transcriptions going in and out of

the web service. This web service communicates with the models of Rewind and

creates a midi file from the passed in audio file. All transcriptions generated by the

web service are piano only. This is meant to make Rewind scalable for other web

apps and servers.

4.4 Website

4.4.1 Overview

The following section covers Rewind’s website implementation, visualization, and

synthesizer. The overall goal of Rewind’s website is to provide a front end for a user

to visually see the transcription and hear the results of Rewind’s models. This front

end is meant to provide a way for a user to analyze transcriptions. This website was

built as a prototype.

4.4.2 Implementation

Rewind’s website was implemented in the Django web framework and utilized the

following javascript libraries: remodal, jQuery, jQuery UI, and midi.js and its various

dependencies. Django was chosen for Rewind because it allows Rewind to be scalable

31

Figure 4.2: A diagram of Rewind’s web service.

for future web apps to be developed, easy database integration, and easy incorporation

of security. Django requires the use of Python to implement the server. Python has

a large amount of libraries that can be used. Midi.js is utilized for its ability to

parse MIDI files and generate sounds for those MIDI files. The jQuery and jQuery

UI libraries has many useful features for designing interfaces, doing different web

requests, and other functionality. The remodal library allow for modal windows to

be displayed on the website. These libraries have made it possible to make a website

for Rewind.

When the user first opens the website, the user is presented with a view shown in

32

Figure 4.3: A screenshot of the website with a piano roll.

Figure 4.3. The user has several options available to them, such as loading an audio

file to be converted, get information about the project, and the authors, and to play

the currently converted transcription or default. When the user uploads a file, it is

sent through a post request to the web service and converted to a midi and sent back

to the website through another post request. The web page will then be populated

with a piano roll, as is demonstrated in Figure 4.3. The user can pause or play a song

in the website, or even set the position of the song using the time bar. This simple

interface website allows user to interact with transcriptions generated by the models

of Rewind.

4.4.3 Web Synthesizer and Piano Roll

Rewind has a built in web synthesizer thanks to midi.js, which is used to playback

transcriptions generated by Rewind’s models. Midi.js has several dependencies, which

are used to playback sounds and can handle different platform setups. It can parse

midi events and make it possible to extract time delta for constructing piano rolls

and note information. Midi.js can load many different sound fonts to load different

33

sounds such as piano, flute, drums, and other sounds. This allows for Rewind to be

scalable for more complex models in the future.

Figure 4.4: A screenshot of piano roll notes lighting up.

The piano roll constructed for visualization in Rewind are based on the time

duration and time position information collected from midi.js. The user has the

ability to scroll through the piano roll using the time bar. As a song plays the piano

roll will light up as demonstrated in Figure 4.4, and the screen will transition to

another part of the piano every second. This piano roll allows the user to see what

their transcriptions are and to see if there are any erroneous notes. With the piano

roll having the ability to have different colors, it is possible to represent different

instruments with different colors, but currently the colors are represented based on

the note itself. There is some future work to be developed, regarding the ability of

adding or removing certain notes from the transcription using the piano roll.

34

Chapter 5

Results

5.1 Overview

In this section we present the precision, recall, f-measure, and accuracy of Rewind’s

transcriptions on the following datasets: Nottingham consisting of 1000 or mores

songs, JSB Chorales consisting of 200 or more songs, Poliner-Ellis consisting of 30

songs, MuseData consiting of 700 songs, the Maps dataset consisting of 169 songs, and

a custom dataset that consists of 160 songs split evenly from country, rock, jazz and

classical. The custom dataset was added since all of the benchmark datasets currently

used in the AMT are currently only classical piano music and orchestralcmusic. The

results are compared to other existing works at the frame level.

5.2 Results and Discussion

In Table 5.1 and Table 5.2, the overall results of Rewind at a 10 ms stride, a standard

for AMT systems, at the frame level are demonstrated and compared to [7, 40]. The

10 ms stride results were trained with two parallel GRUs with a linear layer. All

tests were also ran at 50 ms with an exception of the Maps dataset demonstrated in

Table 5.3. The 50 ms results are included to demonstrate that a higher stride leads to

better results due to the higher temporal resolution. The 50 ms results were trained

with a single GRU and linear layer. Ideally a higher stride rate would allow one to

capture shorter notes, but the overlapping windows of the spectrogram makes it dif-

ficult to capture shorter notes. However, it does help raise the accuracy to a greater

35

degree when comparing results between the tables. The simple auto-correlation re-

sults are reported in order to give a comparison of simple manual versus a deep

learning algorithm in Table 5.3. A visual comparison of the encoder networks output

to another spectrogram is demonstrated in Figure 5.1 to demonstrate the quality of

the learned spectrogram versus the actual spectrogram. It effectively demonstrates

that the decoder can effectively extract the note information fro the encoding.

As demonstrated in Table 5.1, Rewind’s model leads to relatively good results on

the JSB and Nottingham datasets, while with the custom dataset, and MuseData, the

results are only acceptable or need some improvement. However further inspection

of the model, shows that the model is learning the songs due to the high precision

within all of the results. An important detail about the MuseData dataset and cus-

tom dataset is that these datasets utilize more than one instrument in their midis.

Meaning that Rewind is sensitive to the harmonics of multiple of instruments. The

reason these datasets are so low, is due to rounding the probabilities to one as was

discussed in Chapter 4. Despite being low, the MuseData dataset has a relatively

high precision, meaning that it handles false positives relatively well, but does not

handle false negatives according to the recall. Despite these two datasets, the results

for the Nottingham and JSB dataset are comparable to [7], and have a relatively high

f-measure.

The results demonstrated in Table 5.2 are compared against ConvNet acoustic

model at the frame level [40]. Upon examining the table, the Convnet is better overall

in accuracy, recall, and f-measure, but Rewind has the higher precision. The ConvNet

[40] utilizes a hash beam search to find the most probable sequence. If Rewind was to

utilize the same hash beam search, it may have been able to achieve an even better

accuracy, recall, and f-measure.

36

Table 5.1: Rewind’s results at 10 ms stride for the spectrogram where 1 is the proposed
model and 2 is the rnn-nade [7].

Accuracy Precision Recall F-Measure
Models 1 2 1 2 1 2 1 2
Nottingham 95.1% 97.4% 98.0% 96.9% 97.5%
JSB 82.8% 91.7% 34.4% 88.8% 82.8%
Poliner-Ellis 34.4% 79.1% 66.9% 41.5% 34%
MuseData 34% 66.6% 56.8% 45.9% 16.2%
Custom 16.2% 51.1% 19.2% 27.9%

Table 5.2: Rewind’s performance on the Maps dataset compared to [40] at 10 ms.
Proposed Simple Auto-Correlation ConvNet[40]

Accuracy 51.6% 6.4% 58.87%
Precision 76.5% 21.8% 72.40%
Recall 61.4% 8.2% 76.50%
F-Measure 68.1% 11.2% 74.45%

Table 5.3: Rewinds results at a 50 millisecond stride for the spectrogram where 2 is
the proposed model and 1 is the Simple Auto-Correlation model.

Accuracy Precision Recall F-Measure
Models 1 2 1 2 1 2 1 2
Nottingham 21.5% 94.0% 29.2% 97.9% 44.7% 95.9% 35.3% 96.9%
JSB 20.8% 81.6% 32.9% 92.1% 36.2% 87.7% 34.5% 89.9%
MuseData 11.8% 23.0% 15.8% 60.2% 31.9% 27.2% 21.1% 37.4%
Poliner-Ellis 6.6% 42.6% 17.7% 70.5% 9.7% 51.8% 12.5% 55.8%
Custom 8.5% 20.4% 12.2% 44.5% 21.8% 27.3% 15.6% 33.9%

37

.

Figure 5.1: A comparison between two spectrograms: output of encoder model(top)
vs actual(bottom).

38

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Rewind demonstrated a encoder-decoder network that is comparable to the results to

[7] in terms of the Nottingham and JSB dataset. It also achieved a higher precision

than [40] on the Maps dataset. However, it suffered from issues in connection with

choosing a threshold to generate an on value in the transcription on datasets such

as MuseData and the custom dataset built by Rewind. The custom dataset demon-

strated that AMT systems can work with multiple genres, but there may be other

factors that cause transcription metrics to go down, such as multiple instruments

being existent in the song or an improper threshold. Despite the threshold issue,

Rewind does manage to follow the underlying frame distribution in the lower classi-

fied datasets. The simple auto-correlation model results demonstrated in Chapter 5

was to be a comparison between Rewind’s encoder-decoder network and other models.

While this is an interesting approach, it was only added as a way for Rewind’s service

to be quickly developed and is only reported to demonstrate its accuracy. Rewind’s

encoder-decoder has demonstrated a model that has a high precision and comparable

results. It also has demonstrated a web app that can be utilized for analyzing tran-

scription generated by Rewind’s encoder-decoder or simple auto-correlation model.

Rewind’s web site provides users with a way to hear and see their transcriptions.

This web site can be used as a way to validate the transcription generated by different

models used in Rewind. It provides users with a way to transcribe their favorite music

39

in an automatic way. By utilizing Django, Rewind is scalable for other projects in the

future. The overall goal of Rewind’s web site is to provide the users, such as bands,

musicians, composers, and others a way to transcribe their favorite music.

6.2 Future Work

Rewind has demonstrated a model that works at the frame level. Previous work,

such as [40], have used a frame level model in conjunction with a note level model

to get a note level transcription. One key thing for the encoder-decoder network

would be to add another layer, which can do note level transcription and utilize other

algorithms from [7] to produce a more probable transcription. This is possible due

to the separation of the encoder and decoder in the encoder-decoder network. This

thesis thoroughly explores AMT as its problem, but the encoder part of the network

could be used for other problems such as genre classification, audio generation like

[43], or audio transformation where a sound is transform into another sound. A

deeper architecture could be considered for experimentation for the encoder network,

using possibly more GRUs or LSTMs for larger datasets. One thing this thesis did

not consider is how an autoencoder trained on one dataset could potentially be used

on other datasets. One other issue that Rewind would like to solve is being able

to produce a transcription for each instrument in a song and be able to determine

what instrument is being played. There are some other data representations that

can be used, which are slightly better that in a spectrogram made with stft, such

as a wavelet, which can adjust its frequency and time resolution for a signal or the

constant q transform. A data representation with more features or improvements to

the encoder would allow for the encoder-decoder network to produce more accurate

predictions.

Rewind’s web site has the potential for adding new features and interfaces for

new problems. A cool feature to add to Rewind’s front end would be the ability to

edit and remove notes from the piano roll. Rewind could be be expanded into an

application that allows a user to edit existing music through transcribing the music.

40

Another addition would be to allow Rewind to recognize the lyrics of the music being

played. One more thing that Rewind could provide is a way for users to collaborate

and learn about music.

41

Bibliography

[1] James Allwright. ABC version of the nottingham music database. 2016. url:
http://abc.sourceforge.net/NMD/ (Last accessed 04/10/2016).

[2] James Allwright. Bach choral harmony data set. 2016. url: http://archive.
ics.uci.edu/ml/datasets/Bach+Choral+Harmony (Last accessed 04/10/2016).

[3] Arakisoftware. AmazingMIDI. July 20, 2003. url: http://www.pluto.dti.
ne.jp/araki/amazingmidi/ (Last accessed 04/10/2016).

[4] Pierre Baldi and Zhiqin Lu. Complex-valued autoencoders. Neural netw., 33:136–
147, September 2012. issn: 0893-6080. doi: 10.1016/j.neunet.2012.04.011.
url: http://dx.doi.org/10.1016/j.neunet.2012.04.011.

[5] Mert Bay, Andreas F. Ehmann, and J. Stephen Downie. Evaluation of multiple-
f0 estimation and tracking systems. In Proceedings of the 10th international
society for music information retrieval conference. http://ismir2009.ismir.
net/proceedings/PS2-21.pdf. Kobe, Japan, 2009, pages 315–320.

[6] Peter J Billam. MIDI.lua. url: http://www.pjb.com.au/comp/lua/MIDI.
html (Last accessed 04/10/2016).

[7] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. High-
dimensional sequence transduction. In Acoustics, speech and signal processing
(ICASSP), 2013 IEEE international conference on acoustics, speech and signal
processing, 2013, pages 3178–3182. doi: 10.1109/ICASSP.2013.6638244.

[8] Nicolas Boulanger-Lewandowski, Jasha Droppo, Mike Seltzer, and Dong Yu.
Phone sequence modeling with recurrent neural networks. In ICASSP. IEEE
SPS, 2014. url: http://research.microsoft.com/apps/pubs/default.
aspx?id=217321.

[9] Sebastian Bck and Markus Schedl. Polyphonic piano note transcription with
recurrent neural networks. In Acoustics, speech and signal processing (ICASSP),
2012 ieee international conference on, 2012, pages 121–124. doi: 10.1109/

ICASSP.2012.6287832.

[10] Ilya Caulfield. Remodal v1. url: http://vodkabears.github.io/remodal/
(Last accessed 04/10/2016).

[11] Center for Computer Assisted Research in the Humanities. Musedata. 2016.
url: http://musedata.stanford.edu/ (Last accessed 04/10/2016).

http://abc.sourceforge.net/NMD/
http://archive.ics.uci.edu/ml/datasets/Bach+Choral+Harmony
http://archive.ics.uci.edu/ml/datasets/Bach+Choral+Harmony
http://www.pluto.dti.ne.jp/araki/amazingmidi/
http://www.pluto.dti.ne.jp/araki/amazingmidi/
http://dx.doi.org/10.1016/j.neunet.2012.04.011
http://dx.doi.org/10.1016/j.neunet.2012.04.011
http://ismir2009.ismir.net/proceedings/PS2-21.pdf
http://ismir2009.ismir.net/proceedings/PS2-21.pdf
http://www.pjb.com.au/comp/lua/MIDI.html
http://www.pjb.com.au/comp/lua/MIDI.html
http://dx.doi.org/10.1109/ICASSP.2013.6638244
http://research.microsoft.com/apps/pubs/default.aspx?id=217321
http://research.microsoft.com/apps/pubs/default.aspx?id=217321
http://dx.doi.org/10.1109/ICASSP.2012.6287832
http://dx.doi.org/10.1109/ICASSP.2012.6287832
http://vodkabears.github.io/remodal/
http://musedata.stanford.edu/

42

[12] Soumith Chintala. Audio library for torch. url: https://github.com/soumith/
lua---audio (Last accessed 04/10/2016).

[13] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia
content using attention-based encoder–decoder networks. 2015. eprint: arXiv:
1507.01053.

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. Corr, abs/1406.1078, 2014.
url: http://arxiv.org/abs/1406.1078.

[15] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.
Corr, abs/1412.3555, 2014. url: http://arxiv.org/abs/1412.3555.

[16] Michael Deal. MIDI.js. url: https://github.com/mudcube/MIDI.js/ (Last
accessed 03/09/2016).

[17] Li Deng, Mike Seltzer, Dong Yu, Alex Acero, Abdel rahman Mohamed, and
Geoff Hinton. Binary coding of speech spectrograms using a deep auto-encoder.
In Interspeech 2010. International Speech Communication Association, 2010.
url: http://research.microsoft.com/apps/pubs/default.aspx?id=

135405.

[18] Zhiyao Duan and Emmanouil Benetos. Automatic music transcription. ISMIR.
2015. url: http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/.

[19] Valentin Emiya. MAPS Database A piano database for multipitch estimation
and automatic transcription of music. 2016. url: http://www.tsi.telecom-
paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-

for-multipitch-estimation-and-automatic-transcription-of-music/

(Last accessed 04/10/2016).

[20] Hans de Goede. Timidity++. url: https://sourceforge.net/projects/
timidity/ (Last accessed 04/10/2016).

[21] Alex Graves. Sequence transduction with recurrent neural networks. 2012. eprint:
arXiv:1211.3711.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[23] ImageLine. Fl studio. 2016. url: https://www.image-line.com/flstudio/
(Last accessed 04/10/2016).

[24] Innovative Music Systems, Inc. MP3 to MIDI converter free download - convert
WAV to MIDI. 2016. url: http://www.intelliscore.net/ (Last accessed
04/10/2016).

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. Corr, abs/1412.6980, 2014. url: http://arxiv.org/abs/1412.6980
(Last accessed 05/12/2016).

https://github.com/soumith/lua---audio
https://github.com/soumith/lua---audio
arXiv:1507.01053
arXiv:1507.01053
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
https://github.com/mudcube/MIDI.js/
http://research.microsoft.com/apps/pubs/default.aspx?id=135405
http://research.microsoft.com/apps/pubs/default.aspx?id=135405
http://c4dm.eecs.qmul.ac.uk/ismir15-amt-tutorial/
http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/
http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/
http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/
https://sourceforge.net/projects/timidity/
https://sourceforge.net/projects/timidity/
arXiv:1211.3711
https://www.image-line.com/flstudio/
http://www.intelliscore.net/
http://arxiv.org/abs/1412.6980

43

[26] Bernd Krueger. Classical piano MIDI page. 2016. url: http://www.piano-
midi.de/ (Last accessed 04/10/2016).

[27] AKoff Sound Labs. How to make a song? Hum a melody. Song making software
does the rest. 2016. url: http://www.akoff.com/index.html (Last accessed
04/10/2016).

[28] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng. Unsupervised
feature learning for audio classification using convolutional deep belief networks.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors,
Advances in neural information processing systems 22, pages 1096–1104, 2009.
url: http://books.nips.cc/papers/files/nips22/NIPS2009_1171.pdf.

[29] Nicholas Lonard, Sagar Waghmare, Yang Wang, and Jin-Hwa Kim. Rnn : re-
current library for torch. 2015. eprint: arXiv:1511.07889.

[30] Jacob Morgan and George Burdell. Online sequencer. 2016. url: http : / /

onlinesequencer.net/ (Last accessed 04/10/2016).

[31] Mozilla Developer Network. Web audio API. 2016. url: https://developer.
mozilla.org/en-US/docs/Web/API/Web_Audio_API (Last accessed 04/10/2016).

[32] ofoct.com. Convert WAV (or MP3, OGG, AAC, WMA) to MIDI. 2016. url:
http://www.ofoct.com/audio-converter/convert-wav-or-mp3-ogg-aac-

wma-to-midi.html (Last accessed 04/10/2016).

[33] Graham Poliner. Automatic piano transcription. 2016. url: http://labrosa.
ee.columbia.edu/projects/piano/ (Last accessed 04/10/2016).

[34] Armin Ronacher. Django the web framework for perfectionists with deadlines.
2016. url: https://www.djangoproject.com/ (Last accessed 04/10/2016).

[35] Armin Ronacher. Flask web development, one drop at a time. 2016. url: http:
//flask.pocoo.org/ (Last accessed 04/10/2016).

[36] Koray Kavukcuoglu Ronan Collobert Clment Farabet and Soumith Chintala.
Torch. 2016. url: http://torch.ch/ (Last accessed 04/10/2016).

[37] Andy M. Sarroff and Michael Casey. Musical audio synthesis using autoen-
coding neural nets. In International computer music association (icmc 2014),
2014.

[38] Nicol N. Schraudolph and Terrence J. Sejnowski. Unsupervised discrimination
of clustered data via optimization of binary information gain. In Advances in
neural information processing systems. Morgan Kaufmann, 1993, pages 499–
506.

[39] Srikanth Cherla Tillman Weyde Artur S. dAvila Garcez Siddharth Sigtia Em-
manouil Benetos and Simon Dixon. An rnn-based music language model for
improving automatic music transcription. In 15th international society for mu-
sic information retrieval conference (ISMIR 2014), 2014.

http://www.piano-midi.de/
http://www.piano-midi.de/
http://www.akoff.com/index.html
http://books.nips.cc/papers/files/nips22/NIPS2009_1171.pdf
arXiv:1511.07889
http://onlinesequencer.net/
http://onlinesequencer.net/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
http://www.ofoct.com/audio-converter/convert-wav-or-mp3-ogg-aac-wma-to-midi.html
http://www.ofoct.com/audio-converter/convert-wav-or-mp3-ogg-aac-wma-to-midi.html
http://labrosa.ee.columbia.edu/projects/piano/
http://labrosa.ee.columbia.edu/projects/piano/
https://www.djangoproject.com/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://torch.ch/

44

[40] S. Sigtia, E. Benetos, and S. Dixon. An End-to-End Neural Network for Poly-
phonic Piano Music Transcription. Arxiv e-prints, August 2015. arXiv: 1508.
01774 [stat.ML].

[41] Siddharth Sigtia, Emmanouil Benetos, Nicolas Boulanger-Lewandowski, Till-
man Weyde, Artur S. d’Avila Garcez, and Simon Dixon. A hybrid recurrent
neural network for music transcription. 2014. eprint: arXiv:1411.1623.

[42] Steven Smith. Digital signal processing : a practical guide for engineers and
scientists. Newnes, Amsterdam Boston, 2003. isbn: 075067444x.

[43] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised
learning of video representations using lstms. 2015. eprint: arXiv:1502.04681.

[44] The JQuery Foundation. Jquery user interface. url: https://jqueryui.com/
(Last accessed 03/09/2016).

[45] The JQuery Foundation. Jquery write less, do more. url: https://jquery.
com/ (Last accessed 03/09/2016).

[46] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop. Coursera: neural
networks for machine learning, 2012.

[47] W3C. Web MIDI API. 2016. url: https://www.w3.org/TR/2015/WD-

webmidi-20150317/ (Last accessed 04/10/2016).

[48] Wayne Wakeland. Learning general features from images and audio with stacked
denoising autoencoders. Master’s thesis. Portland State University, 2014.

[49] Widisoft. Widi recognition system. 2016. url: http://www.widisoft.com/
index.html (Last accessed 04/10/2016).

[50] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. Computing
research repository (CoRR), abs/1212.5701, 2012. url: http://arxiv.org/
abs/1212.5701 (Last accessed 05/12/2016).

http://arxiv.org/abs/1508.01774
http://arxiv.org/abs/1508.01774
arXiv:1411.1623
arXiv:1502.04681
https://jqueryui.com/
https://jquery.com/
https://jquery.com/
https://www.w3.org/TR/2015/WD-webmidi-20150317/
https://www.w3.org/TR/2015/WD-webmidi-20150317/
http://www.widisoft.com/index.html
http://www.widisoft.com/index.html
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Automatic Music Transcription
	Overview
	Data Representations of Music
	AMT Evaluation Metrics
	AMT Approaches

	Deep Learning
	Overview
	Long Short Term Memory: LSTM
	Gated Recurrent United: GRU
	Encoder-Decoder Networks
	Libraries and Frameworks
	Past Work in AMT

	Web
	Web Frameworks
	Audio in the Web
	JQuery and Other Javascript Libraries

	Rewind
	Overview
	Functional and Non-Functional Requirements
	Use Case Modeling
	Architecture

	Theory and Implementation
	Overview
	Rewind's Models
	Overview
	Data Sets and Representation
	Models
	Training Rewind's Encoder and Decoder Networks
	Implementation
	Auto-Correlation Method
	Difficulties

	Web Service
	Website
	Overview
	Implementation
	Web Synthesizer and Piano Roll

	Results
	Overview
	Results and Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

