
University of Nevada, Reno

HeartMate: A Competitive and Motivational
Fitness Application for iOS Devices

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Marlon Daniel Chavez

Dr. Frederick C. Harris, Jr., Thesis Advisor

May, 2016

We recommend that the thesis
prepared under our supervision by

MARLON DANIEL CHAVEZ

Entitled

HeartMate: A Competitive and Motivational Fitness Application for iOS Devices

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu M. Dascalu, Committee Member

Dr. Yantao Shen, Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

 May, 2016

THE GRADUATE SCHOOL

i

Abstract

Smartphones today are more advanced than they have ever been before with

hardware sensors built into them to detect location, motion, as well ways to com-

municate with third party hardware through bluetooth, and the internet through

cellular or wifi. With the introduction of Apple’s App Store, and the Google Play

store smartphone devices have been given features one would not think possible on

a cell phone. One of the target categories for app developers is health, due to the

sensors provided in current smartphones an application can be developed to track a

user’s health. The apps currently on the market motivate users through mostly goal

based challenges between themselves or their friends. HeartMate is an iOS mobile

application that utilizes the sensors in the iPhone, and the use of a Bluetooth LE

connected heart rate monitor to create a new competitive, motivational, real time

social experience using heart rates as a performance measure. HeartMate calculates

and keeps track of target workout zones that are specific to the user’s fitness level.

HeartMate has a social component and can be used to challenge friends to a run by

streaming their heart rate data in real time. HeartMate also features the ability to

challenge past running workouts of friends or oneself. HeartMate fills the hole missing

from motivational / competitive fitness applications on smartphones.

ii

Dedication

For Michael Jackson, Prince and David Bowie.

iii

Acknowledgments

I would like to thank Dr. Frederick C. Harris, Jr., Dr. Sergiu M. Dascalu, and Dr.

Yantao Shen for being on my committee, with special thanks to Dr. Fred Harris for

giving me the opportunity to do research in the HPCVIS lab, and especially allowing

me to continue research in the HPCVIS lab as our research areas digressed.

I would like to thank my mother, father, and sister for their love and support,

and pushing me to complete this chapter in my life. With special thanks to my sister,

Raquel, for providing the heart rate monitors used in the development of this thesis.

I would like to thank Lane Lassiter, whom I consider my brother as I have known

him my entire life, along with his family whom I consider to be my second home.

I would like to thank Melissa Aguilar for her love and support through this long

distance journey.

I would also like to thank the people I have met in this chapter of my life that

I will never forget, with special thanks to Cameron Rowe for helping me whenever I

had questions and believing I could finish in time.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background and Related Work 4
2.1 Other Competitive / Motivational Workout Apps 4

2.1.1 Overview . 4
2.1.2 Nike+ . 5
2.1.3 Fitbit . 10

2.2 Measuring of Running Performance / Exercise Physiology 10
2.2.1 Overview . 10
2.2.2 Heart Rate . 12
2.2.3 Target Training Zones . 14

2.3 Development Environment . 16
2.3.1 Overview . 16
2.3.2 iOS . 17
2.3.3 Xcode . 19
2.3.4 CocoaPods . 22

2.4 Hardware . 22
2.4.1 Overview . 22
2.4.2 iPhone Hardware . 22
2.4.3 Bluetooth LE . 23
2.4.4 Heart Rate Monitors . 23

2.5 Client-Server Model . 24
2.5.1 Overview . 24
2.5.2 Structure . 24

2.6 Libraries and Frameworks . 24
2.6.1 Overview . 24

v

2.6.2 Swift . 25
2.6.3 JSON . 25
2.6.4 Parse . 26
2.6.5 PubNub . 28
2.6.6 BEMSimpleLineGraph . 30
2.6.7 Charts . 31
2.6.8 SWReveal . 32
2.6.9 DPMeterView . 32
2.6.10 Health Kit . 32
2.6.11 UIKit . 34
2.6.12 Map Kit . 35
2.6.13 Core Data . 35
2.6.14 Core Location . 35
2.6.15 MediaPlayer . 35
2.6.16 AVFoundation . 36

3 Design 37
3.1 Overview . 37
3.2 HeartMate Requirements . 37

3.2.1 Functional Requirements . 37
3.2.2 Non-functional Requirements 38

3.3 Use Case Modeling . 38
3.3.1 Overview . 38
3.3.2 Detailed Use Cases . 40

3.4 Architecture . 44

4 Implementation 47
4.1 Overview . 47
4.2 Social Component . 47

4.2.1 Overview . 47
4.2.2 Database Management . 47
4.2.3 Parse Cloud Code . 53

4.3 Tracking a Run . 57
4.3.1 Overview . 57
4.3.2 Workout Session Manager . 58

4.4 Competitions . 64
4.4.1 Overview . 64
4.4.2 Competition Manager . 64

4.5 Summary of Software Technology and
Characteristics . 69

5 Application Walkthrough 71
5.1 Login and Sign Up . 71
5.2 Health Authorization . 77
5.3 Edit Profile . 77

vi

5.4 Menu Navigation . 78
5.5 Viewing Workouts . 79
5.6 Friends . 83
5.7 HeartMate Settings . 86
5.8 Workout Settings . 88
5.9 Real Time Competitions . 90

6 Comparison with Related Work 99

7 Conclusions and Future Work 103
7.1 Conclusions . 103
7.2 Future Work . 104

7.2.1 Different Cardio Tracking Types 104
7.2.2 User Interface Enhancements 104
7.2.3 Apple Watch Support . 105
7.2.4 Android Support . 105
7.2.5 Integrate Other Health Sensors 105

Bibliography 106

vii

List of Tables

2.1 Target Heart Zones, from [12] . 16

3.1 HeartMate Functional Requirements. 39
3.2 HeartMate Non-functional Requirements. 39

6.1 Comparisons Between HeartMate and Other Fitness Applications. . . 101

viii

List of Figures

2.1 Nike+ Move app interface and features, from [37]. 6
2.2 Nike+ Move app interface and features (cont.), from [37]. 7
2.3 Nike+ Running app interface and features, from [38]. 8
2.4 Nike+ Running app interface and features (cont.), from [38]. 9
2.5 Fitbit app interface and features, from [23]. 11
2.6 Layers of iOS, from [1]. 17
2.7 Apple Push Notification Service sending a push notification received

from the provider directly to the device and client app, from [3]. . . . 19
2.8 The Xcode workspace. 20
2.9 The Xcode Interface Builder workspace. 21
2.10 An example of connecting a user interface element to code. 21
2.11 The Parse Dashboard interface, from [30]. 27
2.12 Publish / Subscribe model using PubNub, from [42]. 29
2.13 An example of channel groups using PubNub, from [42]. 30
2.14 An example of a line graph with popup and touch reporting using

BEMSimpleLineGraph, from [22]. 31
2.15 An example of a pie chart using the Charts library, from [26]. 32
2.16 The SWReveal menu system, from [54]. 33
2.17 DPMeterView interface elements, from [21]. 33
2.18 An example of requesting permission to access health data, from [7]. . 34

3.1 HeartMate’s use case diagram. 38
3.2 HeartMate’s system architecture and its interactions with other system

and hardware components. 46

4.1 HeartMate’s interaction with the database, and Apple’s Push Notifi-
cation Service through Parse. 48

4.2 The structure of the server side database. 49
4.3 An example of a user stored in the User entity. 50
4.4 An example of a friend request stored in the FriendRequest entity. . . 51
4.5 An example of a workout stored in the UserWorkouts entity. 51

ix

4.6 An example of a workout object that can be stored in the, workouts,
array of a UserWorkouts entity. 51

4.7 An example of a friend request push notification, where user is the
username of the sender. 55

4.8 An example of a Parse Cloud function to send a push notification to
alert a user of a friend request. 56

4.9 HeartMate’s interaction with system components to track a run. . . . 57
4.10 Health information authorization request. 60
4.11 The HeartMateWorkout entity representation in Core Data. 62
4.12 HeartMate’s interaction with system components to track a real time

competition. 65
4.13 The competition structure when using a pervious workout as an oppo-

nent. 67
4.14 Real time opponent structure. 68

5.1 Initial view and user signup through Facebook using the Parse API. . 72
5.2 Final step of linking a user’s Facebook account is granting permission,

and creating a username for HeartMate. 73
5.3 The main user profile view, also the view once a user is authenticated. 74
5.4 HeartMate’s normal sign up process. 75
5.5 The user’s main profile view. 76
5.6 Health Kit authorization request. 77
5.7 An example of editing a user’s HeartMate profile. 78
5.8 The menu options of HeartMate implemented using SWReveal. . . . 79
5.9 Viewing locally saved HeartMate workouts, and their details. 80
5.10 Viewing locally saved HeartMate workouts, and their details. 81
5.11 Map view of the user’s running route. 82
5.12 Viewing HeartMate friends and requests. 83
5.13 HeartMate searching and adding friends. 84
5.14 Viewing a friend’s profile. 85
5.15 Profile settings with a method to import information from Health Kit. 86
5.16 Profile settings with a method to import information from Health Kit. 87
5.17 The different workout configurations of HeartMate. 88
5.18 The different workout configurations of HeartMate. 89
5.19 Starting a real time competition with HeartMate. 90
5.20 Waiting until the other user joins or declines. 91
5.21 The user’s perspective of receiving a request for a real time workout. . 92
5.22 The user’s perspective of receiving a request for a real time workout. . 93
5.23 The real time workout then begins counting down on both devices at

the same time. 94
5.24 Active workout view during a HeartMate competition. 95
5.25 State change or Push notification of the competition ending early. . . 96
5.26 The view of a completed competition workout. 97

x

5.27 The statistics and scoring of the competition. 98

1

Chapter 1

Introduction

Mobile phones have been around since the early 1970s, and were even less mobile than

they are today. Early on these devices were strictly used for making and receiving

calls, until the Personal Digital Assistant (PDA) was introduced in the 1990s. The

PDA was a mobile device that provided users with basic computing and was later

combined with the mobile cell phone. In the early 2000s the term, “smartphone” was

adopted to describe such a device, thus starting the smartphone era. Even then the

technology was still in its infancy. The smartphone at the time was more targeted

towards productivity, and was created for that reason.

The smartphone started to become more interesting in 2007, when Apple intro-

duced the iPhone, being one of the first of its kind, and revolutionizing the smartphone

market from that point forward. The following year, Apple introduced the App Store

to the iPhone Operating System (iOS), and allowed third party developers to create

applications (apps) for the device [48]. Google then released their competitor, the

T-Mobile G1 with the Google developed mobile operating system (Android), soon

after [24]. Android contained a competitor to the App Store called, Android Market,

which also allowed for third party developers to create apps and distribute them.

Later, Android Market was renamed to the Google Play Store.

With the introduction of these app stores on two of the most popular smartphone

platforms, the capabilities of what mobile devices could do exploded, and in came

specialized apps. Soon there were apps for everything that would take advantage

of the mobile device’s hardware. Apps began taking advantage of the smartphone’s

2

accelerometer, gyroscope, GPS, wifi, cellular and bluetooth connectivity to create

apps one would only dream of having on such a small mobile device. Due to the

hardware and software incorporated into these devices it allowed for health and fitness

tracking apps to gain popularity. Since the smartphone is a personal device that many

keep in arms reach, there isn’t a device quite like it in comparison, which makes it the

perfect health and fitness tracker. This has led to a focus on health apps, and even

Apple has created specific hardware and software to make it easier for developers to

track health on the iPhone.

A variety of fitness tracking apps exist, and they all do much of the same, which

is provide information on the duration, distance, and calories burned. They also

provide capabilities to gather heart rate information and location data to map the

route of a run. Then there are some that incorporate challenges through a social

network aspect that allow other users to compete against each other, but in the sense

of predefined challenges or goals during an exercise. There aren’t any that allow for

real time challenges or motivation to keep the user working at their hardest. This

is where the use of a bluetooth heart rate monitor communicating with a networked

connected device can create such an atmosphere. The iPhone platform provides

the perfect development environment to improve upon these health tracking fitness

apps by adding that real time motivational competition experience other apps do

not offer. This paper presents HeartMate, an iOS app that creates a real time social,

motivational, and competitive atmosphere by measuring performance through the use

of a bluetooth connected heart rate monitor.

The rest of this thesis is organized in the following manner. Chapter 2 covers

other related fitness apps, measuring of running performance, exercise physiology,

development environment, hardware and libraries used. Chapter 3 discusses Heart-

Mate’s functional and non-functional requirements along with use case modeling,

and a detailed design of the system architecture and other interactive components

of HeartMate. Chapter 4 goes into detail of how HeartMate was developed. Chap-

ter 5 presents the results of HeartMate through an application walkthrough of its

3

functionality. Chapter 6 compares features between HeartMate and other fitness ap-

plications mentioned in Chapter 2. Chapter 7 summarizes the work completed, as

well as presents ideas for future work on HeartMate.

4

Chapter 2

Background and Related Work

2.1 Other Competitive / Motivational Workout Apps

2.1.1 Overview

With the introduction of the App Store and many health devices, there have been

numerous fitness apps to have come to the market to track one’s health [50]. These

apps or devices track the usual duration, calories burned, and distance traveled, but

some also include a way to measure or increase the user’s performance during a stren-

uous activity in another form. To do this a game like experience is created either

through a social experience, or in the form of challenge based goals, with some using

a proprietary algorithm. This is known as gamification, which is the use of game ele-

ments in a non-gaming environment, in this case the environment is health and fitness

[20]. Lately, there has been an increase of gamification in mobile fitness apps [33, 53].

There has also been research and development into fitness apps that could replace

personal fitness trainers to provide the motivation needed without the expensive cost

[32]. Studies have also been done to determine the effectiveness of gamification of

mobile fitness apps and have concluded it helps users dissociate from exercise [25]. In

order to justify a solution HeartMate provides, other competitive / motivational fit-

ness apps will be discussed in this section focusing on their gamification, motivational,

and competitive aspects.

5

2.1.2 Nike+

Nike+ is a motivational brand from Nike, and provides an entire product line, suite

of apps, and hardware for athletes to measure and track their activity performance.

Nike+ originally started off with the Nike+iPod Sport Kit, where a sensor that tracked

your movement was placed into your shoe, and a wireless receiver plugged into an

iPod device to communicate with the shoe sensor [43]. Similarly, they released the

Nike FuelBand which was a wearable wristband that tracked how much one moved,

and provided a “score” called, NikeFuel. The products mentioned earlier have been

discontinued, and their replacements come in the form of mobile applications due to

the increase of fitness hardware and sensors already included smartphones [29].

Nike+ Move

Since the Nike FuelBand has been discontinued its replacement comes in the form

of the Nike+ Move app. Previously, a user would have to wear a Nike FuelBand

in order for them to convert their movement into the form of NikeFuel. NikeFuel is

Nike’s way of universally measuring how much a person moves, to provide insight to

their movement trends, and provide motivation to users to move more in comparison

to their friends [36].

The Nike+ Move app is designed to track the user’s movement continuously

during the day, and increase the user’s NikeFuel score. Essentially, this app acts as a

glorified pedometer in the sense that instead of steps being shown as the performance

measure, it is the user’s NikeFuel score as depicted in Figure 2.1a. NikeFuel is then

used as a motivator for the user by having them compete against themselves to try

and beat their daily NikeFuel average. Nike+ Move, also allows a user to compare

their NikeFuel score to the previous day or days throughout the week, as seen in

Figure 2.1b. There is also a social network component to the app allowing users to

add their friends to see how they compared during the week, which can be seen in

Figure 2.2a. Figure 2.2b shows Nike+ Move is also capable of recording the location

of where the user’s move score was calculated by using location based sensor data

6

(a) NikeFuel score shown in the
Nike+ Move app.

(b) Compare NikeFuel throughout
the week.

Figure 2.1: Nike+ Move app interface and features, from [37].

[37].

Nike+ Running

Nike+ Running is another app from the collection of the Nike+ brand that focuses on

the fitness activity, running. This app still uses NikeFuel, but not in the way utilized

by Nike+ Move. Nike+ Move uses it as a motivator, while Nike+ Running is using it

similar to that of calories, it is just a quantitative measure of how much energy the

user has expended. Nike+ Running calculates calories burned as well as the distance,

map of a run, pace and heart rate (through an external heart rate monitor), some of

which can be seen in Figure 2.3a.

The way Nike+ Running motivates its users by allowing people to share the

fact they are starting a run on a popular social network site. This can be seen in

7

(a) Compare NikeFuel score against
friends.

(b) NikeFuel score calculated at spe-
cific locations.

Figure 2.2: Nike+ Move app interface and features (cont.), from [37].

8

(a) Nike+ Running app tracking a
run.

(b) Run setup using cheers as moti-
vation.

Figure 2.3: Nike+ Running app interface and features, from [38].

Figure 2.3b, where a user sets up a running workout and can choose to get “cheers”

from either Facebook or Path. Friends of the user running can then interact with

the post, which then cheers the user currently running to provide motivation. Nike+

Running also has two different types challenges between friends, one of which is similar

to that of Nike+ Move, but instead of comparisons of who has more NikeFuel at the

end of the day, it is who has ran the most miles for the current month as shown in

Figure 2.4a. The second type of challenge can be seen in Figure 2.4b, it is called,

Nike+ Challenge, where a user can invite multiple friends to race to a predefined

distance where the winner is the first to the finish line [38].

9

(a) Compare how many miles ran in
comparison to friends.

(b) Challenge friends using Nike+
Challenges.

Figure 2.4: Nike+ Running app interface and features (cont.), from [38].

10

2.1.3 Fitbit

Fitbit is another popular health and fitness brand. They produce different types of

health trackers that allow a user to track steps, distance, calories burned, sleep, weight

and more. Fitbit also has an app with the same name that allows fitness tracking

without the use of an activity tracker or with one paired to the app [23].

Fitbit App

Similarly to the previous apps mentioned, Fitbit can track a user’s run or walk with

pace, duration, distance, calories burned and heart rate (requires Fitbit tracker with

heart rate support) which is shown in Figure 2.5a. The Fitbit app allows users to stay

motivated and compete through the use of predefined goals, and Fitbit Challenges.

The app has a social network component that can be used to share stats, and compete

between friends through these goals or Fitbit Challenges. Similar to that of Nike+

Move, but instead of NikeFuel, the goals are centered around the number of steps a

person takes rather than how much NikeFuel a user can generate. A list of predefined

goals or Fitbit Challenges can be seen in Figure 2.5b. The Fitbit app uses notifications

to provide a user with an update when they are nearing a goal or have met one [23].

2.2 Measuring of Running Performance / Exercise
Physiology

2.2.1 Overview

Exercise physiology is the study of the acute responses and chronic adaptations to

a wide-range of physical exercise conditions [41]. Studying these physical exercise

conditions provide insight on how to measure a person’s fitness performance. In

order to create a competitive / motivational running fitness application, one must

understand the basic components of measuring fitness to accurately calculate running

performance. Specifically, measuring performance through a person’s heart.

11

(a) The Fitbit app tracks daily fit-
ness statistics.

(b) Fitbit Challenges and goals used
to compete with oneself or friends.

Figure 2.5: Fitbit app interface and features, from [23].

12

2.2.2 Heart Rate

Heart rate is defined as the number of beats a heart can produce per minute (bpm)

also known as a pulse. Many factors can stimulate a person’s heart rate such as

physical exercise, sleep, anxiety and stress. There are different contexts to a person’s

heart rate such as resting heart rate, max heart rate, heart rate reserve, and provide

metrics such as calories a person has burned through physical activity. This section

will discuss the aforementioned contexts a heart rate provides.

Resting Heart Rate

A person’s resting heart rate (HRrest) is the rate at which the heart can pump the

least amount of blood needed when a person is at rest. At rest meaning when a

person is in a calm state. A healthy person’s resting heart rate can range anywhere

from 50 to 100 beats per minute (bpm) and are indicators of their fitness level. The

lower the resting heart rate, the better fit a person is and vice versa [11].

Max Heart Rate

Heart rate max (HRmax) refers to the maximum rate at which the heart can beat

per minute. To accurately determine the maximal heart rate, a person must undergo

a stress test that pushes them to the point where their heart rate can no longer

increase, thus reaching their maximum heart rate. There are ways to estimate a

person’s maximum heart rate through a variety of formulas. A person’s maximum

heart rate decreases with aging [49].

The most widely used method of estimating a person’s heart rate max is through

a person’s age. One of the most frequently widespread age-predicted formulas can be

seen in Equation 2.1. Where the HRmax is equivalent to 220 minus the person’s age

in years. This calculation is independent of race, gender or age group [34].

HRmax = 220− age (y) (2.1)

13

Later evidence suggests the use of Equation 2.1 is bias in certain age groups

[34, 46, 52]. Estimates of HRmax for men and women under the age of 40 years

were overestimated, while providing underestimates for people older than 40 years.

Equation 2.1 can be inaccurate to ±10 bpm, and a newer equation, Equation 2.2, was

created to fix such estimation problems. The Equation 2.2 fixes the issue of under

and overestimation while still achieving a slightly better standard deviation of ±5 to

±8 bpm [34].

HRmax = 206.9− 0.67× age (y) (2.2)

Although, Equation 2.1 and Equation 2.2 are estimations of a person’s HRmax,

their error rate are still acceptable when determining the max heart rate of a person.

Heart Rate Reserve

Heart rate reserve (HRR) is the difference between HRmax and HRrest as shown in

Equation 2.3. HRR is used as a means to factor in a person’s fitness level determined

by their HRrest, as previously mentioned. The more fit an individual is the lower

their HRrest, which increases HRR, and the less fit an individual is the lower their

HRR. Thus, HRR will increase with increased fitness and vice versa [46].

HRR = HRmax −HRrest (2.3)

Calories Burned

In order for HeartMate to be a well rounded application a way to calculate energy

expenditure must be discussed. Due to the nature of HeartMate using a heart rate

monitor, the method used is known as a heart rate based method. A Calorie is 4.184

kilojoules (kJ) and was originally used to determine the amount of energy or heat

that was required to heat water from 0◦ C to 1◦ C which happened to be 4.184 kJ

[28]. In the sense of the human body, during exercise the body needs fuel to continue

14

producing meaningful work, Calories. Using age, gender (years), weight (kg), average

heart rate (bpm) and time in hours, energy expenditure (calories) can be estimated

through the use of a heart rate based calorie formula. The formula for each gender

male and female can be seen in Equation 2.4 and Equation 2.5 [31].

Calmale =
(−55.0969 + 0.6309×HRavg + 0.1988×W + 0.2017× A)

4.184 kJ
×60×T (2.4)

Calfemale =
(−20.4022 + 0.4472×HRavg − 0.1263×W + 0.074× A)

4.184 kJ
×60×T (2.5)

Where HRavg is average heart rate, W is weight in kilograms, A is age in years,

and T is time of exercise in hours. The coefficients on weight, age, and gender were

produced in estimating the slope, and the intercept of the regression line between

energy expenditure and heart rate from [31].

2.2.3 Target Training Zones

Training zones provide a way to measure an individual’s workout intensity, in the

case of HeartMate, the only workout is running. Each zone or intensity is aimed to

stress the body in different ways and provide a measurement of how much work an

individual is exerting. There are different types of methods to calculate these training

zones and this section will focus on how to define these intensity zones through the

use of our knowledge of heart rates. There is another method that defines target

training zones as a percentage of V O2 max, but during this discussion one will see

how the method used with heart rates will directly correlate with V O2 Reserve and

can be used interchangeably [12].

VO2 Max and VO2 Reserve

When an individual increases their level of exercise intensity there is an increased

amount of oxygen being consumed in order to deliver the necessary amounts of oxygen

15

needed to sustain such level of intensity, known as volume of oxygen consumed (V O2)

. Similar to HRmax there is a maximal amount of oxygen consumption that can be

reached during exercise known as V O2 max. V O2 max is considered an individual’s

peak performance output. Measuring V O2 max can accurately be done through

exercise in a laboratory such as on a treadmill or stationary bike where the air exhaled

is obtained and analyzed. The sample analyzed is measured for carbon dioxide which

provides a measurement of how much oxygen the individual has burned [12]. Since

the laboratory equipment is not easily accessible as are heart rate monitors, there

are complicated methods to predict V O2 max, but a much simpler way is through

the use of correlation. Research has previously shown that %HRmax is correlated

to %V O2 max, but it has been disproved and %HRR is more correlated to the

percentage of V O2 reserve (%V O2R). V O2R is the difference between V O2 max and

volume of oxygen consumption at rest (V O2rest), where V O2rest is 3.5 mL/kg/min as

shown in Equation 2.6 [44, 45].

V O2R = V O2 max− V O2rest (2.6)

Karvonen Method

The Karvonen method is an efficient method in calculating a target training threshold.

Since fitness levels vary from person to person, the Karvonen formula factors in fitness

level to produce a more effective training regimen specific to the individual. Instead

of training at a %HRmax, the Karvonen method uses %HRR and instead calculates

a heart rate training threshold (HRthreshold) as the sum of %HRR and HRrest as

shown in Equation 2.7. Where I is the intensity percentage of the desired training

threshold [34].

HRthreshold = HRrest + I(HRR) (2.7)

The result of Equation 2.7 produces a target heart rate value not only based off

16

Table 2.1: Target Heart Zones, from [12]

Target Zone Heart Rate Reserve (%)
Low (Recovery) 60 - 70
Moderate (Aerobic) 70 - 80
High (Anaerobic) 80 - 90
Red Line (%V O2R) 90 - 100

the %HRR, but one that also takes into account %V O2R as they are correlated. The

advantage to using the Karvonen method is that it places individuals of all fitness

types at intensities relative above their resting state, thus providing an accurate way

to compare performance [44].

Heart Rate Zones

Since the method of calculating heart rate thresholds have been discussed there needs

to be a discussion of the different target zones. A list of zones along with their

corresponding %HRR percentage values can be seen in Table 2.1. Low or recovery

zone is often used to improve the muscles’ utilization of oxygen and is considered more

of a warm up zone. The aerobic or moderate zone increases the amount of oxygenated

blood to muscles improving muscle strength. Anaerobic or High zone, is one where

the body produces more lactic acid than it can remove, lactic acid is a byproduct of

muscle during exercise that causes muscle fatigue. Red Line or %V O2R, should only

be reached for short periods of time as lactic acid is developing at a high rate, and

muscles start needing more oxygen than the body can provide [12, 17].

2.3 Development Environment

2.3.1 Overview

Given that iOS is the target development platform there are specific tools that are

required in order to develop applications for iOS. Some third party tools are also

used to assist in adding libraries to an iOS project. In this section these tools will be

discussed along with the architecture and features of the target platform, iOS.

17

Figure 2.6: Layers of iOS, from [1].

2.3.2 iOS

Architecture

Understanding the way iOS is constructed provides insight on how to design an appli-

cation for the operating system. The iOS architecture is designed in layers in which

these layers act as an intermediary between the underlying hardware. These layers

are Cocoa Touch, Media, Core Services, and Core OS which can be seen in their

respective order in Figure 2.6. These layers allow apps to indirectly communicate

with the hardware, and provide system interfaces that allow apps to be written in

such a way that devices are still compatible even with different hardware capabilities.

The layers closer to the top are utilized through higher-level frameworks that provide

object-oriented abstractions to the hardware, where as the bottom layers use lower-

level frameworks. It is recommended by Apple, to use the higher-level frameworks,

but does not mean the lower-level layers are out of the question, and could be used

when certain hardware features aren’t available in the higher layers [1].

The three layers that should be focused on are the Cocoa Touch, Media, and Core

Services layers. Cocoa Touch provides high-level features in creating the interface,

handling Apple Push Notification Service, and frameworks to user interface elements

(UIKit), a map interface (MapKit), and more. The Media layer provides capabilities

such as graphics, audio, and video technologies. The graphics portion allows custom

art, images, graphics, and animation be displayed on screen that work seamlessly with

18

the UIKit framework in the Cocoa Touch layer. Audio and video frameworks allow

interaction with the underlying hardware to incorporate audio and visual into an app.

The Core Services layer provides a closer interface to the hardware than any of the

aforementioned layers. Core Services provide frameworks to store data (Core Data),

access location data (Core Location), access and store health information (Health

Kit) and many more [1].

Health

Baked into iOS is the Health app, which provides a centralized hub for storing and

viewing health data. The Health app provides a dashboard of the user’s health

information stored, and gathered from the iPhone hardware or through a third party

application. Developers can create apps that utilize this centralized health hub to

provide or access data to or from the Health app using Apple’s Health Kit framework.

Developers can also access health data from compatible Bluetooth LE devices through

Health Kit [7].

Apple Push Notification Service

The Apple Push Notification Service (APNs) is a service that allows developers to

send remote notifications to iOS devices using a provider (server). Each device is

connected to APNs, and will receive any notifications sent through the connection

by APNs. A notification can be sent while the app is running or not, in the case

that the app is not running then the user is notified. A developer has to create its

own provider (server) for their client app, in which the provider creates the payload

notification bundled with the user’s unique device token, token generated by the user’s

device, and sends it to the APNs. Once APNs receives the payload notification along

with the device token, APNs handles the delivery of the notification to the client app

installed on the user’s device [3]. An example of this can be seen in Figure 2.7

19

Figure 2.7: Apple Push Notification Service sending a push notification received from
the provider directly to the device and client app, from [3].

2.3.3 Xcode

To create an iOS app there are two major development environments, the Xcode IDE

which is developed and maintained by Apple, and AppCode which is developed and

maintained by JetBrains. Xcode was chosen for this project as it is developed and

maintained by Apple as is iOS. There are two parts to Xcode, the IDE, and Interface

Builder.

IDE

Xcode is an integrated development environment (IDE) that consists of a code edi-

tor, compiler, debugger, and an interface builder. Xcode’s interface or workspace is

separated into four different areas: navigator, editor, debug, and utility areas. The

Xcode workspace can be seen in Figure 2.8. The navigator area allows for easy navi-

gation of all the files, folders, assets and frameworks, and any warnings or errors that

may have been generated. During debugging it also provide the program’s memory,

CPU usage, disk, and network access, as well as breakpoint navigation. The main

focal point in Xcode is the editor area, this area displays code and provides syntax

highlighting, and code completion. The debug area is separated into two sections, the

first section shows a list of objects in memory and their properties during runtime,

and the second section is the console log. The utility area provides ways to inspect

files, edit attributes of objects on the screen, connections of interface elements to code

can be viewed here, code snippets and assets can be accessed here as well [39].

20

Figure 2.8: The Xcode workspace.

Interface Builder

Xcode offers another important tool called, Interface Builder (IB). Interface Builder

allows a developer to easily design and create their interface for an iOS app without

having to write a line of code [39]. The layout is similar to that of Figure 2.8, but now

the interface canvas takes the place of the editor area, with the left panel showing

the view hierarchy, and the right panel being the utility area, which now contains

user interface elements that can be added to the view in the center of the canvas.

The Interface Builder workspace can be seen in Figure 2.9. Connecting user interface

elements to code is as simple as switching to a side by side view of the editor area,

and Interface Builder canvas. A user can than click and drag on a button placed

within the view, and connect it directly to the code by making a connection with the

mouse as shown in Figure 2.10.

21

Figure 2.9: The Xcode Interface Builder workspace.

Figure 2.10: An example of connecting a user interface element to code.

22

2.3.4 CocoaPods

Adding third party libraries to a project can sometimes be a burden especially man-

aging the dependencies. CocoaPods alleviates this problem by adding and managing

third party libraries directly into an Xcode project. A Podfile is added to the project

directory, which is a plain text file and contains a list of libraries, and dependencies

the project needs. Once the Podfile is executed the libraries, and its dependencies

are automatically added to the project [18].

2.4 Hardware

2.4.1 Overview

Since, HeartMate is an iOS health and fitness app, there are some specific hardware

components of an iPhone that should be discussed along with external heart rate

monitors, as well as their communication between devices. This section is to under-

stand the iPhone and the health sensors integrated to assist fitness tracking, as well

as third party heart rate monitors and how they communicate back to the iPhone.

2.4.2 iPhone Hardware

Devices

Since its incarnation, the iPhone has shown many forms, especially with advancements

in the sensors integrated within them. The current devices on market are the iPhone

6S Plus, iPhone 6S, iPhone 6 Plus, iPhone 6, and the iPhone SE, all of which are

running the latest version of iOS 9.

Sensors for Health Tracking

The iPhone being as advanced as it is the hardware integrated into the device pro-

vides sensors that are prefect for tracking a user’s fitness. These sensors include an

accelerometer, gyroscope, barometer and compass. Having sensors such as the ones

mentioned provide insight to a way a user is moving, as well as direction. Bluetooth

23

LE is also incorporated to the iPhone hardware and allow for third party health

sensors to be connected directly to the iPhone.

M9 Chip

When Apple released the iPhone 5S, they introduced a new chipset, the M7 Motion

Coprocessor, which allowed utilization of the gyroscope and accelerometer to its full

potential. The M-Series chipset was refined and improved with each iPhone iteration

thereafter, the latest being the M9 chip. In general, the M-Series chipset is designed

to continiously process and store data from these sensors and provide an abstraction

of the sensor data through either Health Kit, or the Core Motion API.

2.4.3 Bluetooth LE

There are many different communication protocols used to connect hardware devices

to each other. These protocols were created for convenience to allow sensors, and

hardware accessories to connect to other devices wirelessly. Some communication

standards such as Wi-Fi used too much power, and often these sensors or accessories

were battery powered and needed to conserve energy. Bluetooth was thus created to

communicate with devices such as cell phones, computers, and accessories. The first

iterations of Bluetooth failed to deliver a low powered solution. The introduction of

the Bluetooth Low Energy (LE) protocol, solved the issue of power, and was made to

communicate with devices powered by a single coin cell battery. Bluetooth LE was

designed for devices such as motion sensors, light detectors, thermostats, pedometers

and heart rate monitors [51]. The Bluetooth LE protocol makes it easy to connect

to these devices by providing a generic gateway to communicate directly with the

hardware [19].

2.4.4 Heart Rate Monitors

Heart rate monitors are exactly what the name suggests a device whose sole purpose

is to gather a heart rate signal from the human body. The popularity of smartphones

24

integrated with Bluetooth LE have increasingly become the norm, and due to this

heart rate monitors are no longer only considered a dedicated medical device. Heart

rate monitors are used to measure and track fitness intensity [47]. Some heart rate

monitors using Bluetooth LE have been designed specifically to use on the iOS plat-

form [27]. HeartMate will use two generic Bluetooth LE heart rate monitors, Polar

H7 and the Wahoo TickrX heart rate sensor.

2.5 Client-Server Model

2.5.1 Overview

Since HeartMate will be a competitive / motivational fitness application with a social

network component there is a need for the client (HeartMate) to communicate with

outside sources. To accommodate for the social network aspect of HeartMate, a client-

server based approach is implemented with our prior knowledge of such architecture

[13].

2.5.2 Structure

A client-server based system is where each device acts as either a client or server.

Clients and servers are components in a network in which a client-server relationship

is established when a client and server component connect with each other through

a network. A server provides resources and services, while a client sends requests to

the server in order to utilize those resources and services [35].

2.6 Libraries and Frameworks

2.6.1 Overview

This section will discuss the libraries and frameworks used in the implementation of

HeartMate. Although, how they are used in HeartMate will be discussed in Chapter 4

and Chapter 5.

25

2.6.2 Swift

Swift is a new general purpose programming language used to implement software

for Apple’s operating systems such as OS X, tvOS, watchOS, and of course iOS.

Objective-C was originally the only language to produce software for the aforemen-

tioned operating systems, but with Swift being the intended replacement for C-based

languages it was the language of choice for HeartMate. Recently, Swift was made

open source and can now be used to produce software on Linux, and many more

platforms to come. Swift provides an easier way to write software as it was built

using a modern approach to software design patterns, safety and performance. Swift

also provides features such as inferred types, elimination of header files, namespaces,

and the automation of memory management. Swift is safe as variables always are

initialized before use, while arrays, and integers are checked for overflow. By default

objects can never be nil and if a nil object is discovered there will be a compile-time

error, by doing this Swift alleviates common runtime crashes. The use of nil is not

completely omitted as there are reasons to use such a value, and Swift allows nil

through the use of optionals, which are denoted by a ’?’, which signals the compiler

the user understands the value could be nil and it will be handled safely [2]. All of

the mentioned features are why Swift was the chosen language for HeartMate.

2.6.3 JSON

JSON or JavaScript Object Notation is a data interchange format that allows serial-

ization of structured data. The structured data is in text format and can represent

the primitive types (strings, numbers, booleans and null) as well as objects and ar-

rays. JSON objects are in the same form as the data structures, dictionaries, as they

too are a collection of key-value pairs, but JSON is serialized making it possible to

send over a network [14]. Two frameworks, Parse and PubNub, to be discussed uti-

lize JSON objects to handle communication between HeartMate, database, and other

devices with HeartMate installed.

26

2.6.4 Parse

Overview

Parse is a Mobile Backend as a Service (MBaaS) and provides a backend for mobile

applications. The reason Parse is appealing is because it eliminates the need to setup

and maintain databases along with managing or hosting a server. Parse is broken

up into sections based on what it can provide for an application. These sections are

core, push, and analytics all of which can be accessed through the Parse Dashboard.

Analytics provide information on how the application is performing such as active

users, installs, and database usage. Push provides information on the notifications

sent, and allows for the creation of a push notification [40]. Parse Dashboard, and

the core section of Parse will be discussed further in this section.

Parse Dashboard

The Parse Dashboard provides a front end access to the backend server in which a

mobile application will communicate and make requests. Parse Dashboard provides

access to the core, push and analytics of the mobile app. The Parse Dashboard is

shown in Figure 2.11.

Core

HeartMate focuses on the Core functionality that Parse provides. Core provides

database and Cloud Code management. Tables as well as their rows and columns of

a database can be managed through the dashboard. Parse is capable of managing

user accounts, and by default the database is populated with a User table. Through

the dashboard, manual entry of a user is possible, otherwise it is handled through

the Parse API. Parse also allows a developer to provide customizable server code for

instances where custom server functionality is needed and this is called, Cloud Code.

The Cloud Code is written in JavaScript, a programming language typically used for

web based applications, and managed through the dashboard. This cloud code can

be called through an API from the mobile application to trigger certain events like

27

Figure 2.11: The Parse Dashboard interface, from [30].

push notifications, or modifications to the database. Parse also provides methods to

define a relationship between tables in a database, and are called, Parse Relations.

Relations can use pointers to point from a column in a database to another table and

are capable of defining many to many, and one to many relations between objects

[40].

Data is stored as a PFObject which contains JSON-compatible data so essentially

the PFObject is JSON, but is recognized as a PFObject from the perspective of the

framework. Since, the underlying structure of a PFObject is JSON this is how data

is received and sent from the mobile device. A PFObject is schemaless which means

the keys do not need to be created on the PFObject beforehand and will be created

during assignment if it does not exist. Requesting data from the Parse server comes

asynchronously and is requested through the use of PFQueries. A PFQuery is built

with the table’s name, and the conditions provided [40].

28

2.6.5 PubNub

Overview

PubNub is a Data Stream Network and real time Infrastructure as a Service (IaaS),

and one of the primary services offered is the publish / subscribe API that hooks into

their data stream network. PubNub offers support for many devices 70+ SDKs such

as iOS, Android, JavaScript, .NET, Java and more. With PubNub a developer does

not have to worry about the infrastructure it takes to create a real time network, and

only need to utilize the APIs provided to start streaming in real time [42]. Only three

of the many features of PubNub provides will be discussed in this section which are

publish / subscribe messaging, presence and stream controller.

Publish / Subscribe Messaging

PubNub offers streaming of data in real time through the use of the publish/sub-

scribe model. In a publish/subscribe model there is a publisher, and a subscriber.

A publisher creates a channel and through this channel they send data (messages),

and a subscriber subscribes to the publisher’s defined channel and receives any data

(messages) the publisher sends. The data sent over PubNub is in the form of JSON.

PubNub offers a network to manage the real time transmission of this data as well

as the channels associated [42]. An example of the publish / subscribe model using

PubNub can be seen in Figure 2.12.

Presence

Presence is a feature of PubNub that works alongside the publish / subscribe messag-

ing feature, and can detect when a user has subscribed to a channel, left or any other

customizable state. Information such as how many users are subscribed and if a user

has subscribed to a specific channel is all available in real time, and the application

can be immediately updated [42].

29

Figure 2.12: Publish / Subscribe model using PubNub, from [42].

30

Figure 2.13: An example of channel groups using PubNub, from [42].

Stream Controller

The stream controller feature is a way to manage groups of channels. The stream

controller works in tandem with publish / subscribe, and presence. This allows sub-

scribers of a specific channel group receive data in real time all at the same time. This

is useful for publishers as they only have to publish to a specific channel group, and

any subscribers associated with that group is sent the data [42]. An example of how

publishers can publish to specific groups of subscribers can be seen in Figure 2.13.

2.6.6 BEMSimpleLineGraph

BEMSimpleLineGraph is a third party library to create and customize line graphs

for iOS. Animation control, colors, and line shape all can be configured, along with

different types of interaction with the graph such as popup and touch reporting.

31

Figure 2.14: An example of a line graph with popup and touch reporting using
BEMSimpleLineGraph, from [22].

Popup and touch reporting allow the graph to respond to user touch, and provides a

popup above the data point as the user is touching along with its value which can be

seen in Figure 2.14 [22].

2.6.7 Charts

Charts is also a third party library for creating graphs for iOS, but this one special-

izes in more than line graphs. In addition to line graphs, charts can create seven

other different chart types such as bar, scatter, pie, combined (i.e., line and bar),

candlestick, bubble, radar and line. Legends are automatically generated and can be

configurable. Charts can be animated, and there is support for Android, iOS, tvOS,

and OS X. The pie chart is the focus of this project, and an example can be seen in

Figure 2.15 [26].

32

Figure 2.15: An example of a pie chart using the Charts library, from [26].

2.6.8 SWReveal

SWReveal is a third party interface library, and produces a more common menu option

system found in many apps. This particular menu style has the main view slide to the

left or right revealing a menu underneath [54]. SWReveal makes it easy to integrate

into an iOS application. An example of SWReveal can be seen in Figure 2.16.

2.6.9 DPMeterView

DPMeterView is a third party custom gauge-style meter view that can be integrated

into iOS applications. Provides easy customization of the meter views to indicate a

percentage of progress completed [21]. An example of this interface element is shown

in Figure 2.17.

2.6.10 Health Kit

Health Kit is a framework created by Apple, and was created with the increase of

health apps being produced. Apple wanted to make it easier for developers to access

health data provided by sensors embedded into the iPhone hardware as well as a way

33

Figure 2.16: The SWReveal menu system, from [54].

Figure 2.17: DPMeterView interface elements, from [21].

34

Figure 2.18: An example of requesting permission to access health data, from [7].

to share health data securely and privately between apps. The Health Kit framework

works directly with third party health and fitness hardware in which allows the sys-

tem to access and save data from compatible Bluetooth LE heart rate monitors, and

import activity data from the M-Series Motion Coprocessor. The Health Kit frame-

work allows the user to be in control of their data and permission must be granted

when an app tries to access such information, which can be seen in Figure 5.6 [7].

2.6.11 UIKit

UIKit is a major framework created by Apple, and it provides API access and man-

agement to interface elements of an iOS application. This provides the connection

between code and the interface as well as methods to respond to user input [10].

35

2.6.12 Map Kit

Map Kit is another framework created by Apple, and allows developers to easily

embed a map interface onto windows and views. Through Map Kit it is possible to

annotate the map, add overlays as well perform a reverse look up for a given map

coordinate [8].

2.6.13 Core Data

Core Data framework is developed and maintained by Apple, Core Data is used

to manage objects in an application. Core Data does this by providing a way to

generalize and automate solutions and tasks related to object life cycle, object graph

management, including persistence. Mainly, for the scope of HeartMate Core Data is

used for data persistence. Core Data is similar to that of a database and can store

objects structured as a table, and relationships between objects can be defined as well

[5].

2.6.14 Core Location

The Core Location framework, created by Apple, allows access to location data from

the available hardware embedded into the system such as GPS. This location data

can be used to define geographic regions as well as monitor the regions for when a

user has left the region’s bounds [6].

2.6.15 MediaPlayer

Created by Apple, the Media Player framework provides necessary API for playing

a movie, music, audio podcast, and audio book files. The Media Player framework

gives access to iPod controls for where background media control may be necessary.

This framework also provide ways for an app to respond to events sent by external

media players [9].

36

2.6.16 AVFoundation

The AV Foundation framework, created by Apple, provides methods to play and

create time-based audiovisual media. Media files can be created, examined or re-

encoded through the use of this framework. This framework also provides a technique

to translate text to speech [4].

37

Chapter 3

Design

3.1 Overview

HeartMate is an iOS fitness running application that utilizes a Bluetooth connected

heart rate monitor to provide a new competitive and motivational environment through

a social component using heart rates as the performance measure. With HeartMate,

a user can create an account, add friends, customize their profile, track and map a

run, store runs locally and on a server, challenge their previous runs or friends’ runs,

and challenge a friend to a real time run.

When designing a system it is important to define the non-functional and func-

tional requirements as they are important to creating a quality system [15]. Non-

functional requirements are defined as the properties of a system, while functional

requirements represent the system’s functionality [16]. The functional and non-

functional requirements, user interface use cases, architecture of HeartMate and its

interactions with the Parse server, and PubNub are described in this chapter.

3.2 HeartMate Requirements

3.2.1 Functional Requirements

Behavioral requirements of HeartMate were considered when creating the functional

requirements. Table 3.1 shows a list of these functional requirements.

38

Figure 3.1: HeartMate’s use case diagram.

3.2.2 Non-functional Requirements

Implementation specifics and communication with the server from HeartMate were

considered when creating the non-functional requirements to complement the behav-

ioral requirements of the system. Table 3.2 lists the non-functional requirements.

3.3 Use Case Modeling

3.3.1 Overview

This section provides a better understanding of HeartMate’s responsibilities. This

section describes HeartMate’s use cases in detail as well as a user’s interaction with

the application. Figure 3.1 shows a visual representation of HeartMate’s use case

diagram, while detailed descriptions of each use case will be discussed in this section.

39

Table 3.1: HeartMate Functional Requirements.

Number Description
FR01 HeartMate shall create user accounts.
FR02 HeartMate shall authenticate users given the user credentials.
FR03 HeartMate shall allow a user to edit their profile.

FR04 HeartMate shall begin a workout and track the
progress of a user.

FR05 HeartMate shall allow a user to manage uploaded workouts.
FR06 HeartMate shall allow a user to configure a workout.

FR07 HeartMate shall allow a user to create a competition from
their previous workout or a friend’s.

FR08 HeartMate shall allow a user to create a real time competition
with a friend.

FR09 HeartMate shall stream heart rate data in real time.
FR10 HeartMate shall save workouts locally, and to a remote database.
FR11 HeartMate shall allow a user to view saved workouts.
FR12 HeartMate shall allow a user to add or accept friends.
FR13 HeartMate shall retrieve a user’s friend requests.
FR14 HeartMate shall retrieve a user’s friends list.
FR15 HeartMate shall allow a user to remove a friend.
FR16 HeartMate shall allow a user to view a friend’s profile.
FR17 HeartMate shall allow a user to view a friend’s uploaded workouts.
FR18 HeartMate shall allow a user to enter user specific settings.

Table 3.2: HeartMate Non-functional Requirements.

Number Description
NR01 HeartMate shall be written in Swift.
NR02 HeartMate shall use Parse to manage a client-server architecture.
NR03 HeartMate shall use PubNub to manage streaming heart rate data.
NR04 HeartMate shall use Parse to store user profiles and workout data.

NR05 HeartMate shall accept JSON objects from PubNub for
heart rate data.

NR06 HeartMate must use Health Kit to store workout data locally.
NR07 HeartMate must use Core Data to store location data.

NR07 HeartMate must use a Bluetooth LE connected heart rate
monitor to retrieve heart rate data.

40

3.3.2 Detailed Use Cases

Login

Login is required for the user to access their profile, and use HeartMate’s functionality.

A user logs in by providing a username and password they used during the creation

of their HeartMate account or logs in through Facebook. If the valid credentials are

provided the user is then given access to HeartMate’s functionality.

Create User

The initial view of HeartMate gives the option for the user to either login, or sign

up. A user can either register by providing their first and lastname, username and a

password or through connecting their HeartMate account to their Facebook account.

If the latter is chosen the user must provide a username after Facebook succesfully

links to their newly created HeartMate account. The user will only be added to the

database if the username entered is not taken.

View / Edit Profile

This is the initial view the user is shown after logging into HeartMate, and is also

known as the “User” tab from the menu. This gives the user access to their profile

picture, status, and uploaded workouts. The user can also navigate the app, logout,

as well as configure a new run from this section.

Edit Status

A user can edit their status, which adds to the social network component of Heart-

Mate. This status is what friends will see when the user’s profile is being viewed.

Change Profile Picture

A user can also provide a picture to associate with their profile. A user can select

a picture from their local device, take a picture, or if they signed up using their

Facebook account, the user can import their Facebook profile picture.

41

Remove Uploaded Workout

A user can remove their uploaded workouts from the remote database associated with

their profile under the menu option, “User”.

List Workouts

List workouts can be found under the menu option, “Activity”. Here a user will be

able to view a list of their previously saved workouts on the device in the form of a list.

The list provides information on the workout such as average heart rate, distance,

duration, date, and whether the workout took place outside or indoors.

Delete Workout

A user can delete a workout from their list of workouts. The locally saved workout is

removed from the device entirely.

View Workout

When a user selects a workout from the list of workouts the user is taken to a more

detailed view of the workout. A heart rate graph, level of intensity pie chart, location,

duration, distance and calories burned can all be seen in this view. The user has the

option to upload their workout as well.

View Map

While viewing a previous workout, if the workout took place outdoors a map of the

run can be viewed. The map is overlayed with the path the user took during their

run.

Upload Workout

While a user is viewing their workout they have the option to upload their workout

for their friends to challenge.

42

List Friends

Since there is a social component to HeartMate a user can view their list of friends

who also use HeartMate. This is accessed through the menu option, “Friends”. Their

name as well as username is shown in this list along with their profile picture.

Remove Friend

In the list of friends a user can remove a friend.

Add / Accept Friend

Under the “Friends” menu option there is also a way to add a friend by searching for

them through the use of their name, or username. The user can also view pending

friend requests, and accept or deny a friend request.

View Profile

When a friend is selected from the user’s list of friends the user is taken to view the

friend’s profile. Here the user can view the friend’s profile picture, status, view their

uploaded workouts, and challenge one of their uploaded workouts.

View Uploaded Workouts

Viewing a friend’s uploaded workout allows the user to see their heart rate in the

form of a graph as well as their level of intensities through a pie chart. This allows a

user to contemplate challenging that particular workout.

Challenge Workout

Challenging a workout can be done either through configuring a run, selecting a

friend’s uploaded workout from their profile, or using a previous user’s workout from

the view workout section.

43

Configure Run

During a run configuration a user can choose the location of their run (indoors, out-

doors), create competition, and select the duration of the workout from a predefined

list. If a user has selected a workout to challenge, the duration, and competition

settings will be automatically set from the workout they are challenging, however

the location is still configurable. If a user was challenged to a real time workout

the duration, and competition settings will be set to the challenger’s preference, but

the location is still user configurable. If the user is configuring a run for the first

time the global settings will appear for the user to enter data pertinent to accurately

calculating workout data.

View Running Progress

Once a workout has started the user is able to view their current progress such as

time remaining, current heart rate, current level of intensity, distance traveled, and

calories burned. A heart rate meter is shown along with a scale of their zone intensity

and heart rate zone thresholds. The user is given the option to end the workout as

well.

End Run

The run will either come to an end when there is no more time remaining, or when

a user intentionally ends the run. If the user was currently partaking in a real time

competition their opponent will be notified and their run will also be terminated.

View Completed Workout

Once a run is complete the user will be taken to the completed workout view in which

they can view detailed stats about their workout. These stats include a graph of their

heart rate data, pie chart of their workout zone intensities, duration, distance, calories

burned along with a map of their run if the location was outside. If the user was in

a competition the user will also be shown the heart rate graph, level of intensity pie

44

chart, and a score of how much longer they were in a higher zone to compare their

workout to their opponent

Save Workout

In the completed workout view the user has the option to save their workout. Saving

the workout will save to the device locally, or depending on the user’s global settings

for auto upload the workout may or may not be uploaded to the remote database.

Discard Workout

In addition to saving, the user may want to discard their workout and not save at all

in which then the workout is discarded. If the user intentionally ended the run, the

user will only be allowed to discard the workout.

Settings

Settings can be found under the menu option, “Settings”. Here the user can provide

information to accurately track their workout. This information is the user’s age,

gender, weight and resting heart rate. The user can import this information from

Health Kit, which pulls from their health app on their device. App settings can also

be configured here in which the user can turn on auto upload of workouts as well as

select the amount of automatically uploaded workouts they would want stored at a

time.

Logout

A user can logout from HeartMate from their profile view in which the user will then

be prompted to login the next time they open the app.

3.4 Architecture

HeartMate adheres to the client-server architecture to manage various aspects of the

functionality such as the use cases of the app previously defined. The HeartMate

app acts as the client, making requests as well as receiving data from third party

45

components that act as the server. These third party components include Parse,

PubNub, Apple Push Notification Service (APNs) and a Bluetooth connected heart

rate monitor. A visual representation of HeartMate, and its interaction with third

party components can be seen in Figure 3.2. Arrows from the diagram represent the

requests and services each component provides for HeartMate.

46

Figure 3.2: HeartMate’s system architecture and its interactions with other system
and hardware components.

47

Chapter 4

Implementation

4.1 Overview

This chapter describes the implementation of each component used in the creation of

HeartMate. Libraries and frameworks described in Chapter 2 are also discussed to

show how and where they were used during the development of HeartMate.

4.2 Social Component

4.2.1 Overview

HeartMate has a social network component that provides users with the ability to

search and add friends, as well as create user profiles, and have the ability to upload

their workout for others to challenge. This section describes the structure of the

database, and added server functionality to manage push notifications. The system

components that are discussed can be seen in Figure 4.1.

4.2.2 Database Management

Overview

HeartMate uses Parse as the backend to manage the database information to store

user profiles, friend requests, friends, and user workouts. Parse provides an API to

access the information stored on the database and will be discussed.

48

Figure 4.1: HeartMate’s interaction with the database, and Apple’s Push Notification
Service through Parse.

49

Figure 4.2: The structure of the server side database.

Structure

The database is structured to manage the social component functionality with effi-

ciency. The defined table entities are as follows: User, FriendRequest, and UserWork-

outs. A user’s friends list, friends, is a Parse Relation to a User. The structure of

the database, and the friends relation can be seen in Figure 4.2. Everything stored

on the Parse backend is a PFObject, which internally is a JSON object.

User

The User entity contains information to users that have signed up through the Heart-

Mate app, as well as information pertaining to their health. The User attributes

include a unique ID, user login and profile information, health information such as

weight, resting heart rate, as well as information pertaining to their linked Facebook

account, an image field is also provided for the user’s profile image. When a user

account is created through HeartMate the user has the option to link their Facebook

50

{
"objectId" : "kmmKG4NmLd" ,
"fbId" : "1254858485212165485454" ,
"authData" : {

"facebook" : {
"access_token" : "

JKLJjklJkl767ghhHGkjjKL" ,
"expiration_date" : "2016-06-23T04

:07:28.487Z" ,
"id" : "1254858485212165485454"

}
} ,

"username" : "jAppleseed" ,
"password" : "[hidden]" ,
"name" : "John Appleseed" ,
"status" : "Ready to challenge everyone" ,
"gender" : "male" ,
"weight" : 145 ,
"age" : 24 ,
"restingHeartRate" : 65 ,
"friends" : "[PFRelation]" ,
"image" : "[PFFile]"

}

Figure 4.3: An example of a user stored in the User entity.

account which uses a built in Parse API. The login information is stored into the

authData field, and the Facebook Id, fbId, of the user is stored as well. Authentication

information is encrypted by the Parse backend. The PFObject/JSON structure of the

User entity can be seen in Figure 4.3. On the device in the HeartMate app, a User is

represented as a PFObject or PFUser which is a subclass of PFObject. PFUser also

provides information to the currentUser logged into the device.

Friend Request

The FriendRequest entity contains information regarding a friend request. For every

friend request an entry is made with a pointer to the user that made the request, a

pointer to the user requested and the status of the friend request, such as pending,

accepted or denied. This information is used by HeartMate as the first step in creating

a link between other users in the friends relation. The structure can be seen in

51

{
"fromUser" : kmmKG4NmLd,
"toUser" : o63K1KEZcu ,
"status" : "pending"

}

Figure 4.4: An example of a friend request stored in the FriendRequest entity.

{
"user" : kmmKG4NmLd,
"workouts" : [] ,

}

Figure 4.5: An example of a workout stored in the UserWorkouts entity.

Figure 4.4.

User Workouts

The UserWorkouts entity contains uploaded workouts a user wants their friends to

challenge. This entity represents a one-to-many relationship where one user can have

many workouts stored. The entity consists of a pointer to a user, and an array of

uploaded workouts since there is a predefined limit of how many workouts a user

can have stored at a time an array is sufficient enough for this data. The array is a

collection of JSON or dictionary objects that represent a workout. The workout JSON

object provides context to the workout such as date, age, resting heart rate and an

array of heart rate data representing the workout. The structure for the UserWorkouts

entity is shown in Figure 4.5 and for readability reasons a visual representation of a

workout containted in the workouts array can be seen in Figure 4.6.

{
"date" : "2016-02-22T23:25:49.001ZkmmKG4NmLd" ,
"age" : 25 ,
"restingHeartRate" : "65" ,
"heartRateData" : []

}

Figure 4.6: An example of a workout object that can be stored in the, workouts,
array of a UserWorkouts entity.

52

Friends Relation

Parse Relations or a PFRelation is used to define relations between entities in the

database. Relationships such as one-to-many and many-to-many can be defined using

a Parse Relation or other methods, but a Parse Relation is used for efficient scalability.

A friends list is a many-to-many relationship as many users can have many friends.

The friends relation is not an entity, but of a PFRelation object, and is used to

define the friends list of a user. A PFRelation is an attribute in an entity and defines

a pointer to a collection of pointers to other entities. As seen in the Figure 4.3, the

attribute friends exists as a PFRelation, and this is simply a pointer to a collection of

pointers to an entry in User entity. The friends relationship can be seen in Figure 4.2.

Parse API

Save The save function is used to add entities or modify entities on the database.

This is a class function of PFObject or PFUser, and since they are schemaless if the

entity or attribute does not exist on the database then it will be created once saved.

This function is used to save any changes to the user’s profile information, upload

workouts, and create friend requests.

Query The query function allows the database to be searched with a PFQuery

object. The PFQuery object is used to define search conditions on the database

such as the name of the entity to be searched, as well as any attribute element

constraints. This is used to search and retrieve users’ uploaded workouts, as well as

user information pertinent to defining the context of a workout such as health data.

Friend profile information is also retrieved using the query method. Querying also

provides a way to update objects as well by searching for the object and retrieving

it followed by modification then saving the object through the save function. An

example of this would be to modify the FriendRequest entity and update the status

to pending, denied or accepted.

53

SignUp The signup function is used on a PFUser object. The PFUser object’s

properties are set such as username, and password, and is then signed up through the

signup function. This is used to sign up users, and add them to the User entity on

the database.

Login The Login function checks the credentials of a user and is successful if the

credentials provided are validated checking the User entity. Once a user is logged in

the currentUser is cached to the user’s profile, and is always logged in until the user

logs out. A user can be logged in by linking their Facebook account, and login is

called using the PFFacebookUtils object, which requests the user to login using their

Facebook login information. If the login is successful their authData will be added

to their user profile in the User entity. Facebook information can be requested, such

as their profile picture, and Facebook ID. The Facebook ID is used to retrieve the

profile picture, and is added to the user’s profile in the User entity for later retrieval.

Logout The Logout function clears the currentUser on the app, and will result in

the user having to login.

Cloud Define The Cloud.Define function is used when creating a cloud function

on the server. More detail discussion of a cloud function is discussed in the following

section.

Call Function The callFunction is used to execute a cloud function defined on the

server from the client. Parameters can be passed to the function from the client. This

is used to call functions described in the following section.

4.2.3 Parse Cloud Code

Overview

The Parse backend provides customization of server functionality which is known

as Cloud Code, and this code provides access to make administrative changes to

54

the database. This code is written in JavaScript and can be written in the Parse

Dashboard. Sometimes there is a need for specific functionality to be integrated into

the server such as administrative changes to the database such as adding or removing

entries from an entity, or to act as the provider for the Apple Push Notification

Service (APNs). A cloud function can be called through the Parse API as mentioned

previously. A cloud function takes in a request, and a response with the request

containing a JSON object with parameter information, and the response as a way to

report if the request was a success. In this section, discussion of what cloud functions

were implemented in the assisting HeartMate’s functionality.

Add / Remove Friend To Friends Relation

Since, the User entity contains the friends relation, and only a user can edit any

attributes associated with their entry from the HeartMate app using the Parse API,

a cloud function was created. The cloud function was necessary to modify the friends

attribute on any user contained in the User entity on the database. When a user

accepts a friend request this cloud function is called with the necessary parameters

such as the userId of the accepted friend, and is used to add the sender and recipient

to each others friends relation. A function to remove instead of add to a friends

relation was added as well.

Push Notifications

When a user signs up and logs into their account on HeartMate their unique device

token is registered to the Parse database. This token is used to send a push notification

payload to APNs, which then sends the payload to the user’s device whose matches

the device token. The push notifications that are managed by Parse through the

use of cloud functions are when a user has requested to be another user’s friend, a

user has accepted a friend request, a friend is challenged to a competition, or when a

challenge was declined/accepted.

From the HeartMate app when any of the conditions are made the Parse Cloud

55

{
a l e r t : "User: " + user + "\n Sent a friend request." ,
sound : "default" ,
tag : "3"

}

Figure 4.7: An example of a friend request push notification, where user is the
username of the sender.

function is called through the API sending the necessary parameters to the function

on the server. The function is then executed on the server sending the correspond-

ing payload to APNs. The parameters sent from the device are typically the user

the notification is coming from along with their objectId (userId), and the user and

userId of the recipient to build a push notification payload. The structure of a push

notification payload is JSON. Since, the payload is of type JSON, it can contain any

key-value compatible JSON data, but must contain at least an “alert” key containing

the message to be sent for it to be structured for iOS. The “sound” represents the

sound the device will make, and the “tag” is to allow HeartMate to identify which

notification has been received to process correctly. The identification of a notification

is used to present and setup the correct view to the user when the app is opened

through a push notification. For example, if a user received a challenge notification

the payload will contain information regarding the user, their userId, and the duration

of the proposed competition. The userId is then used to retrieve the correct PFUser

from their friends relation, and used to create a real time competition.

When sending a push notification using the Parse API, the recipient of the push

notification is queried from the Installation entity that provides the association of a

user, and their device token on Parse. Once the recipient’s device token is retrieved,

the Parse API, Parse.Push.send(...), is used with the result of the query to send to

the correct user, and the push notification payload, which is sent directly to APNs.

The structure of a push notification payload is shown in Figure 4.7, and its use in the

cloud function can be seen in Figure 4.8.

56

Parse . Cloud . d e f i n e ("friendRequestPushNotification" , f unc t i on (request ,
r e sponse) {

var user = reques t . params . user ;
var use r Id = reques t . params . use r Id ;

var userRequested = reques t . params . userRequested ;
var userRequestedId = reques t . params . userRequestedId ;

var pushQuery = new Parse . Query (Parse . I n s t a l l a t i o n) ;
pushQuery . equalTo ("userId" , userRequestedId) ;

Parse . Push . send ({
where : pushQuery ,
data : {

a l e r t : "User: " + user + "\n Sent a friend request." ,
sound : "default" ,
tag : "3"

} ,

su c c e s s : f unc t i on () {
re sponse . s u c c e s s () ;

} ,
e r r o r : f unc t i on (e r r o r) {

re sponse . e r r o r (e r r o r) ;
}

}) ;

}) ;

Figure 4.8: An example of a Parse Cloud function to send a push notification to alert
a user of a friend request.

57

Figure 4.9: HeartMate’s interaction with system components to track a run.

4.3 Tracking a Run

4.3.1 Overview

This section will discuss how the activity, running, is being tracked by HeartMate

through its implementation using Health Kit, Core Data, Core Location, M-Series

Coprocessor and a Bluetooth LE connected heart rate monitor. The system compo-

nents involved in tracking a run are shown in Figure 4.9.

58

4.3.2 Workout Session Manager

Overview

A WorkoutSessionManager is what defines a current running workout in session. The

WorkoutSessionManager is comprised of other objects to manage and assist with the

collection of running data and information on how hard the user is working out.

These class objects are WorkoutSessionContext, HealthDataManager, LocationMan-

ager, WorkoutZoneManager, and CompetitionManager. To provide insight on how

these objects work together they will be discussed in this section with the exception

of CompetitionManager as that will be discussed in a later section.

Workout Session Context

The WorkoutSessionContext provides configuration settings to the workout soon to

take place. The WorkoutSessionContext sets the activity type (running), the location

type (indoor or outdoors), duration, age and resting heart rate to correctly configure

the workout. When saving workouts locally the WorkoutSessionContext is used as

the metadata that is saved with the workout data to the device. This is used when

retrieving the workout, and recreating workout conditions for competition.

Health Data Manager

The HealthDataManager provides HeartMate access to the user’s health information

from the Health app preinstalled on the iOS device using the Health Kit API. Health

Kit also provides sensor data from the M-Series Coprocessor to retrieve distance infor-

mation, as well as sensor data from any compatible Bluetooth LE heart rate monitor.

The heart rate monitor must be connected under the bluetooth settings of the device,

which makes it visible to Health Kit. Access to the information located within the

Health app is accessible through what is known as an HKHealthStore object. For

security and privacy reasons, the type of health data be written to or retrieved from

the health store must be authorized from the user using the HKHealthStore. Heart-

Mate requests access to be able to read and write to the following health information:

59

workouts, energy data, walking and running distance data, heart rate data, date of

birth, and gender, an example of this request is shown in Figure 4.10. Data is re-

trieved using HKObjectType and HKQuantityType which are Health Kit objects that

encapsulate this information and abstracts the data.

The HealthDataManager through the HKHealthStore object provides sensor data

such as distance traveled reported by the M-Series Coprocessor if a user is perform-

ing a run indoors, and sensor data from the heart rate monitor. The information

is retrieved from the sensors by the use of an HKQuery, HKAnchoredObjectQuery

performed on the HKHealthStore object. An HKQuery object provides creation of a

predicate to search for specific samples (data) the health store provides. The predi-

cate is what defines some of the search criteria such as start and/or end date as well

options that define how dates should be compared in the search. The HKAnchoredOb-

jectQuery takes the predicate from the HKQuery to create a more specific query such

as the type of samples (heart rate, distance), as well as the limit of data obtained,

and the anchor previously returned by the last execution of an HKAnchoredObject-

Query, which corresponds to the last sample read. HKAnchoredObjectQuery is used

to create a continuously updating stream of sample data during a user’s workout from

the health store. Whenever new data is retrieved an updateHandler associated with

the HKAnchoredObjectQuery uses the last anchor as a point of reference to read in

the next sample providing a continuous update. Heart rate data obtained through

the heart rate monitor is updated every second. Once the workout is completed

the queries must be manually stopped by stopping the query on the HKHealthStore

object. The samples are in the form of a HKQuantitySample object, and data not

retrieved from sensors can also be added to an HKQuantitySample such as energy.

Energy expenditure is calculated using the heart rate based formula, Equation 2.4

and Equation 2.5, mentioned previously in Chapter 2. The energy calculation is

performed during every heart rate data sample update.

All the data collected from the health store through the HealthDataManager is

all packaged into a HKWorkout object. Heart rate, distance, and energy burned

60

l e t dateOfBirthType = HKObjectType . c h a r a c t e r i s t i cTyp eFo r I d e n t i f i e r (
HKCharacter i s t i cTypeIdent i f i e rDateOfBi r th) !

l e t b io log i ca lSexType = HKObjectType . c h a r a c t e r i s t i cTyp eFo r I d e n t i f i e r (
HKCharac t e r i s t i cType Iden t i f i e rB i o l og i c a l S ex) !

l e t weightType = HKObjectType . quant i tyTypeFor Ident i f i e r (
HKQuantityTypeIdentifierBodyMass) !

l e t energyType = HKObjectType . quant i tyTypeFor Ident i f i e r (
HKQuantityTypeIdentif ierActiveEnergyBurned) !

l e t heartRateType = HKObjectType . quant i tyTypeFor Ident i f i e r (
HKQuantityTypeIdenti f ierHeartRate) !

l e t walkingRunningDistanceType = HKObjectType . quant i tyTypeFor Ident i f i e r (
HKQuantityTypeIdentif ierDistanceWalkingRunning) !

// types app can create and save to health kit
l e t writeTypes = Set (

a r r a yL i t e r a l : HKObjectType . workoutType () ,
energyType ,
walkingRunningDistanceType ,
heartRateType ,
weightType

)

// types app can read from health kit
l e t readTypes = Set (

a r r a yL i t e r a l : dateOfBirthType ,
b io log ica lSexType ,
weightType ,
HKObjectType . workoutType () ,
energyType ,
walkingRunningDistanceType ,
heartRateType

)

// request authorization
hea l thSto r e . requestAuthor izat ionToShareTypes (writeTypes , readTypes :

readTypes) { succes s , e r r o r in
complet ion (su c c e s s : succes s , e r r o r : e r r o r)

}

Figure 4.10: Health information authorization request.

61

data are all of type HKQuantitySample, and are added to the HKWorkout object.

The HKWorkout object saves the startDate, endDate, duration, totalEnergyBurned,

totalDistance, device, and metadata. The samples retrieved during the workout can

also be added to an HKWorkout object before it is saved. The metadata saved to

the workout is the WorkoutSessionContext to provide information used to recon-

struct a workout from memory properly for competition challenges. Management of

saving, deleting and reading workouts is all done through the HealthDataManager.

There is the HeartMateWorkoutManager that assists in reading and recreating the

workout data that is returned from the HealthDataManager in the form of a Heart-

MateWorkout. The HeartMateWorkout object encapsulates the HKWorkout object

from HKHealthStore, along with the WorkoutSessionContext, sample data, location

data, and workout statistics. Reading in the workout from the HeartMateWorkout-

Manager provides easily accessible data for displaying the information to the user, as

well as for competitions.

Location Manager

If the user has selected to perform the run outdoors the location data is collected

during the run. The location data provided is done through the use of the CLLoca-

tionManager provided by the framework, Core Location. The CLLocationManager

allows options to set accuracy, as well as the activity type the locations are asso-

ciated with in the case of HeartMate, the accuracy is set to best, and the activity

type is set to fitness. Location updates from CLLocationManager is initiated when

startUpdatingLocation() is called, and location updates are provided by the handler,

didUpdateLocations. These locations are of type CLLocation, which provide coordi-

nate (latitude, longitude) information. Since, the location accuracy is set to best,

location information will update at a quick pace. The distance between each point

is measured to keep track of distance the user has traveled. When a workout is

completed the stopUpdatingLocation() function is called on the CLLocationManager

object.

62

Figure 4.11: The HeartMateWorkout entity representation in Core Data.

This data cannot be saved as apart of the HKWorkout and is instead saved

through the use of Core Data. To save using Core Data, an entity must be created

that serves as the structure of the object to be saved. The entity has a title, and

contains the attributes associated with the object. The location data is saved to a

HeartMateWorkout entity which can be seen in Figure 4.11. When the HKWorkout is

retrieved from HKHealthStore and is read in through the HeartMateWorkoutManager

the workout session context read from the metadata provides information on if the

workout was outdoors, and if it was outdoors the location data is retrieved through

the Core Data API.

The location data is stored as an array of locations, and in the order of which

they were received. When the user wishes to view the map of the route taken, the

location data will be reconstructed, and a path is added as an overlay using Map

Kit. The location data is fed through the Map Kit API to create a polyline and then

overlayed on the map.

Workout Zone Manager

The WorkoutZoneManager is where the levels of intensity a user or an opponent to

the user, is being tracked and managed. Also, managed by the WorkoutZoneManager

are the voice updates to a user of the current zone they or their opponent reside in

during a workout session. The WorkoutZoneManager calculates zone intensity by

using techniques and calculations discussed in Chapter 2. There are five zones a user

63

and an opponent could possibly be in during a workout such as none, low, moderate,

high, and red line. These zones should look familiar as they correlate to the ones

shown in Table 2.1 from Chapter 2.

The WorkoutZoneManager is initialized to the user’s health information either

provided by Health Kit or entered by the user directly into the application. Utilizing

the user’s health information such as resting heart rate (HRrest), and age to calculate

the max heart rate (HRmax) using Equation 2.2. The heart rate reserve (HRR) is

then calculated to calculate each of the aforementioned zone thresholds. This is done

by using the Karvonen method, Equation 2.7. If the user has an opponent the same

process is applied creating zones specifically matching the opponent’s health data.

The current heart rate value for either the user or opponent is processed each second

to determine which zone the heart rate value falls under, using the calculated zones

for the specific users.

In order for a user to be considered in a specific zone the heart rate values must

consecutively fall within the same zone for at least 15 seconds, otherwise it will not

trigger a zone switch or an update. When a zone switch or update does occur the

user will be notified by voice with the current zone they switched to. If they are in

competition mode the user will be notified when their opponent switches zones along

with their current zone at that time. The voice update system is using AVFoundation

and MeidaPlayer to create a text to speech for the update. The MediaPlayer is used

to determine if a user’s music is playing in the background and through AVFoundation

lower the audio to provide a more audible update while music is playing. Progress is

also provided to the user and their opponent through the graphical interface by using

DPMeterView, where each zone increase is a 20% increase to their progress meter.

Since heart rate values are being processed every second the amount of time

spent in a zone is calculated and a counter for the specific zone is incremented. At

the end of the workout session the zone counters will be used to determine how long

a user spent in each specific zone. These time spent counters are also used to create

a score between the user and the opponent. If the user is in competition mode the

64

WorkoutZoneManager also tracks how long the opponent and user were in zones

higher than each other. This score is also created through the use of a counter as it

equates to the time spent in a higher zone. This is so a user can be shown by how

many seconds they were beaten.

4.4 Competitions

4.4.1 Overview

Competitions are the foundation of HeartMate, and provide users ways to challenge

themselves from a previous workout or a real time challenge between a friend. This

section will discuss the CompetitionManager, which handles the competition between

a user’s or a friend’s previously stored workout, or the connection between two devices

for a real time competition using PubNub. The system components for tracking a

real time workout can be seen in Figure 4.12.

4.4.2 Competition Manager

The CompetitionManager contains a HeartMateWorkoutManager, HeartMateOppo-

nentWorkout, WorkoutZoneManager, pubConfiguration, pubClient, channel, friend-

Channel, and channelGroup object. TheHeartMateWorkoutManager assists in prepar-

ing a previously stored workout for competition such as gathering the workout session

context, and heart rate sample data. The workout session context is important be-

cause it provides information required by the WorkoutZoneManager to initialize the

opponent zones properly, and the heart rate sample data is used as the performance

measure. The HeartMateOpponentWorkout provides the context to the type of com-

petition such as a real time workout, or a competition to a previous workout. In

the HeartMateOpponentWorkout the opponent is represented in the form of a parse

PFUser which corresponds to a real time competition. HeartMateWorkout signifying

a previous workout of the user’s, or dbWorkoutData representing a friend’s previously

stored workout. The pubConfiguration, pubClient, channel, friendChannel, channel-

65

Figure 4.12: HeartMate’s interaction with system components to track a real time
competition.

66

Group object are part of the real time opponent competition and will be discussed in

the real time opponent section.

Previous Workout Opponent

The competition structure of a previous workout is shown in Figure 4.13. Where

User A is competing against User B’s previously stored workout. User B’s heart

rate samples from the previous workout is stored in the heart rate array and is used as

the performance measure during the competition. The age and resting heart rate of

User B is also used to provide context for the heart rate samples stored in the heart

rate array to calculateUser B’s zones (opponent zones) at the time of that particular

workout. User A’s heart rate data is collected from the connected Bluetooth LE

heart rate monitor and their zones are calculated based off their current resting heart

rate and age. Each second, a heart rate is collected from both User A and User

B, which is then processed to determine which zone the heart rate falls under. Once

the zone is determined the time spent for that particular zone is then incremented

as each heart rate reading corresponds to one second. A user must be in a zone for

at least 15 consecutive seconds similar to that of a regular workout being tracked. A

user is scored by using the time spent in a higher zone than their opponent where

each second is a point added to the user’s score. A user will be updated when the

opponent either increased or decreased zones along with the current user’s zone.

When competing against a previously stored workout the HeartMateOpponent-

Workout object is set using either a HeartMateWorkout or dbWorkoutData. If the

HeartMateWorkout is set as the opponent the workout session context is used as the

current user’s workout configuration such as duration, but the location of the workout

is still configurable. The duration is not configurable because competitions rely on

this information as the heart rate data is produced every one second to match the

duration of the workout. Heart rate data from a heart rate monitor is read every one

second and every same second a heart rate value is read from the opponent (Heart-

MateWorkout or dbWorkoutData). The workout session context is also used to match

67

Figure 4.13: The competition structure when using a pervious workout as an oppo-
nent.

the fitness level of the user’s previous session as it contains the resting heart rate, and

age of the opponent at the time of the previous workout. This information is used

to set the WorkoutZoneManager of the CompetitionManager for accurate zone track-

ing. If the opponent is from a friend’s previous workout retrieved from the database,

then dbWorkoutData will be in the form of Figure 4.6, which provides the friend’s

resting heart rate, and age at the time of the stored workout. In either case, the

heart rate data is read from an array where each heart rate value is indexed by the

current second in the workout, and is passed through the WorkoutZoneManager for

zone processing.

Real Time Opponent

The structure of a real time opponent is similar to that of a previous workout op-

ponent, but the opponent’s heart rates are not stored in an array and is streamed

directly from the opponent as shown in Figure 4.14. PubNub is used for a real time

competition and creates a publish / subscribe connection between two devices. The

Parse PFUser object in the HeartMateWorkoutOpponent object is only set as it rep-

resents the friend being challenged, and provides the necessary information to create

a competition. Since a PFUser is in the exact structure as shown in Figure 4.3,

it provides their current health data information such as resting heart rate and age

68

Figure 4.14: Real time opponent structure.

to provide an accurate comparison. The PFUser object also provides their unique

objectId which is used to create a channel.

To setup the connection between devices the pubConfiguration, pubClient, chan-

nel, friendChannel, channelGroup objects are used. The pubConfiguration contains

app specific information to create a connection between HeartMate apps, and the pub-

Client manages the publisher / subscriber connection between devices. The channel

is set to the current user’s objectId, and channelGroup is set to “competition” and

through the pubClient the currentUser is subscribed to the channel and added to

the channelGroup. The friendChannel is set to the friend’s objectId, and this allows

the current user to publish their heart rate data to the friendChannel all through the

pubClient. The friend will receive the current user’s heart rate data on their channel,

and will publish their heart rate data on their friendChannel which the current user

will receive on their channel they are subscribed to. The friend is also added to the

channelGroup. The pubClient object has a handler for listening to the channels a user

is subscribed to, and the heart rate data is retrieved from the didReceiveMessage(...),

handler.

Synchronization is important to maintain that one-to-one ratio when comparing

heart rates on each second the two devices need to be in sync. PubNub’s presence

feature is utilized, and when a user is added to the channelGroup the state is updated

for all users apart of the channelGroup. This information is provided by the pubClient

69

handler, didReceivePresenceEvent(...), when a user joins the presenceEvent state is set

to “join”, and the occupancy total is updated. Through the use of this information

a competition is synchronized when the second person added to the channelGroup

and the occupancy is updated to the number 2. Once this occurs a countdown to the

workout begins in sync on both devices. This allows for the workout to be started

together on both devices, thus making channelGroup act as a lobby. The competition

tracking is managed and setup on each device the same way. The connection PubNub

provides is a path for each user’s heart rate data to be shared across the network no

matter the location of each user. The heart rate is then processed locally by the

WorkoutZoneManager and provides updates as if they were competing side by side.

If a person leaves the competition, thus setting the presenceEvent state to “leave”,

during a competition the other user is notified through push notification or through

the “leave” state.

4.5 Summary of Software Technology and
Characteristics

HeartMate is an iOS application developed using Apple’s Xcode IDE with the pro-

gramming language, Swift. Various third party libraries and frameworks along with

Apple’s own frameworks were used to assist and provide the functionality HeartMate

required. Health Kit played a major role in developing HeartMate as it was the source

for most of the health data tracking such as gathering heart rates from a Bluetooth

LE connected heart rate monitor, and tracking distance for indoor runs. Health Kit

was used to store and retrieve workouts locally with the exception of location data

which was done through Core Location. Core Location was also used to gather lo-

cation data during an outdoor workout. Parse provided the server side functionality

to HeartMate, while PubNub provided the real time streaming of heart rate data

between devices. Libraries such as BEMSimpleLineGraph and Charts were used to

display the workout information to the user. During the development of HeartMate

a total of 56 classes were created along with approximately 10,000 lines of code to

70

provide perspective. Currently, HeartMate is not open source as the intention is to

release it as a commercial application.

71

Chapter 5

Application Walkthrough

This chapter will serve as a walkthrough of the HeartMate application, by showing

the app’s interface and describing its functionality.

5.1 Login and Sign Up

When a user launches the application they will be presented with the login and sign up

screen as shown in Figure 5.1a. The user is presented with two methods of registration,

through the app or linking their Facebook account with HeartMate. If Facebook is

chosen, the user will be redirected to the web browser to login to Facebook, and

grant permission to HeartMate as seen in Figure 5.1b and Figure 5.2a. When linking

a Facebook account their profile picture will be visible showing a successful link, and

a username must be supplied by the user to complete the registration process which

can be seen in Figure 5.2b. Once the user has completed a successful login they are

brought to their main user profile as seen in Figure 5.3, which is also the main menu.

The second option is to create a HeartMate account, and the user’s full name,

username, and password is requested. Figure 5.4a and Figure 5.4b show the complete

process of making a HeartMate account, and once the user is created they are brought

to their main profile view, as seen in Figure 5.5. Their picture is represented by a

person’s silhouette.

72

(a) HeartMate’s initial starting view,
login and sign up.

(b) A user must sign into Facebook
to link their account to HeartMate.

Figure 5.1: Initial view and user signup through Facebook using the Parse API.

73

(a) Grant HeartMate access to the
user’s Facebook account.

(b) Last step is to create a Heart-
Mate username.

Figure 5.2: Final step of linking a user’s Facebook account is granting permission,
and creating a username for HeartMate.

74

Figure 5.3: The main user profile view, also the view once a user is authenticated.

75

(a) Account creation requires a
name, username and password.

(b) The “Sign Up” button completes
the process.

Figure 5.4: HeartMate’s normal sign up process.

76

Figure 5.5: The user’s main profile view.

77

(a) The requested data HeartMate
can write to the Health app.

(b) Requested data to be read from
the Health app.

Figure 5.6: Health Kit authorization request.

5.2 Health Authorization

Since HeartMate uses Health Kit for a variety of operations such as reading and

writing health data to and from the Health app the user has to authorize HeartMate to

access this information. HeartMate requests Active Energy, Heart Rate, walking and

running distance, weight and workouts. Figure 5.6 shows how the health authorization

request is presented to the user, and is requested after the first time the user logs in.

5.3 Edit Profile

When the user is at the main menu they are shown their HeartMate profile. Their

HeartMate profile is visible to their friends, and consists of their status, image, and

78

(a) Removal of uploaded workouts
through a swipe.

(b) Importing images is possible from
Facebook, camera, and device.

Figure 5.7: An example of editing a user’s HeartMate profile.

uploaded workouts their friends can challenge. The user can change their status, and

manage their uploaded workouts as well as logout from the app which is shown in

Figure 5.7a. The user can change their photo by importing one from their local device

(camera roll), take a photo using their device, and if they have linked their account

with Facebook they can import their current profile picture all of which can be seen

in Figure 5.7b.

5.4 Menu Navigation

The menu navigation is accessed through the use of a three bar horizontal line icon

located at the top left of the application. This menu icon appears on each view in

the same location. Once the user presses this button they are able to access the

79

Figure 5.8: The menu options of HeartMate implemented using SWReveal.

different menu options to navigate HeartMate. The menu slides out from underneath

the current view, and was created this way to maximize the space of each view.

Figure 5.8 shows how the HeartMate navigation menu behaves.

5.5 Viewing Workouts

HeartMate allows a user to view their previously saved workouts stored on the device

in the form of a list as seen in Figure 5.9a. The list provides a quick view of some

of the workout stats. Since the HeartMate app only supports the exercise running,

the icons that denote the activity differentiate the location by showing a runner with

a treadmill for indoors, and only a runner for outdoors. A user can manage their

workouts by adding or removing a workout from their device by swiping their finger

across revealing a delete button as seen in Figure 5.9b.

80

(a) List of local workouts stored us-
ing Health Kit.

(b) Removal of a local workout
through a swipe.

Figure 5.9: Viewing locally saved HeartMate workouts, and their details.

When a user selects a workout from the list they are taken to a new view which

shows the workout details for that particular workout. A graph of the heart rates are

shown, and the user can drag their finger across the data to view what heart rate value

and zone they were in at a particular time. An example of this is in Figure 5.10a.

The user can also view a pie chart of their intensity levels during the workout, and

is shown in Figure 5.10b. Information such as duration, distance and calories is also

provided.

If the workout was performed outside, an arrow indicator will appear next to the

location name. Once pressed, the user is taken to an embedded map view with a path

of the route. This was implemented with Map Kit with an added polyline overlay to

represent the route. The map view can be seen in Figure 5.11.

81

(a) Heart rate graph, and workout
statistics.

(b) Zone intensity pie chart in the
same view as the heart rate graph.

Figure 5.10: Viewing locally saved HeartMate workouts, and their details.

82

Figure 5.11: Map view of the user’s running route.

83

(a) Friends list view. (b) Friend requests view.

Figure 5.12: Viewing HeartMate friends and requests.

5.6 Friends

Friends located under the “Friends” menu option provides a list of friends and a way

to manage friend requests. The first presented view is their friends list, where they

can view their friends in the form of a list as well as add friends. The second option

is the friend requests view and allows management of those requests. Both options

can be viewed in Figure 5.12a and Figure 5.12b.

A user can search and add friends by either their username or full name. If the

user they are searching has already been requested then they will not be able to add

them again, which is indicated by a “Pending” status. A check mark indicates the

user is already friends with searched user. HeartMate’s handling of searching of and

adding friends can be seen in Figure 5.13a. Once the user requests to be friends

84

(a) Search and add friends by a name
or username.

(b) A push notification is sent to the
user requested.

Figure 5.13: HeartMate searching and adding friends.

with a particular user a push notification is sent to the requested user as seen in

Figure 5.13b.

Through the friends list view the user can view their friend’s HeartMate profile.

The friend profile view is similar to the main profile view of the user, but is not

editable. Options to challenge the user’s uploaded workouts and to a real time workout

is available as seen in Figure 5.14a. Details to a particular uploaded workout can

also be viewed before challenging, and provides insight to the user’s performance

measure. Graphs of heart rate, and zone intensities are shown. An example of a

friend’s uploaded workout can be seen in Figure 5.14b.

85

(a) Status, profile picture, previous
workouts can be viewed.

(b) Friend’s workout information can
also be viewed.

Figure 5.14: Viewing a friend’s profile.

86

(a) Health information used for zone
information.

(b) Age, gender, weight, and resting
heart rate are inputed similarly.

Figure 5.15: Profile settings with a method to import information from Health Kit.

5.7 HeartMate Settings

Settings for HeartMate is a critical aspect in accurately tracking a user’s workout and

their zones. Under the “Settings” menu option, a user can input their age, gender,

weight, and resting heart rate. The user also has the option to import the information

from the Health app. Automatic upload of workouts can also be set under the “App

Settings” category. The settings view can be seen in Figure 5.15a, and how a setting

is set in Figure 5.15b. Importing of a user’s resting heart rate can be done through

the use of a connected Bluetooth monitor. The heart rate is averaged for twenty

seconds, and set to the correct value as seen in Figure 5.16a. Once the information is

inputted the user must save this information to their profile as seen in Figure 5.16b.

87

(a) Resting heart rate has the option
to calculate from a heart monitor.

(b) A “Save” button appears if the
information has changed.

Figure 5.16: Profile settings with a method to import information from Health Kit.

88

(a) A user’s inputted workout set-
tings.

(b) User has the choice between an
indoor or outdoor run.

Figure 5.17: The different workout configurations of HeartMate.

5.8 Workout Settings

The workout settings define the configuration of the run or competition. A user must

select a location, opponent, and duration. The settings view is shown in Figure 5.17a,

and input of a location in Figure 5.17b. If a user selects an opponent, an opponent

selection view will be shown to the user to select a previous workout of their own or

friend’s, and the ability to challenge a friend live is as shown in Figure 5.18a. If a pre-

vious workout is selected the duration is restricted to the previous workout’s duration

to maintain the one-to-one comparison of heart rates as shown in Figure 5.18b.

89

(a) Challenge previous workout or a
friend.

(b) Challenging a workout limits du-
ration configuration.

Figure 5.18: The different workout configurations of HeartMate.

90

(a) Choose the live workout option
under a friend’s profile.

(b) Define the workout conditions of
the competition.

Figure 5.19: Starting a real time competition with HeartMate.

5.9 Real Time Competitions

A real time competition is created either through the friend’s view by selecting the

option, “Challenge to a Live Workout” as shown in Figure 5.19a, or through the

workout configuration view. Once a user selects an opponent they are the ones to

define the competition parameters as seen in Figure 5.19b. Once the user is satisfied

with the settings they may start the workout. Once the user has pressed start the user

must wait for the opponent to accept and start the workout as shown in Figure 5.20.

The chosen opponent will receive a push notification as an indication they are

being challenged. The push notification alert can appear anywhere on the device, and

alert the user they have been challenged and can accept or decline, which can be seen

91

Figure 5.20: Waiting until the other user joins or declines.

92

(a) The challenged user receives a
push notification.

(b) Once opened the user must ac-
cept or decline.

Figure 5.21: The user’s perspective of receiving a request for a real time workout.

in Figure 5.21a and Figure 5.21b. Once the user has accepted the challenge they will

be shown the competition settings the challenger has chosen with duration restricted

as shown in Figure 5.22a. Once the user starts the workout the user is presented with

a starting screen as shown in Figure 5.22b. When both users are connected and are

notified by the “join” state provided by PubNub the devices will start at the same

time and the countdown will start as shown in Figure 5.23.

During the workout the user is presented with their heart rate, zone, calories

and miles ran. A progress view of the zone they are currently in as well as their

opponent’s is shown. The progress view utilizes DPMeterView, and animates during

the run. Threshold zones are indicated to provide the user a target heart rate to

aim for as well as the current status of their opponent. When the opponent switches

93

(a) Configuration preset by chal-
lenger.

(b) Joining lobby, and will start
when both users are in group.

Figure 5.22: The user’s perspective of receiving a request for a real time workout.

94

Figure 5.23: The real time workout then begins counting down on both devices at
the same time.

95

(a) Comparison of a workout being
challenged.

(b) Warning the user of lost data for
ending a run early.

Figure 5.24: Active workout view during a HeartMate competition.

zones the user is notified through a voice update and alerts them of the zone they

have decreased or increased to, and the current zone they are currently in. The active

workout view can be seen in Figure 5.24a. The active view is similar to a regular

workout session with no opponent. If a user ends a competition early they will lose

their workout data and is warned as shown in Figure 5.24b. If the user does end

the workout early the user will either receive a push notification or a state change

through PubNub and will receive an alert as shown in Figure 5.25, resulting in their

workout ending.

Once the workout has completed the results of the workout will be shown along

with the map of the route taken as shown in Figure 5.26 and Figure 5.27. The graphs

shown are the same graphs when viewing a stored workout, and provide both the

96

Figure 5.25: State change or Push notification of the competition ending early.

97

(a) Map view is shown with route;
user’s heart rate data is displayed.

(b) The opponent’s data is displayed
underneath the heart rate graph.

Figure 5.26: The view of a completed competition workout.

user’s and their oppoonent’s data to compare. The user’s graphs are shown at the top

with the opponent’s underneath for side by side comparison as seen in Figure 5.26b.

A score is also shown of the opponent and user providing how long each user was

in a higher zone than the other. When the user is in a regular run only the normal

statistics are shown along with the graph data.

98

Figure 5.27: The statistics and scoring of the competition.

99

Chapter 6

Comparison with Related Work

In this section, we compare our HeartMate application with the other fitness appli-

cations (Nike+ Move, Nike+ Running, and Fitbit) mentioned in Chapter 2. The

competitive and social features of each application is listed along with advantages

and disadvantages.

The Nike+ Move application tracks a user’s movement continuously throughout

the day using NikeFuel as the performance measure. Users do not need to start an

activity tracking session as the application will always be tracking the users’ move-

ment. NikeFuel is calculated using a proprietary algorithm that generalizes activities

converting movement into NikeFuel without the need to specify the particular ac-

tivity beforehand. Since NikeFuel is the performance measure the user is able to

compare their NikeFuel throughout the week, against friends as well as users near

their location. Nike+ Move does track the user’s location to provide a map of where

NikeFuel was earned at specific locations. Nike+ Move does not provide any real time

feedback or any other type of motivational feedback to do better in comparison to a

user’s friends [37].

The Nike+ Running application is dedicated to tracking the activity, running.

NikeFuel is calculated with the Nike+ Running application, but is only used to provide

a quantified measurement for how much energy the user has expended instead of using

it as a performance measure. The amount of miles is instead used as the motivator

and performance measure. The user can then compare the total amount of miles ran

during the month with their friends instead of comparing NikeFuel. Once again there

100

is no real time feedback or motivator other than a number comparison. Although,

Nike+ Running does have a feature where a user can connect their Nike+ account

to Facebook and post they are going for a run to receive “cheers” whenever a friend

interacts with the post. This provides another method of motivation pushing users

to continue their run knowing their friends are cheering for them. Through the use

of “cheers” Nike+ Running does provide that connection between others during a

workout to provide a motivational experience. The problem with “cheers” is that

someone has to interact with post, and if no one interacts with the post there will be

no cheers especially if the run takes place during odd hours of the day. Nike+ Running

does have another competitive aspect called, Nike+ Challenges. Nike+ Challenges

allow a user to invite their friends to a race in which the user defines a set distance

and the first to reach that distance wins. This the closest to a real time competition,

but the performance measure is speed. There is a chance the user has friends who are

naturally faster, and speed is not a determinate of who is working out harder. Some

may also be in better shape, and reach the distance without breaking a sweat. Nike+

Running does utilize the use of a heart rate monitor, but is solely used for the user

to track their heart rate during a run [38].

The Fitbit application tracks a user’s movement such as walks or runs, but focuses

on the amount of steps as the performance measure. Using steps is the equivalent of

using NikeFuel in the Nike+Move app. The amount of steps can be compared between

friends and used in Fitbit Challenges. Fitbit Challenges are predefined goals used to

compete against friends such as who can take the most steps during the weekend.

Fitbit does provide updates to the user such as when they are approaching or have

met a goal and is notified through push notifications. The use of push notifications

allow users to stay up to date with their movement goals, and motivate them to

continue working towards the specific goal [23].

HeartMate similar to Nike+ Running as it is only dedicated to tracking the

activity, running. The usual workout statistics are provided similar to the other

applications mentioned. The competitive aspect of HeartMate does create a social

101

Table 6.1: Comparisons Between HeartMate and Other Fitness Applications.

Nike+ Move Nike+ Running Fitbit HeartMate
User Accounts YES YES YES YES
Track Multiple Activities YES NO YES NO
Social Network YES YES YES YES
Challenge Based Goals YES YES YES NO
Real Time Competitions NO NO NO YES
Challenge Previous
Workouts NO NO NO YES

Challenge Friends’
Previous Workouts NO NO NO YES

Factors Fitness Level for
Challenges Between
Friends

NO NO NO YES

Track Location YES YES YES YES

environment the other applications provide such as the ability to add friends and

compete against them. The competition and motivation aspect is where HeartMate

and the previously mentioned applications diverge. Nike+ Move, Nike+ Running,

and Fitbit all have similar comparisons of performance measures where the user had

to gain more NikeFuel, miles, or steps than their friends. HeartMate provides the

ability to determine who is working out harder during a real time workout, through

the use of a previous workout stored locally or from a friend’s profile. In both cases,

the competition is as if the user is beside the opponent as voice updates are provided

during the workout to push the user to work their hardest. Zones calibrated to each

user is utilized to determine who is working harder than the other. Scoring is not done

through the use of steps or some form of NikeFuel, but is done through how long a

user can stay in a higher zone than their opponent. Zones are relative to each person’s

fitness level, which none of the previous apps mentioned take into account. Table 6.1

concludes the comparisons between HeartMate and other fitness applications.

HeartMate is a prototype and is no way claiming to be better than any of the

applications used for comparisons. HeartMate provides a different method for creating

a social, motivational and competitive environment through the use of heart rates as

102

the performance measure. Where the performance of users is calibrated specifically

to their fitness level.

103

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Smartphones are becoming more useful every day with the addition of third party

applications. They provide utility, and even provide the user ways to maintain a

healthy lifestyle through the use of third party fitness applications. The technology

that is found in smartphones is becoming more advanced in the way a user’s health

can be tracked. Accelerometers, gyroscopes, GPS, Bluetooth LE, and even dedi-

cated chips to assist with the tracking of some of those sensors such as the M-Series

Motion Coprocessors, are becoming widely available for health tracking. With the

help of those sensors this thesis presented HeartMate, an iOS mobile running fitness

application that utilizes a bluetooth connected heart rate monitor to provide a new

competitive and motivational environment through a social component using heart

rates as the performance measure. Specifically, HeartMate utilized a client-server

architecture to allow users to create a profile and use that profile to connect with

friends all over, as well as create competitions between friends using their heart rate

data as a performance metric. Users can challenge theirs or their friends’ previous

workouts, or even compete real time through the use of the publish / subscribe model

to stream heart rate data. HeartMate is different from other fitness apps because it

allows comparison of heart rates relative to the user’s fitness level through the use of

the Karvonen method which factors in a user’s resting heart rate (HRrest) and maxi-

mal heart rate (HRmax), to calculate a percentage of the heart rate reserve (%HRR),

104

which correlates to a user’s volume of oxygen consumption reserve (%V O2R) to create

intensity zones relative to the user. Doing so provides accurate comparison between

competitors relative to their own fitness level, and not that of the user in which they

are competing against. HeartMate uses the tracking of these zones to create a com-

petition as well as provide updates to theirs and their opponent’s current level of

intensity throughout the workout for motivation. HeartMate adds to the different

types of fitness apps already available, but in a new way.

7.2 Future Work

7.2.1 Different Cardio Tracking Types

Currently, the workout activity being tracked is running. The addition to other

cardiorespiratory exercises such as cycling could be added as a workout and utilize the

M-series Coprocessor chip as it supports the tracking of other exercises. Sensor data

for different activities would have to be captured and abstracted through the Core

Motion framework instead of the Health Kit framework, which HeartMate currently

does to track a run.

7.2.2 User Interface Enhancements

Live Graphing of Heart Rates During Challenges

HeartMate currently provides a progress meter of the user and their opponent’s in-

tensity level, but it would be more interesting to see a live graph of the heart rate

data as time progressed. The current libraries used for graphing do not support live

data. A more extensive customizable graphing library could be implemented to add

this feature.

Heart Rate Graph Intensities

The displaying of heart rate data with the zone information is currently done through

the use of a popup view. Gradient thresholds applied to the line graph would make

105

it easily more readable to the user to see what zone they are in at a glance. Once

again, a custom graphing library for iOS could be utilized.

7.2.3 Apple Watch Support

The Apple Watch has essentially all the sensors required to integrate HeartMate. The

Apple Watch has Wifi, sensors to track motion, and a built in heart rate monitor.

Originally, the plan was for HeartMate to be developed for both the Apple Watch

and iPhone, but the hardware for the Apple Watch was limited for real time tracking

of heart rates. The heart rate monitor data was inaccessible during a workout until

the user woke the screen of the device, and then would be flooded with the heart

rate data tracked. HeartMate uses a one-to-one measure of heart rates per second

during the workout and processes the information as it is received. Zone updates,

and motivation would not be possible in real time. Once the Apple Watch hardware

improves, an Apple Watch version of HeartMate will be possible.

7.2.4 Android Support

Using the same backend, Parse, for an Android version of HeartMate will allow cross

device competition. Only the client application would need to be developed as the

backend already exists, and could manage the Android accounts as the Parse frame-

work supports Android.

7.2.5 Integrate Other Health Sensors

HeartMate provides the foundation for accessing other sensors through Health Kit,

and can easily be integrated to work with other Bluetooth LE devices that are de-

signed to work with Health Kit. The game component can be stripped from Heart-

Mate and provide a way for users to create health profiles, and monitor data provided

through third party sensors. These health profiles can be created and stored locally

or through the use of the Parse server.

106

Bibliography

[1] Apple, Inc. About the ios technologies. https://developer.
apple.com/library/ios/documentation/Miscellaneous/Conceptual/
iPhoneOSTechOverview/Introduction/Introduction.html, 2014. [Online;
accessed 20-April-2016].

[2] Apple, Inc. About Swift. https://swift.org/about/, 2016. [Online; accessed
21-April-2016].

[3] Apple, Inc. Apple push notification service. https://developer.apple.
com/library/ios/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html, 2016. [On-
line; accessed 20-April-2016].

[4] Apple, Inc. Av foundation programming guide. https://developer.
apple.com/library/ios/documentation/AudioVideo/Conceptual/
AVFoundationPG/Articles/00_Introduction.html, 2016. [Online; accessed
21-April-2016].

[5] Apple, Inc. Core data programming guide. https://developer.apple.com/
library/ios/documentation/Cocoa/Conceptual/CoreData/, 2016. [Online;
accessed 21-April-2016].

[6] Apple, Inc. Core location framework reference. https://developer.apple.
com/library/ios/documentation/CoreLocation/Reference/CoreLocation_
Framework/, 2016. [Online; accessed 21-April-2016].

[7] Apple, Inc. The healthkit framework. https://developer.apple.com/
library/ios/documentation/HealthKit/Reference/HealthKit_Framework/
index.html, 2016. [Online; accessed 21-April-2016].

[8] Apple, Inc. The mapkit framework reference. https://developer.apple.
com/library/ios/documentation/MapKit/Reference/MapKit_Framework_
Reference/, 2016. [Online; accessed 21-April-2016].

[9] Apple, Inc. Media player framework reference. https://developer.apple.
com/library/ios/documentation/MediaPlayer/Reference/MediaPlayer_
Framework/index.html, 2016. [Online; accessed 21-April-2016].

[10] Apple, Inc. Uikit framework reference. https://developer.apple.com/
library/ios/documentation/UIKit/Reference/UIKit_Framework/, 2016.
[Online; accessed 21-April-2016].

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://swift.org/about/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/
https://developer.apple.com/library/ios/documentation/CoreLocation/Reference/CoreLocation_Framework/
https://developer.apple.com/library/ios/documentation/CoreLocation/Reference/CoreLocation_Framework/
https://developer.apple.com/library/ios/documentation/CoreLocation/Reference/CoreLocation_Framework/
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html
https://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
https://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
https://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
https://developer.apple.com/library/ios/documentation/MediaPlayer/Reference/MediaPlayer_Framework/index.html
https://developer.apple.com/library/ios/documentation/MediaPlayer/Reference/MediaPlayer_Framework/index.html
https://developer.apple.com/library/ios/documentation/MediaPlayer/Reference/MediaPlayer_Framework/index.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/

107

[11] American Heart Association. All about heart rate (pulse). http:
//www.heart.org/HEARTORG/Conditions/More/MyHeartandStrokeNews/
All-About-Heart-Rate-Pulse_UCM_438850_Article.jsp#.VxwC0pMrLa5,
2016. [Online; accessed 21-April-2016].

[12] Owen Barder. Running for fitness. A. & C. Black, 2002.

[13] Jakub Berlinski, Cameron Rowe, Marlon D Chavez, Nathan M Jordan, Devyani
Tanna, Roger V Hoang, Sergiu M Dascalu, Laurence C Jayet Bray, and Freder-
ick C Harris Jr. Neocortical builder: A web based front end for ncs. In Proceedings
of the 27th International Conference on Computer Applications in Industry and
Engineering (CAINE-2014), 2014.

[14] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
IETF, 2014.

[15] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-functional
requirements in software engineering. In Conceptual modeling: Foundations and
applications, pages 363–379. Springer, 2009.

[16] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-functional
requirements in software engineering, volume 5. Springer Science & Business
Media, 2012.

[17] BrianMac Sports Coach. Heart rate training zones. http://www.brianmac.co.
uk/hrm1.htm. [Online; accessed 21-April-2016].

[18] CocoaPods. What is cocoapods. https://cocoapods.org/. [Online; accessed
20-April-2016].

[19] Joe Decuir. Bluetooth 4.0: low energy. Cambridge, UK: Cambridge Silicon Radio
SR plc, 16, 2010.

[20] Sebastian Deterding, Miguel Sicart, Lennart Nacke, Kenton O’Hara, and Dan
Dixon. Gamification. using game-design elements in non-gaming contexts. In
CHI’11 Extended Abstracts on Human Factors in Computing Systems, pages
2425–2428. ACM, 2011.

[21] Pierre Dulac. DPMeterView. https://github.com/dulaccc/DPMeterView,
2016. [Online; accessed 21-April-2016].

[22] Boris Emorine. BEMSimpleLineGraph. https://github.com/Boris-Em/
BEMSimpleLineGraph, 2016. [Online; accessed 21-April-2016].

[23] Fitbit, Inc. Fitbit. https://itunes.apple.com/us/app/fitbit/id462638897?
mt=8 and https://www.fitbit.com/app, 2016. [Online; accessed 18-April-
2016].

[24] Kent German. A brief history of android phones. http://www.cnet.com/news/
a-brief-history-of-android-phones/, 2016. [Online; accessed 21-April-
2016].

http://www.heart.org/HEARTORG/Conditions/More/MyHeartandStrokeNews/All-About-Heart-Rate-Pulse_UCM_438850_Article.jsp#.VxwC0pMrLa5
http://www.heart.org/HEARTORG/Conditions/More/MyHeartandStrokeNews/All-About-Heart-Rate-Pulse_UCM_438850_Article.jsp#.VxwC0pMrLa5
http://www.heart.org/HEARTORG/Conditions/More/MyHeartandStrokeNews/All-About-Heart-Rate-Pulse_UCM_438850_Article.jsp#.VxwC0pMrLa5
http://www.brianmac.co.uk/hrm1.htm
http://www.brianmac.co.uk/hrm1.htm
https://cocoapods.org/
https://github.com/dulaccc/DPMeterView
https://github.com/Boris-Em/BEMSimpleLineGraph
https://github.com/Boris-Em/BEMSimpleLineGraph
https://itunes.apple.com/us/app/fitbit/id462638897?mt=8
https://itunes.apple.com/us/app/fitbit/id462638897?mt=8
https://www.fitbit.com/app
http://www.cnet.com/news/a-brief-history-of-android-phones/
http://www.cnet.com/news/a-brief-history-of-android-phones/

108

[25] Arielle S Gillman and Angela D Bryan. Effects of performance versus game-based
mobile applications on response to exercise. Annals of Behavioral Medicine, pages
1–6,157–162, 2015.

[26] Daniel Cohen Gindi. BEMSimpleLineGraph. https://github.com/
danielgindi/Charts, 2016. [Online; accessed 21-April-2016].

[27] Liu Guo-Cheng and Yu Hong-Yang. Design and implementation of a bluetooth
4.0-based heart rate monitor system on ios platform. In Communications, Cir-
cuits and Systems (ICCCAS), 2013 International Conference on, volume 2, pages
112–115. IEEE, 2013.

[28] James L Hargrove. History of the calorie in nutrition. The Journal of nutrition,
136(12):2957–2961, 2006.

[29] N. Hutchings. Nike+ fuelband se review. http://www.coachmag.co.uk/
fitness-technology/3469/nike-fuelband-se-review, November 2014. [On-
line; accessed 18-April-2016].

[30] Andrew Imm. The new parse developer experience. http://blog.parse.com/
announcements/the-new-parse-developer-experience/, 2016. [Online; ac-
cessed 21-April-2016].

[31] LR Keytel, JH Goedecke, TD Noakes, H Hiiloskorpi, Raija Laukkanen, L Van
Der Merwe, and EV Lambert. Prediction of energy expenditure from heart rate
monitoring during submaximal exercise. Journal of sports sciences, 23(3):289–
297, 2005.

[32] Matthias Kranz, Andreas Möller, Nils Hammerla, Stefan Diewald, Thomas Plötz,
Patrick Olivier, and Luis Roalter. The mobile fitness coach: Towards individu-
alized skill assessment using personalized mobile devices. Pervasive and Mobile
Computing, 9(2):203–215, 2013.

[33] Cameron Lister, Joshua H West, Ben Cannon, Tyler Sax, and David Brodegard.
Just a fad? gamification in health and fitness apps. JMIR serious games, 2(2),
2014.

[34] William D McArdle, Frank I Katch, and Victor L Katch. Exercise physiology:
nutrition, energy, and human performance. Lippincott Williams &Wilkins, 2010.

[35] Network Computing. Client/Server Fundamentals. http://digital.
networkcomputing.com/netdesign/1005part1a.html, February 1999. [Online;
accessed 20-April-2016].

[36] Nike, Inc. Explore the power of nikefuel. http://www.nike.com/us/en_us/c/
nikeplus/nikefuel, 2016. [Online; accessed 18-April-2016].

[37] Nike, Inc. Nike+ move. https://itunes.apple.com/us/app/nike+-move/
id712498492?mt=8 and https://secure-nikeplus.nike.com/plus/support#
answers/detail/article/nikeplus-move, 2016. [Online; accessed 18-April-
2016].

https://github.com/danielgindi/Charts
https://github.com/danielgindi/Charts
http://www.coachmag.co.uk/fitness-technology/3469/nike-fuelband-se-review
http://www.coachmag.co.uk/fitness-technology/3469/nike-fuelband-se-review
http://blog.parse.com/announcements/the-new-parse-developer-experience/
http://blog.parse.com/announcements/the-new-parse-developer-experience/
http://digital.networkcomputing.com/netdesign/1005part1a.html
http://digital.networkcomputing.com/netdesign/1005part1a.html
http://www.nike.com/us/en_us/c/nikeplus/nikefuel
http://www.nike.com/us/en_us/c/nikeplus/nikefuel
https://itunes.apple.com/us/app/nike+-move/id712498492?mt=8
https://itunes.apple.com/us/app/nike+-move/id712498492?mt=8
https://secure-nikeplus.nike.com/plus/support#answers/detail/article/nikeplus-move
https://secure-nikeplus.nike.com/plus/support#answers/detail/article/nikeplus-move

109

[38] Nike, Inc. Nike+ running. https://itunes.apple.com/us/app/nike+
-running/id387771637?mt=8 and https://support-en-us.nikeplus.com/
app/answers/list/p/4220,4241, 2016. [Online; accessed 18-April-2016].

[39] Brett Ohland and Jayant Varma. Xcode 7 Essentials. Packt Publishing, second
edition, 2016.

[40] Parse. ios guide. https://parse.com/docs/ios/guide, 2016. [Online; accessed
21-April-2016].

[41] Scott Powers and Edward Howley. Exercise Physiology: Theory and Application
to Fitness and Performance. McGraw-Hil Publishing Company, seventh edition,
2008.

[42] PubNub, Inc. The pubnub data stream network. https://www.pubnub.com/
products/global-data-stream-network/, 2016. [Online; accessed 21-April-
2016].

[43] T Scott Saponas, Jonathan Lester, Carl Hartung, and Tadayoshi Kohno.
Devices that tell on you: The nike+ ipod sport kit. Dept. of Com-
puter Science and Engineering, University of Washington, Tech. Rep,
2006. [Available at https://www.cs.washington.edu/research/systems/
nikeipod/tracker-paper.pdf, accessed 18-April-2016].

[44] DAVID P Swain and BARRY A Franklin. Vo˜ 2 reserve and the minimal intensity
for improving cardiorespiratory fitness. Medicine and Science in Sports and
Exercise, 34(1):152–157, 2002.

[45] David P Swain and Brian C Leutholtz. Heart rate reserve is equivalent to% vo2
reserve, not to% vo2max. Medicine and science in sports and exercise, 29(3):410–
414, 1997.

[46] Hirofumi Tanaka, Kevin D Monahan, and Douglas R Seals. Age-predicted
maximal heart rate revisited. Journal of the American College of Cardiology,
37(1):153–156, 2001.

[47] Emmanuel Munguia Tapia, Stephen S Intille, William Haskell, Kent Larson, Julie
Wright, Abby King, and Robert Friedman. Real-time recognition of physical
activities and their intensities using wireless accelerometers and a heart rate
monitor. In Wearable Computers, 2007 11th IEEE International Symposium on,
pages 37–40. IEEE, 2007.

[48] Time. 8 years of the iphone: An interactive timeline. http://time.com/
2934526/apple-iphone-timeline/, 2016. [Online; accessed 21-April-2016].

[49] James Turner. Encyclopedia of Behavioral Medicine, chapter Maximal Exercise
Heart Rate, pages 1200–1200. Springer New York, New York, NY, 2013.

[50] Ted Vickey, John Breslin, and Antonio Williams. Fitness–there’s an app for that:
Review of mobile fitness apps. International Journal of Sport & Society, 3(4),
2012.

https://itunes.apple.com/us/app/nike+-running/id387771637?mt=8
https://itunes.apple.com/us/app/nike+-running/id387771637?mt=8
https://support-en-us.nikeplus.com/app/answers/list/p/4220,4241
https://support-en-us.nikeplus.com/app/answers/list/p/4220,4241
https://parse.com/docs/ios/guide
https://www.pubnub.com/products/global-data-stream-network/
https://www.pubnub.com/products/global-data-stream-network/
https://www.cs.washington.edu/research/systems/nikeipod/tracker-paper.pdf
https://www.cs.washington.edu/research/systems/nikeipod/tracker-paper.pdf
http://time.com/2934526/apple-iphone-timeline/
http://time.com/2934526/apple-iphone-timeline/

110

[51] Roy Want, Bill Schilit, and Dominik Laskowski. Bluetooth LE Finds its Niche.
IEEE Pervasive Computing, (4):12–16, 2013.

[52] Mitchell H Whaley, Leonard A Kaminsky, Gregory B Dwyer, Leroy H Getchell,
and JAMES A Norton. Predictors of over-and underachievement of age-predicted
maximal heart rate. Medicine and science in sports and exercise, 24(10):1173–
1179, 1992.

[53] Yue Wu, Atreyi Kankanhalli, and Ke-wei Huang. Gamification in fitness apps:
How do leaderboards influence exercise? ICIS, 2015.

[54] John Lluch Zorrilla. SWRevealViewController. https://github.com/
John-Lluch/SWRevealViewController, 2016. [Online; accessed 21-April-2016].

https://github.com/John-Lluch/SWRevealViewController
https://github.com/John-Lluch/SWRevealViewController

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Other Competitive / Motivational Workout Apps
	Overview
	Nike+
	Fitbit

	Measuring of Running Performance / Exercise Physiology
	Overview
	Heart Rate
	Target Training Zones

	Development Environment
	Overview
	iOS
	Xcode
	CocoaPods

	Hardware
	Overview
	iPhone Hardware
	Bluetooth LE
	Heart Rate Monitors

	Client-Server Model
	Overview
	Structure

	Libraries and Frameworks
	Overview
	Swift
	JSON
	Parse
	PubNub
	BEMSimpleLineGraph
	Charts
	SWReveal
	DPMeterView
	Health Kit
	UIKit
	Map Kit
	Core Data
	Core Location
	MediaPlayer
	AVFoundation

	Design
	Overview
	HeartMate Requirements
	Functional Requirements
	Non-functional Requirements

	Use Case Modeling
	Overview
	Detailed Use Cases

	Architecture

	Implementation
	Overview
	Social Component
	Overview
	Database Management
	Parse Cloud Code

	Tracking a Run
	Overview
	Workout Session Manager

	Competitions
	Overview
	Competition Manager

	Summary of Software Technology and Characteristics

	Application Walkthrough
	Login and Sign Up
	Health Authorization
	Edit Profile
	Menu Navigation
	Viewing Workouts
	Friends
	HeartMate Settings
	Workout Settings
	Real Time Competitions

	Comparison with Related Work
	Conclusions and Future Work
	Conclusions
	Future Work
	Different Cardio Tracking Types
	User Interface Enhancements
	Apple Watch Support
	Android Support
	Integrate Other Health Sensors

	Bibliography

